基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现

合集下载

基于MC1496调幅调制仿真实验

基于MC1496调幅调制仿真实验

实验报告课程名称:高频电子线路实验名称:调幅调制器姓名:习宇专业班级:电子信息工程一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。

2.掌握测量调幅系数的方法。

二、实验电路说明用1496集成电路构成的调幅器电路图如下图2所示,图中RP1用来调节引出脚,1、4的平衡,RP2用来调节引出脚8、10的平衡。

1496芯片内部图2 1496构成的调幅器三、实验内容及其结果1.直流调制特性(1)调RP2电位器使载波输入端平衡:在调制信号输入端IN2加峰值为100mv, 频率为1kHz的正弦信号,调节RP2电位器使输出端信号最小,然后去掉输入信号。

(2)在载波输入端IN1加峰值V(C)为10mv,频率100kHz的正弦信号,用万用表测量a,b之间的电压V(a,b),用示波器观察OUT输出端的波形,以V(a,b)=0.1V为步长,记录RP1由一端跳到另一端的输出波形及其峰值电压,注意观察相位的变化,根据公式V(-)=K*V(a,b)*V(c)计算出系数K值,并填入下表:表5-1V(a,b)0.8 0.9 1 1.1 1.2 1.3【V】V(-)【V】0.4 0.45 0.51 0.55 0.58 0.62K直流调制特性曲线2.实现全载波调幅(AM)(1) 调节RP1使V(a,b)=0.1V,载波信号仍为VC(t)=10sin2π×10^5t(mV),将低频信号Vs(t)= Vssin2π×10^3t(mV)加至调制器输入端IN2,画出VS=30mA 和100mA时的调幅波形(标明峰峰值和谷谷值),并测出其调制度m。

(2)载波信号VC(t)不变,将调制信号改为Vs(t)=100sin2π×10^3t(mV),调节RP1观察输出波形VAM(t)的变化情况,记录m=30%和m=100%的调幅波所对应的V(a,b)值.(3)载波信号不变,将调制信号改为方波,幅值为100mV,观察并记录V(a,b)=0V,0.1V,0.15V时的已调波.3. 实现抑制载波调幅(DSB)(1)调RP1使调制端平衡,并在载波信号输入端IN1加VC(t)=10sin2π×10^5t(mV) 信号调制信号端IN2不变,观察并记录波形.(2)载波输入端不变,调制信号输入端IN2加Vs(t)=100sin2π×10^3t(mV)的信号,观察记录波形,并标明峰峰值电压.(3)所加载波信号和调制信号均不变,微调RP2为某一个值,观察及记录波形.(4)在(3)的条件下,去掉载波信号,观察并记录输出波形,并与调制信号比较.。

《高频实验》实验四 振幅调制与解调

《高频实验》实验四 振幅调制与解调

实验四振幅调制与解调一、实验目的:1.通过实验掌握调幅与检波的工作原理。

掌握用集成模拟乘法器构成调幅与检波系统的电路连接方法。

2.通过实验掌握集成模拟乘法器的使用方法。

3.掌握二极管峰值包络检波的原理。

4. 掌握调幅系数测量与计算的方法。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

4.完成普通调幅波的解调5.观察抑制载波的双边带调幅波的解调6.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波的现象。

三、基本原理:幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号。

调幅波的解调是调幅的逆过程,即从调幅信号中取出调制信号,通常称之为检波。

调幅波解调方法主要有二极管峰值包络检波器,同步检波器。

本实验中载波是由晶体振荡产生的10MHZ 高频信号。

1KHZ的低频信号为调制信号。

在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图4-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1—V4组成,以反极性方式相连接;而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5与V6的恒流源。

进行调幅时,载波信号加在V1—V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,己调制信号取自双差动放大器的两集电极(即引出脚(6)、(12)之间)输出。

用1496集成电路构成的调幅器电路图如图4—2所示,图中VR8 用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。

器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。

模拟乘法器1496芯片的调幅电路的设计2讲解

模拟乘法器1496芯片的调幅电路的设计2讲解

• 将高频已调波经过 频率变换,变为固 定中频已调波,同时 必须保持其调制规 律不变的电路。 (也就是我们常说 的不失真)


模拟
电乘法ຫໍສະໝຸດ 路器由于乘法器可以产生只包含两个输入信号之和频及差 频分量的输出信号,所以用模拟乘法器和带通滤波器可以 方便地实现混频功能。其原理框图下图所示:
• 用模拟乘法器实现混频,就是在Ux端和Uy端分别 加上两个不同频率的信号,两信号相差为中频, 再经过带通滤波器取出中频信号。
模拟乘法器1496芯片的 混频电路的设计
小组成员 :周善辉 1108063055 李亚威 1108063002 周庚嵘 1108063051 钱哲 1108063017
设计要求
• 1:利用模拟乘法器1496芯片 • 2:基于混频电路的设计 • 3:中频输出在465kHz左右
设计原理
• 1.集成模拟乘法器
设计你基础
在乘法器的一个输入端输 入载波信号:
另一输入端输入调制信号:
则经乘法器相乘,可得输出抑制载波的双边带调幅信 号的表达为:
k为调制电路的比 例系数
设计条件
• 在这里,MC1496和其他的芯片不同,采用 双电源供电,其中Vcc=12V,Vdd=-8V.
• 仿真时,载波信号频率为565kHz,幅度为 50mv;调制信号频率为2kHz,幅度为200mv.
R5=R14={(8-0.7)/(1X10-3)}500=6.75KΩ 取标称电阻,则
R5=R14=6.8KΩ
由于共模静态输出电压为:U6=U12=VCC-I5RL 式中U6、U12是6脚与12脚的静态电压。当选U6=U12=8V, VCC=12V,I5=1mA时, RL=(VCC-U6)/I5=(12-8)/(1X10-3)=4KΩ,取标称电阻 RL=R6=R7=3.9KΩ。

基于模拟乘法器MC1496的混频器设计解读

基于模拟乘法器MC1496的混频器设计解读

基于模拟乘法器MC1496的混频器设计摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

模拟乘法器的主要技术指标是工作象限、线性度和馈通度。

工作象限是指容许输入变量的符号范围。

只容许ux和uy均为正值的相乘器称为一象限的,而容许ux和uy都可以取正、负值的则称为四象限的。

线性度是指相乘器的输出电压uo与输入电压ux(或uy)成线性的程度。

馈通度是指两个输入信号中一个为零时,另一个在输出端输出的大小。

混频是将载波为高频的已调信号,不失真地变换为载波为中间的已调信号,必须保持①调制类型,调制参数不变,即原调制规律不变。

②频谱结构不变,各频率分量的相位大小,相互间隔不变。

由于设计和制作增益高, 选择性好, 工作频率较原载频低的固定中频放大器比较容易, 所以采用混频方式可大大提高接收机的性能。

此设计就是利用仿真软件,采用模拟相乘器实现混频电路的。

关键词:MATLAB,模拟乘法器,混频电路DESING OF MIXER BASED ON THE ANALOG MULTIPLIER MC1496AbstractAfter the integrated operational amplifier in the integrated analog multiplier is one of the most common analog integrated circuit, is a kind of multi-purpose linear integrated circuits.Modulator can be used as a broadband, suppressed carrier bilateral balance, don't need coupling transformeror tuned circuit, also can be used as a high-performance SSB multiplication detector, AM, FM demodulator, mixer/modem modulation, frequency multiplier, and phase discriminator, combiningit with amplifier can also do many mathematical operation, such as multiplication, division, chengfang, root, etc.This design mainly used integrated analog multiplier MC1496 achieve above functions. Analog multiplier is the main technique index quadrant, linearity and feed through work.Work quadrant refers to allow the input variable symbol scope.Only allow both ux and uy positive multiplier is called a quadrant, and allow the ux and uy can take the positive and negative is known as the four quadrants.Linearity refers to the multiplication of the input voltage and output voltage uo ux (or uy) into linear degree.Feed through degree is refers to the two input signals of ais equal to zero, the other in the size of the output terminal output.Mixing is the carrier for the high frequency modulated signal, no distortion for the carrier to transform to the middle of the modulated signal, must be kept in (1) modulation type, modulation parameters are the same, namely the original modulation law remains the same.The phase of each frequency component of the spectrum structure remains the same, (2) the size and the spacing between the same.Due to the design and production of high gain, good selectivity, and working frequency was lower than those of the original carrier frequency fixed intermediate frequency amplifier is easy, so the mixing method can greatly improve the performance of the receiver.This design is the use of simulation software, using analog multiplier to realize mixing circuit..Key words:MA TLAB, Analog multiplier, mixing circuit1.绪论混频技术在高频电子线路和无线电技术中应用的相当广泛。

MC1496设计的AM调幅器

MC1496设计的AM调幅器

引言在通信系统中,从消息变换过来的信号是频率很低的电信号,其频谱特点是包括(或不包括)直流分量的低通频谱,如电话信号的频率范围在 300到3000Hz,称为基带信号。

这种基带信号在很多信道中不能直接传播.为了使基带信号适宜在信道中传输,就需要采用调制解调技术。

调制通常可以分为模拟调制和数字调制两种方式。

在本系统中,基带信号和载波信号都为连续的正弦波,采用集成模拟乘法器MC1496实现AM模拟调制。

本文将通过集成模拟乘法器芯片MC1496的原理、作用和功能出发,阐述整个设计过程。

整个课程设计将丰富读者的应用知识。

也为MC1496芯片的应用和功能多添一项展示。

1 课程设计的目的和任务●掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊接。

熟悉电子产品的安装工艺的流程。

●能够自己设计绘制电路原理图并根据原理图以及元器件实物设计并制作小工艺品。

●熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的电子器件图书。

●能够正确识别和选用常用的电子器件。

了解电子产品的焊接、调试方法。

●根据所学知识设计一个基于MC1496的AM调制器,要求载波在6M-10M之间。

●要求作品功能表现突出,结构明确。

●认真调试作品,并记录主要数据和波形,并且仔细撰写课程设计报告。

2 硬件电路设计2.1 设计方案●设计的调制器,在能在6M-10M的载波信号下调制;●能够使调制器实现抑制载波的振幅调制或有载波的振幅调制;2.2 如何实现调制所谓“调制”就是对信号源的信息进行处理,使其变为适合于信道传输的形式的过程。

一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。

基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。

这个信号叫做已调信号,而基带信号叫做调制信号。

调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。

基于模拟乘法器MC1496的频谱搬移电路设计

基于模拟乘法器MC1496的频谱搬移电路设计
收 稿 日 期 :20170913 作者简 介:安 媛 (1985)女,江 苏 徐 州 人,硕 士,研 究 方 向:电 子通讯。
由 MC1496内部电路图可知,双差分放大器 V1~ V4 连接方式为:V1 和 V3、V2 和 V4 通过集电极相 连, V1 和 V4、V2 和 V3 通 过 基 极 相 连。 这 种 连 接 方 式 决 定了第一对差分放大器的极性与第二对差分放大器的
Keywords:MC1496;amplitudemodulation;synchronousdetection
在无线通信系统 中,频 谱 搬 移 电 路 是 不 可 缺 少 的 单元电路,它能够实 现 将 传 输 信 号 的 频 谱 在 频 率 轴 上 进行不失真的线性搬 移,即 传 输 信 号 经 频 谱 搬 移 电 路 后得到的已调信号的频谱结构能够不失真地复现低频 调制信号的频谱结 构。频 谱 搬 移 可 视 为 两 个 信 号 (调 制 信 号 和 载 波 信 号 )相 乘 或 者 包 含 相 乘 的 过 程 ,其 中 集 成模拟乘法器是必不可少的元器件。
MC1496 只 适 用 于 频 率 较 低 的 场 合 ,它 的 工 作 频 率 在1 MHz以 下 。
图 1 犕犆1496 的 引 脚 和 内 部 电 路 图
1 原 理 分 析
MC1496是根据双差分对模拟 相乘 器 基本 原 理 制 成的单片集成模拟相 乘 器,其 内 部 结 构 及 引 脚 图 如 图 1所示。它由差动放大器(V5、V6)和双差分放大器 V1 ~V4 组成,V7、R1、V8、R2、V9、R3 和 通 过 5 脚 外 接 电 阻 R5 等组成 多 路 电 流 源 电 路。R5、V7、R1 为 电 流 源 的基准电路,V8、V9 分 别 供 给 V5、V6 管 恒 定 电 流犐0/ 2,改变外接电阻 R5 的大小,可用于调节犐0/2的 大 小。 工作时,载波信号加到 V1~V4 的 输 入 端,调 制 信 号 加 到 V5、V6 的输入端,其输出信号 只 包 含 和 频 与 差 频 分 量,而幅度受到了 调 制 信 号 的 调 制。 调 制 信 号 差 动 放 大器的两个发 射 极 分 别 引 出 外 接 引 线 端 和 ,两 端 之间可接入适当的反 馈 电 阻,使 调 制 信 号 输 入 幅 度 的 线性动态范围满足一 定 的 要 求,它 还 决 定 相 乘 器 的 增 益。V7、V8、V9 等组成具有负反 馈 电 阻 的 恒 流 源,R1、 R2、R3 为负 反 馈 电 阻,它 们 的 作 用 是 展 宽 动 态 范 围,

基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现讲解

基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现讲解

湖南大学工程训练HUNAN UNIVERSITY 工程训练报告题目:基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现学生姓名:秦雨晨学生学号: 20110803305专业班级:通信工程1103 指导老师(签名):二〇一四年九月十五日目录1 项目概述---------------------------------------------------------2 1.1引言---------------------------------------------------------21.1 项目简介----------------------------------------------------21.2 任务及要求--------------------------------------------------21.3 项目运行环境------------------------------------------------32 相关介绍--------------------------------------------------------33 项目实施过程----------------------------------------------------53.1 项目原理 ---------------------------------------------------53.2 项目设计内容------------------------------------------------93.2.1 调幅电路仿真--------------------------------------------93.2.2 检波电路仿真-------------------------------------------124 结果分析-------------------------------------------------------144.1调幅电路---------------------------------------------------144.2 检波电路---------------------------------------------------185 项目总结-------------------------------------------------------216 参考文献-------------------------------------------------------227 附录 --------------------------------------------------------231、项目概述1.1引言在高频电子线路中的振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

基于MC1496的幅度调制与线性检波电路设计课程设计

基于MC1496的幅度调制与线性检波电路设计课程设计

一、摘要调制与解调电路是现代通信设备中重要组成部分。

为了实现信号的无线传输,在通信设备中必须采用调制与解调电路。

调制是把待传输信号置入载波的过程,它在发送设备中进行。

调制的方法很多,若用调布蟾号(信息)控制载波的幅度,则称为调幅。

解调是调制的逆过程,即从己调信号中还原出原调制信号(信息),对调幅波的解调称为检波。

本设计是基于MC1496的幅度调制与线性检波电路设计,首先设计调制与检波电路,再通过Multisim软件对电路进行仿真分析,最后通过实际电路调试得出满足要求的电路。

关键字:调制解调检波 MC1496 Multisim仿真二、实验内容及原理1、乘法器工作原理:由于此课程设计要用到模拟乘法器MC1496,而multisim中,又没有MC1496,所以要定义一个模拟乘法器1496。

内部电路如下:图-1其中Q1、Q2与Q3、Q4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源Q 5与Q 6又组成一对差分电路,因此恒流源的控制电压可正可负,以此实现了四象限工作。

Q 7、Q 8为差分放大器Q 5与Q6的恒流源。

进行调幅时,载波信号加在Q1和Q4的输入端,即引脚⑧、⑩之间;调制信号加在差动式放大器Q5、Q6的输入端,即引脚①、④之间;②、③脚外接1K Ω电阻,以扩大调制信号动态范围;已调制信号由双差动放大器的两集电极(即引脚⑹、⑿之间)输出。

图-2此图为MC1496引脚图。

在菜单栏Place →New subcircut →输入“MC1496”,在弹出的新空白页中将MC1496内部电路图即可。

1.1静态工作点的设定1.1.1、静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。

根据MC1496的特性参数,对于图10-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即ν8=ν10, ν1=ν4, ν6=ν1212V ≥ν6 (ν12)-ν8 (ν10)>2V12V ≥ν8 (ν10)-ν1 (ν4)>2.7V12V ≥ν1 (ν4)-ν5>2.7V1.1.2、静态偏置电流主要由恒流源I 0的值来确定。

基于MC1496平衡调幅实验

基于MC1496平衡调幅实验

基于MC1496平衡调幅实验付小燕 2009213379 一、实验目的(1)掌握集成模拟乘法器MC1496的基本工作原理及用MC1496实现AM波调幅和DSB 波调幅的方法。

(2)掌握调幅系数的测量与计算方法,电路参数对调幅波形的影响。

(3)熟练掌握焊接技术。

二、实验原理(1)MCl496芯片是Motorola公司出品的一种具有多种用途的集成模拟乘法器,输出电压为输入信号和载波信号的乘积,可以应用于抑制载波、调幅(振幅调制)、同步检测、调频检测和相位检测等,其内部结构图如图1所示。

采用MCl496集成芯片设计振幅调制电路,比用分立元件设计振幅调制电路要简单得多。

基于MCl496平衡调幅实验电路被广泛应用于信息工程类专业高频电子线路课程的“调幅”实验。

在实验教学过程中,利用基于MCl496平衡调幅实验电路进行振幅调制实验,可以直观地了解信号的调制过程,分析调幅波的性能,掌握调整与测量其特性参数的方法,其中包括掌握调制度m 的测量方法,从而加深对相关基本概念和基础知识的掌握和理解。

(2)在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量电压(或电流)相乘的电子器件。

基于MCl496平衡调幅实验电路如图2所示:图2图2所示基于MCl496平衡调幅实验电路是由芯片MCl496和电阻、电容等元件组成的双边带调幅电路,载波信号通过C3输入,加在芯片引脚的8、10之间;调制信号通过C4和由R3、R14、R7组成的载波信号调零电路输入,加在芯片引脚的l 、4之间;芯片2、3引脚外接R8(1K )电阻,以扩大调制信号动态范围;R14用来调节芯片8、10引脚之间的平衡;调制信号通过C1输出。

假设载波信号电压为:t w U t u c c c cos )(= 调制信号电压为:t U t u Ω=ΩΩcos )(其中Ω>>cw ,由于实验电路中采用了由R14、R3和R7组成的载波信号调零电路,因此加在MCl496芯片引脚I 、42_间的调制信号电压为:t U V t u AB w Ω+=Ωcos )(即在调制信号上叠加上了一个直流分量V AB 。

基于MC1496的简易调幅发射机

基于MC1496的简易调幅发射机

高频电子线路课程设计报告书学院:专业:姓名:学号:年月日一、课题名称:基于MC1496的简易调幅发射机二、简要说明集成模拟乘法器性能好,外围电路结构简单,可实现振幅调制、同步检波、混频、倍频、鉴频等过程,目前在无线通信、广播电视等领域应用较多。

常见的产品型号有MC1495/1496、LM1595/1596等,本课题选用常用的MC1496作为乘法器。

本课题的目的是练习集成模拟乘法器的使用,掌握幅度调制的原理。

三、基本原理图1是调幅发射机系统的基本组成原理图:图11、调幅发射系统分析图1为最基本的调幅发射系统框图。

主要由主振荡器、缓冲级、高频小信号放大器、调制器、高频功率放大器、低频电压放大器等电路组成。

在组成电路中,除了主振器、调制器、调制信号是最基本的组成单元,不能缺少外,其他单元电路的选择,主要根据设计指标要求来确定。

缓冲级将主振器与其后一级隔离,以减小后级对振荡器频率稳定度及振荡波形的影响。

所以,是否选择该单元电路,主要根据电路对稳定性的要求高低。

一般情况下,需要选择该电路。

高频放大器的任务是将振荡电压放大以后送到振幅调制,为驱动调制级提供足够的增益。

是否选择该单元电路,主要根据所选择的振幅调制电路决定。

即:如果选用低电平调幅电路(如用集成模拟乘法器做振幅调制器),由于这种调制器为小信号输入,振荡器输出电压一般能够满足要求,就不需要该放大电路;而如果采用高电平调幅电路(如集电极调幅电路),由于它要求大信号输入,振荡器输出电压不能满足时,就要使用一至二级高频放大器。

功率放大器是调幅发射系统的末级,它的任务是提供发射系统所需要的输出功率。

是否选择该电路,主要根据系统对发射功率的要求。

如果由调幅电路输出的功率能满足性能要求的话,就可以不再其后加功率放大电路,否则,就不能省略。

2、调幅发射机系统各单元电路的分析(1)主振器主振器就是高频振荡器,根据载波频率的高低和频率稳定度来确定电路形式。

在频率稳定度要求不高的情况下,可以采用电容反馈三点式振荡电路,如克拉泼、西勒电路。

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真学号:************名:***年级专业:测控工程指导老师:***摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

目录摘要 (1)第一章模拟乘法器MC1496/1596 (3)第二章,集成模拟乘法器的应用 (5)2.1 利用乘法器实现振幅调制 (5)2.2利用乘法器实现同步检波 (6)2.3利用乘法器实现混频 (6)2.4利用乘法器实现倍频 (6)第三章电路仿真与结果 (8)3.1振幅调制与解调电路的仿真 (8)3.2 混频电路的仿真 (9)3.3倍频器电路的仿真 (11)第四章仿真电路的参数和结果分析 (12)第四章仿真电路的参数和结果分析 (13)4.1 振幅的调制与解调 (13)4.2混频电路 (13)4.3倍频器电路 (13)第五章心得体会 (14)第六章参考文献 (15)第一章 模拟乘法器MC1496/1596单片集成模拟乘法器MC1496/1596的内部电路如图1-1所示。

图1-1 单片集成模拟相乘器MC1496/1596的内部电路图中晶体管VT 1~VT 4组成双差分放大器,VT 5、VT 6组成单差分放大器,用以激励VT 1~VT 4;VT 7、VT 8、VD 及相应的电阻等组成多路电流源电路、VT 7、VT 8分别给VT 5、VT 6、提供I 0/2的恒流电流;R 为外接电阻,可用以调节I 0/2的大小。

另外,由VT 5、VT 6两管的发射级引出接线端2和3,外接电阻R y ,利用R y 的负反馈作用可以扩大输入电压u 2的动态范围。

基于MC1496平衡调幅实验电路的分析与改进

基于MC1496平衡调幅实验电路的分析与改进

调 制 信 号通 过 C 和 由R 、 R l 6 成 的 载 波 信 号 调 3 4 p 、R 组 零 电路 输 入 ,加 在 芯片 引 脚 的 l 2 间 ;芯 片 2 3 、4 _ 、 引
原 理
在高频 电子 线路 中 ,振 幅调制 、同步检 波 、混
频 、倍频、鉴频等调制与解 调的过程均可视为两个信
=UJ (+mc s c s t K c/ 1 ,o t o  ̄ Q )
用 示波器观察到 如图2 所示 的调 幅波波形 ,测量 结果 以及根据 () 1式计算得到刃 理论值和根据 () 2 式计算得 到%实验值见表 1 。
式中, 称为调制度 ,
J , l ( ㈤) 1
量 电压 ( 电流 )相 乘 的 电 子器 件 。基 于M 19 平 衡 或 C46 调 幅实 验 电路 如 图 l 示 : 所
调制信号电压为:
收稿 日期 :2 0— 2 1 091—6
uo Do C Q t t = OS
作者简介:李红,本科 ,实验师。
其 中, 6 > 0 > Q。由于实验 电路中采用了由R l p、
制度%实测值与理论值 的误差大为减小,调制度 的实验精度 大为提高 。 关键词:电子技术;调幅;调制度 ;电容
M 19 芯片是M t r l 公司 出品的一种具有多 C46 o0 0a 种用途 的集成模拟乘法器 ,输 出电压为输入信号和载
波 信 号 的 乘 积 , 可 以 应 用 于 抑 制 载 波 、 调 幅 ( 幅 振
调幅波振幅的最大值 一和最 小值

分别为:
=现 (+ ) 1
即在调制信号上叠加上了一个直流分量V 。 蚰
U i X ^ 一 m m Uc B

模拟乘法器1496实验报告.

模拟乘法器1496实验报告.

实验课程名称:_高频电子线路五.实验原理与电路设计仿真1、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。

所以目前在无线通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

下面介绍MC1496集成模拟乘法器。

(1)MC1496的内部结构MC1496 是目前常用的平衡调制/解调器。

它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。

MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。

(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。

一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。

为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。

引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。

各引脚功能如下:1:SIG+ 信号输入正端 2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)Multisim建立MC1496电路模块启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。

基于MC1496的相位鉴频器电路设计与仿真

基于MC1496的相位鉴频器电路设计与仿真
图6电流波形图
2.3同步检波的原理
同步检波分为乘积型和叠加型两种方式,它们都需要接收端恢复载波的支持,本设计采用乘积型同步检波。乘积型同步检波是直接把本地恢复载波与调幅信号相乘,用低通滤波器滤除无用的高频分量,提取有用的低频信号,它要求恢复载波与发射端的载波同频同相,否则将使恢复出来的调制信号产生失真。
图8相移与频偏
MCl496的作用是将调频波与调频调相波相乘,其输出经R11、C3,C4组成的RC低通滤波网络输出。
乘法器鉴相的基本原理
设在乘法器的一个输入端输入调频波us(t)设其表达式为:
(2.11)
式中, 为调频系数, 或 ,其中 为调制信号产生的频偏。
乘法器的输出中,高频分量可以被滤波器滤掉。经低通滤波器得到所需要的频率分量为: 〔2.12〕
1设计任务及要求
1.1设计任务
本设计是通过模拟乘法器MC1496和低通滤波器组成的乘积型相位鉴频器,通过电路设计,能够实现仿真波形,将仿真波形与理论比较,分析出设计中的误差。
1.2设计要求
〔1〕乘积性的相位鉴频器中心频率10.7MHz。
〔2〕调制信号频率500kHz,用MC1496设计频相转换网络和低通滤波器。
设计中,用MC1496构成的振幅调制电路产生调幅信号,然后采用实验电路实现信号的解调。
本设计电路的输出电流中,除了解调所需要的低频分量外,其余所有分量都属于高频范围,很容易滤除,因此不需要载波调零电路,而且可采用单电源供电。本电路可解调DSB或SSB信号,亦可解调AM信号。MC1496的10脚输入载波信号,可用大信号输入,一般为100-500mV;1脚输入已调信号,信号电平应使放大器保持在线性工作区内,一般在100mV以下。
实现调频信号解调的鉴频电路可分为三类,第一类是调频——调幅变换型。第二类是相依乘法鉴频型,这种类型是将调频波经过移相电路变成调相调频波,其相位的变化正好与调频波瞬时频率的变化呈线性关系,然后将调相调频波与原调频波进行相位比较,通过低通滤波器取出解调信号,因为相位比较器通常用乘法器组成,所以称为相移乘法鉴频;第三类是脉冲均值型。

模拟乘法器1496芯片的调幅电路的设计2

模拟乘法器1496芯片的调幅电路的设计2

• Ux端输入载波信号, Uy端输入调制信号, 调整调制信号的幅度 使调幅波回到m<1的 状态,其中m为调制系 数,然后调节R9,获 得抑制载波的双边带 调幅波
设计结果
设计数据分析
• 1:所得数据 T=223.485us • 2: 数据计算 f=1/T=447.5kHz
参考书籍:1.Multisim 10电路仿真及应用 2.高频通信原理
具体电路设计
电路采用双电源供电,所以⑤脚接Rb 到地。因此,改变R5也可以调节I0的大小, 即:
R5 VEE 0.7 500 I5
则:当VEE=-8V,I5=1mA时,可算 得:(MC1496器件的静态电流一般取I0 =I5=1mA左右)
I0 I5 uEE 0.7V R5 500
谢谢观赏
R5=R14={(8-0.7)/(1X10-3)}500=6.75KΩ 取标称电阻,则 R5=R14=6.8KΩ
由于共模静态输出电压为:U6=U12=VCC-I5RL 式中U6、U12是6脚与12脚的静态电压。当选U6=U12=8V, VCC=12V,I5=1mA时, RL=(VCC-U6)/I5=(12-8)/(1X10-3)=4KΩ,取标称电阻 RL=R6=R7=3.9KΩ。
中频输出在465khz左右设计原理mc1496基本组成32静态工作点设置33基本工作原理mc1496设计电路的分析模拟乘法器混频电路模拟乘法器是一种完成两路互不相关的模拟信号连续变化的两个电压或电流相乘作用的电子器件
模拟乘法器1496芯片的 混频电路的设计
小组成员 :周善辉 1108063055 李亚威 1108063002 周庚嵘 1108063051 钱哲 1108063017
另一输入端输入调制信号:

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真学号:************名:***年级专业:测控工程指导老师:***摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

目录摘要 (1)第一章模拟乘法器MC1496/1596 (3)第二章,集成模拟乘法器的应用 (5)2.1 利用乘法器实现振幅调制 (5)2.2利用乘法器实现同步检波 (6)2.3利用乘法器实现混频 (6)2.4利用乘法器实现倍频 (6)第三章电路仿真与结果 (8)3.1振幅调制与解调电路的仿真 (8)3.2 混频电路的仿真 (9)3.3倍频器电路的仿真 (11)第四章仿真电路的参数和结果分析 (12)第四章仿真电路的参数和结果分析 (13)4.1 振幅的调制与解调 (13)4.2混频电路 (13)4.3倍频器电路 (13)第五章心得体会 (14)第六章参考文献 (15)第一章 模拟乘法器MC1496/1596单片集成模拟乘法器MC1496/1596的内部电路如图1-1所示。

图1-1 单片集成模拟相乘器MC1496/1596的内部电路图中晶体管VT 1~VT 4组成双差分放大器,VT 5、VT 6组成单差分放大器,用以激励VT 1~VT 4;VT 7、VT 8、VD 及相应的电阻等组成多路电流源电路、VT 7、VT 8分别给VT 5、VT 6、提供I 0/2的恒流电流;R 为外接电阻,可用以调节I 0/2的大小。

另外,由VT 5、VT 6两管的发射级引出接线端2和3,外接电阻R y ,利用R y 的负反馈作用可以扩大输入电压u 2的动态范围。

基于MC1496的振幅调制、同步检波电路的实现与仿真

基于MC1496的振幅调制、同步检波电路的实现与仿真

基于MC1496的振幅调制、同步检波电路的实现与仿真【摘要】本文分析了一种基于集成模拟乘法器MC1496的振幅调制电路、同步检波电路,具体给出了偏置电流和偏置电压。

详细介绍了抑制载波以及有载波的调幅实现过程,电路的同步检波实现过程,并利用multisim仿真软件对结果做了仿真分析,调制和检波波形正确清晰。

【关键词】MC1496;调制;检波1.引言集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,采用集成模拟乘法器实现比采用分立器件如二极管和三极管要简单的多,而且性能优越。

目前在无线通信、广播电视等方面也得到了广泛的应用。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

本文主要分析了一种利用MC1496实现的振幅调制以及同步检波电路,给出了具体的静态偏置电流和偏置电压,给出了具体的调制信号和载波信号频率,并给出了multisim仿真波形。

2.基于MC1496集成模拟乘法器的振幅调制、同步检波电路2.1 MC1496特性分析MC1496是双平衡四象限模拟乘法器,由互补双极性工艺制作而成,它具有以下优良特性:四个独立输入通道,四象限乘法信号,电压输入电压输出,乘法运算无需外部元件,电压输出:W=(X×Y)/2.5V,其中X或Y上的线性度误差仅为0.2%,具有优良的温度稳定性,温度漂移小于0.005%/℃,模拟输入范围为±2.5V,采用±5V电压供电,点噪声电压仅为0.3μV/Hz,Y通道总谐波失真噪声仅为0.02%的,四个8MHz通道的总静止功耗仅为150mW,工作温度范围为-40℃~+85℃。

乘法器的内部非线性是器件的固有误差。

它指的是所有成对输入值的实际输出与理想的线性理论输出值之间的差值。

其定义是在完全没有电流误差时,误差量与满刻度的百分比。

基于MC1496平衡调幅实验电路的分析与改进

基于MC1496平衡调幅实验电路的分析与改进

422010年第9期(总第97期)et基于MC1496平衡调幅实验电路的分析与改进李 红广东工业大学 广东广州 510006摘 要:文章介绍了基于M C1496平衡调幅实验电路的工作原理和实验方法,推导了调制度理论值的计算公式,对实验结果调制度m a 实验值与理论值的误差进行了分析,指出了造成误差的原因,提出了减小误差的方法,将基于M C1496平衡调幅实验电路的耦合电容C3的电容值从原来的10u F改变成33u F。

本文给出了C3=10u F和C3=33u F时的实验结果。

实验结果表明,调制度m a 实测值与理论值的误差大为减小,调制度m a 的实验精度大为提高。

关键词:电子技术;调幅;调制度;电容收稿日期:2009-12-16作者简介:李红,本科,实验师。

M C1496芯片是M o t o r o l a公司出品的一种具有多种用途的集成模拟乘法器,输出电压为输入信号和载波信号的乘积,可以应用于抑制载波、调幅(振幅调制)、同步检测、调频检测和相位检测等。

采用M C1496集成芯片设计振幅调制电路,比用分立元件设计振幅调制电路要简单得多。

基于M C1496平衡调幅实验电路被广泛应用于信息工程类专业高频电子线路课程的“调幅”实验。

在实验教学过程中,利用基于M C1496平衡调幅实验电路进行振幅调制实验,学生可以直观地了解信号的调制过程,分析调幅波的性能,掌握调整与测量其特性参数的方法,其中包括掌握调制度m a 的测量方法,从而加深对相关基本概念和基础知识的掌握和理解。

一、基于M C1496平衡调幅电路的工作原理在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量电压(或电流)相乘的电子器件。

基于M C1496平衡调幅实验电路如图1所示:图1 基于MC1496平衡调幅实验电路图1所示基于M C1496平衡调幅实验电路是由芯片M C1496和电阻、电容等元件组成的双边带调幅电路,载波信号通过C2输入,加在芯片引脚的8、10之间; 调制信号通过C3和由R4、R p1、R5组成的载波信号调零电路输入,加在芯片引脚的1、4之间;芯片2、3引脚外接R8(1K Ω)电阻,以扩大调制信号动态范围;R p2用来调节芯片8、10引脚之间的平衡;调制信号通过三极管V输出(V为射极跟随器,用来提高调幅器带负载的能力)。

高频课设基于MC1496的低电平调幅器

高频课设基于MC1496的低电平调幅器

摘要集成模拟乘法器性能好,外围电路结构简单,可实现振幅调制、同步检波、混频、倍频、鉴频等过程,目前在无线通信、广播电视等领域应用较多。

常见的产品型号有MC1495/1496、LM1595/1596等,本次低电平调幅发射器选用常用的MC1496作为乘法器。

关键词:西勒振荡器 MC1496 射极跟随器调制目录摘要 (Ⅱ)第1章已知条件及主要技术指标. 错误!未定义书签。

1.1基本要求 ....................................... 错误!未定义书签。

1.2发挥部分 ....................................... 错误!未定义书签。

1.3主要元器件 ..................................... 错误!未定义书签。

第2章设计方案比较和确定. (1)2.1主振级 (1)2.2缓冲级 (4)2.3低电平调幅电路 (5)2.4高频功率放大器 (6)第3章电路调试 (7)3.1主振级 (7)3.2缓冲级 (7)3.3低电平调幅电路 (8)3.4高频功率放大器 (8)第4章结果讨论与误差分析 (8)第5章总结 (8)附录一:原理图及各元器件参数 (9)附录二:元器件清单及使用仪器 (10)附录三:MC1496使用说明书(英文) (11)参考文献 (13)一、已知条件及主要技术指标1.基本要求:载波频率在2-6MHz之间任选一频率点;载波频率稳定度优于10-3/分钟,调制度ma=30%~80%可调,调制信号为1kHz正弦波。

设计功率放大器,使发射功率(输出负载RL=75上的功率)P0 ≥10mW。

2.发挥部分:(1)自行设计产生正弦波调制信号。

3.主要元器件MC1496;高频小功率晶体管9018;集成运放µA741;NXO-100磁环;二、设计方案比较和确定该低电平调幅发射器系统框图如下:其工作原理是:主振级产生一个固定频率(约2M-6M Hz)的中频信号载波,经缓冲级输出送至调制器(缓冲级可减弱后级对主振级的影响);调制信号和载波加入到调制器,经乘法器后使高频载波按低频信号大小变化的幅度调制,经功放后输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程训练报告题目:基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现1 项目概述---------------------------------------------------------2 1.1引言---------------------------------------------------------21.1 项目简介----------------------------------------------------21.2 任务及要求--------------------------------------------------21.3 项目运行环境------------------------------------------------32 相关介绍--------------------------------------------------------33 项目实施过程----------------------------------------------------53.1 项目原理 ---------------------------------------------------53.2 项目设计内容------------------------------------------------93.2.1 调幅电路仿真--------------------------------------------93.2.2 检波电路仿真-------------------------------------------124 结果分析-------------------------------------------------------144.1调幅电路---------------------------------------------------144.2 检波电路---------------------------------------------------185 项目总结-------------------------------------------------------216 参考文献-------------------------------------------------------227 附录 --------------------------------------------------------231、项目概述1.1引言在高频电子线路中的振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

目前在无线电通信、广播电视等方面得到广泛应用。

本文利用Multisim10 软件仿真平台,对MC1496 构成的调幅电路进行软件仿真和实际电路测试,并分析比较测试结果。

利用模拟乘法器芯片MC1496设计出调幅与检波电路,使用MC1496内部晶体管电路,用Multisim或PSPICE软件进行计算机仿真,并作出硬件实验结果。

1.2项目简介:本项目调制与解调电路是现代通信设备中重要组成部分。

为了实现信号的无线传输,在通信设备中必须采用调制与解调电路。

调制是把待传输信号置入载波的过程,它在发送设备中进行。

调制的方法很多,若用调制信号(信息)控制载波的幅度,则称为调幅。

解调是调制的逆过程,即从己调信号中还原出原调制信号(信息),对调幅波的解调称为检波。

本设计是基于MC1496的幅度调制与线性检波电路设计,首先设计调制与检波电路,再通过Multisim软件对电路进行仿真分析。

1.3任务及要求:振幅调制器的开发用模拟乘法器MC1496设计一振幅调制器,使其能实现信号幅度调制,主要指标:载波频率:15MHz 正弦波调制信号:1KHz 正弦波,输出信号幅度:大于等于5V(峰峰值)无明显失真检波器的开发用模拟乘法器MC1496设计一调幅信号同步检波器,主要指标:输入调幅信号:载波频率15MHz 正弦波,调制信号:1KHz 正弦波,幅度大于1V,调制度为60%。

输出信号:无明显失真,幅度大于5V。

1.4项目环境:本项目是在Multisim10软件上模拟乘法器芯片MC1496的调幅与检波电路设计与实现。

NI Multisim 10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现了“软件即元器件”、“软件即仪器”。

NI Multisim 10是一个原理电路设计、电路功能测试的虚拟仿真软件。

2、相关介绍高频课程设计本是高频电子线路课程的重要组成部分,其目的在于加深理解检波的原理,进一步对课本知识加以掌握,基本掌握数字系统设计和调试方法,增加集成电路应用知识,培养我们的实际动手能力和分析、解决问题的能力。

另一方面也可使我们可以运用自己所学到的知识,学习设计小型高频电子线路的方法,并且独立完成由原理图到实物的准确焊接、调试过程,增强实际动手能力。

提高电路分析和设计能力,为今后学习和工作打下坚实的基础。

通过此次设计,一方面加深我们对理论知识的认识和掌握,另一方面也可以增强我们对问题的全面考虑能力,并且助于我们对理论知识的运用。

Multisim简介Multisim是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,适用于初级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。

Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。

通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。

凭借NI Multisim,可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。

借助专业的高级SPICE分析和虚拟仪器,能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。

与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。

3、项目实施过程:3.1项目原理1、模拟乘法器MC1496的工作原理:模拟乘法器的管脚图:其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可正可负,以此实现了四象限工作。

V7、V8为差分放大器V5与V6的恒流源。

模拟乘法器的内部结构:静态工作点的设定(1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V,小于或等于最大允许工作电压。

根据MC1496的特性参数,对于图10-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即ν8=ν10, ν1=ν4, ν6=ν1212V≥ν 6 (ν12)-ν8 (ν10)>2V12V≥ν8 (ν10)-ν 1 (ν4)>2.7V12V≥ν 1 (ν4)-ν5>2.7V(2)静态偏置电流的确定静态偏置电流主要由恒流源I 0的值来确定。

当器件为单电源工作时,引脚14接地,5脚通过一电阻VR 接正电源+VCC 由于I 0是I 5的镜像电流,所以改变V R 可以调节I 0的大小,即 5007.050+-=≈R CC V VV I I当器件为双电源工作时,引脚14接负电源-V ee ,5脚通过一电阻V R 接地,所以改变V R 可以调节I 0的大小,即5007.050+-=≈R ee V VV I I根据MC1496的性能参数,器件的静态电流应小于4mA ,一般取mA I I 150=≈。

在本实验电路中V R 用6.8K 的电阻R 15代替。

(3)设输入信号t U U x xm x ωcos =, t U U y ym y ωcos =,则MC1496乘法器的输出U 0与反馈电阻R E 及输入信号x U 、y U 的幅值有关。

1) 不接负反馈电阻(脚2和3短接)a 、x U 和y U 皆为小信号()26mV <时,由于三对差分放大器(VT 1,VT 2,VT 3,VT 4及VT 5,VT 6)均工作在线性放大状态,则输出电压U 0可近似表示为y x y x TLU U K U U U R I U 02002=≈])cos()[cos(210t w w t w w U U K y x y x ym xm -++= () 式中,0K ——乘法器的乘积系数,与器件外接元件参数有关,即 2002TLU R I K =() 式中, T U ——温度的电压当量,当T=300K 时,mV qKTU T 26== L R ——输出负载电阻。

式()表明,输入均为小信号时,MC1496可近似为一理想乘法器。

输出信号0U 中只包含两个输入信号的和频与差频分量。

b 、y U 为小信号,x U 为大信号(大于100mV )时,由于双差分放大器(VT 1、VT 2和VT 3、VT 4)处于开关工作状态,其电流波形将是对称的方波,乘法器的输出电压0U 可近似表示为y x U U K U 00≈∑∞=-++=10])cos()[cos(n y x y x n gm t w nw t w nw A U K (n 为奇数) ()输出信号0U 中包含y x w w ±、y x w w ±3、y x w w ±5………y x w w n ±-)12(等频率分量。

2) 接入负反馈电阻由于E R 的接入,扩展了y U 的线性动态范围,所以器件的工作状态主要由x U 决定,分析表明:a、当x U 为小信号()26mV <时,输出电压0U 可表示为])cos()[cos(210t w w t w w U U K U U U R R U y x y x ym xm E y x T E L -++==() 式中: TE LE U R R K =() 式()表明,接入负反馈电阻E R 后,x U 为小信号时,MC1496近似为一理想的乘法器,输出信号0U 中只包含两个输入信号的和频与差频。

相关文档
最新文档