Linux的驱动开发分析

合集下载

linux驱动开发(一)

linux驱动开发(一)

linux驱动开发(⼀)1:驱动开发环境要进⾏linux驱动开发我们⾸先要有linux内核的源码树,并且这个linux内核的源码树要和开发板中的内核源码树要⼀直;⽐如说我们开发板中⽤的是linux kernel内核版本为2.6.35.7,在我们ubuntu虚拟机上必须要有同样版本的源码树,我们再编译好驱动的的时候,使⽤modinfo XXX命令会打印出⼀个版本号,这个版本号是与使⽤的源码树版本有关,如果开发板中源码树中版本与modinfo的版本信息不⼀致使⽆法安装驱动的;我们开发板必须设置好nfs挂载;这些在根⽂件系统⼀章有详细的介绍;2:开发驱动常⽤的⼏个命令lsmod :list moduel 把我们机器上所有的驱动打印出来,insmod:安装驱动rmmod:删除驱动modinfo:打印驱动信息3:写linux驱动⽂件和裸机程序有很⼤的不同,虽然都是操作硬件设备,但是由于写裸机程序的时候是我们直接写代码操作硬件设备,这只有⼀个层次;⽽我们写驱动程序⾸先要让linux内核通过⼀定的接⼝对接,并且要在linux内核注册,应⽤程序还要通过内核跟应⽤程序的接⼝相关api来对接;4:驱动的编译模式是固定的,以后编译驱动的就是就按照这个模式来套即可,下⾯我们来分下⼀下驱动的编译规则:#ubuntu的内核源码树,如果要编译在ubuntu中安装的模块就打开这2个#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build# 开发板的linux内核的源码树⽬录KERN_DIR = /root/driver/kernelobj-m += module_test.oall:make -C $(KERN_DIR) M=`pwd` modulescp:cp *.ko /root/porting_x210/rootfs/rootfs/driver_test.PHONY: cleanclean:make -C $(KERN_DIR) M=`pwd` modules cleanmake -C $(KERN_DIR) M=`PWD` modules这句话代码的作⽤就是到 KERN_DIR这个⽂件夹中 make modules把当前⽬录赋值给M,M作为参数传到主⽬录的Makefile中,实际上是主⽬录的makefile中有⽬标modules,下⾯有⼀定的规则来编译驱动;#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build我们在ubuntu中编译内核的时候⽤这两句代码,因为在ubuntu中为我们保留了⼀份linux内核的源码树,我们编译的时候直接调⽤那个源码树的主Makefile以及⼀些头⽂件、内核函数等;了解规则以后,我们设置好KERN_DIR、obj-m这两个变量以后直接make就可以了;经过编译会得到下⾯⼀些⽂件:下⾯我们可以使⽤lsmod命令来看⼀下我们ubuntu机器现有的⼀些驱动可以看到有很多的驱动,下⾯我们使⽤insmod XXX命令来安装驱动,在使⽤lsmod命令看⼀下实验现象可以看到我们刚才安装的驱动放在了第⼀个位置;使⽤modinfo来打印⼀下驱动信息modinfo xxx.ko这⾥注意vermagic 这个的1.8.0-41是你⽤的linux内核源码树的版本号,只有这个编译的版本号与运⾏的linux内核版本⼀致的时候,驱动程序才会被安装注意license:GPL linux内核开元项⽬的许可证⼀般都是GPL这⾥尽量设置为GPL,否则有些情况下会出现错误;下⾯使⽤rmmod xxx删除驱动;-------------------------------------------------------------------------------------5:下⾯我们分析⼀下驱动。

Linux下PCI设备驱动开发详解

Linux下PCI设备驱动开发详解

一、设备驱动程序概述自Linux在中国发展以来,得到了许多公司的青睐。

在国内的玩家也越来越多了,但目前还是停留在玩的水平上,很少有玩家对Linux的系统进行研究。

因为它的开放,我们可以随时拿来“把玩”。

这也是Linux一个无可比拟的优势,这样我们可以修改后再加入到里面。

但很少有专门的书籍讲到Linux驱动程序的开发,像上海这样的大城市也很少有讲Linux驱动开发的资料,唉,谁让这个是人家的东西呢,我们还是得跟着人家跑。

我现在讲的这些驱动开发的细节,并不特定哪个版本的内核,这只是大体的思路与步骤。

因为大家都知道Linux 2.6.x 与Linux 2.4.x是有不少改动的。

所以,具体的大家可以去参考Linux Device Driver 2.4 和Linux Device Driver 2.6这几本书。

这是我们学习开发驱动必不可少的东西。

好了,下面就开始学习吧。

根据设备的行为,我们可以把设备分为字符设备和块设备,还有网络设备。

字符设备是以字节为单位进行顺序读写,数据缓冲系统对它们的访问不提供缓存。

而块设备则是允许随机访问与读写,每次读写的数据量都是数据块长度的整数倍,并且访问还会经过缓冲区缓存系统才能实现。

与Unix版本不同的是:Linux的内核允许不是数据块长度整数倍的数据量被读取,用官方的语言就是:但这种不同只是纯粹学术方面的东西。

大多数设备驱动程序都要通过文件系统来进行访问的,但网络设备是不同的。

/dev子目录里都是关于设备的特殊文件,但看起来它们与普通的目录没有什么两样。

如下:$ ls -l /dev...brw-rw--- 1 root disk 22, 1 May 5 1998 hdc1crw-rw--- 1 root daemon 6 0 May 5 1998 lp0与普通文件有所不同是开头的“C” 和“B”,即char 和block的意思,即字符设备和块设备。

再后面的“22,1” 和“6,0”即设备的主设备号和次设备号,主设备号表明它是哪一种设备,这与你在Windows里添加硬件时看到的那些是一个意思。

基于rk3568的linux驱动开发——gpio知识点

基于rk3568的linux驱动开发——gpio知识点

基于rk3568的linux驱动开发——gpio知识点基于rk3568的Linux驱动开发——GPIO知识点一、引言GPIO(General Purpose Input/Output)通用输入/输出,是现代计算机系统中的一种常用接口,它可以根据需要配置为输入或输出。

通过GPIO 接口,我们可以与各种外设进行通信,如LED灯、按键、传感器等。

在基于Linux系统的嵌入式设备上开发驱动程序时,熟悉GPIO的使用是非常重要的一环。

本文将以RK3568芯片为例,详细介绍GPIO的相关知识点和在Linux驱动开发中的应用。

二、GPIO概述GPIO是系统中的一个基本的硬件资源,它可以通过软件的方式对其进行配置和控制。

在嵌入式设备中,通常将一部分GPIO引脚连接到外部可编程电路,以实现与外部设备的交互。

在Linux中,GPIO是以字符设备的形式存在,对应的设备驱动为"gpiolib"。

三、GPIO的驱动开发流程1. 导入头文件在驱动程序中,首先需要导入与GPIO相关的头文件。

对于基于RK3568芯片的开发,需要导入头文件"gpiolib.h"。

2. 分配GPIO资源在驱动程序中,需要使用到GPIO资源,如GPIO所在的GPIO Bank和GPIO Index等。

在RK3568芯片中,GPIO资源的分配是通过设备树(Device Tree)来进行的。

在设备树文件中,可以定义GPIO Bank和GPIO Index等信息,以及对应的GPIO方向(输入或输出)、电平(高电平或低电平)等属性。

在驱动程序中,可以通过设备树接口(Device Tree API)来获取这些GPIO资源。

3. GPIO的配置与控制在驱动程序中,首先要进行GPIO的初始化与配置。

可以通过函数"gpiod_get()"来打开指定的GPIO,并判断其是否有效。

如果成功打开GPIO,则可以使用函数"gpiod_direction_output()"或"gpiod_direction_input()"来设置GPIO的方向,分别作为输出或输入。

Linux_ALSA声卡驱动原理分析

Linux_ALSA声卡驱动原理分析

11/12/2011
三、准备工作
4. 流程图结构说明 (1) 图示为函数的调用关系,向下为同一级调用,向右为函数内部的子函数调用。 (2) 绿色文字函数名(如function2)表示该函数是调用流程中比较关键的点。 (3) 红底白字的函数名(如function…)表示和其它层(如app和lib、lib和driver、alsa-driver和device-driver)的接口 函数或kernel的回调函数。 (4) 蓝色双虚线为函数实参等形式的输出值或函数返回值(如sun_function…有输出值到function1)。
11/12/2011
目录
一、导读 二、ALSA架构简介 三、准备工作 四、设备打开过程和数据流程 i. 整体分析 ii. 设备驱动程序insmod流程图 iii. 应用程序主流程图 iv. 声卡打开流程图 v. 数据写入流程图 五、ALSA其它形式的数据写入方法流程图
11/12/2011
三、准备工作
11/12/2011
目录
一、导读 二、ALSA架构简介 三、准备工作 四、设备打开过程和数据流程 i. 整体分析 ii. 设备驱动程序insmod流程图 iii. 应用程序主流程图 iv. 声卡打开流程图 v. 数据写入流程图 五、ALSA其它形式的数据写入方法流程图
11/12/2011
一、导 读
主函数()
function1()
sub_function1() function2() ......() sun_functionnction...()
function...()
11/12/2011
目录
一、导读 二、ALSA架构简介 三、准备工作 四、设备打开过程和数据流程 i. 整体分析 ii. 设备驱动程序insmod流程图 iii. 应用程序主流程图 iv. 声卡打开流程图 v. 数据写入流程图 五、ALSA其它形式的数据写入方法流程图

Linux网络驱动开发步骤

Linux网络驱动开发步骤

Linux网络设备驱动程序开发Linux系统对网络设备驱动的体系结构如下图所示,划分为4层:开发网络设备驱动程序,我们需要完成的主要工作是编写设备驱动功能层的相关函数以填充net_device数据结构的内容并将net_device注册入内核。

各层介绍一、网络设备接口层网络设备接口层为网络设备定义了统一、抽象的数据结构net_device结构体,包含网络设备的属性描述和操作接口。

主要包含如下几部分:(1)全局信息。

char name[IFNAMESIZ]; //name是网络设备的名称int (*init)(struct net_device *dev); /*init 为设备初始化函数指针,如果这个指针被设置了,则网络设备被注册时将调用该函数完成对net_device 结构体的初始化。

设备驱动程序可以不实现这个函数并将其赋值为NULL。

*/(2)硬件信息。

unsigned long mem_end; //设备所使用的共享内存的起始地址unsigned long mem_start; //设备所使用的共享内存的结束地址unsigned long base_addr; //网络设备I/O 基地址unsigned char irq; //设备使用的中断号unsigned char if_port; //多端口设备使用哪一个端口,该字段仅针对多端口设备unsigned char dma; //指定分配给设备的DMA通道(3)接口信息。

unsigned short hard_header_len; //网络设备的硬件头长度,以太网设备为ETH_HLEN-14unsigned short type; //接口的硬件类型unsigned mtu; //最大传输单元(MTU)unsigned char dev_addr[MAX_ADDR_LEN]; //存放设备的硬件地址unsigned char broadcast[MAX_ADDR_LEN]; /*存放设备的广播地址, 以太网设备的广播地址为6个0xFF。

基于Linux的光纤通道网卡驱动程序开发分析

基于Linux的光纤通道网卡驱动程序开发分析

基于Linux的光纤通道网卡驱动程序开发分析摘要:linux以其自身内核强大稳定、工作效率高、易于扩展以及丰富的硬件支持等优点,现已被广泛应用于嵌入式系统当中。

驱动程序实质上就是在操作系统当中添加一个代码,其中主要包含与硬件设备相关的信息,拥有这些信息后,便可以实现计算机与设备之间的通信。

如果没有驱动程序,计算机的硬件设备便无法进行正常工作。

而网卡驱动程序是驱动程序中较为重要的一个部分。

基于此点,本文就基于linux的光纤通道网卡驱动程序开发进行浅谈。

关键词:linux;光纤通道;网卡驱动;程序开发中图分类号:tp311.52 文献标识码:a 文章编号:1007-9599 (2012)18-0000-021 基于linux系统下的网卡驱动原理当前,在科学技术不断发展的推动下,使linux操作系统获得了进一步完善,该系统的核心部分现已实现了osi的网络层及更上层部分。

其中网络层的实现是以数据链路的高效、可靠运行为基础,它的实现为网卡驱动程序提供了可靠的接口。

1.1 网卡驱动程序由上述分析可知,在基于linux的操作系统当中,驱动程序可以为系统以及物理层提供接口,下面分别对系统的接口和物理层的接口进行介绍。

(1)系统接口。

驱动程序为系统的接口包括以下一些例程:发现网卡、检测网卡参数、数据接收和数据发送等等。

当驱动程序启动后,系统会自行对相关的例程进行检测和调用,借助该过程发现网卡,如果系统使用的是即插即用型网卡,系统在对例程进行检测时便可以发现其中的参数,如果不是即插即用型网卡,那么便需要在驱动程序运行前,预先设置好网卡的具体参数,以供驱动程序使用。

当系统核心需要对数据进行发送时,其便会通过调用由驱动程序发送的例程来完成这一操作。

这一过程实质上就是发送例程将数据写入空间的过程。

(2)物理层接口。

该接口属于中断处理例程,它的工作原理可概括为网卡在接收或发送数据时,如果发现数据有误,其会自动生成一个中断,此时系统的核心会对中断处理例程进行调用,并在判断其产生的原因后完成响应处理。

Linux的驱动开发分析

Linux的驱动开发分析

f o r ( 1 e f t= c o u n t :l e f t>O :l e f t 一 _ ) {
. .
p u t u s e r ( 1 ,b u r ,1 ) ;

2 驱 动程 序原 理
编写设备 驱动程序 的原 理即基于I / O 设备管理 采用的分层 模 型, l / 0 设备 管理 软件位于 内核 中的最底层 , 设备驱动程 序是

r e a ( V E R I F YW i f ( v e r i f ya R I T E , b u r , c o u n t ) ==
— —
E F A U L T)
r e t u r n — E F A U L T ;
性 能得到提高 。 许 多广泛应 用的嵌入 式L i n u x 系 统都 采用静态 链接 的设备驱动程序模块。
( 1 ) 工作原理 。 作为内核 的一部分, 设各驱动程 序完 成对 设
据、 读 取应用程序传 送给设备文件 的数 据和 回送应用程 序请求 的数据和 检测处理设备 出现 的错 误的功能。 L i n u x 设备主要分
s t a t i c i n t o p e n
{ i n t l e f t :
化, 尽可能地精简。 嵌入 式L i n u x 系统不能够像桌面L i n u x  ̄ g 样
灵活 地使 用i n s m o d / r m m o d 力 口 载卸载设备驱 动程序 。 从嵌 入式 系统 的整 体性能考虑 , 采用静态链接模块能够使得整 个系统 的
设计分析 ・
L i n u x 的驱动开发分析
姜远志 ( 太原师范 学院 , 山 西 太原 0 3 0 0 0 0 )

linux 蓝牙驱动代码分析

linux 蓝牙驱动代码分析

net/hci_core.cHCI 在主机端的驱动主要是为上层提供一个统一的接口,让上层协议不依赖于具体硬件的实现。

HCI在硬件中的固件与HCI在主机端的驱动通信方式有多种,比如像 UART、USB和PC Card等等。

hci_core.c相当于一个框架,用于把各种具体通信方式胶合起来,并提供一些公共函数的实现。

hci_cmd_task是负责发送CMD的任务,它从hdev->cmd_q队列中取CMD,然后调用hci_send_frame把CMD发送出去,hci_send_frame又会调用实际的HCI驱动的send函数发送数据。

hci_rx_task是负责接收数据的任务,它从hdev->rx_q队列中取数据,然后根据数据的类型调用上层函数处理。

数据包有三种类型:1. HCI_EVENT_PKT:用于处理一些通信事件,比如连接建立,连接断开,认证和加密等事件,这些事件控制协议状态的改变。

2. HCI_ACLDATA_PKT:异步非连接的数据包,通过hci_acldata_packet提交给上层的L2CAP协议处理(hci_proto[HCI_PROTO_L2CAP])。

3. HCI_SCODATA_PKT:同步面向连接的数据包,通过hci_scodata_packet提供给上层的SCO协议处理(hci_proto[HCI_PROTO_SCO])。

hci_tx_task是负责发送数据的任务,发送所有connection中的ACL和SCO数据,以及hdev->raw_q中的数据包。

HCI为上层提供的接口主要有:1. hci_send_sco:发送SCO数据包,把要发送的数据包放入connection的发送队列中,然后调度发送任务去发送。

2. hci_send_acl:发送ACL数据包,把要发送的数据包放入connection的发送队列中,然后调度发送任务去发送。

3. hci_send_cmd:发送命令数据,把要发送的数据包放入hdev->cmd_q队列中,然后调度命令发送任务去发送。

Linux设备驱动开发入门-Read

Linux设备驱动开发入门-Read

Linux设备驱动开发入门本文以快捷而简单的方式讲解如何像一个内核开发者那样开发linux设备驱动源作者: Xavier Calbet版权:GNU Free Documentation License 翻译: 顾宏军()中文版权:创作共用.署名-非商业用途-保持一致知识准备要开发Linux 设备驱动,需要掌握以下知识:•C 编程 需要掌握深入一些的C 语言知识,比如,指针的使用,位处理函数,等。

•微处理器编程 需要理解微机的内部工作原理:存贮器地址,中断,等。

这些内容对一个汇编程序员应该比较熟悉。

Linux 下有好几种不同的设备。

为简单起见,本文只涉及以模块形式加载的字符设备。

使用2.6.x 的内核。

(特别是Debian Sarge 使用的2.6.8内核。

)用户空间和内核空间当你开发设备驱动时,需要理解“用户空间”和内核空间之间的区别。

1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:•内核空间 :Linux 操作系统,特别是它的内核,用一种简单而有效的方法管理机器的硬件,给用户提供一个简捷而统一的编程接口。

同样的,内核,特别是它的设备驱动程序,是连接最终用户/程序员和硬件的一坐桥或者说是接口。

任何子程序或者函数只要是内核的一部分(例如:模块,和设备驱动),那它也就是内核空间的一部分。

•用户空间. 最终用户的应用程序,像UNIX 的shell 或者其它的GUI 的程序(例如,gedit),都是用户空间的一部分。

很显然,这些应用程序需要和系统的硬件进行交互。

但是,他们不是直接进行,而是通过内核支持的函数进行。

它们的关系可以通过下图表示:图1: 应用程序驻留在用户空间, 模块和设备驱动驻留在内核空间26:27:28:29:30:31:32:33:34:35:36:37:38:39:40:用户空间和内核空间之间的接口函数内核在用户空间提供了很多子程序或者函数,它们允许用户应用程序员和硬件进行交互。

精通Linux设备驱动程序开发-第7章-输入设备驱动

精通Linux设备驱动程序开发-第7章-输入设备驱动

第7章 输入设备驱动内核的输入子系统是为了对分散的、多种不同类别的输入设备(如键盘、鼠标、跟踪球、操纵杆、辊轮、触摸屏、加速计和手写板)进行统一处理的驱动。

输入子系统带来了如下好处:•统一了物理形态各异的相似的输入设备的处理功能。

例如,各种鼠标,不论PS/2、USB,还是蓝牙,都被同样处理。

•提供了用于分发输入报告给用户应用程序的简单的事件(event)接口。

你的驱动不必创建、管理/dev节点以及相关的访问方法。

因此它能很方便的调用输入API以发送鼠标移动、键盘按键,或触摸事件给用户空间。

X Windows这样的应用程序能够无缝地运行于输入子系统提供的event接口之上。

•抽取出了输入驱动的通用部分,简化了驱动,并提供了一致性。

例如,输入子系统提供了一个底层驱动(成为serio)的集合,支持对串口和键盘控制器等硬件输入设备的访问。

图7.1展示了输入子系统的操作。

此子系统包括一前一后运行的两类驱动:事件驱动和设备驱动。

事件驱动负责和应用程序的接口,而设备驱动负责和底层输入设备的通信。

鼠标事件产生者mousedev,是前者的实例;而PS/2鼠标驱动是后者的实例。

事件驱动和设备驱动都可以利用输入子系统的高效、可重用的核心提供的服务。

图 7.1. 输入子系统事件驱动是标准的,对所有的输入类都是可用的,所以你更可能的是实现设备驱动而不是事件驱动。

你的设备驱动可以利用一个已经存在的、合适的事件驱动通过输入核心和用户应用程序接口。

需要注意的是本章使用的名辞“设备驱动”指的是输入设备驱动,而不是输入事件驱动。

输入事件驱动输入子系统提供的事件接口已经发展成为很多图形窗口系统理解的标准。

事件驱动提供一个硬件无关的抽象,以和输入设备交互;如同帧缓冲接口(在第12章《视频设备驱动》中讨论)提供一个通用的机制以和显示设备通信一样。

事件驱动和帧缓冲驱动一起,将图形用户接口(GUI)和各种各样的底层硬件隔离开来。

Evdev接口Evdev是一个通用的输入事件驱动。

LINUX下设备驱动程序的开发

LINUX下设备驱动程序的开发

L u是 U I m .x NX操作 系统 的 翻版 ,91 由 L u ovl 19 年 i sTra s最 先 开发 出来 , 通 过 开放 源代 码 开 发 模 n d 并 式不 断得 到 开放 源代码 组 织 的改进 . 任何使 用 Lnx的个 人 和 团体 都无 需支 付任何 版权 费用 . iu P I 外 围设备 互连 (epea Cm oetne onc) C是 Pr hr o pnn Itcnet的简称 , 为一种通 用 的 总线 接 口标 准 , 在 i l r 作 它 目前 的计 算机 系统 中得 到 了非 常广 泛 的应 用 . 在 Lnx 统 中将所 有外 部设 备 看成 是一 类 特殊 文件 , 而 Ju 系 i 称之 为“ 备文 件 ”设 备驱 动程序 可 以看成 是 Lnx内核 与外 部设 备之 间 的接 口 . 设 , iu
i e d d mo
pi c



收 稿 日期 ;0 5 5—2 20 —0 0
作者简 介: 肖玉芝 (9o一) 女( 18 , 回族)青海 民和人 , , 青海师范大学硕 士研究 生.
维普资讯
5 8
PCI ANY
— 一
青海师范大学学报( 然科 学版 ) 自
口 ),P CI ANY

20 血 06
I 0 0 D MO} D, , , E ,


{, 0} } ;
/* 对 特定 P I 备进行 描述 的数据结 构 */ C设
sm c e t td mo

cr a d{
u sg e a gc; n in d htma i
/* 使 用链 表保 存 所有 同类 的 P I C 设备 */

LINUX内核网卡驱动解析

LINUX内核网卡驱动解析

在内核中的 BSD Socket 层使用 msghdr 结构来存储数据包,使用 socket 结构来字处理控制 socket。在 INET Socket 以 下层中使用 sk_buff 结构来存储数据包。使用 sock 结构来管理数据包存放和调度。下面这两个结构分别进行讨论。 msghdr 结构 linux/socket.h struct msghdr { void int struct iovec * * msg_name; msg_namelen; msg_iov; // Socket 名字 //名字长度 //数据块 //数据块个数 //各个协议的 magic (如 BSD 文件描述子
struct fasync_struct *fasync_list;//异步唤醒队列 struct file struct sock wait_queue_head_t short unsigned char PF_LOCAL� }; *file;//回指向 file 的指针 *sk;//指向下一层协议中的 sock 结构 wait;//等待在这个 socket 上的任务列表 type; //数据包的类型 passcred;// credentials (used only in Unix Sockets (aka
union { unsigned char *raw;
} mac;//MAC 层即数据链路层头
struct struct
dst_entry sec_path
*dst;//发送到的目标地址描述 *sp;
char
cb[40];//控制 buffer,每层自由使用,存放个人参数,
//如果你想在层间保持这些数据,你得先做 skb_clone()操作。
图 套接字缓冲区流程图 在 linux/skbuff.h 中有 sk_buff 结构的定义,说明如下: struct sk_buff_head { /* These two members must be first. */ struct sk_buff struct sk_buff *next; *prev;

原子嵌入式linux驱动开发详解

原子嵌入式linux驱动开发详解

原子嵌入式linux驱动开发详解原子嵌入式Linux驱动开发详解:Linux操作系统一直都是工业控制、物联网、安防等领域中嵌入式设备的首选操作系统。

Linux系统的优良特性使其成为用户和开发者的首选,而Linux内核驱动则是面向嵌入式应用领域核心技术之一。

它是嵌入式设备在硬件及软件之间接口的重要组成部分。

本文将详细介绍使用原子嵌入式Linux驱动进行嵌入式设备驱动的开发,并且介绍使用原子嵌入式Linux驱动实现并行的多线程驱动。

一、嵌入式设备驱动的基本原理:所谓嵌入式设备驱动,就是处理器与外部设备之间进行数据传递的程序,将设备中的信息读取到处理器中,或将处理器中的信息发送至设备中。

嵌入式设备驱动的核心逻辑是控制输入输出模块,以完成外部信息的读取和发送任务。

在Linux系统下,设备驱动一般以内核模块存在,片上驱动是一个相对独立的模块,不妨做一番详细的介绍。

二、原子嵌入式Linux驱动的使用:原子嵌入式Linux驱动根据功能的不同划分成了两类,即原子操作和读写自旋锁。

这两类驱动的使用方法不同,且有自己的特殊应用场景。

1、原子操作:在多线程的情况下,通过锁来保证同一时间只能有一个线程操作共享资源是一种常见的方法。

原子操作则是一种替代锁的方式,在多线程操作共享资源的情况下采用原子操作方式相对于锁来说会更加高效。

原子操作是一种特殊的指令操作,执行完原子操作之后,CPU不允许其他线程读写该地址的值,因此可以避免竞争。

下面是一个使用原子操作的例子:radio_chan = atomic_read(&radio->chan);digital_chan =atomic_read(&radio->digital_chan);radio_write_register(radio, 0x0011, 2,&radio_chan);radio_write_register(radio, 0x5111, 2,&digital_chan);在上述代码中,使用了atomic_read来获得变量radio_chan和digital_chan的值,这两个变量是共享资源,这里使用原子操作来避免竞争和冲突。

linux SPI 驱动框架源码分析

linux SPI 驱动框架源码分析

SPI协议是一种同步的串行数据连接标准,由摩托罗拉公司命名,可工作于全双工模式。

相关通讯设备可工作于m/s模式。

主设备发起数据帧,允许多个从设备的存在。

每个从设备有独立的片选信号,SPI一般来说是四线串行总线结构。

接口:SCLK——Serial Clock(output from master)时钟(主设备发出)MOSI/SIMO——Master Output, Slave Input(output from master)数据信号线mosi(主设备发出)MISO/SOMI——Master Input,Slave Outpu(output from slave)数据信号线(从设备) SS——Slave Select(active low;output from master)片选信号下面来看一下Linux中的SPI驱动。

在Linux设备驱动框架的设计中,有一个重要的主机,外设驱动框架分离的思想,如下图。

外设a,b,c的驱动与主机控制器A,B,C的驱动不相关,主机控制器驱动不关心外设,而外设驱动也不关心主机,外设只是访问核心层的通用的API进行数据的传输,主机和外设之间可以进行任意的组合。

如果我们不进行如图的主机和外设分离,外设a,b,c和主机A,B,C进行组合的时候,需要9种不同的驱动。

设想一共有个主机控制器,n个外设,分离的结构是需要m+n个驱动,不分离则需要m*n个驱动。

下面介绍spi子系统的数据结构:在Linux中,使用spi_master结构来描述一个SPI主机控制器的驱动。

view plain分配,注册和注销的SPI主机的API由SPI核心提供:view plain在Linux中用spi_driver来描述一个SPI外设驱动。

view plain可以看出,spi_driver结构体和platform_driver结构体有极大的相似性,都有probe(),remove(),suspend(),resume()这样的接口。

Linux设备驱动开发详解-第6章字符设备驱动(一)-globalmem

Linux设备驱动开发详解-第6章字符设备驱动(一)-globalmem

Linux设备驱动开发详解-第6章字符设备驱动(⼀)-globalmem1 驱动程序设计之前奏 (2)1.1 应⽤程序、库、内核、驱动程序的关系 (2)1.2 设备类型 (2)1.3 设备⽂件 (2)1.4 主设备号和从设备号 (2)1.5 驱动程序与应⽤程序的区别 (3)1.6 ⽤户态与内核态 (3)1.7 Linux驱动程序功能 (3)2 字符设备驱动程序框架 (3)2.1 file_operations结构体 (4)2.2 驱动程序初始化和退出 (5)2.3 将驱动程序模块注册到内核 (5)2.4 应⽤字符设备驱动程序 (5)3 globalmem虚拟设备实例描述 (6)3.1 头⽂件、宏及设备结构体 (6)3.2 加载与卸载设备驱动 (6)3.3 读写函数 (8)3.4 seek()函数 (9)3.5 ioctl()函数 (10)3.6 globalmem完整实例 (12)4 测试应⽤程序 (17)4.1 应⽤程序接⼝函数 (17)4.2 应⽤程序 (18)5 实验步骤 (19)5.1 编译加载globalmem 模块 (19)5.2 编译测试应⽤程序 (20)6 扩展 (21)1 驱动程序设计之前奏㈠应⽤程序、库、内核、驱动程序的关系㈡设备类型㈢设备⽂件㈣主设备号与从设备号㈤驱动程序与应⽤程序的区别㈥⽤户态与内核态㈦Linux驱动程序功能1.1 应⽤程序、库、内核、驱动程序的关系■应⽤程序调⽤应⽤程序函数库完成功能■应⽤程序以⽂件形式访问各种资源■应⽤程序函数库部分函数直接完成功能部分函数通过系统调⽤由内核完成■内核处理系统调⽤,调⽤设备驱动程序■设备驱动直接与硬件通信1.2 设备类型■字符设备对字符设备发出读/写请求时,实际的硬件I/O操作⼀般紧接着发⽣■块设备块设备与之相反,它利⽤系统内存作为缓冲区■⽹络设备⽹络设备是⼀类特殊的设备,它不像字符设备或块设备那样通过对应的设备⽂件节点访问,也不能直接通过read或write进⾏数据访问请求1.3 设备⽂件■设备类型、主从设备号是内核与设备驱动程序通信时使⽤的■应⽤程序使⽤设备⽂件节点访问对应设备■每个主从设备号确定的设备都对应⼀个⽂件节点■每个设备⽂件都有其⽂件属性(c或者b)■每个设备⽂件都有2个设备号(后⾯详述)主设备号:⽤于标识驱动程序从设备号:⽤于标识同⼀驱动程序的不同硬件■设备⽂件的主设备号必须与设备驱动程序在登记时申请的主设备号⼀致■系统调⽤是内核与应⽤程序之间的接⼝■设备驱动程序是内核与硬件之间的接⼝1.4 主设备号和从设备号■在设备管理中,除了设备类型外,内核还需要⼀对被称为主从设备号的参数,才能唯⼀标识⼀个设备■主设备号相同的设备使⽤相同的驱动程序■从设备号⽤于区分具体设备的实例例:PC的IDE设备,主设备号⽤于标识该硬盘,从设备号⽤于标识每个分区■在/dev⽬录下使⽤ll命令(ls -l)可以查看各个设备的设备类型、主从设备号等■cat /proc/devices可以查看系统中所有设备对应的主设备号1.5 驱动程序与应⽤程序的区别■应⽤程序以main开始■驱动程序没有main,它以⼀个模块初始化函数作为⼊⼝■应⽤程序从头到尾执⾏⼀个任务■驱动程序完成初始化之后不再运⾏,等待系统调⽤■应⽤程序可以使⽤GLIBC等标准C函数库■驱动程序不能使⽤标准C库1.6 ⽤户态与内核态■驱动程序是内核的⼀部分,⼯作在内核态■应⽤程序⼯作在⽤户态■数据空间访问问题★⽆法通过指针直接将⼆者的数据地址进⾏传递★系统提供⼀系列函数帮助完成数据空间转换get_userput_usercopy_from_usercopy_to_user1.7 Linux驱动程序功能■对设备初始化和释放■把数据从内核传送到硬件和从硬件读取数据■读取应⽤程序传送给设备⽂件的数据和回送应⽤程序请求的数据■检测和处理设备出现的错误2 字符设备驱动程序框架①Linux各种设备驱动程序都是以模块的形式存在的,驱动程序同样遵循模块编程的各项原则②字符设备是最基本、最常⽤的设备,其本质就是将千差万别的各种硬件设备采⽤⼀个统⼀的接⼝封装起来,屏蔽了不同设备之间使⽤上的差异性,简化了应⽤层对硬件的操作③字符设备将各底层硬件设备封装成统⼀的结构体,并采⽤相同的函数操作,如下等:open/close/read/write/ioctl④添加⼀个字符设备驱动程序,实际上是给上述操作添加对应的代码⑤Linux对所有的硬件操作统⼀做以下抽象抽象file_operations结构体规定了驱动程序向应⽤程序提供的操作接⼝struct file_operations ext2_file_operations ={.llseek = generic_file_llseek,.read = generic_file_read,.write = generic_file_write,.aio_read = generic_file_aio_read,.aio_write = generic_file_aio_write,.ioctl = ext2_ioctl,.mmap = generic_file_mmap,.open = generic_file_open,.release = ext2_release_file,.fsync = ext2_sync_file,.readv = generic_file_readv,.writev = generic_file_writev,.sendfile = generic_file_sendfile,};⑥⽤户态与内核态数据的交互⽤户应⽤程序与驱动程序分属于不同的进程空间,因此⼆者之间的数据应当采⽤以下函数进⾏交换long copy_to_user(kernel_buffer, user_buffer,n)//从内核空间拷贝n字节数据到⽤户空间copy_from_user(kernel_buffer, user_buffer,n)//从⽤户空间拷贝n字节数据到内核空间put_user(kernel_value, user_buffer)//从内核空间拷贝⼀数据变量到⽤户空间get_user(kernel_value, user_buffer)//从⽤户空间拷贝⼀数据变量到内核空间(内核空间数据可是任意类型)2.1 file_operations结构体⑴write函数■从应⽤程序接收数据送到硬件ssize_t (*write)(struct file*, const char __user *, size_t, loff_t*);⑵read函数■从硬件读取数据并交给应⽤程序ssize_t (*read)(struct file *, char __user *, size_t, loff_t*); /// 从设备中同步读取数据⑶ioctl函数■为应⽤程序提供对硬件⾏为的相关配置int (*ioctl)(struct inode *, struct file *, unsigned int, unsigned long);⑷open函数■当应⽤程序打开设备时对设备进⾏初始化■使⽤MOD_INC_USE_COUNT增加驱动程序的使⽤次数,当模块使⽤次数不为0时,禁⽌卸载模块Int (*open)(struct inode *, struct file*);⑸release函数■当应⽤程序关闭设备时处理设备的关闭操作■使⽤MOD_DEC_USE_COUNT减少驱动程序的使⽤次数,配合open使⽤,来对模块使⽤次数进⾏计数int (*release)(struct inode *, struct file*);⑹⑻⑻⑼⑽2.2 驱动程序初始化和退出①驱动程序初始化函数■Linux在加载内核模块时会调⽤初始化函数■在初始化函数中⾸先进⾏资源申请等⼯作■使⽤register_chrdev向内核注册驱动程序②驱动程序退出函数■Linux在卸载内核模块时会调⽤退出函数■释放驱动程序使⽤的资源■使⽤unregister_chrdev从内核中卸载驱动程序2.3 将驱动程序模块注册到内核内核需要知道模块的初始化函数和退出函数,才能将模块放⼊⾃⼰的管理队列中①module_init()向内核声明当前模块的初始化函数②module_exit()向内核声明当前模块的退出函数2.4 应⽤字符设备驱动程序㈠加载驱动程序■insmod 内核模块⽂件名■cat /proc/devices 查看当前系统中所有设备驱动程序及其主设备号㈡⼿动建⽴设备⽂件■设备⽂件⼀般建⽴/dev⽬录下■mknod ⽂件路径c [主设备号] [从设备号]㈢应⽤程序接⼝函数■编写应⽤层测试程序■可以使⽤标准C的⽂件操作函数来完成①int open(const char *path, int oflag,…);★打开名为path的⽂件或设备★成功打开后返回⽂件句柄★常⽤oflag:O_RDONLY, O_WRONLY, O_RDWR②int close(int fd);★关闭之前被打开的⽂件或设备★成功关闭返回0,否则返回错误代号③ssize_t read(int fd, void *buffer, size_t count)★从已经打开的⽂件或设备中读取数据★buffer表⽰应⽤程序缓冲区★count表⽰应⽤程序希望读取的数据长度★成功读取后返回读取的字节数,否则返回-1④ssize_t write(int fd, void *buffer, size_t count);★向已经打开的⽂件或设备中写⼊数据★buffer表⽰应⽤程序缓冲区★count表⽰应⽤程序希望写⼊的数据长度★成功写⼊后返回写⼊的字节数,否则返回-1④int ioctl(int fd, unsigned int cmd, unsigned long arg);★向驱动程序发送控制命令★cmd:⽤来定义⽤户向驱动分配的命令例如G PF驱动中:设置指定管脚的⾼低电平、输⼊输出特性等为了规范化及错误检查常⽤_IO宏合成该命令:_IO(MAGIC, num) ★arg:配置命令参数配合cmd命令完成指定功能3 globalmem虚拟设备实例描述3.1 头⽂件、宏及设备结构体在globalmem字符设备驱动中,应包含它要使⽤的头⽂件,并定义globalmem设备结构体及相关宏。

Linux驱动开发实验报告

Linux驱动开发实验报告

Linux驱动开发实验报告目录Linux驱动开发实验报告 (1)实验一、Linux内核移植实验 (3)1.1 资源 (3)1.2 解压源码包 (3)1.3 修改Makefile文件,支持交叉编译 (3)1.1 得到.config文件 (3)1.5 修改Nand Flash分区 (4)1.6 添加LCD支持 (5)1.7 添加网卡驱动 (6)1.8 添加YAFFS文件系统支持 (7)1.9 内核配置(即内核裁剪) (8)1.10 编译内核 (9)1.11 烧写内核 (10)实验二、ARM Norflash驱动实验 (10)2.1、环境 (10)2.2、目的 (11)2.3、实验步骤 (11)实验三、嵌入式linux驱动实验 (15)3.1、实验目的 (15)3.2、实验原理 (15)3.3、参考程序 (17)3.4、实验步骤 (25)3.5、实验结果 (30)3.6、实验体会 (30)实验四、LCD驱动实验 (30)4.1、实验目的 (30)4.2、实验设备(环境)及要求 (30)4.3、试验结果 (32)4.4、实验总结 (32)实验五、DM9000网卡驱动 (33)5.1、实验目的 (33)5.2、实验设备(环境)及要求 (33)5.3、实验内容与步骤 (33)5.4、试验结果 (35)5.5、实验总结 (35)实验一、Linux内核移植实验1.1 资源1.linux-2.6.24.1.tar.bz2 (Linux内核源码的压缩包,下载地址)2.yaffs2.tar.gz (yaffs文件系统源码的压缩包)3.dm9000.h和dm9000.c (dm9000网卡驱动程序)1.2 解压源码包1.在XP中,把“01/下午/src”文件夹拷贝到“//192.168.1.12”的共享文件夹uptech内,并把uptech中的“src”更名为“01 linux”2.在Linux虚拟机中进入该文件夹“cd /home/uptech/01 linux”ls可见1个文件:“linux-2.6.24.1.tar.bz2”、“yaffs2.tar.gz”、“dm9000.h”、“dm9000.c”◆bz2压缩包用“tar jxvf”解压◆gz压缩包用“tar zxvf”解压3.解压Linux源码压缩包,即输入命令“tar jxvf linux-2.6.21.1.tar.bz2”4.解压YAFFS源码压缩包,即输入命令“tar zxvf yaffs2.tar.gz”1.3 修改Makefile文件,支持交叉编译1.cd /home/uptech/01 linux/linux-2.6.21.2,该目录下就是linux的内核源码2.修改Makefile文件,使之支持交叉编译,也就是在Linux上编译出ARM开发板上运行的内核程序。

Linux 下wifi 驱动开发—— SDIO接口WiFi驱动浅析

Linux 下wifi 驱动开发—— SDIO接口WiFi驱动浅析

Linux 下wifi 驱动开发(三)——SDIO接口WiFi驱动浅析SDIO-Wifi模块是基于SDIO接口的符合wifi无线网络标准的嵌入式模块,内置无线网络协议IEEE802.11协议栈以及TCP/IP协议栈,能够实现用户主平台数据通过SDIO口到无线网络之间的转换。

SDIO具有传输数据快,兼容SD、MMC接口等特点。

对于SDIO接口的wifi,首先,它是一个sdio的卡的设备,然后具备了wifi的功能,所以,注册的时候还是先以sdio的卡的设备去注册的。

然后检测到卡之后就要驱动他的wifi功能了,显然,他是用sdio的协议,通过发命令和数据来控制的。

下面先简单回顾一下SDIO的相关知识:一、SDIO相关基础知识解析1、SDIO接口SDIO故名思义,就是SD 的I/O 接口(interface)的意思,不过这样解释可能还有点抽像。

更具体的说明,SD 本来是记忆卡的标准,但是现在也可以把SD 拿来插上一些外围接口使用,这样的技术便是SDIO。

所以SDIO 本身是一种相当单纯的技术,透过SD 的I/O 接脚来连接外部外围,并且透过SD 上的I/O 数据接位与这些外围传输数据,而且SD 协会会员也推出很完整的SDIO stack 驱动程序,使得SDIO 外围(我们称为SDIO 卡)的开发与应用变得相当热门。

现在已经有非常多的手机或是手持装置都支持SDIO 的功能(SD 标准原本就是针对mobile device 而制定),而且许多SDIO 外围也都被开发出来,让手机外接外围更加容易,并且开发上更有弹性(不需要内建外围)。

目前常见的SDIO 外围(SDIO 卡)有:· Wi-Fi card(无线网络卡)· CMOS sensor card(照相模块)· GPS card· GSM/GPRS modem card· Bluetooth cardSDIO 的应用将是未来嵌入式系统最重要的接口技术之一,并且也会取代目前GPIO 式的SPI 接口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linux的驱动开发分析
作者:姜远志
来源:《无线互联科技》2014年第01期
摘要:本文分析了linux下的驱动开发,对原理进行了分析,详细描述了IO结构,并对填充实例进行了详细分析。

关键词:嵌入式;系统开发;驱动
Linux由于具有内核强大且稳定,易于扩展和裁减,效率高,丰富的硬件支持等许多优点,在嵌人式系统中得到了广泛的应用。

本文基于嵌人式操作系统下设备驱动程序的开发需要,阐述相关技术原理及设计要点,探求嵌人式Linux系统中设备驱动程序的构建方法。

1 嵌入式Linux系统驱动
嵌入式Linux系统中的设备驱动程序和Linux中的大多数驱动程序一样,也是采用层次型的体系结构。

编写设备驱动程序,其主要工作就是编写子函数,并填充file_operations的各个域。

Linux的设备驱动程序模块按照方式编译可以分为两类。

一类是静态链接的设备驱动程序模块,这类模块在编制完成后要与内核一起编译,其与内核是不可分割的整体,在系统引导时与内核一起加载并驻留内存。

另一类设备驱动程序采用可动态加载的模块。

其驱动程序代码在使用之前动态地加载到内存中,在设备使用完毕后即从内存中移去其代码。

嵌入式Linux系统往往应用环境相对固定,系统都经过优化,尽可能地精简。

嵌入式Linux系统不能够像桌面Linux那样灵活地使用insmod/rmmod加载卸载设备驱动程序。

从嵌入式系统的整体性能考虑,采用静态链接模块能够使得整个系统的性能得到提高。

许多广泛应用的嵌入式Linux系统都采用静态链接的设备驱动程序模块。

2 驱动程序原理
编写设备驱动程序的原理即基于I/O设备管理采用的分层模型,l/O设备管理软件位于内核中的最底层,设备驱动程序是操作系统内核和机器硬件之间的接El,设备驱动程序为应用程序屏蔽了硬件的细节。

硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。

⑴工作原理。

作为内核的一部分,设备驱动程序完成对设备初始化和释放、把数据从内核传送到硬件和从硬件读取数据、读取应用程序传送给设备文件的数据和回送应用程序请求的数据和检测处理设备出现的错误的功能。

Linux设备主要分两类:字符设备和块设备,其主要区
别是:在对字符设备发出读/写请求时,实际的硬件1/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作为高速缓存,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的l/O操作。

⑵I/O接口。

逻辑l/O层通过内核定义的两个数据结构块设备转换表(blkdevs)和字符设备转换表(chrdevs)来实现与设备驱动程序的接口。

每个设备驱动程序在设备转换表中占据一个表项。

每个Linux设备文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备。

用户进程利用系统调用在对设备文件进行read/write等各种操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取数据结构相应的函数指针,接着把控制权交给函数。

3 实例分析
编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域,以下为驱动程序test.c的主要内容。

函数read_test()是为read调用准备的。

当调用read时,
read_test()被调用,它把用户的缓冲区全部写1。

函数中的bur是read调用的一个参数,是用户进程空间的一个地址。

但是在read_test()被调用时,系统进入核心态,所以不能使用bur这个地址,必须用put_user(),这是kernel提供的一个函数,用于向用户传送数据。

unsigned int test_major = 0;
static int read_test(struct inode* node, struct file *file, char *bur, int count)
{ int left;
if(verify_area(VERIFY_WRITE, bur, count) = = -EFAULT )
return –EFAULT;
for(1eft = count; left > 0; left--)
{ __put_user(1, bur, 1);
bur ;}
return count;}
以下是驱动程序下半部分的其他几个函数。

static int write_tibet(struct inode inode, struct file *file, const char *bur, int count)
{return count;}
static int open_tibet(struct inode *inode, struct file *file)
{MOD-INC-USE-COUNT;
return 0;}
static void release_tibet(struct inode *inode, struct file *file)
{MOD-DEC-USE-COUNT;}
4 总结
论文对linux的驱动开发进行了分析,指出了其开发原理以及加载方式的分类,并且以实例进行了说明。

[参考文献]
[1]周明德.UNIX/Linux内核[M].北京:清华大学出版社,2004.
[2]倪继利.Linux内核分析及编程[M].北京:电子工业出版社,2005.1.。

相关文档
最新文档