2015-2016学年 黄冈中学 七年级(上)期末数学试卷(解析版)
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 4.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .6.将图中的叶子平移后,可以得到的图案是()A .B .C .D .7.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④10.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 11.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 12.方程312x -=的解是( ) A .1x =B .1x =-C .13x =- D .13x =13.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).21.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 22.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.23.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 25.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.26.五边形从某一个顶点出发可以引_____条对角线.27.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.28.A 学校有m 个学生,其中女生占45%,则男生人数为________. 29.观察“田”字中各数之间的关系:则c 的值为____________________.30.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.34.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.35.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值. 38.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对;B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .4.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.5.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a a a +⋅=>,所以此题结果等于325a a +=,选A ;6.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.8.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.10.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
湖北省黄冈市七年级上学期数学期末考试试卷
湖北省黄冈市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·信阳期中) 关于0,下列几种说法不正确的是()A . 0既不是正数,也不是负数B . 0的相反数是0C . 0的绝对值是0D . 0是最小的数2. (2分) (2018七下·苏州期中) 若(x2+px+q)(x-2)展开后不含x的一次项,则p与q的关系是()A . p=2qB . q=2pC . p+2q=0D . q+2p=03. (2分) (2019七上·潮阳期末) 下列四个图形中是正方体的平面展开图的是()A .B .C .D .4. (2分) (2019七上·确山期中) 下列说法正确的是()A . 近似数2.0精确到了个位B . 近似数2.1与近似数2.10的精确度一样C . 用四舍五入法对3.355取近似值,精确到百分位为3.35D . 近似数5.2万精确到了千位5. (2分) (2019七上·鄞州期末) 若一3xmy3和8x5yn是同类项,则它们的和是()A . 5x10y6B . -11x10y6C . 5x5y3D . -11x5y66. (2分)下列说法不正确的是()A . 倒数是它本身的数是±1B . 相反数是它本身的数是0C . 绝对值是它本身的数是0D . 平方是它本身的数是0和17. (2分)(2018·西山模拟) 我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A . 0.11×108B . 1.1×109C . 1.1×1010D . 11×1088. (2分)如图,在所标识的角中,是内错角的是()A . ∠1和∠BB . ∠1和∠3C . ∠3和∠BD . ∠2和∠39. (2分)如图,在一张矩形纸片的一端,将折出的一个正方形展平后,又折成了两个相等的矩形,再把纸片展平,折出小矩形的对角线,并将小矩形的对角线折到原矩形的长边上.设MN的长为2,在下面给出的三种折叠中能得到长为()线段的有()A . 0种B . 1种C . 2种D . 3种10. (2分)点到直线的距离是()A . 点到直线上一点的连线B . 点到直线的垂线C . 点到直线的垂线段D . 点到直线的垂线段的长度二、填空题 (共5题;共6分)11. (1分)(2019·北部湾模拟) 比较大小:-3________0.(填“>”“<”或“=”)12. (1分) (2016七上·肇庆期末) 若x2+2x的值是8,则4x2-5+8x的值是________.13. (1分)两个邻补角的角平分线的位置关系是________.14. (1分) (2017七上·静宁期中) 某校去年初一招收新生x人,今年比去年增加20%,用代数式表示今年该校初一学生人数为________.15. (2分)(2019·绥化) 在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A3…”的路线运动设第n秒运动到点P(n为正整数),则点P2019的坐标是.三、解答题 (共8题;共77分)16. (15分) (2020七上·渭滨期末) 计算:﹣32÷(﹣1)2021﹣( + ﹣﹣)×(﹣24)17. (5分) (2019七上·江宁期末) 已知线段,延长线段AB到C,使得,点D是线段AC的中点,求线段BD的长.18. (5分) (2019七上·翁牛特旗期中) 先化简再求值,当x=-1时,求-x2+2x+x2-x+1的值.19. (5分) (2019七下·邵武期中) 如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.证明:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°(________)∴DE∥AB(________)∴∠2=________(________)∠1=________ (________)又∵∠1=∠2(________)∴∠A=∠3(________)20. (10分) (2018七上·吴中月考) 第66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表(单位:km):序号1234567路程+5-3+10-8-6+12-10(1)该车最后是否回到了车站?(2)该辆车离开出发点最远是多少千米?(3)这辆车在上述过程中一共行驶了多少路程?21. (15分) (2015七上·张掖期中) 如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).22. (11分) (2017八下·罗山期中) 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.23. (11分) (2020七上·苍南期末) 点O在直线PQ上,过点O作射线OC,使∠POC=130°,将一直角三角板的直角顶点放在点O处。
黄冈中学七年级上学期期末考试数学试题附答案1
七年级数学期末考试试题一、填空题(共10小题,每小题3分,共30分)1.132-的肯定值是 ;23的倒数是 ;2-的相反数是 .2.我国西部地区的面积约为 6.40×106平方千米,它准确到 位,有 个有效数字.3.若2313m n a b +-及35110b a -是同类项,则mn = . 4.某足球队在足球联赛中共赛22场,得39分,若胜一场得3分,平一场得1分,负一场得0分,已知该球队共负7场,则该球队共胜 场.5.已知方程11x +=-及方程2x k x -=-有一样的解,则k = .6.如图,若,,80AB DE BC FE B ∠=︒,则E ∠= .7.延长AB 到C 点,使13BC AB =,D 为AC 的中点,BC =2,则AD = .8.假如一个角及它的余角之比为1∶2,则这个角及它的补角之比 为 .FE C DA B OECD AB9.如图,O是直线AB上的一点,120,90∠=︒∠=︒,OE平分AOD AOC∠,则图中小于平角的角共有个,其中互余的角共有对. BOD10.已知60∠∠=,则AOC AOB∠=︒,过O的射线OC使:3:2AOB∠= .BOC二、选择题(每小题3分,共30分。
11~18为单选题,只有一个选项最符合题意,19~20为多选题,有两个或两个以上选项符合题意。
)11.若||2,||3==,则||m n+的值是()m nA.5 B.1 C.3或1 D.5或112.已知0++=,则代数式()()()a b c++++的值为()a b b c c a abcA.-1 B.1 C.0 D.213.假如方程21x=-,则a的值为()x a x+=-的解是4A.3 B.5 C.-5 D.-1314.小明在假期里参与了四天一期的夏令营活动,这四天各天的日期之和为86,则夏令营的开营日为()A.20日B.21日C.22日D.23日15.下列图形中,不是正方体绽开图的是()A.B.C.D.16.3点半时,钟表的时针和分针所成锐角是( ) A .70°B .75°C .85°D .90°17.如图,已知,20,130AB DE B D ∠=︒∠=︒,则BCD ∠等于( ) A .60°B .70°C .80°D .90°18.如图,已知,,80,40AB DC AD BC B EDA ∠=︒∠=︒, 则CDO ∠=( )A .80°B .70°C .60°D .40°19.下列变形中,正确的是( ) A .若25x x =,则x =5B .若77,x -=则1x =-C .若10.2x x -=,则1012x x -=D .若xy aa=,则ax ay =20.如图,直线34l l ⊥,且14∠=∠,则下列推断正确的是( ) A .12l lB .1423∠+∠=∠+∠C .1390∠+∠=︒D .24∠=∠三、解答题(8小题,共60分) 21.解方程(每小题4分,共16分) (1)82(4)x x =--;(2)3(2)1(21)x x x -+=--;l 4 l 1l 2l 34312ADOBECEB A D(3)124364x x x+---=; (4)13110.20.4x x +--=. 22.(6分)化简求值求2222(32)(4)(2)a b a b ab a ab a b ---+-的值,其中2, 3.a b =-=-23.(6分)如图,C 、D 将线段AB 分成2∶3∶4三局部,E 、F 、G分别是AC 、CD 、DB 的中点,且EG =12cm ,求AF 的长. 24.(6分)某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?25.(6分)如图所示,O 是直线AC 上一点,OB 是一条射线,OD平分AOB ∠,OE 在BOC ∠内,1,603BOE EOC DOE ∠=∠∠=︒,求EOC ∠的度数.EOCADBA CDBEFG26.(6分)某人原安排骑车以12千米/时的速度由A 地到B 地,这样便可以在规定的时间到达,但他因事将原安排动身的时间推延了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到达B 地,求A 、B 两地间的间隔 .27.(7分)如图,已知,,3AD BC EF BC C ⊥⊥∠=∠,求证:1 2.∠=∠28.(7分)某中学库存若干套桌凳,打算修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进展质量监视,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理. 你认为哪种方案省时又省钱?为什么?BAD F CEG 234 1启黄初中2008年秋季七年级数学期末考试参考答案1.133,,222; 2.万,3; 3.4(其中43,3m n ==);4.12; 5.-6; 6.100°; 7.4;8.1∶5;9.9,6(,,,,,COD DOB BOE COE DOE COE DOE DOB COD COE EOB DOB ∠∠∠∠∠∠∠∠∠∠∠∠与与与与与与);10.30°或150° 11.D 12.C 13.A 14.A 15.B 16.B17.B 18.C19.BCD 20.AC21.(1)45x =;(2)32x =;(3)45x =;(4)135x =22.解:原式=2222232424a b a b ab a ab a b a ab --++-=+ 当2a =-,3b =-时,原式24(2)(2)(3)22=⨯-+-⨯-=23.解:设2AC x =,则3,4CD x DB x ==,又有E 、G 分别平分AC 、DB , 故11,222EC AC x DG DB x ====,由3212EG EC CD DG x x x =++=++=,得x =2,24.解:设该商品的进价为x 元,由题意得110080%(110%)x ⨯=+,解方程得x =800.答:该商品的进价为800元.25.解:设BOE ∠为x°,则60DOB x ∠=︒-︒,由OD 平分AOB ∠,得2AOB DOB ∠=∠,故有32(60)180x x x ++-=,解方程得x =30,故90.EOC ∠=︒ 26.解:设A 、B 两地间间隔 为x 千米,由题意得20412156060x x =++,解方程得x =24.答:A 、B 两地间间隔 为24千米.27.证明:∵,AD BC EF BC ⊥⊥(已知),∴AD EF (垂直于同一条直线的两直线平行)∴14∠=∠(两直线平行,同位角相等) 又∵3C ∠=∠(已知)∴AC DG (同位角相等,两直线平行) ∴24∠=∠(两直线平行,内错角相等) ∴12∠=∠(等量代换)28.解:(1)设该中学库存x 套桌凳,由题意得:2016168x x-=+,解方程得x =960.(2)设①②③三种修理方案的费用分别为y 1、y 2、y 3元,则: 综上可知,选择方案③更省时省钱.资料来源:回澜阁教化 免费下载 每天更新。
湖北省黄冈中学2015-2016学年七年级(上)期中数学试卷(解析版)
2015-2016学年湖北省黄冈中学七年级(上)期中数学试卷、选择题:(每题3分,共30 分)1. 0.2的相反数是()C .- 8 - 8=0D . - 5 - 2=- 33•若等式x=y 可以变形为一上,则有()a 3A . a > 0B . a v 0C . a 旳D . a 为任意有理数4.如果x=2是方程*x+a= - 1的解,那么a 的值是( )A . 0B . 2C . - 2D . - 6 5.下列变形中,不正确的是()A . a+ (b+c - d ) =a+b+c - dB . a -( b - c+d ) =a - b+c - d6 . 2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中450亿”用科学记数法表示为()元.10989A . 4.5 XI0B . 4.5 XI0C . 4.5X10D . 0.45 X107.若-3x 2m y 3与2x 4y n 是同类项,那么m - n=( )A . 0B . 1C . - 1D . - 2&已知代数式x+2y 的值是3,则代数式2x+4y+1的值是( )A . 1B . 4C . 7D .不能确定9.在数轴上表示a , b 两个实数的点的位置如图所示,则化简|a+b|- |a - b|的结果为()■ ||丁30 ™A . 2aB . 2bC . 2a - 2bD . - 2b10 .若当x=3时,代数式ax 5+bx 3+cx - 10的值为3,则当x= - 3时,该多项式的值是 ( )A. - 3 B . - 7 C . - 13 D . - 23、填空题(每题 3分,共30 分)2•下列计算正确的是(32A . 2 =6B . - 4= — 16C . a - b -( c - d ) =a - b - c - dD . a+b - (- c - d ) =a+b+c+d11. __________________________________________________________________________ 在数轴上,若A点表示数-1,点B表示数2, A、B两点之间的距离为____________________________________12. 兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了________________ 元.13. _________________________________________________________________ 一个多项式加上2x2- x+5等于4x2-6x-3,则这个多项式为_____________________________________________ .14. 用四舍五入法取近似数,__ 1.80499空(精确到百分位).15. a=3, |b|=10,且|b- a|=-( b - a),贝U a- b= _______________ .16. 若有一个新运算_________________________________________________ “”,规定a*b= - a+3b,则(-2) *3的值为 _________________________________________________________ .17. 若方程4x - 1=5与2 - 3 (a- x) =0的解互为倒数,则a的值为 __________________________218. 如果|y- 3|+ (2x - 4) =0,那么3x - y 的值为__________________ .19. 如图所示的方式搭正方形:搭___________ n个正方形需要小棒根.1.5 - 3 2 - 0.5 1 - 2 -2 -2.5回答下列问题:(1 )这8筐白菜中最接近标准重量的这筐白菜重 _________________________ 千克; (2) 与标准重量比较,8筐白菜总计超过或不足多(3) 若白菜每千克售价 2.6元,则出售这8筐白菜可卖多少元?24. 先化简,再求值:5 ( 3x 2y - xy 2)- (- 3x 2y+xy 2),其中 x — , y= - 1.225.整理一批图书,如果由一个人单独做要花 60小时.现先由一部分人用一小时整理,随 后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同, 那么先安排整理的人员有多少人?26. 轮船沿江从 A 港顺流行驶到B 港,比从B 港返回A 港少用2小时,若轮船在静水速度 为26千米/时,水流速度为2千米/时,求A 港和B 港相距多少千米.20.已知四个互不相等的整数 a, b , c , d 满足abcd=77,则a+b+c+d= ________________三、解答题21.计算或化简(1) (+12) + (- 23)-(- 33); (2) - 13-( 1-0.5)片羽-(-3) 2];2 2(3) 4x - 3x+8 - 2 (3x +4x - 5); (4) 2a 2-[g (ab - a 2) +8ab]-丄ab .22.解方程(1) 5x+3=1 - 2x ;(2) (3) (4)2x -( x+10) =5x+2 (x - 1); 32-i 23=至—2触3nr23.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数, 称后的记录如下:27.设九年级一班的学生人数为人(I )已知40V X V 54,若两个班都以班为单位购票请根据表中提供的信息,用含有x的式子填写下表:(H )若x50,两个班都以班为单位购票,共需1240元,求两个班各有多少学生?(川)在(n)的条件下,若两个班联合起来购票,作为一个团体购票,可省多少钱?2015-2016学年湖北省黄冈中学七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1. 0.2的相反数是()-C . - 5 D . 5相反数.根据相反数的意义在 0.2前面加上负号即可得出答案.解:由相反数的意义得: 0.2的相反数是:-0.2=- 5故选:B .【点评】此题主要考查的知识点是相反数的定义, 关键是在其前面加 •”得出这个数的相反数.2.下列计算正确的是( )32A . 2 =6B . - 4 =- 16C .- 8 - 8=0D . - 5 - 2=- 3【考点】 有理数的乘方;有理数的减法.【专题】计算题.【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较. 【解答】解:A 、23=8书,错误;2B 、 - 4 = - 16,正确;C 、 - 8 - 8= - 16 用,错误;D 、 - 5- 2= - 7工-3,错误;故选B .【点评】本题主要考查学生的运算能力,掌握运算法则是关键.3.若等式x=y 可以变形为上一,则有( )a aA . a > 0B . a v 0C . a 旳D . a 为任意有理数【考点】等式的性质.【分析】根据等式的两边都乘或都除以同一个不为 0的整式,结果不变,可得答案【解答】解:x=y ,a 用,,a a故选:C .【点评】本题考查了等式的性质,注意等式的两边都乘或都除以同一个不为0的整式,结果【考点】【分【解答】不变.4. 如果x=2是方程丄x+a= - 1的解,那么a 的值是( )A . 0B . 2C .- 2D . - 6【考点】一元一次方程的解.【专题】计算题.【分析】此题可将x=2代入方程,然后得出关于a 的一元一次方程,解方程即可得出a 的值. 【解答】 解:将x=2代入方程丄x+a= - 1得1+a=- 1, 解得:a=- 2. 故选C .【点评】 此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a 的值.5.下列变形中,不正确的是( )A 、 a+ (b+c - d ) =a+b+c - dB . a -( b - c+d ) =a - b+c - dC . a - b -( c - d ) =a - b - c - dD . a+b - (- c - d ) =a+b+c+d【考点】去括号与添括号. 【专题】计算题.【分析】根据去括号法则:如果括号外的因数是正数, 去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判 断即可. 【解答】 解:A 、a+ (b+c - d ) =a+b+c - d ,故本选项正确;B 、 a -( b - c+d ) =a - b+c - d ,故本选项正确;C 、 a - b -( c - d ) =a - b - c+d ,故本选项错误;D 、 a+b - (- c - d ) =a+b+c+d ,故本选项正确; 故选C .【点评】 本题考查了去括号法则,解题时牢记法则是关键,特别要注意符号的变化.故选:A .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a X 0n 的形式,其中1珥a|v 10, n 为整数,表示时关键要正确确定 a 的值以及n 的值.7.若-3x 2m y 3与2x 4y n 是同类项,那么m - n=()A . 0B . 1C .- 1D . - 2【考点】同类项. 【专题】计算题.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出 m 和n 的值,继而代入可得出答案.【解答】解:•/ - 3x 2m y 3与2x 4y n 是同类项, /• 2m=4 , n=3 , 解得:m=2, n=3,/• m - n= — 1.故选C .【点评】此题考查同类项的定义,属于基础题,解答本题的关键是掌握同类项:所含字母相 同,并且相同字母的指要看把原数变成a 时,小数点移动了多少位, 绝对值〉1时,n 是正数;当原数的绝对值v 【解答】 解:将450亿用科学记数法表示为:n 的绝对值与小数点移动的位数相同.当原数 1时,n 是负数. 4.5 X 010.数也相同,难度一般.&已知代数式x+2y的值是3,则代数式2x+4y+1的值是( )A . 1 B. 4 C. 7 D .不能确定【考点】代数式求值.【分析】把x+2y看作一个整体并把所求代数式整理成已知条件的形式,然后计算即可得解.【解答】解:••• x+2y=3 ,••• 2x+4y+1=2 (x+2y) +1 ,=2X3+1 ,=6+1 ,=7.故选C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.9. 在数轴上表示a, b两个实数的点的位置如图所示,则化简|a+b|-|a- b|的结果为( )A . 2a B. 2b C. 2a- 2b D . - 2b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:•••由图可知,a v O v b, |a|> b,•a+b v 0, a- b v 0,•原式=-(a+b) + (a - b)=-a - b+a- b=-2b.故选D .【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.5 310. 若当x=3时,代数式ax +bx +cx - 10的值为3,则当x= - 3时,该多项式的值是( ) A. - 3 B. - 7 C.- 13 D . - 23【考点】代数式求值.【分析】当x=3时,ax5+bx3+cx=13,当x= - 3时,ax5+bx3+cx= - 13,最后代入计算即可.【解答】解:•••当x=3时,代数式ax5+bx3+cx - 10=35 3•ax +bx +cx=13.••• 3与-3互为相反数,•••当x= - 3 时,ax5+bx3+cx= - 13.•••原式=-13- 10= - 23.故选:D.【点评】本题主要考查的是求代数式的值,依据相反数的性质求得ax5+bx3+cx= - 13是解题的关键.二、填空题(每题3分,共30分)11. 在数轴上,若A点表示数-1,点B表示数2, A、B两点之间的距离为 3 .【考点】数轴.【分析】用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.【解答】解:2-(- 1) =3.故答案为:3【点评】本题主要考查了数轴,熟知数轴上两点间的距离公式是解答此题的关键.12. 兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了0.8m+2 n 元.【考点】列代数式.【分析】根据总花费=买铅笔用的钱+买练习本用的钱,列代数式.【解答】解:总花费=0.8m+2n .故答案为:0.8m+2n .【点评】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.13. 一个多项式加上2x2- x+5等于4x2-6x- 3,则这个多项式为2x2- 5x - 8 .【考点】整式的加减.【分析】先根据题意列出整式相加减的式子,再去括号,合并同类项即可.【解答】解:原式=(4x2- 6x - 3) -( 2x2- x+5)2 2=4x - 6x - 3 - 2x +x - 52=2x - 5x - 8.故答案为:2x2- 5x - 8.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14. 用四舍五入法取近似数, 1.80499〜1.80 (精确到百分位).【考点】近似数和有效数字.【分析】把千位上的数字进行四舍五入即可.【解答】解:1.80499H.80 (精确到百分位).故答案为1.80.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字. 近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15. a=3, |b|=10,且|b- a|=-( b - a),贝U a- b= 13 .【考点】绝对值.【分析】利用绝对值的代数意义求出b的值,即可确定出a-b的值.【解答】解:••• a=3, |b|=10,且|b-a|=-( b - a),••• b= - 10,--a —b=3+10=13.故答案为:13.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16. 若有一个新运算* ”,规定a*b= —a+3b,则(-2)*3的值为11 【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=2+9=11 ,故答案为:11.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17. 若方程4x - 1=5与2 - 3 (a- x) =0的解互为倒数,则a的值为丄.—3 —【考点】一元一次方程的解.【分析】首先解第一个方程求得方程的解,则第二个方程的解即可求得,代入方程即可得到一个关于a的方程,求得a的值.【解答】解:解方程4x -仁5,解得:x—,2则方程2 - 3 (a - x) =0的解是x=-—,2把x=-上代入方程得2 - 3 (a+上)=0,2 2|4解得:a=■- *故答案是:£.3【点评】本题考查了一元一次方程的解法以及方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.19.如图所示的方式搭正方形:搭n个正方形需要小棒_3n+1 根.【考点】规律型:图形的变化类.【分析】通过观察易得搭一个正方形要火柴4根;搭两个正方形要火柴(4+3)根,即7根;搭三个正方形要火柴(4+3 >2 )根,即10根,由此得到搭n个正方形要火柴4+3 x (n - 1) 根.【解答】解:观察第一个图得,搭一个正方形要火柴4根;观察第二个图得,搭两个正方形要火柴( 4+3 )根,即7根;观察第三个图得,搭三个正方形要火柴( 4+3 X)根,即10根,所以搭n个正方形要火柴的根数=4+3 x (n - 1) =3n+1 (根).故答案为:3n+1.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.20. 已知四个互不相等的整数a, b, c, d满足abcd=77,则a+b+c+d= ±4 .【考点】有理数的乘法;有理数的加法.【分析】根据题意可得出这四个数的值,继而可以确定这四个数的和.【解答】解:77=7 X1=1X1 x X仁-1X| X(- 7) X仁-1 XX x(- 11).由题意知,a、b、c、d 的取值为-1, 1,- 7, 11 或-1, 1, 7,- 11.从而a+b+c+d= ±.故答案为:±4.【点评】本题考查有理数的乘法运算,关键在于根据题意判断四个数的值,注意读清题意, 题干已把这四个数限定在很小的范围.三、解答题21. 计算或化简(1)(+12) + (- 23)-(- 33);(2)- 13-( 1-0.5) XX2 -( - 3) 2];(3)4x2- 3x+8 - 2 (3X2+4X - 5);(4)2a2- [— (ab- a2) +8ab] -—ab.2 2【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=12 - 23+33=22 ;(2)原式=-1 -二XX ( - 7) =- 1+丄匚;冈3 & 63 原式=4X2-3X+8 - 6X2-8X+10= - 2X2-11X+18;(4)原式=2a 2 - — ab+丄a 2 - 8ab — — ab=5a 2- 9ab .2 2 2 2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 解方程;(2)去括号,得 2x - x - 10=5x+2x - 2. 移项得 2x - x - 5x - 2x= - 2+10 .合并同类项得-6x=8 . 化系数为1,得x=-(3 )去分母得 2 (2x+1)- 5x=6 去括号,得4x+2 - 5x=6. 移项得 4x - 5x=6 - 2. 合并同类项得-x=4 . 化系数为1,得x= - 4.(4)去分母得 3 (2 - x )- 18=2x -( 2x+3) 去括号,得 6 - 3x - 18=2x - 2x - 3 移项得 6 - 18+3=2x -2x+3x合并同类项得-9=3x 化系数为1,得x= - 3.【点评】本题考查解一元一次方程, 解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为 1.注意移项要变号.23. 有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数, 称后的记录如下:15 - 3 2 - 0 5 1 - 2 -2 -2.5(1) (2) (3)5x+3=1 - 2x ;2x -( x+10) =5x+2 (x - 1); _5工=1 .3 (4)亠3= 2【考点】解- 【分析】(1) (2 )去括号、 (3 )去分母、 (4 )去分母、【解答】解: 合并同类项得2x+3 3 6兀一次方程.移项、合并同类项,系数化成 移项、合并同类项、系数化成 去括号、 去括号、1即可求解; 1即可求解;移项、合并同类项、系数化成 移项、合并同类项、系数化成1即可求解; 1即可求解.(1)移项得 5x+2x=1 - 3.7x= - 2, 化系数为1,得x=-回答下列问题:(1 )这8筐白菜中最接近标准重量的这筐白菜重 -0.5千克;(2) 与标准重量比较,8筐白菜总计超过或不足多—(3) 若白菜每千克售价 2.6元,则出售这8筐白菜可卖多少元? 【考点】 正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案; (2 )根据有理数的加法运算,可得答案; (3)根据单价乘以数量等于总价,可得答案.【解答】 解:(1) •/ |-3|> 2.5|>|-2|=|2|> |1.5|> |1|> 0.5|,•••- 0.5的最接近标准.故答案为:-0.5千克; (2) 由题意,得1.5+ (- 3) +2+ (- 0.5) +1+ (- 2) + (- 2) + (-2.5) =- 5.5 (千克).答:与标准重量比较,8筐白菜总计不足5.5千克; (3) 由题意,得(25 >8 - 5.5) >2.6=194.5 >2.6=505.7 (元). 答:出售这8筐白菜可卖505.7元.【点评】 本题考查了正数和负数,禾U 用了绝对值的意义,有理数的加法运算.24. 先化简,再求值:5 ( 3x 2y - xy 2)- (- 3x 2y+xy 2),其中 xj , y= - 1 .【考点】整式的加减一化简求值. 【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式=15x 2y - 5xy 2+3x 2y - xy 2=18x 2y - 6xy 2, 当 x=—, y= - 1 时,原式=-—! - 3= - 7.5.2 2【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.整理一批图书,如果由一个人单独做要花 60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同, 那么先安排整理的人员有多少人?【考点】一元一次方程的应用. 【专题】工程问题.【分析】等量关系为:所求人数 1小时的工作量+所有人2小时的工作量=1,把相关数值代 入即可求解.答:先安排整理的人员有 10人. 【点评】解决本题的关键是得到工作量 1的等量关系;易错点是得到相应的人数及对应的工作时间.【解答】解:设先安排整理的人员有 x 人, K 2 (好15)60解得:x=10. 依题意得: 60=1.26. 轮船沿江从A港顺流行驶到B港,比从B港返回A港少用2小时,若轮船在静水速度为26千米/时,水流速度为2千米/时,求A港和B港相距多少千米.【考点】一元一次方程的应用.【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港与B港相距x km ,由题意得_^+2=丄一26+y 26-2解得:x=336.则A港与B港相距336 km .答:A港与B港相距336km .【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.设九年级一班的学生人数为人(I )已知40V X V 54,若两个班都以班为单位购票请根据表中提供的信息,用含有x的式()若x50,两个班都以班为单位购票,共需1240元,求两个班各有多少学生?(川)在(n)的条件下,若两个班联合起来购票,作为一个团体购票,可省多少钱?【考点】一元一次方程的应用.【分析】(I )根据总价=单价>数量即可求解;(n )设一班有x人,则二班有人,根据两班分别购票的费用为1240元建立方程求出其解即可;(川)两班联合起来,超过了100人,每张票的价格为9元,然后计算1240 - 9X104=304即可.填表如下:【解答】解:(I )(n)当4強<50 时,13x+11=1240 , 解得x=48 .104 - x=104 - 48=56 ;当0V x V 4 时,13x+9=1240 ,解得x=76,不合题意舍去.答:九年级一班有48人,二班有56人;(川)1240- 9X104=304 (元).答:若两个班联合起来购票,作为一个团体购票,可省304 元钱.【点评】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.2016年1月27日6. 2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中450亿”用科学记数法表示为( )元.10 9 8 9A . 4.5 XIOB . 4.5 XI09 C. 4.5X106 * 8 D . 0.45 X109【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为a X0n的形式,其中1弓a|v 10, n为整数.确定n的值时,218. 如果|y- 3|+ (2x - 4) =0,那么3x - y 的值为3 .【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由非负数的性质可知y=3, x=2,最后代入计算即可.【解答】解:•/ |y - 3|+ (2x - 4) 2=0 ,• y=3 , x=2 .3x —y=3 >2 —3=6 —3=3 .故答案为:3.【点评】本题主要考查的是求代数式的值,依据非负数的性质求得y=3 , x=2是解题的关键.。
湖北省黄冈市七年级上学期数学期末考试试卷
湖北省黄冈市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法错误的是()A . 如果,那么B . 如果是正数,那么是负数C . 如果是大于1的数,那么是小于-1的数D . 一个数的相反数不是正数就是负数2. (2分)一种细胞的直径为0.00000156,将0.00000156用科学记数法表示应为()A . 1.56×106B . 1.56×10-6C . 1.56×10-5D . 15.6×10-43. (2分)(2014·金华) 如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A . 两点确定一条直线B . 两点之间线段最短C . 垂线段最短D . 在同一平面内,过一点有且只有一条直线与已知直线垂直4. (2分)若a+3=0,则a的值是()A . 3B . -3C .D . -5. (2分) (2016七上·岑溪期末) 计算(+2)+(﹣3)所得的结果是()A . 1B . ﹣1C . 5D . ﹣56. (2分) (2019七下·古冶期中) 若与是同类项,则a-b=()A . 0B . 1C . 2D . 37. (2分)与的大小关系是()A . >B . <C . =D . 不能比较8. (2分)一件标价为300元的棉袄,按七折销售仍可获利20元.设这件棉袄的成本价为x元,根据题意,下面所列方程正确的是()A . 300×7﹣x=20B . 300×0.7﹣x=20C . 300×0.7=x﹣20D . 300×7=x﹣209. (2分) (2017八上·临海期末) 若代数式化简结果为x2+3x+2,则a+b的值为()A . 11B . 10C . 8D . 210. (2分) (2019七上·巴东期中) 如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要()根火柴棍.A . 3nB . 3n+2C . 2n+3D . 2n+1二、填空题 (共12题;共13分)11. (1分) (2018七上·泸西期中) 计算:0+(-2)=________,-1-1 =________,2×(-1)=________ .12. (1分) (2019七上·桂林期末) 用代数式表示:x,y两数的平方和减去两数积的2倍为________.13. (1分) (2016七下·新余期中) 若,则 =________,=________.14. (1分) (2018七下·盘龙期末) 下列各数中:0. ,,π,- ,,- ,0.5151151l151ll1…,无理数有________个.15. (1分) (2019七上·罗湖期末) 在时钟的钟面上,三点半时的分针与时针夹角是________度.16. (1分)如图,OB平分∠AOC,∠AOD=78°,∠BOC=20°,则∠COD的度数为________°.17. (1分) (2020八上·常德期末) 定义一种法则“⊕”如下:a ⊕ b = ,例如:1⊕2=2,若 (-3 p + 5) ⊕11=11,则 p的取值范围是________。
黄冈市七年级数学上册期末测试卷及答案
黄冈市七年级数学上册期末测试卷及答案一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =3.﹣3的相反数是( ) A .13- B .13C .3-D .34.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个 6.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)7.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 8.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定11.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .12.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5xD .5y 2-3y 2=2二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.17.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.若a a -=,则a 应满足的条件为______.19.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.20.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.21.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.22.﹣225ab π是_____次单项式,系数是_____.23.3.6=_____________________′24.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、解答题25.解方程3142125x x -+=-. 26.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-.27.解方程(1)3x-1=3-x, (2)3y 23y123+--= 28.计算: -22×(-9)+16÷(-2)3-│-4×5│ 29.解方程:4x ﹣3(20﹣x )+4=030.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,图中点A 表示﹣12,点B 表示12,点C 表示20,我们称点A 和点C 在数轴上相距32个长度单位,动点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t 秒,问:(1)动点Q 从点C 运动至点A 需要 秒;(2)P 、Q 两点相遇时,求出t 的值及相遇点M 所对应的数是多少?(3)求当t 为何值时,A 、P 两点在数轴上相距的长度是C 、Q 两点在数轴上相距的长度的54倍(即P 点运动的路程=54Q 点运动的路程). 四、压轴题31.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?32.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.33.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
湖北省黄冈市七年级上学期数学期末考试试卷
18-1、
三、 解答题(共66分) (共8题;共66分)
19-1、
19-2、
20-1、
20-2、
21-1、
22-1、
23-1、
23-2、
23-3、
24-1、
25-1、
25-2、
26-1、
26-2、
湖北省黄冈市七年级上学期数学期末考试试卷
姓名:________班级:________ 成绩:________
一、 选择题(本大题共12小题,每小题3分,共36分。) (共12题;共36分)
1. (3分) (2016七下·海宁开学考) 若|x|=2,则x的值是( )
. 2
B . ﹣2
C . 2和﹣2
参考答案
一、 选择题(本大题共12小题,每小题3分,共36分。) (共12题;共36分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、 填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)
13-1、
14-1、
15-1、
16-1、
A . 10岁
B . 15岁
C . 20岁
D . 30岁
二、 填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)
13. (3分) (2016七上·江阴期中) “十一”黄金周期间无锡地铁1、2号线总客流量达1740000人次,这个数据用科学记数法表示应为________人次.
14. (3分) (2019七上·且末期末) 从正面看,从左面看,从上面看都一样的几何体可能是________。
七年级上册黄冈数学期末试卷中考真题汇编[解析版]
七年级上册黄冈数学期末试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A 点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?【答案】(1)解:∵∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′)∴GE平分∠DED′,FE平分∠CED′,∴∠DED′=2∠DEG,∠CED′=2∠CEF∴∠DED′+∠CED′=180°即2∠CEF+2∠DEG=180°∴∠CEF+∠DEG=90°答:∠CEF与∠DEG的关系是互余.(2)解:如图,由题意得:GM平分∠FGF, GN平分∠AGF设∠FGM=∠F'GM=x,∠FGN=∠AGN=y∴2y-2x=90°,即y-x=45°,∴∠MGN=∠FGN-∠FGM=45°答:两条折痕GM、GN所成角的度数为45°.【解析】【分析】(1)根据折叠的性质,可知GE平分∠DED′,FE平分∠CED′,再利用角平分线的性质,可证得∠DED′=2∠DEG,∠CED′=2∠CEF,然后根据平角的定义,可解答。
(2)根据折叠的性质,可证得GM平分∠FGF,GN平分∠AGF,因此∠FGM=∠F'GM=x,∠FGN=∠AGN=y,求出y-x的值,就可得出结论。
2.如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA 绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP=________度.【答案】(1)解:由题意可得:∠AOB=60°,∠AOP=∠A′OP,∵OB平分∠A′OP,∴∠A′OP=2∠POB,∴∠AOP=∠A′OP=2∠POB,∴∠AOB=∠AOP+∠POB=3∠POB=60°,∴∠POB=20°,∴∠AOP=2∠POB=40°(2)解:①当点O运动到使点A在射线OP的左侧,且射线OB在在∠A′OP的内部时,如图1,设∠A′OB=x,则∠AOM=3∠A′OB=3x,∠AOA′= ,∵OP⊥MN,∴∠AON=180°-3,∠AOP=90°-3x,∴,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=∴,解得:,∴;②当点O运动到使A在射线OP的左侧,但是射线OB在∠A′ON内部时,如图2,设∠A′OB=x,则∠AOM=3x,∠AON= ,∠AOA′= ,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP= ,∵OP⊥MN,∴∠AOP=90-∠AOM=90-3x,∴,解得:,∴;(3)解:①如图3,当∠A′OB=150°时,由图可得:∠A′OA=∠A′OB-∠AOB=150°-60°=90°,又∵∠AOP=∠A′OP,∴∠AOP=45°,∴∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,由图可得∠A′OA=360°-150°-60°=150°,又∵∠AOP=∠A′OP,∴∠AOP=75°,∴∠BOP=60°+75°=135°;综上所述:∠BOP的度数为105°或135°.【解析】【分析】(1)由角平分线的性质和∠ AOP=∠A′OP可得∠POB= ∠AOB,∠AOP=∠AOB,则∠POA的度数可求解;(2)由题意可分两种情况:①当点O运动到使点A在射线OP的左侧,且射线OB在在∠A′OP的内部时,由角的构成易得∠AOP= -∠AOM= -3∠A′OB,∠AOA′=+∠A′OB,由角平分线的性质可得∠AOP=∠A′OP,于是可得关于∠A′OB的方程,解方程可求得∠A′OB的度数,则可求解;②当点O运动到使A在射线OP的左侧,但是射线OB在∠A′ON内部时,同理可求解;(3)由题意可分两种情况讨论求解:①当∠A′OB沿顺时针成150°时,结合已知条件易求解;②当∠A′OB沿时针方向成 150°时,结合题意易求解。
湖北省黄冈市七年级上学期数学期末试卷
湖北省黄冈市七年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共40分)1. (4分)在﹣3、0、1、﹣2四个数中,最小的数为()A . -3B . 0C . 1D . -22. (4分)在-()=-x2+3x-2的括号里应填的代数式是()A . x2-3x-2B . x2+3x-2C . x2-3x+2D . x2+3x+23. (4分)如图所示,OC是∠AOB平分线,OD平分∠AOC,且∠AOB=60°,则∠COD为()A . 15°B . 30°C . 45°D . 20°4. (4分) (2020七上·罗湖期末) 有理数在数轴上的位置如图所示,则下列选项正确的是()A .B . >0C . >0D . >15. (4分) (2019七上·新兴期中) 国家提倡“低碳减排”。
某公司计划在海边建风能发电站,发电站年均发电量为213000 000,将数据213000 000科学记数法表示为()A . 213×106B . 21.3×107C . 2.13×108D . 2.13×1096. (4分) (2018七上·南昌期中) 下列各算式中,合并同类符合题意的是()A . x2+x2=2x2B . x2+x2=x4C . 2x2﹣x2=2D . 2x2﹣x2=2x7. (4分)某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A . 7折B . 8折C . 9折D . 6折8. (4分)如图是一个正方体的表面展开图,则原正方体中,与“安”字所在面相对的面上标的字是()A . 重B . 泰C . 山D . 于9. (4分)若A=3x2+5x+2,B=4x2+5x+3,则A与B的大小关系是()A . A>BB . A<BC . A≤BD . 无法确定10. (4分)如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简|a-b|+的结果等于()A . 2aB . 2bC . -2aD . -2b二、填空题 (共6题;共24分)11. (4分) (2017七上·揭西月考) 若|a-6|+|b+5|=0,则a+b的值为________.12. (4分) 7的倒数是________ 的倒数是________ 的倒数是________.13. (4分) (2016七上·临海期末) 如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于________14. (4分) (2018七上·瑶海期中) 由四舍五入得到的近似数5.2×103精确到________位.15. (4分) (2017七上·黄冈期中) 若x2-2x+1=2,则代数式2x2-4x-2的值为________.16. (4分) (2019七上·南关期末) 今年十一小长假期间,迟老师一家三口开着一辆轿车去长春市净月潭森林公园度假,若门票每人a元,进入园区的轿车每辆收费40元,则迟老师一家开车进入净月潭森林公园园区所需费用是________元(用含a的代数式表示).三、计算题 (共2题;共27分)17. (20分)计算:(﹣2)×5+3.18. (7分) (2019七上·梁子湖期中) 先化简,再求值:,其中a=-2,b=-1.四、作图题 (共1题;共9分)19. (9分)(1)如图所示,用5个小正方体搭成的立体图形,请你从正面、左面、上面观察这个几何体,分别画出你所看到的几何体的形状图;(2)一个几何体由几块大小相同的小立方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体从正面、左面观察的形状图.五、综合题 (共4题;共45分)20. (10分)如图,公路上依次有A、B、C三站,上午8时,甲骑自行车从A、B之间离A站18km的P点出发,向C站匀速前进,15分钟到达距离A站22km的某处.(1)设x小时后,甲离A站ykm,用含x的代数表示y;(2)若A、B和B、C间的距离分别是30km和20km,则上午________到________的时间内,甲在B、C两站之间(不包括B、C两站).21. (10分) (2019七下·闽侯期中) 已知∠MAN,点B是∠MAN内的点,以点B为顶点作∠CBD(1)如图1,若边BC∥AN,BD∥AM,点C,D分别在边AM,AN上,求证:∠CBD=∠MAN;(2)如图2,∠MAN是钝角,BD⊥AM,垂足为D,BC∥AN,且2∠MAN﹣∠CBD=30°,请你补全图形,并求∠MAN 的度数.22. (10分)(2019·镇海模拟) 某工厂计划招聘A、B两个工种的工人共120人,已知A、B两个工种的工人的月工费分别为2400元和3000元.(1)若工厂每月付A、B两个工种的总工费为330000元,那么两个工种的工人各招聘多少人.(2)若生产需要,要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的人数为多少时,可使每月支付的A、B两个工种的总工资最少.23. (15分) (2019七上·南浔期中) 平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)六、解答题 (共1题;共5分)24. (5分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG 与BC的位置关系,并说明理由.参考答案一、单选题 (共10题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共2题;共27分)17-1、18-1、四、作图题 (共1题;共9分)19-1、五、综合题 (共4题;共45分) 20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、六、解答题 (共1题;共5分) 24-1、。
黄冈市七年级数学上册期末测试卷及答案
黄冈市七年级数学上册期末测试卷及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -8.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13 D .x =13 9.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =10.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯ C .70.1510⨯ D .61.510⨯ 12.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 15.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 17.若3750'A ∠=︒,则A ∠的补角的度数为__________. 18.已知23,9n mn aa -==,则m a =___________.19.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 20.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.22.化简:2x+1﹣(x+1)=_____. 23.计算7a 2b ﹣5ba 2=_____.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、解答题25.小明同学有一本零钱记账本,上面记载着某一周初始零钱为100元,周一到周五的收支情况如下(记收入为+,单位:元): +25,-15.5,-23,-17,+26(1)这周末他可以支配的零钱为几元?(2)若他周六用了a 元购得2本书,周日他爸爸给了他10元买早饭,但他实际用了15元,恰好用完了所有的零钱,求a 的值。
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线2.当x取2时,代数式(1)2x x-的值是()A.0 B.1 C.2 D.33.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.2064.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.B.C.D.5.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.6.下列每对数中,相等的一对是()A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)37.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5928.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④ 9.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 10.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .11.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°12.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 13.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 14.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1 15.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元二、填空题16.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.18.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.19.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________20.单项式﹣22πa b的系数是_____,次数是_____.21.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.22.计算:()222a -=____;()2323x x ⋅-=_____.23.若a a -=,则a 应满足的条件为______.24.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.25.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.26.将520000用科学记数法表示为_____.27.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2019的值为_____. 28.3.6=_____________________′29.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.30.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
湖北省黄冈市2015-2016学年七年级数学上册期末试题
黄冈市浠水县2015年秋季期末调研考试七年级数学试题参考答案一、选择题(每小题3分,共21分)1.C 2.C 3.D 4.B 5.B 6.B 7.D 二、填空题(每小题3分,共24分)8.1.3×1089.―510.80°11.2 12.利13.314.③④15.下午1点20分三、解答下列各题(共75分)2(4)16.(1)5.3 (2)22 (3)―254(请按步骤斟情给分)2(3)m=7 (4)17.(1)x=8 (2)y=―34x=518.(1)-2m+8=4 (化简3分,结果1分)(2)9ba2+3a=-24 (化简3分,结果1分)19.(1)如图所示;…………………2分(2)AC=3.46cm,…………………3分C点到点A的实际距离为:3.46×40=138(m)…………………4分(3)点C相对于点A的方位角为北偏西75°.…………………………5分七年级数学19题答案由于学生在度量时可能产生误差,现更改为C点到点A的实际距离为100m左右,方位角为北偏西65°左右,都给满分。
教师阅卷时灵活掌握。
20.解:3M+6N=15xy-6x-9 …………………………3分∵3M+6N的值与x无关∴x的系数为0由3M+6N=(15y-6)x-9 ∴15y-6=0 …………………………4分∴y=0.4 …………………………5分21.解:设∠AOB=3x,则∠BOC=2x.∴∠AOC=∠AOB+∠BOC=5x.…………………………2分∵OE是∠AOC的平分线5x.∴∠AOE=21x.∴∠BOE=∠AOB-∠AOE=2∵∠BOE=12°∴解得x=24°…………………………4分∵OD是∠BOC的平分线∴∠DOB=24°∴∠DOE=∠DOB+∠BOE=24°+12°=36°…………………………6分22.(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,…………………………1分解得:x=19,…………………………2分则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;…………………3分(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60-y)支,根据题意得:19y+25(60-y)=1322,89,不合题意,即王老师肯定搞错解得:y=3了………………4分②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60-z)=1322-a,即6z =178+a,由a,z都是整数,且178+a应被6整除,经验算当a =2时,6z =180,即z =30,符合题意;当a =8时,6z =186,即z =31,符合题意,则签字笔的单价为2元或8元.故答案为:2或8. ………………………… 6分23.(1)由21(m -16)=-5解得m =6, ………………………… 1分∵关于m 的方程21(m -16)=-5的解也是关于x 的方程2(x -3)-n =3的解.∴x =m ,将m =6代入方程2(x -3)-n =3解得n =3,故m =6,n =3. ………………………… 2分(2)由(1)知:AB =6,PBAP =3, ①当点P 在线段AB 上时,如图所示:∵AB =6,PBAP =3, ∴AP =29,BP =23; ∵点Q 为PB 的中点,∴PQ =BQ =21BP =43,∴AQ =AP +PQ =29+43=421; ………………………… 4分 ②当点P 在线段AB 的延长线上时,如图所示:∵AB =6,PBAP =3, ∴PB=3, ∵点Q 为PB 的中点, ∴PQ =BQ =23,∴AQ =AB +BQ =6+23=215. 故AQ =421或215. ………………………… 6分 24.(1)∵ b 是最小的正整数,∴ b =1.根据题意得:⎩⎨⎧=+=-005b a c , ∴ a =-1,b =1,c =5; ………………………… 3分(2)当0≤x ≤1时,x +1>0,x -1≤0,x +5>0,则:│x +1│-│x -1│+2│x +5│=x +1-(1-x )+2(x +5)=x +1-1+x +2x +10=4x +10; ………………………… 4分当1<x ≤2时,x +1>0,x -1>0,x +5>0.∴│x +1│-│x -1│+2│x +5│=x +1-(x -1)+2(x +5)=x +1-x +1+2x +10=2x+12; (5)分(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A、B每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B、C每秒钟增加3个单位长度.∴BC-AB=2,BC-AB的值不随着时间t的变化而改变.…………………7分。
湖北黄冈数学--2015初中毕业学业考试试卷(解析版
黄冈市2015年初中毕业生学业水平考试数学试题 第Ⅰ卷(选择题共21 分)一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3 分,共21 分) 1.(3 分)(2015•黄冈)9 的平方根是( ) A.±3 B.±31C.3D.-3考点:平方根.分析:根据平方根的含义和求法,可得9 的平方根是: ±9 =±3 ,据此解答即可. 解答:解:9 的平方根是: ±9 =±3 .故选:A .点评:此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个 正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.2.(3 分)(2015•黄冈)下列运算结果正确的是( ) A.x 6÷x 2=x 3 B.(-x)-1=x1C. (2x 3)2=4x 6D.-2a 2·a 3=-2a 6考点:同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂. 分析:根据同底数幂的除法、幂的乘方、单项式的乘法计算即可. 解答:解:A 、x 6÷x 2=x 4 ,错误; B 、(-x)-1=﹣x1,错误; C 、(2x 3)2=4x 6 ,正确; D 、-2a 2·a 3=-2a 5,错误; 故选C点评:此题考查同底数幂的除法、幂的乘方、单项式的乘法,关键是根据法则进行计算.3.(3 分)(2015•黄冈)如图所示,该几何体的俯视图是( )考点:简单组合体的三视图.分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上面看是一个正方形,在正方形的左下角有一个小正方形.故选:B .点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.4.(3 分)(2015•黄冈)下列结论正确的是( ) A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子2+x 有意义的x 的取值范围是x>-2D.若分式112+-a a 的值等于0,则a=±1考点:二次根式有意义的条件;合并同类项;单项式;分式的值为零的条件.分析:根据合并同类项,可判断A ;根据单项式的系数是数字因数,可判断B ;根据二次根 式的被开方数是非负数,可判断C ;根据分式的分子为零分母不为零,可判断D . 解答:解:A 、合并同类项系数相加字母部分不变,故A 错误; B 、单项式-x 2的系数是﹣1,故B 正确;C 、式子2+x 有意义的x 的取值范围是x >﹣2 ,故C 错误;D 、分式112+-a a 的值等于0,则a=1,故D 错误;故选:B .点评:本题考查了二次根是有意义的条件,二次根式有意义的条件是分式的分子为零分母不 为零,二次根式有意义的条件是被开方数是非负数.5.(3 分)(2015•黄冈)如图,a ∥b,∠1=∠2,∠3=40°,则∠4 等于( ) A.40° B.50° C.60° D.70°考点:平行线的性质.分析:先根据平行线的性质求出∠1+∠2 的度数,再由∠1=∠2 得出∠2 的度数,进而 可得 出结论.解答:解:∵a ∥b ,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2= ∠4 . ∵∠1=∠2 , ∴∠2=21×140°=70°, ∴∠4= ∠2=70°. 故选D .点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.(3 分)(2015•黄冈)如图,在△ABC 中,∠C=Rt ∠,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为( )A.6 B 36. C.9 D. 33考点:含30 度角的直角三角形;线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端距离相等可得AD=BD ,可得∠DAE=30°,易 得∠ADC=60°,∠CAD=30°,则AD 为∠BAC 的角平分线,由角平分线的性质得 DE=CD=3 ,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE ,得 结果.解答:解:∵DE 是AB 的垂直平分线, ∴AD=BD ,∴∠DAE= ∠B=30°, ∴∠ADC=60°, ∴∠CAD=30°,∴AD 为∠BAC 的角平分线, ∵∠C=90°,DE ⊥AB , ∴DE=CD=3 , ∵∠B=30°, ∴BD=2DE=6 , ∴BC=9 , 故选C .点评:本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直 角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.7.(3 分)(2015•黄冈)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180 千米,货车的速度为60 千米/小时,小汽车的速度为90 千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )考点:函数的图象.分析:根据出发前都距离乙地 180 千米,出发两小时小汽车到达乙地距离变为零,再经过两 小时小汽车又返回甲地距离又为180 千米;经过三小时,货车到达乙地距离变为零, 而答案.解答:解:由题意得出发前都距离乙地180 千米,出发两小时小汽车到达乙地距离变为零,再经过两小时 小汽车又返回甲地距离又为180 千米,经过三小时,货车到达乙地距离变为零,故C 符合题意,故选:C .点评:本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.第Ⅱ卷(非选择题共99 分)二、填空题(共7 小题,每小题3 分,共21 分) 8.(3 分)(2015•黄冈)计算:218-=_______考点:二次根式的加减法.菁优网版权所有分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案. 解答:解:218-=322- =22 . 故答案为:22 .点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.9.(3 分)(2015•黄冈)分解因式:x 3-2x 2+x=________考点:提公因式法与公式法的综合运用.分析:首先提取公因式x ,进而利用完全平方公式分解因式即可. 解答: 解:x 3-2x 2+x=x (x 2 ﹣2x+1 )=x (x ﹣1)2 . 故答案为:x (x ﹣1)2 .点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关 键.10.(3 分)(2015•黄冈)若方程x 2-2x-1=0 的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的 值为_________.考点:根与系数的关系. 专题:计算题.分析:先根据根与系数的关系得到x 1 +x 2 =2 ,x 1 x 2 = ﹣1,然后利用整体代入的方法计算. 解答:解:根据题意得x 1 +x 2 =2 ,x 1 x 2 = ﹣1, 所以x 1+x 2-x 1x 2 =2 ﹣(﹣1)=3 . 故答案为3 .点评:本题考查了根与系数的关系:若x 1 ,x 2 是一元二次方程ax 2 + bx + c=0 (a ≠0 )的两根时, x 1 +x 2 =a b - ,x 1 x 2 = ac11.(3 分)(2015•黄冈)计算)1(22b a ab a b +-÷-的结果是_________.考点:分式的混合运算. 专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约 分即可得到结果.解答: 解:原式=故答案为: .点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.(3 分)(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E,若∠CBF=20°,则∠AED 等于_________度.考点:正方形的性质;全等三角形的判定与性质.菁优网版权所有分析:根据正方形的性质得出∠BAE= ∠DAE ,再利用SAS 证明△ ABE 与△ ADE 全等,再 利用三角形的内角和解答即可. 解答:解:∵正方形ABCD ,∴AB=AD ,∠BAE= ∠DAE , 在△ABE 与△ADE 中,,∴△ABE ≌△ADE (SAS ),∴∠AEB= ∠AED ,∠ABE= ∠ADE , ∵∠CBF=20°, ∴∠ABE=70°,∴∠AED= ∠AEB=180°﹣45°﹣70°=65°, 故答案为:65°点评:此题考查正方形的性质,关键是根据正方形的性质得出∠BAE= ∠DAE ,再利用全等 三角形的判定和性质解答.13. (3 分)(2015•黄冈)如图所示的扇形是一个圆锥的侧面展开图, 若∠AOB=120° , 弧AB 的长为12πcm,则该圆锥的侧面积为_______cm 2.考点:圆锥的计算.分析:首先求得扇形的母线长,然后求得扇形的面积即可. 解答:解:设AO=B0=R ,∵∠AOB=120°,弧AB 的长为12πcm , ∴180120R=12π, 解得:R=18 , ∴圆锥的侧面积为21lR= 21×12π×18=108π, 故答案为:108π.点评:本题考查了圆锥的计算,解题的关键是牢记圆锥的有关计算公式,难度不大.14. (3 分)(2015•黄冈)在△ ABC 中,AB=13cm,AC=20cm,BC 边上的高为12cm,则△ABC 的面积为__________cm2.考点:勾股定理.菁优网版权所有分析:此题分两种情况:∠B 为锐角或∠B 为钝角已知AB 、AC 的值,利用勾股定理即可求 出BC 的长,利用三角形的面积公式得结果. 解答:解:当∠B 为锐角时(如图 1), 在Rt △ABD 中,BD==5cm ,在Rt △ADC 中,CD==16cm , ∴BC=21 , ∴S △ ABC==21×21×12=126cm ; 当∠B 为钝角时(如图2 ), 在Rt △ABD 中,BD==5cm ,在Rt △ADC 中, CD==16cm , ∴BC=CD ﹣BD=16 ﹣5=11cm , ∴S △ ABC==21×11×12=66cm , 故答案为:126 或66 .点评:本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关键.三、解答题(本大题共10 小题,满分共78 分)15.(5分)(2015•黄冈)解不等式组:⎪⎩⎪⎨⎧-≥-->3221312232x x x x考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可. 解答:解:由①得,x <2 ,由②得,x ≥ ﹣2 , 故不等式组的解集为:﹣2≤x <2 .点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找; 大大小小找不到”的原则是解答此题的关键.16.(6分)(2015•黄冈)已知A,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A,B 两件服装的成本各是多少元?考点:二元一次方程组的应用.分析:设A 服装成本为x 元,B 服装成本y 元,由题意得等量关系:①成本共500 元;② 共获利 130 元,根据等量关系列出方程组,再解即可.解答:解:设A 服装成本为x 元,B 服装成本y 元,由题意得:,解得: ,答:A 服装成本为300 元,B 服装成本200 元.点评:此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关 系,列出方程组.17.(6 分)(2015•黄冈)已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线 AC 上两点,且AE=CF ,DF ∥BE.求证:四边形ABCD 为平行四边形.考点:平行四边形的判定;全等三角形的判定与性质. 专题:证明题.分析:首先证明△AEB ≌△CFD 可得AB=CD ,再由条件AB ∥CD 可利用一组对边平行且相 等的四边形是平行四边形证明四边形ABCD 为平行四边形. 解答:证明:∵AB ∥CD , ∴∠DCA= ∠BAC , ∵DF ∥BE ,∴∠DFA= ∠BEC ,∴∠AEB= ∠DFC ,在△AEB 和△ CFD 中,∴△AEB ≌△CFD (ASA ), ∴AB=CD , ∵AB ∥CD ,∴四边形ABCD 为平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行 四边形. 18.(7分)(2015•黄冈)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“ 通过”(用√表示)或“ 淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级. (1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果; (2)求选手A 晋级的概率.考点:列表法与树状图法. 分析:(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2 )列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数 即为所求的概率. 解答:解:(1)画出树状图来说明评委给出A 选手的所有可能结果:;(2 )∵由上可知评委给出A 选手所有可能的结果有8 种.并且它们是等可能的,对 于A 选手,晋级的可能有4 种情况, ∴对于A 选手,晋级的概率是:21. 点评:本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情 况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情 况数之比.19.(7 分)(2015•黄冈)“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补全条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数. 分析:(1)根据有7 名留守儿童班级有2 个,所占的百分比是 12.5%,即可求得班级的总 个数;(2 )利用平均数的计算公式求得每班的留守儿童数,然后根据众数的定义,就是出 现次数最多的数确定留守儿童的众数;(3 )利用班级数60 乘以(2 )中求得的平均数即可. 解答:解:(1)该校的班级数是:2÷ 12.5%=16 (个). 则人数是8 名的班级数是:16 ﹣1 ﹣2 ﹣6 ﹣2=5 (个).;(2 )每班的留守儿童的平均数是:161(1×6+2×7+5×8+6×10+12×2 )=9 (人),众数是 10 名;(3 )该镇小学生中,共有留守儿童60×9=540 (人). 答:该镇小学生中共有留守儿童540 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中 得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇 形统计图直接反映部分占总体的百分比大小.20.(7 分)(2015•黄冈)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).考点:解直角三角形的应用-方向角问题.分析:过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ; 过C 作AB 的垂线,过D作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的距离 DA=BE+CF .解Rt △ BCE ,求出BE=21BC=21×1000=500 米;解Rt △ CDF ,求出 CF=22CD=5002 米,则DA=BE+CF=(500+5002)米. 解答:解:如图,过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的 垂线,过D 作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的距离DA=BE+CF .在Rt △ BCE 中,∵∠E=90°,∠CBE=60°, ∴∠BCE=30°, ∴BE=21BC=21×1000=500 米; 在Rt △ CDF 中,∵∠F=90°,∠DCF=45°,CD=AB=1000 米, ∴CF=22CD=5002 米, ∴DA=BE+CF= (500+5002)米, 故拦截点D 处到公路的距离是(500+5002 )米.点评:本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向 角的定义,进而作出辅助线构造直角三角形是解题的关键.21.( 8分)(2015•黄冈)已知:如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点M ,交BC 于点N ,连接AN,过点C 的切线交AB 的延长线于点P.(1)求证:∠BCP=∠BAN; (2)求证:BPCBMN AM考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)由AC 为⊙O 直径,得到∠NAC+ ∠ACN=90°,由AB=AC ,得到∠BAN= ∠CAN , 根据PC 是⊙O 的切线,得到∠ACN+ ∠PCB=90°,于是得到结论.(2 )由等腰三角形的性质得到∠ABC= ∠ACB ,根据圆内接四边形的性质得到∠PBC= ∠AMN ,证出△ BPC ∽△MNA ,即可得到结论.解答:(1)证明:∵AC 为⊙O 直径,∴∠ANC=90°,∴∠NAC+ ∠ACN=90°,∵AB=AC ,∴∠BAN= ∠CAN ,∵PC 是⊙O 的切线,∴∠ACP=90°,∴∠ACN+ ∠PCB=90°,∴∠BCP= ∠CAN ,∴∠BCP= ∠BAN ;(2 )∵AB=AC ,∴∠ABC= ∠ACB ,∵∠PBC+ ∠ABC= ∠AMN+ ∠ACN=180°,∴∠PBC= ∠AMN ,由(1)知∠BCP= ∠BAN ,∴△BPC ∽△MNA ,∴BPCB MN AM . 点评:本题考查了切线的性质,等腰三角形的性质,圆周角定理,相似三角形的判定和性质,圆内接四边形的性质,解此题的关键是熟练掌握定理.22.(8 分)(2015•黄冈)如图,反比例函数y=x k 的图象经过点A (-1,4),直线y=-x + b(b ≠0) 与双曲线y=xk 在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C,D 两点.(1)求k 的值;(2)当b=-2 时,求△OCD 的面积;(3)连接OQ ,是否存在实数b,使得S △ODQ=S △OCD ? 若存在,请求出b 的值;若不存在,请说明理由.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)根据反比例函数的图象上点的坐标特征易得k= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,则利用坐标轴上点的坐标特征可求出C(﹣2 ,0 ),D (0,﹣2 ),然后根据三角形面积公式求解;(3 )先表示出C (b ,0 ),根据三角形面积公式,由于S △ ODQ=S △ OCD ,所以点Q 和 点C 到OD 的距离相等,则Q 的横坐标为(﹣b ,0 ),利用直线解析式可得到Q (﹣b ,2b ),再根据反比例函数的图象上点的坐标特征得到﹣b •2b= ﹣4 ,然后解方程即可得到满足条件的b 的值.解答: 解:(1)∵反比例函数y= xk 的图象经过点A (﹣1,4 ), ∴k= ﹣1×4= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,∵y=0 时,﹣x ﹣2=0 ,解得x= ﹣2 ,∴C (﹣2 ,0 ),∵当x=0 时,y= ﹣x ﹣2= ﹣2 ,∴D (0,﹣2 ),∴S △ OCD=21×2×2=2 ; (3 )存在.当y=0 时,﹣x+b=0 ,解得x=b ,则C (b ,0 ),∵S △ ODQ=S △ OCD ,∴点Q 和点C 到OD 的距离相等,而Q 点在第四象限,∴Q 的横坐标为﹣b ,当x= ﹣b 时,y= ﹣x+b=2b ,则Q (﹣b ,2b ),∵点Q 在反比例函数y= ﹣x4 的图象上, ∴﹣b •2b= ﹣4 ,解得b= ﹣2 或b=2(舍去),∴b 的值为﹣2 .点评:本题考查了反比例函数与一次函数的交点:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象上点的坐标特征和三角形面积公式.23.(10 分)(2015•黄冈)我市某风景区门票价格如图所示黄冈赤壁旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120 人,乙团队人数不超过50 人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱;(3“) 五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50 人时,门票价格不变;人数超过50 人但不超过100 人时,每张门票降价a 元;人数超过100 人时,每张门票降价2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400 元,求a 的值.考点:一次函数的应用;一元二次方程的应用;一元一次不等式的应用.分析:(1)根据甲团队人数为x 人,乙团队人数不超过50 人,得到x ≥70,分两种情况:①当70≤x≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时,W=60x+80 (120 ﹣x )= ﹣20x+9600 ,即可解答;(2 )根据甲团队人数不超过100 人,所以x≤100,由W= ﹣10x+9600,根据70≤x≤100,利用一次函数的性质,当x=70 时,W 最大=8900 (元),两团联合购票需120×60=7200(元),即可解答;(3 )根据每张门票降价a 元,可得W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 ,利用一次函数的性质,x=70 时,W 最大= ﹣70a+8900 (元),而两团联合购票需120(60 ﹣2a )=7200 ﹣240a (元),所以﹣70a+8900 ﹣(7200 ﹣240a )=3400,即可解答.解答:解:(1)∵甲团队人数为x 人,乙团队人数不超过50 人,∴120 ﹣x≤50,∴x≥70,①当70≤x≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时,W=60x+80 (120 ﹣x )= ﹣20x+9600 ,综上所述,W=(2 )∵甲团队人数不超过100 人,∴x≤100,∴W= ﹣10x+9600,∵70≤x≤100,∴x=70 时,W 最大=8900 (元),两团联合购票需120×60=7200 (元),∴最多可节约8900 ﹣7200=1700 (元).(3 )∵x≤100,∴W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 ,∴x=70 时,W 最大= ﹣70a+8900 (元),两团联合购票需120 (60 ﹣2a )=7200 ﹣240a (元),∵﹣70a+8900 ﹣(7200 ﹣240a )=3400 ,解得:a=10 .点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式,利用一次函数的性质求得最大值.注意确定x 的取值范围.24.(14 分)(2015•黄冈)如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长;(2)求经过O,D,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t为何值时,DP=DQ;(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)由折叠的性质可求得CE 、CO ,在Rt △ COE 中,由勾股定理可求得OE ,设AD=m , 在Rt △ADE 中,由勾股定理可求得m 的值,可求得D 点坐标,结合C 、O 两点,利 用待定系数法可求得抛物线解析式;(2 )用t 表示出CP 、BP 的长,可证明△ DBP ≌△DEQ ,可得到BP=EQ ,可求得t 的值;(3 )可设出N 点坐标,分三种情况①EN 为对角线,②EM 为对角线,③EC 为对 角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M 点的横坐标,再代入抛物线解析式可求得M 点的坐标.解答:解:(1)∵CE=CB=5,CO=AB=4,∴在Rt △ COE 中,OE==3 ,设AD=m ,则DE=BD=4 ﹣m ,∵OE=3,∴AE=5 ﹣3=2,在Rt △ADE 中,由勾股定理可得AD 2 +AE 2 =DE 2 ,即m 2 +22 = (4 ﹣m )2 ,解得m=23 , ∴D (﹣23,﹣5 ), ∵C (﹣4 ,0 ),O (0,0 ),∴设过O 、D 、C 三点的抛物线为y=ax (x+4 ),∴﹣5= ﹣23 a (﹣23+4 ),解得a=34 , ∴抛物线解析式为y=34x (x+4 )= 34x 2 + 316x ; (2 )∵CP=2t ,∴BP=5 ﹣2t ,在Rt △ DBP 和Rt △ DEQ 中,,∴Rt △ DBP ≌Rt △ DEQ (HL ),∴BP=EQ ,∴5 ﹣2t=t ,∴t= 35 ; (3 )∵抛物线的对称为直线x= ﹣2 ,∴设N (﹣2 ,n ),又由题意可知C (﹣4 ,0 ),E (0,﹣3 ),设M (m ,y ),①当EN 为对角线,即四边形ECNM 是平行四边形时,则线段EN 的中点横坐标为= ﹣1,线段CM 中点横坐标为,∵EN ,CM 互相平分,∴ = ﹣1,解得m=2 ,又M 点在抛物线上,∴y=34x 2 + 316x=16 , ∴M (2 ,16);②当EM 为对角线,即四边形ECMN 是平行四边形时,则线段EM 的中点横坐标为,线段CN 中点横坐标为 = ﹣3,∵EN ,CM 互相平分,∴ = ﹣3,解得m= ﹣6,又∵M 点在抛物线上,∴y= 34× (﹣6 )2 + 316× (﹣6 )=16 , ∴M (﹣6,16);③当CE 为对角线,即四边形EMCN 是平行四边形时,则M 为抛物线的顶点,即M (﹣2 ,﹣316 ). 综上可知,存在满足条件的点M ,其坐标为(2 ,16)或(﹣6,16)或(﹣2 ,﹣316 ). 点评:本题主要考查二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、折 叠的性质、 平行四边形的性质等知识点.在(1)中求得D 点坐标是解题的关键,在 (2 )中证得全等,得 到关于t 的方程是解题的关键,在(3 )中注意分类讨论思想的应用.本题考查知识点较多,综 合性较强,难度适中.。
七年级上册黄冈数学期末试卷中考真题汇编[解析版]
七年级上册黄冈数学期末试卷中考真题汇编[解析版]一、选择题1.下列图形中,线段PQ的长度表示点P到直线L的距离的是()A.B.C.D.2.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为15cm,则四边形ABFD的周长等于()A.17cm B.18cm C.19cm D.20cm3.下列说法错误的是( )A.2的相反数是2-B.3的倒数是1 3C.3-的绝对值是3 D.11-,0,4这三个数中最小的数是0 4.已知23a+与5互为相反数,那么a的值是()A.1 B.-3 C.-4 D.-15.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.如图,已知射线OA⊥射线OB, 射线OA表示北偏西25°的方向,则射线OB表示的方向为()A.北偏东65°B.北偏东55°C.北偏东75°D.东偏北75°7.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头8.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .经过一点,有无数条直线C .垂线段最短D .经过两点,有且只有一条直线9.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A .272+x =(196-x ) B .(272-x )= (196-x ) C .(272+x )= (196-x ) D .×272+x = (196-x )10.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变11.一个小菱形组成的装饰链断了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A .3个B .4个C .5个D .6个 12.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( ) A .2,﹣3,﹣1 B .2,3,1C .2,3,﹣1D .2,﹣3,113.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′14.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 15.下列各题中,运算结果正确的是( ) A .325a b ab += B .22422x y xy xy -= C .222532y y y -=D .277a a a +=二、填空题16.在直线l 上有四个点A 、B 、C 、D ,已知AB =8,AC =2,点D 是BC 的中点,则线段AD =________.17.如图,若输入的x 的值为正整数,输出的结果为119,则满足条件的所有x 的值为_____.18.计算:82-+-=___________.19.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______. 20.12-的相反数是_________. 21.若2x =-是关于x 的方程23a x+=的解,则a 的值为_______. 22.计算:33--=______.23.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.24.单项式345ax y-的次数是__________.25.已知36a ∠=︒,则a ∠的补角的度数是__________.三、解答题26.如图,线段 AB 的中点为 M ,C 点将线段 MB 分成 MC :CB=1:3 的两段,若 AC=10,求AB 的长.27.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 28.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,13BOE EOC ∠=∠.(1)若OE AC ⊥,垂足为O 点,则∠BOE 的度数为________°,BOD ∠的度数为________°;在图中,与AOB ∠相等的角有_________; (2)若32AOD ∠=︒,求EOC ∠的度数. 29.解下列方程 (1)235x +=;(2) 913.7-(12)-4.37x -=.30.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC 为含60°角的直角三角板,三角形BDE 为含45°角的直角三角板.(1)如图1,若点D 在AB 上,则∠EBC 的度数为 ; (2)如图2,若∠EBC =170°,则∠α的度数为 ; (3)如图3,若∠EBC =118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE -∠DBC 的度数. 31.解下列方程:(1)76163x x +=-;(2)253164y y---=. 32.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOC =50°.求∠BOE 的度数.33.如图所示的几何体是由6个相同的正方体搭成的,请画出它的主视图,左视图和俯视图.四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.36.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=12∠AOQ?若存在,求出t的值;若不存在,请说明理由.37.尺规作图是指用无刻度的直尺和圆规作图。
学 黄冈中学 七级上期末数学试卷解析
2015-2016学年七年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示为黄冈市十二月份某一天的天气预报,这天最高气温比最低气温高()A.﹣30℃B.7℃C.3℃D.﹣7℃2.下列运算中,正确的是()A.x3÷x=x4B.a2+a2=2a4 C.3x﹣2x=1 D.3x﹣2x=x3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.﹣2 B.﹣3 C.3 D.54.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×1085.下列各图中,可以是一个正方体的平面展开图的是()A.B. C.D.6.若﹣a x b与2ab1﹣y的和是一个单项式,则x﹣y2016的值为()A.1 B.﹣3 C.﹣1 D.07.下列说法中,正确的是()A.延长直线ABB.在射线AM上顺次截取线段AC=CB=aC.如果AC=BC,则点C为AB的中点D.平角是一条直线8.有一个数值转换器,其工作原理如图所示,若输入﹣2,则输出的结果是()A.﹣8 B.﹣6 C.﹣4 D.﹣29.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A.亏2元B.亏4元C.赚4元, D.不亏不赚10.已知一个由50个偶数排成的数阵.用如图所示的框去框住四个数,并求出这四个数的和.在下列给出备选答案中,有可能是这四个数的和的是()A.80 B.148 C.172 D.220二、填空题(本大题共21分,每小题3分.请将正确结果填写在题后的横线上)11.如果x=1是关于x方程x+2m﹣5=0的解,则m的值是.12.已知x﹣3y=3,则6﹣x+3y的值是.13.若|x﹣|+(y+2)2=0,则(xy)2015的值为.14.一个整式减去a2﹣b2后所得的结果是﹣a2﹣b2,则这个整式是.15.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB 的中点,则线段DE的长为cm.16.已知∠α的补角是它的3倍,则∠α=.17.“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.三、解答题18.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.19.解方程:(1)2x﹣(x+10)=6x;(2)=3+.20.五•四青年节学校组织全校共青团员去距学校6km的烈士陵园进行革命传统教育,李明同学因事不能乘上学校包车,于是他准备在学校改乘出租车去烈士陵园.出租车的收费标准如下表:里程收费(元)起步费3千米以下(含3千米) 33千米以上,每增加1千米 1.8(1)写出乘出租车里程数x千米(x>3)时,所付车费的式子;(2)李明同学身上仅有12元钱,含中餐生活3元,乘出租车去烈士陵园够不够?说明理由.21.如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.22.已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如何进货,进货款恰好为44000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?25.如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.2015-2016学年湖北省黄冈市区学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图所示为黄冈市十二月份某一天的天气预报,这天最高气温比最低气温高()A.﹣30℃B.7℃C.3℃D.﹣7℃【考点】有理数的减法.【分析】直接利用有理数的减法运算法则化简求出答案.【解答】解:由题意可得,最高气温比最低气温高:5﹣(﹣2)=5+2=7(℃).故选:B.2.下列运算中,正确的是()A.x3÷x=x4B.a2+a2=2a4 C.3x﹣2x=1 D.3x﹣2x=x【考点】同底数幂的除法;合并同类项.【分析】原式各项利用同底数幂的除法,以及合并同类项法则计算得到结果,即可作出判断.【解答】解:A、x3÷x=x2,错误;B、a2+a2=2a2,错误;C、原式=(3﹣2)x=x,错误;D、原式=x,正确,故选D3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.﹣2 B.﹣3 C.3 D.5【考点】正数和负数.【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|﹣2|=2,|﹣3|=3,|3|=3,|5|=5,∵2<3<5,∴从轻重的角度来看,最接近标准的是记录为﹣2.故选A.4.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15 000 000用科学记数法表示为:1.5×107.故选:B.5.下列各图中,可以是一个正方体的平面展开图的是()A.B. C.D.【考点】几何体的展开图.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.6.若﹣a x b与2ab1﹣y的和是一个单项式,则x﹣y2016的值为()A.1 B.﹣3 C.﹣1 D.0【考点】合并同类项.【分析】依据同类项才能够进行合并,从而可得到﹣a x b与2ab1﹣y是同类项,依据同类项的定义可得到x,y的值.【解答】解:∵﹣a x b与2ab1﹣y的和是一个单项式,∴﹣a x b与2ab1﹣y是同类项.∴x=1,1﹣y=0.∴y=﹣1.∴x﹣y2016=1﹣02016=1.故选:A.7.下列说法中,正确的是()A.延长直线ABB.在射线AM上顺次截取线段AC=CB=aC.如果AC=BC,则点C为AB的中点D.平角是一条直线【考点】直线、射线、线段;角的概念.【分析】根据直线、射线、线段、平角的定义进行选择即可.【解答】解:A、直线AB本身有两个延伸方向,故“延长直线AB”是错误的;B、如图1所示,B正确;C、如图2所示,即C不在直线AB上,故C错误;D、角有顶点,两条边是射线,而直线上没有标出“顶点”的说法,故D错误.故选B.8.有一个数值转换器,其工作原理如图所示,若输入﹣2,则输出的结果是()A.﹣8 B.﹣6 C.﹣4 D.﹣2【考点】有理数的混合运算.【分析】把﹣2代入数值转换器中计算,确定出输出结果即可.【解答】解:把﹣2代入数值转化器中得:(﹣2)2=4,∵4<8,∴输出的结果为4﹣6=﹣2.故选D9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A.亏2元B.亏4元C.赚4元, D.不亏不赚【考点】一元一次方程的应用.【分析】依据题意,商品按进价增加20%后又降价20%以48元的价格出售的等量关系可列出等式.【解答】解:设商品进价为x,根据题意得:x(1+20%)(1﹣20%)=48解得x=50,以48元出售,可见亏2元.故选:A.10.已知一个由50个偶数排成的数阵.用如图所示的框去框住四个数,并求出这四个数的和.在下列给出备选答案中,有可能是这四个数的和的是()A.80 B.148 C.172 D.220【考点】一元一次方程的应用.【分析】可利用图例,看出框内四个数字之间的关系,上下相差10,左右相差2,利用此关系表示四个数之和,再进行求解即可得出答案.【解答】解:用a表示框住的四个数,如图所示,显然a的个位数字只可能是2,4,6,框住的四个数之和为a+(a+2)+(a+12)+(a+14)=4a+28.当4a+28分别为80,148,172,220时,a分别为13,30,36,48,所以a=36符合题意.即4a+28=172,选C.二、填空题(本大题共21分,每小题3分.请将正确结果填写在题后的横线上)11.如果x=1是关于x方程x+2m﹣5=0的解,则m的值是2.【考点】一元一次方程的解.【分析】将方程的解代入方程得到关于m的方程,从而可求得m的值.【解答】解:当x=1时,1+2m﹣5=0,解得:m=2.故答案为:2.12.已知x﹣3y=3,则6﹣x+3y的值是3.【考点】代数式求值.【分析】原式后两项变形后,将已知等式代入计算即可求出值.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:313.若|x﹣|+(y+2)2=0,则(xy)2015的值为﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据几个非负数的和等于0,则每个数等于0,据此即可列方程求得x和y的值,进而求解.【解答】解:根据题意得:,解得:,则原式=(﹣1)2015=﹣1.故答案是:﹣1.14.一个整式减去a2﹣b2后所得的结果是﹣a2﹣b2,则这个整式是﹣2b2.【考点】整式的加减.【分析】根据整式的加减进行计算即可.【解答】解:a2﹣b2+(﹣a2﹣b2)=a2﹣b2﹣a2﹣b2=﹣2b2,故答案为﹣2b2.15.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB 的中点,则线段DE的长为 1.5cm.【考点】两点间的距离.【分析】由已知条件可知,AC=AB﹣BC,又因为点D为AC中点,点E为AB的中点,则AD=AC,AE=AB.故DE=AE﹣AD可求.【解答】解:∵AB=10cm,BC=3cm,(已知)∴AC=AB﹣BC=7cm.∵点D为AC中点,点E为AB的中点,(已知)∴AD=AC,AE=AB.(线段中点定义)∴AD=3.5cm,AE=5cm.∴DE=AE﹣AD=1.5cm.故答案为:1.5.16.已知∠α的补角是它的3倍,则∠α=45°.【考点】余角和补角.【分析】先表示出这个角的补角和余角,然后再依据∠α的补角是它的3倍列出方程,从而可求得∠α的度数.【解答】解:∠α的补角是180°﹣α.根据题意得:180°﹣∠α=3∠α.解得:∠α=45°.故答案为:45°.17.“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是a,并运用这个公式求得图2中多边形的面积是17.5.【考点】规律型:图形的变化类.【分析】分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.【解答】解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.三、解答题18.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=4﹣54=﹣50.19.解方程:(1)2x﹣(x+10)=6x;(2)=3+.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,(2)方程去分母得:2(x+1)=12+2﹣x,去括号得:2x+2=12+2﹣x,移项合并得:3x=12,解得:x=4.20.五•四青年节学校组织全校共青团员去距学校6km的烈士陵园进行革命传统教育,李明同学因事不能乘上学校包车,于是他准备在学校改乘出租车去烈士陵园.出租车的收费标准如下表:里程收费(元)起步费3千米以下(含3千米) 33千米以上,每增加1千米 1.8(1)写出乘出租车里程数x千米(x>3)时,所付车费的式子;(2)李明同学身上仅有12元钱,含中餐生活3元,乘出租车去烈士陵园够不够?说明理由.【考点】列代数式.【分析】(1)根据车费=3+3km以上的收费,列出代数式即可;(2)当到6千米的烈士陵园时,代入表示车费的代数式求值,用12减去路费与中餐费用做比较,即可判断.【解答】解:(1)根据题意,可得:3+1.8(x﹣3)=1.8x﹣2.4,即乘出租车里程数x千米(x>3)时,所付车费为1.8x﹣2.4;(2)够,∵3+1.8(x﹣3)=3+1.8×(6﹣3)=3+1.8×3=3+5.4=8.4(元)∴12﹣8.4=3.6(元)>3(元),因为乘车只需8.4元,剩下3.6元足够吃饭.21.如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.【考点】同解方程.【分析】先求第一个方程的解,再代入第二个方程求得a的值,最后求式子的值.【解答】解:解方程,2(x﹣4)﹣48=﹣3(x+2),2x﹣8﹣48=﹣3x﹣6,5x=50,得:x=10.把x=10代入方程4x﹣(3a+1)=6x+2a﹣1,得:4×10﹣(3a+1)=6×10+2a﹣1,∴可得:=.22.已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)把A与B代入A﹣2B中,去括号合并即可得到结果;(2)利用非负数的性质求出a与b的值,代入(1)结果中计算即可.【解答】解:(1)∵A=3a2﹣4ab,B=a2+2ab,∴A﹣2B=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)∵|2a+1|+(2﹣b)2=0,∴a=﹣,b=2,则原式=+8=8.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【考点】角平分线的定义.【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE∴∠DOE=15°∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°故答案为75°.24.目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如何进货,进货款恰好为44000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?【考点】一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意可得等量关系:甲型的进货款+乙型的进货款=44000元,根据等量关系列出方程,再解方程即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,由题意可得:甲型的总利润+乙型的总利润=总进货款×30%,根据等量关系列出方程,再解即可.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=44000解得:x=500购进乙型节能灯1200﹣x=1200﹣500=700只.答:购进甲型节能灯500只,购进乙型节能灯700只进货款恰好为44000元.(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,由题意,得(30﹣25)a+(60﹣45)=[25a+45]×30%解得:a=450.购进乙型节能灯1200﹣a=1200﹣450=750只,获利:(30﹣25)a+(60﹣45)=18000﹣10a=18000﹣10×450=13500(元).答:商场购进甲型节能灯450只,购进乙型节能灯750只时利润为13500元.25.如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【考点】数轴;两点间的距离.【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.【解答】解:(1)如图1,∵点B对应数是90,∴OB=90.又∵OA+50=OB,即OA+50=90,∴OA=120.∴点A所对应的数是﹣120;(2)依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离.(3)依题意得RQ=(45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22﹣28(45+4t)﹣5=0.2016年12月12日。
湖北省黄冈市七年级上学期数学期末考试试卷
湖北省黄冈市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·吴中月考) 绝对值为5的有理数是()A . 2.5B . ±5C . 5D . -52. (2分) (2019七上·南安期中) 32可表示为()A . 3×2B . 2×2×2C . 3×3D . 3+33. (2分) (2020七下·新昌期末) 2020年新型冠状病毒肺炎疫情波及全球,严重影响人们的生活,截止五月中旬全球累计确诊人数达到 4880000人次.用科学记数法可将4880000表示为()A .B .C .D .4. (2分)(2019·凤庆模拟) 观察图,下面所给几何体的俯视图是()A .B .C .D .5. (2分)(2020·黔东南州) 下列运算正确的是()A . (x+y)2=x2+y2B . x3+x4=x7C . x3•x2=x6D . (﹣3x)2=9x26. (2分)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A .B .C .D .7. (2分)(2020·嘉兴模拟) 《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A . x+2x+4x=34685B . x+2x+3x=34685C . x+2x+2x=34685D . x+ x+ x=346858. (2分)如图,AB∥CD,且∠ACB=90°,则与∠CAB互余的角有()个.A . 1个B . 2个C . 3个D . 49. (2分) (2020七下·遂宁期末) 已知关于x的方程3x﹣m+4=0的解是x=﹣2,则m的值为()A . 2B . ﹣2C . 4D . 510. (2分) (2016七下·岳池期中) 如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A . 65°B . 55°C . 50°D . 25°二、填空题 (共10题;共13分)11. (3分) (2018七上·孝南月考) -的相反数是________;倒数是________;绝对值是________ .12. (1分) (2020七下·洪泽期中) 比较大小:233________322(填>、=、<) .13. (2分) (2019七上·厦门月考) 比较大小: ________-2; ________ .14. (1分) (2019七上·博白期中) 已知单项式与是同类项,那么的值为________.15. (1分) (2020七下·许昌期中) 点P(2,4)与点Q(-3,4)之间的距离是________.16. (1分)小林在做解方程作业时,不小心将方程中的一个常数污染看不清楚,被污染的方程是2y- = y-※,小林翻看了书后的答案是y=- ,则这个常数是________ .17. (1分) (2020七上·安图期末) 当x=3时,代数式px3+qx+1的值为2019,则当x=-3时,代数式px3+qx+1的值是________.18. (1分) (2019七上·禅城月考) 如图,点O在直线DB上,已知∠1=15°,∠AOC=90°,则∠2的度数为________.19. (1分)(2020·海曙模拟) 把所有的正整数按一定规律排列成如图所示的数表,若根据行列分布,正整数6对应的位置记为(2,3),则位置(4,2)对应的正整数是________.20. (1分) (2020七上·盐城期中) 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位妇女在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子出生后的天数为________个.三、解答题 (共7题;共50分)21. (5分) (2019七上·进贤期中) ;22. (10分) (2018七上·灵石期末) 某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某假期该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元(销售不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说出他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?23. (5分) (2020九下·长春模拟) 先化简,再求值:,其中.24. (10分) (2019七上·咸阳月考) 计算:(1)48°39′+67°41′(2)90°-78°19′40″25. (6分) (2018七上·竞秀期末)(1)约定“※”为一种新的运算符号,先观察下列各式:1※3=1×4+3=7;3※(﹣1)=3×4﹣1=11;5※ =5×4+ = ;5※4=5×4+4=24;4※(﹣3)=4×4﹣3=13;(﹣)※0=(﹣)×4+0=﹣…根据以上的运算规则,写出a※b=________.(2)根据(1)中约定的a※b的运算规则,求解问题①和②①若(x﹣3)※x的值等于13,求x的值;②若2m﹣n=2,请计算:(m﹣n)※(2m+n).26. (8分) (2018七上·满城期末) 小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x的式子表示厨房的面积________ m2 ,卧室的面积________m2 .(2)此经济适用房的总面积为________m2 .(3)已知厨房面积比卫生间面积多2m2 ,且铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?27. (6分) (2018七上·三河期末) 学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要________天完成;(2)现由徒弟先做1天,再两个合作,问:还需几天可以完成这项工作?参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共10题;共13分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共7题;共50分)考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:答案:27-1、答案:27-2、考点:解析:。
七年级上册黄冈数学期末试卷中考真题汇编[解析版]
七年级上册黄冈数学期末试卷中考真题汇编[解析版]一、选择题1.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 2.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-= B .20x 4x 5+= C .x x 5204+= D .x x5204204+=+- 3.下列四个数中,最小的数是() A .5B .0C .1-D .4-4.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120205.如图正方体纸盒,展开后可以得到( )A .B .C .D .6.如图,已知射线OA ⊥射线OB , 射线OA 表示北偏西25°的方向,则射线OB 表示的方向为( )A .北偏东65°B .北偏东55°C .北偏东75°D .东偏北75°7.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定8.图中几何体的主视图是( )A .B .C .D .9.化简:35xy xy -的结果是( ) A .2B .2-C .2xyD .2xy -10.已知点A 、B 、C 、D 在同一条直线上,线段8AB =,C 是AB 的中点, 1.5DB =.则线段CD 的长为( ) A .2.5 B .3.5 C .2.5或5.5 D .3.5或5.5 11.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数 12.国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为( )A .25.8×105B .2.58×105C .2.58×106D .0.258×10713.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°14.如图所示的几何体的左视图是( )A .B .C .D .15.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=二、填空题16.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第5个数是______.17.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)18.若∠α=70°,则它的补角是 .19.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.20.我国南海海域的面积约为35000002㎞,该面积用科学计数法应表示为_______2㎞. 21.已知a +2b =3,则7+6b +3a =________.22.用两钉子就能将一根细木条固定在墙上,其数学原理是______. 23.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.24.若72α∠=︒,则α∠的补角为_________°.25.按照下图程序计算:若输入的数是 -3 ,则输出的数是________三、解答题26.先化简,再求值:2211312()()2323x x y x y --+-+ ,其中x=5,y=-3 . 27.(1)如图①,OC 是AOE ∠内的一条射线,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,120AOE ∠=︒,求BOD ∠的度数;(2)如图②,点A 、O 、E 在一条直线上,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,请说明OB OD ⊥.28.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年七年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示为黄冈市十二月份某一天的天气预报,这天最高气温比最低气温高()A.﹣30℃B.7℃C.3℃D.﹣7℃2.下列运算中,正确的是()A.x3÷x=x4B.a2+a2=2a4 C.3x﹣2x=1 D.3x﹣2x=x3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.﹣2 B.﹣3 C.3 D.54.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×1085.下列各图中,可以是一个正方体的平面展开图的是()A.B. C.D.6.若﹣a x b与2ab1﹣y的和是一个单项式,则x﹣y2016的值为()A.1 B.﹣3 C.﹣1 D.07.下列说法中,正确的是()A.延长直线ABB.在射线AM上顺次截取线段AC=CB=aC.如果AC=BC,则点C为AB的中点D.平角是一条直线8.有一个数值转换器,其工作原理如图所示,若输入﹣2,则输出的结果是()A.﹣8 B.﹣6 C.﹣4 D.﹣29.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A.亏2元B.亏4元C.赚4元, D.不亏不赚10.已知一个由50个偶数排成的数阵.用如图所示的框去框住四个数,并求出这四个数的和.在下列给出备选答案中,有可能是这四个数的和的是()A.80 B.148 C.172 D.220二、填空题(本大题共21分,每小题3分.请将正确结果填写在题后的横线上)11.如果x=1是关于x方程x+2m﹣5=0的解,则m的值是.12.已知x﹣3y=3,则6﹣x+3y的值是.13.若|x﹣|+(y+2)2=0,则(xy)2015的值为.14.一个整式减去a2﹣b2后所得的结果是﹣a2﹣b2,则这个整式是.15.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB 的中点,则线段DE的长为cm.16.已知∠α的补角是它的3倍,则∠α=.17.“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.三、解答题18.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.19.解方程:(1)2x﹣(x+10)=6x;(2)=3+.20.五•四青年节学校组织全校共青团员去距学校6km的烈士陵园进行革命传统教育,李明同学因事不能乘上学校包车,于是他准备在学校改乘出租车去烈士陵园.出租车的收费标准如下表:里程收费(元)起步费3千米以下(含3千米) 33千米以上,每增加1千米 1.8(1)写出乘出租车里程数x千米(x>3)时,所付车费的式子;(2)李明同学身上仅有12元钱,含中餐生活3元,乘出租车去烈士陵园够不够?说明理由.21.如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.22.已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如何进货,进货款恰好为44000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?25.如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.2015-2016学年湖北省黄冈市区学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图所示为黄冈市十二月份某一天的天气预报,这天最高气温比最低气温高()A.﹣30℃B.7℃C.3℃D.﹣7℃【考点】有理数的减法.【分析】直接利用有理数的减法运算法则化简求出答案.【解答】解:由题意可得,最高气温比最低气温高:5﹣(﹣2)=5+2=7(℃).故选:B.2.下列运算中,正确的是()A.x3÷x=x4B.a2+a2=2a4 C.3x﹣2x=1 D.3x﹣2x=x【考点】同底数幂的除法;合并同类项.【分析】原式各项利用同底数幂的除法,以及合并同类项法则计算得到结果,即可作出判断.【解答】解:A、x3÷x=x2,错误;B、a2+a2=2a2,错误;C、原式=(3﹣2)x=x,错误;D、原式=x,正确,故选D3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.﹣2 B.﹣3 C.3 D.5【考点】正数和负数.【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|﹣2|=2,|﹣3|=3,|3|=3,|5|=5,∵2<3<5,∴从轻重的角度来看,最接近标准的是记录为﹣2.故选A.4.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15 000 000用科学记数法表示为:1.5×107.故选:B.5.下列各图中,可以是一个正方体的平面展开图的是()A.B. C.D.【考点】几何体的展开图.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.6.若﹣a x b与2ab1﹣y的和是一个单项式,则x﹣y2016的值为()A.1 B.﹣3 C.﹣1 D.0【考点】合并同类项.【分析】依据同类项才能够进行合并,从而可得到﹣a x b与2ab1﹣y是同类项,依据同类项的定义可得到x,y的值.【解答】解:∵﹣a x b与2ab1﹣y的和是一个单项式,∴﹣a x b与2ab1﹣y是同类项.∴x=1,1﹣y=0.∴y=﹣1.∴x﹣y2016=1﹣02016=1.故选:A.7.下列说法中,正确的是()A.延长直线ABB.在射线AM上顺次截取线段AC=CB=aC.如果AC=BC,则点C为AB的中点D.平角是一条直线【考点】直线、射线、线段;角的概念.【分析】根据直线、射线、线段、平角的定义进行选择即可.【解答】解:A、直线AB本身有两个延伸方向,故“延长直线AB”是错误的;B、如图1所示,B正确;C、如图2所示,即C不在直线AB上,故C错误;D、角有顶点,两条边是射线,而直线上没有标出“顶点”的说法,故D错误.故选B.8.有一个数值转换器,其工作原理如图所示,若输入﹣2,则输出的结果是()A.﹣8 B.﹣6 C.﹣4 D.﹣2【考点】有理数的混合运算.【分析】把﹣2代入数值转换器中计算,确定出输出结果即可.【解答】解:把﹣2代入数值转化器中得:(﹣2)2=4,∵4<8,∴输出的结果为4﹣6=﹣2.故选D9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A.亏2元B.亏4元C.赚4元, D.不亏不赚【考点】一元一次方程的应用.【分析】依据题意,商品按进价增加20%后又降价20%以48元的价格出售的等量关系可列出等式.【解答】解:设商品进价为x,根据题意得:x(1+20%)(1﹣20%)=48解得x=50,以48元出售,可见亏2元.故选:A.10.已知一个由50个偶数排成的数阵.用如图所示的框去框住四个数,并求出这四个数的和.在下列给出备选答案中,有可能是这四个数的和的是()A.80 B.148 C.172 D.220【考点】一元一次方程的应用.【分析】可利用图例,看出框内四个数字之间的关系,上下相差10,左右相差2,利用此关系表示四个数之和,再进行求解即可得出答案.【解答】解:用a表示框住的四个数,如图所示,显然a的个位数字只可能是2,4,6,框住的四个数之和为a+(a+2)+(a+12)+(a+14)=4a+28.当4a+28分别为80,148,172,220时,a分别为13,30,36,48,所以a=36符合题意.即4a+28=172,选C.二、填空题(本大题共21分,每小题3分.请将正确结果填写在题后的横线上)11.如果x=1是关于x方程x+2m﹣5=0的解,则m的值是2.【考点】一元一次方程的解.【分析】将方程的解代入方程得到关于m的方程,从而可求得m的值.【解答】解:当x=1时,1+2m﹣5=0,解得:m=2.故答案为:2.12.已知x﹣3y=3,则6﹣x+3y的值是3.【考点】代数式求值.【分析】原式后两项变形后,将已知等式代入计算即可求出值.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:313.若|x﹣|+(y+2)2=0,则(xy)2015的值为﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据几个非负数的和等于0,则每个数等于0,据此即可列方程求得x和y的值,进而求解.【解答】解:根据题意得:,解得:,则原式=(﹣1)2015=﹣1.故答案是:﹣1.14.一个整式减去a2﹣b2后所得的结果是﹣a2﹣b2,则这个整式是﹣2b2.【考点】整式的加减.【分析】根据整式的加减进行计算即可.【解答】解:a2﹣b2+(﹣a2﹣b2)=a2﹣b2﹣a2﹣b2=﹣2b2,故答案为﹣2b2.15.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB 的中点,则线段DE的长为 1.5cm.【考点】两点间的距离.【分析】由已知条件可知,AC=AB﹣BC,又因为点D为AC中点,点E为AB的中点,则AD=AC,AE=AB.故DE=AE﹣AD可求.【解答】解:∵AB=10cm,BC=3cm,(已知)∴AC=AB﹣BC=7cm.∵点D为AC中点,点E为AB的中点,(已知)∴AD=AC,AE=AB.(线段中点定义)∴AD=3.5cm,AE=5cm.∴DE=AE﹣AD=1.5cm.故答案为:1.5.16.已知∠α的补角是它的3倍,则∠α=45°.【考点】余角和补角.【分析】先表示出这个角的补角和余角,然后再依据∠α的补角是它的3倍列出方程,从而可求得∠α的度数.【解答】解:∠α的补角是180°﹣α.根据题意得:180°﹣∠α=3∠α.解得:∠α=45°.故答案为:45°.17.“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是a,并运用这个公式求得图2中多边形的面积是17.5.【考点】规律型:图形的变化类.【分析】分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.【解答】解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.三、解答题18.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=4﹣54=﹣50.19.解方程:(1)2x﹣(x+10)=6x;(2)=3+.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,(2)方程去分母得:2(x+1)=12+2﹣x,去括号得:2x+2=12+2﹣x,移项合并得:3x=12,解得:x=4.20.五•四青年节学校组织全校共青团员去距学校6km的烈士陵园进行革命传统教育,李明同学因事不能乘上学校包车,于是他准备在学校改乘出租车去烈士陵园.出租车的收费标准如下表:里程收费(元)起步费3千米以下(含3千米) 33千米以上,每增加1千米 1.8(1)写出乘出租车里程数x千米(x>3)时,所付车费的式子;(2)李明同学身上仅有12元钱,含中餐生活3元,乘出租车去烈士陵园够不够?说明理由.【考点】列代数式.【分析】(1)根据车费=3+3km以上的收费,列出代数式即可;(2)当到6千米的烈士陵园时,代入表示车费的代数式求值,用12减去路费与中餐费用做比较,即可判断.【解答】解:(1)根据题意,可得:3+1.8(x﹣3)=1.8x﹣2.4,即乘出租车里程数x千米(x>3)时,所付车费为1.8x﹣2.4;(2)够,∵3+1.8(x﹣3)=3+1.8×(6﹣3)=3+1.8×3=3+5.4=8.4(元)∴12﹣8.4=3.6(元)>3(元),因为乘车只需8.4元,剩下3.6元足够吃饭.21.如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.【考点】同解方程.【分析】先求第一个方程的解,再代入第二个方程求得a的值,最后求式子的值.【解答】解:解方程,2(x﹣4)﹣48=﹣3(x+2),2x﹣8﹣48=﹣3x﹣6,5x=50,得:x=10.把x=10代入方程4x﹣(3a+1)=6x+2a﹣1,得:4×10﹣(3a+1)=6×10+2a﹣1,∴可得:=.22.已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)把A与B代入A﹣2B中,去括号合并即可得到结果;(2)利用非负数的性质求出a与b的值,代入(1)结果中计算即可.【解答】解:(1)∵A=3a2﹣4ab,B=a2+2ab,∴A﹣2B=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)∵|2a+1|+(2﹣b)2=0,∴a=﹣,b=2,则原式=+8=8.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【考点】角平分线的定义.【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE∴∠DOE=15°∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°故答案为75°.24.目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如何进货,进货款恰好为44000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?【考点】一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意可得等量关系:甲型的进货款+乙型的进货款=44000元,根据等量关系列出方程,再解方程即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,由题意可得:甲型的总利润+乙型的总利润=总进货款×30%,根据等量关系列出方程,再解即可.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=44000解得:x=500购进乙型节能灯1200﹣x=1200﹣500=700只.答:购进甲型节能灯500只,购进乙型节能灯700只进货款恰好为44000元.(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,由题意,得(30﹣25)a+(60﹣45)=[25a+45]×30%解得:a=450.购进乙型节能灯1200﹣a=1200﹣450=750只,获利:(30﹣25)a+(60﹣45)=18000﹣10a=18000﹣10×450=13500(元).答:商场购进甲型节能灯450只,购进乙型节能灯750只时利润为13500元.25.如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【考点】数轴;两点间的距离.【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.【解答】解:(1)如图1,∵点B对应数是90,∴OB=90.又∵OA+50=OB,即OA+50=90,∴OA=120.∴点A所对应的数是﹣120;(2)依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离.(3)依题意得RQ=(45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22﹣28(45+4t)﹣5=0.2016年12月12日。