铝合金铸件的热处理
铝合金热处理方法汇总
铝合⾦热处理⽅法汇总
1、退⽕热处理
退⽕处理的作⽤是消除铸件的铸造应⼒和机械加⼯引起的内应⼒,稳定加⼯件的外形尺⼨,并使Al-Si系合⾦的部分Si结晶球状化,改善合⾦的塑性。
2、淬⽕
淬⽕是把铝合⾦铸件加热到较⾼的温度,保温2h以上,使合⾦内的可溶相充分溶解。
然后,急速淬⼊⽔中,使铸件急冷,使强化组合在合⾦中得到最⼤限度的溶解并固定保存到室温,这种过程叫淬⽕,也叫固溶处理或冷处理。
3、时效处理
时效处理,⼜称为低温回⽕,是把经过淬⽕的铝合⾦铸件加热到某个温度,保温⼀定时间出炉冷却直⾄室温,使经过饱和的固溶体分解,让合⾦基体组织稳定的⼯艺过程。
时效处理⼜分⾃然时效和⼈⼯时效两⼤类。
⾃然时效是指强化在室温下进⾏的时效。
⼈⼯时效⼜分为不完全⼈⼯时效、完全⼈⼯时效、过时效3种。
4、循环处理
把铝合⾦铸件冷却到零下某个温度并保温⼀定时间,再把铸件加热到350摄⽒度以下,使合⾦中度固溶体点阵反复收缩和膨胀,并使各相的晶粒发⽣少量位移,以使这些固溶体结晶点阵内的原⼦偏聚区和⾦属间化合物的质点处于更加稳定的状态,达到提⾼产品零件尺⼨,体积更稳定的⽬的,这种反复加热冷却的热处理⼯艺叫循环处理。
这种处理适合使⽤中要求精密、尺⼨很稳定的零件,⼀般铸件不做这种处理。
青岛丰东热处理专业提供热处理服务,可为客户提供化学热处理(渗碳、渗氮、碳氮共渗)、真空热处理、等离⼦热处理(离⼦渗氮)、常规热处理(含深冷处理)等四⼤领域的热处理加⼯服务。
欢迎新⽼客户来电咨询,我们将竭诚为您服务。
铝合金热处理基本形式
退火及淬火时效是铝合金的基本热处理形式。
退火是一种软化处理。
其目的是使合金在成分及组织上趋于均匀和稳定,消除加工硬化,恢复合金的塑性。
淬火时效则属强化热处理,目的是提高合金的强度,主要应用于可热处理强化的铝合金。
1退火根据生产需求的不同,铝合金退火分铸锭均匀化退火、坯料退火、中间退火及成品退火几种形式。
一、铸锭均匀化退火铸锭在快速冷凝及非平衡结晶条件,必然存在成分及组织上的不均匀,同时也存在很大的内应力。
为了改变这种状况,提高铸锭的热加工工艺性,一般需进行均匀化退火。
为促使原子扩散,均匀化退火应选择较高的退火温度,但不得超过合金中低熔点共晶熔点,一般均匀化退火温度低于该熔点5~40℃,退火时间多在12~24h之间。
二、坯料退火坯料退火是指压力加工过程中第一次冷变形前的退火。
目的是为了使坯料得到平衡组织和具有最大的塑性变形能力。
例如,铝合金热轧板坯的轧制终了温度为280~330℃,在室温快速冷却后,加工硬化现象不能完全消除。
特别是热处理强化的铝合金,在快冷后,再结晶过程未能结束,过饱和固溶体也未及彻底分解,仍保留一部分加工硬化和淬火效应。
不经退火直接进行冷轧是有困难的,因此需进行坯料退火。
对于非热处理强化的铝合金,如LF3,退火温度为370~470℃,保温1.5~2.5H后空冷,用于冷拉伸管加工的坯料、退火温度应适当高一些,可选上限温度。
对于可热处理强化的铝合金,如LY11及LY12,坯料退火温度为390~450℃,保温1~3H,随后在炉中以不大于30℃/h的速度冷却到270℃以下再出炉空冷。
三、中间退火中间退火是指冷变形工序之间的退火,其目的是为了消除加工硬化,以利于继续冷加工变形。
一般来说,经过坯料退火后的材料,在承受45~85%的冷变形后,如不进行中间退火而继续冷加工将会发生困难。
中间退火的工艺制度基本上与坯料退火相同。
根据对冷变形程度的要求,中间退火可分为完全退火(总变形量ε≈60~70%),简单退火(ε≤50%)和轻微退火(ε≈30~40%)三种。
铝的热处理
铝的热处理铝合金铸件的热处理是指按某一热处理规范,控制加热温度、保温时间和冷却速度,改变合金的组织,其主要目的是:提高力学性能,增强耐腐蚀性能,改善加工性能,获得尺寸的稳定性。
铝合金铸件的热处理工艺可以分为如下四类:1。
退火处理将铝合金铸件加热到较高的温度,一般约为300 ℃左右,保温一定的时间后,随炉冷却到室温的工艺称为退火。
在退火过程中固溶体发生分解,第二相质点发生聚集,可以消除铸件的内应力,稳定铸件尺寸,减少变形,增大铸件的塑性。
2。
固溶处理把铸件加热到尽可能高的温度,接近于共晶体的熔点,在该温度下保持足够长的时间,并随后快速冷却,使强化组元最大限度的溶解,这种高温状态被固定保存到室温,该过程称为固溶处理。
固溶处理可以提高铸件的强度和塑性,改善合金的耐腐蚀性能。
固溶处理的效果主要取决于下列三个因素:(1)固溶处理温度。
温度越高,强化元素溶解速度越快,强化效果越好。
一般加热温度的上限低于合金开始过烧温度,而加热温度的下限应使强化组元尽可能多地溶入固溶体中。
为了获得最好的固溶强化效果,而又不便合金过烧,有时采用分级加热的办法,即在低熔点共晶温度下保温,使组元扩散溶解后,低熔点共晶不存在,再升到更高的温度进行保温和淬火。
固溶处理时,还应当注意加热的升温速度不宜过快,以免铸件发生变形和局部聚集的低熔点组织熔化而产生过烧。
固溶热处理的悴火转移时间应尽可能地短,一般应不大于15s,以免合金元素的扩散析出而降低合金的性能。
(2)保温时间。
保温时间是由强化元素的溶解速度来决定的,这取决于合金的种类、成分、组织、铸造方法和铸件的形状及壁厚。
铸造铝合金的保温时间比变形铝合金要长得多,通常由试验确定,一般的砂型铸件比同类型的金属型铸件要延长20%-25% 。
(3)冷却速度。
淬火时给予铸件的冷却速度越大,使固溶体自高温状态保存下来的过饱和度也越高,从而使铸件获得高的力学性能,但同时所形成的内应力也越大,使铸件变形的可能性也越大。
铝合金压铸件 热处理
铝合金压铸件热处理
热处理是指通过对铝合金压铸件进行加热和冷却处理,改变其组织结构和性能的工艺。
热处理主要包括固溶处理、时效处理和应力退火处理。
固溶处理是将铝合金压铸件加热至固溶温度,并保持一段时间,使溶解在晶粒中的合金元素均匀分布,形成固溶体。
然后通过快速冷却,使合金元素固溶体保持在固溶状态,以提高硬度和强度。
时效处理是在固溶处理后,将铝合金压铸件再次加热至一定温度,然后保持一段时间,使合金元素析出形成细小的抗拉强度相,提高材料的硬度和强度。
应力退火处理是在完成固溶和时效处理后,将铝合金压铸件加热至一定温度,然后通过缓慢冷却,以消除合金在加工过程中产生的残余应力,提高材料的韧性和耐腐蚀性。
热处理可以改善铝合金压铸件的机械性能和物理性能,提高其强度、硬度和耐磨性等特性,使其更适合特定的工程应用。
铝合金铸件T热处理工艺程序
铝合金铸件T6热处理工艺程序
铝合金铸件T6热处理工艺程序、加热-保温-淬火-时效..
一、热处理前的准备设备:铝合金固溶淬火炉:
1、热处理前应检查热处理设备、控制系统及仪表等是否正常..
2、铸件在装炉前应干燥无油污;赃物、易爆;等处理的铸件应按合金牌号、外廓尺寸、铸件壁厚及热处理规范进行分类;不同牌号不应相混装炉..
3、形状易产生翘曲的铸件应放在专用的底盘或支架上;不允许有悬空的悬臂部分;大型铸件应单个放在专用架上装炉..
4、检查铸件性能的单铸或辅铸试棒应随零件一起同炉热处理;以决定反映铸件的性能..
二、加热及保温:
1、加热到设定温度后在保温期间应随时检查、校正炉膛各处温度±5℃;防止局部高温或烧化..
2、在断电后短时间不能恢复时;应将在保温中的铸件迅速出炉淬火;等恢复正常后;再装炉、保温和进行热处理;其总的保温时间应稍许延长..
三、出炉冷却:
1、保温结束后;打开炉门放下料筐将铸件迅速降落到水池中;淬入规定冷却介质中冷却..
2、淬火转移时间是指从铸件出炉到铸件全部淬入介质中;总的时间最好不超过15s..
三、铸件变形的校正:
1 铸件变形应在淬火后立即校正;矫正模具和工具应在淬火前事先准备..
2 根据铸件特点和变形情况选择相应的矫正方法;矫正时用力不宜过猛;要缓慢均匀..
四、时效操作:设备:铝合金时效炉:
1、需进行人工时效的铸件;应在淬火后尽快进行0.5h内进行时效处理..可将淬火后的料筐直接推到时效炉内;但产品的温度不得超过时效温度..
2、将自动控温仪表定温;然后送电加热;开动风扇..
3、保温时间到后;断开电源..。
铝合金铸件热处理操作规程
铝合金铸件热处理操作规程所属分类:生产管理制度作者:[] 发布日期:2005-9-19 【字体:大中小】1 定义及其目的热处理就是选用某一热处理规范,控制加热速度,升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金组织。
其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。
2 热处理工艺分类2.1 退火:2.1.1 定义:退火就是将铝合金铸件加热到较高温度(一般300℃左右),保温一定时间,随炉冷却到室温的工艺。
2.1.2 目的:消除内应力,稳定尺寸,减少变形,增大塑性。
2.2 固溶处理:2.2.1 定义:固溶处理就是把铸件加热到尽可能高的温度(接近于共晶的熔点),在该温度下保持足够长的时间,并随后快速冷却。
2.2.2 目的:提高铸件的强度和塑性,改善合金的耐腐蚀性能。
2.3 时效处理:2.3.1 定义:时效处理就是将铸件加热到某一温度,保温一定时间后出炉,在空气中缓慢冷却到室温的工艺。
2.3.2 分类:2.3.2.1 不完全人工时效:它是采用比较低的时效温度或较短的保温时间,目的是为了获得优良的综合力学性能,即比较高的强度,良好的塑性和韧性。
2.3.2.2 完全人工时效:它是采用较高的时效温度和较长的保温时间。
目的:获得最大的硬度,即得到最高的抗拉强度。
2.3.2.3 过时效:它是加热到更高温度下进行。
目的:得到好的抗应力腐蚀性能或比较稳定的组织和几何尺寸。
3 热处理状态代号及意义参见下表:4 热处理工艺参数参见表2:注:表中未注明要求的,表示可通用于任何情况。
5 热处理操作要点:5.1 热处理用炉的准备:5.1.1 检查热处理用炉及辅助设备。
如供电系统、空气循环用风扇,自控仪表及热电偶插放位置是否正常、合格。
5.1.2 检查在正常工作条件下,炉膛各处温差是否在规定范围(±5℃)内。
5.1.3 起重设备是否正常、可靠。
5.2 装炉:5.2.1 待处理的铸件应按合金牌号、外廓尺寸、铸件壁厚及热处理规范进行分类。
铝合金压铸件表面热处理的方法
铝合金压铸件表面热处理的方法铝合金铸件的热处理是指按某一热处理规范,控制加热温度、保温时间和冷却速度,改变合金的组织,其主要目的是:提高力学性能,增强耐腐蚀性能,改善加工性能,获得尺寸的稳定性。
铝合金铸件的热处理工艺可以分为如下四类:1。
退火处理将铝合金铸件加热到较高的温度,一般约为300℃左右,保温一定的时间后,随炉冷却到室温的工艺称为退火。
在退火过程中固溶体发生分解,第二相质点发生聚集,可以消除铸件的内应力,稳定铸件尺寸,减少变形,增大铸件的塑性。
2。
固溶处理把铸件加热到尽可能高的温度,接近于共晶体的熔点,在该温度下保持足够长的时间,并随后快速冷却,使强化组元最大限度的溶解,这种高温状态被固定保存到室温,该过程称为固溶处理。
固溶处理可以提高铸件的强度和塑性,改善合金的耐腐蚀性能。
固溶处理的效果主要取决于下列三个因素:(1)固溶处理温度。
温度越高,强化元素溶解速度越快,强化效果越好。
一般加热温度的上限低于合金开始过烧温度,而加热温度的下限应使强化组元尽可能多地溶入固溶体中。
为了获得最好的固溶强化效果,而又不便合金过烧,有时采用分级加热的办法,即在低熔点共晶温度下保温,使组元扩散溶解后,低熔点共晶不存在,再升到更高的温度进行保温和淬火。
固溶处理时,还应当注意加热的升温速度不宜过快,以免铸件发生变形和局部聚集的低熔点组织熔化而产生过烧。
固溶热处理的悴火转移时间应尽可能地短,一般应不大于15s,以免合金元素的扩散析出而降低合金的性能。
(2)保温时间。
保温时间是由强化元素的溶解速度来决定的,这取决于合金的种类、成分、组织、铸造方法和铸件的形状及壁厚。
铸造铝合金的保温时间比变形铝合金要长得多,通常由试验确定,一般的砂型铸件比同类型的金属型铸件要延长20%-25%。
(3)冷却速度。
淬火时给予铸件的冷却速度越大,使固溶体自高温状态保存下来的过饱和度也越高,从而使铸件获得高的力学性能,但同时所形成的内应力也越大,使铸件变形的可能性也越大。
铝合金及热处理
铝合金的热处理铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。
铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。
一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。
因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面: 1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力; 2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能; 3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化; 4)消除晶间和成分偏析,使组织均匀化。
二、热处理方法 1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。
其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。
铝合金铸件热处理工艺参数
铸造铝合金铸造工艺参数代号液相点℃固相点℃流动性㎜浇注温度℃收缩率%ZL101 620 577 271 690~740 ~ ZL102 600 577 420 690~760 ~ ZL103 616 577 __720~750 ~ ZL104 600 575 359 700~760 ~ ZL105 622 570 344 700~750 ~ ZL202 620 540 __700~740 ~ ZL203 630 540 163 700~750 ~ ZL301 630 449 318 680~720 ~ ZL302 650 550 322 680`730 ~ ZL401 575 545 __680~750 ~铝合金铸件热处理工艺参数(一)代号热处理状态淬火时效用途举例加热温度℃保温时间h冷却(水中)加热温度℃保温时间h冷却ZL101 T1------------ ------- 230±5 7~9 空冷改善被切削性能T4 535±5 2~6 60~100℃------------ 空冷要求高塑性的零件T5 535±5 2~6 60~100℃155±5 2~7 空冷要求提高屈服强度和硬度的零件T6 535±5 2~6 60~100℃225±5 7~9 空冷要求高强度和高硬度的零件T7 535±5 2~6 60~100℃250±5 2~4 空冷ZL102 T2 ------ ------ ------ 290±102~4 空冷轻载荷的零件ZL103 T1------------ ------- 180±5 3~5 空冷轻载荷的零件T2------------ ------- 290±5 2~4 空冷要求尺寸稳定并消除应力的零件T5 515±5 3~6 60~100℃175±5 3~5 空冷在低于175℃下下重载荷的零件T7 515±5 3~6 60~100℃230±5 3~5 空冷在175~250℃工作的零件T8 510±5 5~6 60~100℃330±5 3 空冷要求高塑性的零件ZL104 T1------------ ------- 175±5 5~15 空冷受中等载荷的零件T6 535±5 2~6 60~100℃175±5 10~15 空冷受重载荷的零件ZL105 T1------------ ------- 180±5 5~10 空冷受中等载荷的零件T5 525±5 3~5 100℃160±5 3~5 空冷受中等载荷的零件T6 525±5 3~5 60~100℃180±5 5~10 空冷受重载荷的零件T7 525±5 3~5 60~100℃240±103~5 空冷在较高温度下工作的零件如汽缸ZL107 T6 515±5 10 60~100℃155±5 10 空冷------ZL108 T1------------ -------200±1010~14 空冷------T6 515±5 3~8 60~80℃205±5 6~10 空冷重载荷高温下工作的零件ZL109 T6 500±5 5 80℃185±5 16 空冷高温高速大马力活塞ZL110 T1 ------ ------- 210±10~16 空冷高温下工作的活塞------ 10 及其零件铝合金铸件热处理工艺参数(二)代号热处理状态淬火时效用途举例加热温度℃保温时间h冷却(水中)加热温度℃保温时间h冷却ZL201 T4分级加热要求高塑性的零件535±5 7~9 60~100℃------ ------ ------545±5 7~9 60~100℃------ ------ ------T5分级加热225±5 7~9 空冷要求高屈服极限的零件535±5 7~9 60~100℃175±5 3~5 空冷545±5 7~9 60~100℃ZL202 T2------------ ------- 290±10 3 空冷消除应力稳定尺寸的零件T6 510±5 12 80~100℃155±5(S) 10~14空冷要求高强度高硬度的零件175±5(J) 7~14T7 510±5 3~5 80~100℃200±250 3 空冷高温下工作的零件如活塞ZL203 T4 515±5 10~15 60~100℃------ ------ -------要求高强度高塑性的零件T5 515±5 10~15 60~100℃150±5 2~4 空冷要求高屈服极限高硬度的零件ZL301 T1------------ ------- 170±5 4~6 空冷------ ZL302 T6 535±5 2~6 60~100℃175±5 10~15 空冷ZL401 T2------ ------ ------- 290±5 3空冷消除应力稳定尺寸的零件ZL402 T1------ ------ -------180±5或室温10~21天空冷。
铝合金铸件热处理规程
热;
测炉内各加热区的温度,使之不大于±5℃,个 部位不予装料;
正仪表,保证测温和控温准确无误。
人工时效 保温温度 (℃) 300±10
合金代号
状态
T2
T5 ZL101
150±10
163±10 175±10 300±10 163±10 175±10 163±10 175±10 160±10 175±10
T6 ZL102 T2 T1 ZL104 T6
T5
ZL107
T5 ZL107 T6
>10
≤10
铝合金铸件热处理操作规程
1 定义及其目的 热处理就是选用某一热处理规范,控制加热速度,升到某一相应温度下保温一定时间以一定的速度冷却,改变其 。其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。 2 热处理工艺分类 2.1 退火:
2.1.1 定义:退火就是将铝合金铸件加热到较高温度(一般300℃左右),保温一定时间,随炉冷却到室温的 2.1.2 目的:消除内应力,稳定尺寸,减少变形,增大塑性。 2.2 固溶处理:
2.2.1 定义:固溶处理就是把铸件加热到尽可能高的温度(接近于共晶的熔点),在该温度下保持足够长的时 后快速冷却。 2.2.2 目的:提高铸件的强度和塑性,改善合金的耐腐蚀性能。 2.3 时效处理:
2.3.1 定义:时效处理就是将铸件加热到某一温度,保温一定时间后出炉,在空气中缓慢冷却到室温的工艺。 2.3.2 分类:
5.3.2 加热应当缓慢(一般为100℃/h)。对复杂铸件,应在较低温度下装炉(300℃以下),并使加热至淬火 间为2小时左右。 5.3.3 在保温期间,应定时校正炉膛工作区域温度。
5.3.4 由于某种原因造成中断保温,在短期不能恢复工作时,应将铸件出炉淬火。在排除故障后,再次装炉继 其总的保温时间应稍许延长。 5.4 出炉冷却: 5.4.1 保温结束后,用吊车或其它装置将铸件迅速出炉,淬入规定冷却介质中冷却。
铸铝合金的热处理
铸铝合金的热处理铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。
铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。
一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。
因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg 系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。
二、热处理方法1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。
其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。
2、淬火淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。
铝合金热处理原理
铝合金热处理原理铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。
铝合金热处理特点众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。
然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。
但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。
淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。
时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
铝合金时效强化原理铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。
目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。
这些在过饱和固溶体内的空位大多与溶质原子结合在一起。
由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。
淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。
淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。
沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu 合金说明合金时效的组成和结构的变化。
图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。
铝合金铸件热处理
铝合金铸件热处理铝合金铸件热处理是指在一定温度和时间条件下对铝合金铸件进行加热和冷却处理,以改变其组织结构和性能。
热处理可分为固溶处理、时效处理和淬火处理三种。
固溶处理是指将含有过量固溶元素的铝合金铸件,根据其不同成分和性质,在300℃-550℃的温度下加热一段时间,使过量固溶元素进入铝基体中溶解,将其均匀分布在铝基体中,使其组织结构均匀,并使其硬度、强度和塑性等性能得到提高。
固溶处理通常分为几种不同的温度区间,即全固溶温度区间、半固溶温度区间和低固溶温度区间。
其中,全固溶温度区间的处理时间较长,但其固溶效果最好,能够得到最高的硬度和强度;半固溶温度区间的固溶效果介于全固溶和低固溶之间;低固溶温度区间的固溶效果较差,但其处理时间较短,可用于快速生产。
时效处理是指将固溶处理过的铝合金铸件,在不同的温度下进行加热一段时间,使其成分结构中的固溶元素析出,形成弥散相,提高硬度、强度和抗疲劳性能。
时效处理通常分为两种,即先时效后冷却(T4)和先冷却后时效(T6/T651)。
先时效后冷却的工艺步骤是:先将铝合金铸件在160℃-190℃的温度下固溶处理,然后快速冷却至室温,最后在不同的温度下进行时效处理。
先冷却后时效的工艺步骤是:将铝合金铸件先快速冷却至室温,然后在150℃-180℃的温度下时效处理。
这两种时效处理方法的选择取决于铝合金铸件的组织结构和目标性能要求。
淬火处理是指将含有一定量的铜、镁和硅等元素的铝合金铸件,在高温下快速淬火,在极短时间内将铝合金铸件表面的温度迅速降低,使其组织结构发生相变,从而达到提高硬度和强度的目的。
淬火处理一般用于高强度和高抗腐蚀性能要求的铝合金铸件。
总之,热处理是铝合金铸件生产过程中非常重要的一环,可以改变其组织结构和性能,提高铝合金铸件的机械性能和耐腐蚀性能,使其更加适合各种工业领域的使用。
铝合金lz101轴的热处理技术要求
铝合金lz101轴的热处理技术要求铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件,铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。
因为许多铸态铝合金的机械性能不能满足使用要求二、热处理方法1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。
2、淬火淬火是把铝合金铸件加热到较高的温度,保温2h以上,使合金内的可溶相充分溶解。
然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。
3、时效处理时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。
4、循环处理把铝合金铸件冷却到零下某个温度(如-50℃、-70℃、-195℃)并保温一定时间,再把铸件加热到350℃以下,使合金中度固溶体点阵反复收缩和膨胀,并使各相的晶粒发生少量位移,以使这些固溶体结晶点阵内的原子偏聚区和金属间化合物的质点处于更加稳定的状态,达到提高产品零件尺寸、体积更稳定的目的。
三、热处理设备、材料1、热处理设备的主要技术要求1)由于铝合金淬火和时效温度温差范围不大(因其淬火温度接近合金内低熔点共晶成分的熔点),故其炉内的温度差应控制在±5℃;2)要求测温、控温仪表灵敏、准确,以确保温度在上述误差范围内;3)炉内各区的温度应均匀,差别在1-2℃的范围内;4)淬火槽有加热装置和循环装置,保证水的加热和温度均匀;5)应定期检查并更换已污染的冷却水。
2、淬火介质淬火介质是保证实现各种热处理目的或作用的重要因素。
铝合金铸件热处理工艺参数
冷却
用途举例
60~100℃ 60~100℃
-----------
要求高塑性的零件 ------ ----------- ------
60~100℃ 60~100℃
------80~100℃
80~100℃ 60~100℃ 60~100℃
225±5
175±5
290±10 155±5(S) 175±5(J) 200±250
3~6 60~100℃ 230±5 3~5 5~6 60~100℃ 330±5 3
空冷 轻载荷的零件
空冷 空冷 空冷 空冷
要求尺寸稳定并消 除应力的零件
在低于 175Байду номын сангаас下下 重载荷的零件
在 175~250℃工 作的零件
要求高塑性的零件
ZL104 T1 -----T6 535±5
-----2~6
------- 175±5 5~15 60~100℃ 175±5 10~15
空冷 空冷
空冷 空冷
受中等载荷的零件 受重载荷的零件
在较高温度下工作 的零件如汽缸
------
空冷
------
空冷 空冷 空冷
重载荷高温下工作 的零件 高温高速大马力活 塞 高温下工作的活塞
------
10
及其零件
铝合金铸件热处理工艺参数(二)
热
处
代号 理 加热温
状 度℃
态
分级加
热 T4 535±5
545
__
680~750
1.2~1.4
铝合金铸件热处理工艺参数(一)
热
淬火
时效
处
代号 理 加热温 保温时间 冷却(水 加热温 保温时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝合金铸件的热处理
铝合金铸件的热处理是指按某一热处理规范,控制加热温度、保温时间和冷却速度,改变合金的组织,其主要目的是:提高力学性能,增强耐腐蚀性能,改善加工性能,获得尺寸的稳定性。
铝合金铸件的热处理工艺可以分为如下四类:
1 退火处理
将铝合金铸件加热到较高的温度,一般约为300 ℃左右,保温一定的时间后,随炉冷却到室温的工艺称为退火。
在退火过程中固溶体发生分解,第二相质点发生聚集,可以消除铸件的内应力,稳定铸件尺寸,减少变形,增大铸件的塑性。
2 固溶处理
固溶处理把铸件加热到尽可能高的温度,接近于共晶体的熔点,在该温度下保持足够长的时间,并随后快速冷却,使强化组元最大限度的溶解,这种高温状态被固定保存到室温,该过程称为固溶处理。
固溶处理可以提高铸件的强度和塑性,改善合金的耐腐蚀性能。
固溶处理的效果主要取决于下列三个因素:
(1)固溶处理温度。
温度越高,强化元素溶解速度越快,强化效果越好。
一般加热温度的上限低于合金开始过烧温度,而加热温度的下限应使强化组元尽可能多地溶入固溶体中。
为了获得最好的固溶强化效果,而又不便合金过烧,有时采用分级加热的办法,即在低熔点共晶温度下保温,使组元扩散溶解后,低熔点共晶不存在,再升到更高的温度进行保温和淬火。
固溶处理时,还应当注意加热的升温速度不宜过快,以免铸件发生变形和局部聚集的低熔点组织熔化而产生过烧。
固溶热处理的
悴火转移时间应尽可能地短,一般应不大于15s,以免合金元素的扩散析出而降低合金的性能。
(2)保温时间。
保温时间是由强化元素的溶解速度来决定的,这取决于合金的种类、成分、组织、铸造方法和铸件的形状及壁厚。
铸造铝合金的保温时间比变形铝合金要长得多,通常由试验确定,一般的砂型铸件比同类型的金属型铸件要延长20%-25% 。
(3)冷却速度。
淬火时给予铸件的冷却速度越大,使固溶体自高温状态保存下来的过饱和度也越高,从而使铸件获得高的力学性能,但同时所形成的内应力也越大,使铸件变形的可能性也越大。
冷却速度可以通过选用具有不同的热容量、导热性、蒸发潜热和粘滞性的冷却介质来改变,为了得到最小的内应力,铸件可以在热介质(沸水、热油或熔盐)中冷却。
为了保证铸件在淬火后,同时具有高的力学性能和低的内应力,有时采用等温淬火,即把经固溶处理的铸件淬入200-250 ℃的热介质中保温一定时间,把固溶处理和时效处理结合起来。
3 时效处理
时效处理将固溶处理后的铸件加热到某一温度,保温一定时间后出炉,在空气中缓慢冷却到室温的工艺称为时效。
如果时效强化是在室温下进行的称为自然时效,如果时效强化是在高于室温并保温一段时间后进行称为人工时效。
时效处理进行着过饱和固溶体分解的自发过程,从而使合金基体的点阵恢复到比较稳定的状态。
时效温度和时间的选择取决于对合金性能的要求、合金的特性、固溶体的过饱和程度以及铸造方法等。
人工时效可分为三类:不完全人工时效,完全人工时效和过时效。
不完全人工时效是采用比较低的时效温度或较短的保温时间,获得优良的综合力学性能,即获得比较高的强度,良好的塑性和韧性,但耐腐蚀性能可能比较低。
完全人工时效是采用较高的时效温度和较长的保温时间,获得最大的硬度和最高的抗拉强度,但伸长率较低。
过时效是在更高的温度下进行,这时合金保持较高的强度,同时塑性有所提高,主要是为了得到好的抗应力腐蚀性能。
为了得到稳定的组织和几何尺寸,时效应该在更高的温度下进行。
过时效根据使用要求通常也分为稳定化处理和软化处理。
时效处理时,合金元素沉淀的过程大多需要经过以下四个阶段:
(1)形成G-P Ⅰ区。
固溶体点阵内原子重新组合,出现溶质原子的富集区,伴随着点阵畸变程度增大,提高合金的力学性能,降低合金的导电性。
(2)形成G-P Ⅱ区。
合金元素的原子以一定比例进行偏聚形成G-P Ⅱ区,为形成亚稳相作准备,合金的强度进一步提高。
(3)形成亚稳相。
亚稳相也称过渡相,该相与基体呈共格联系,大量的G-P Ⅱ区和少量的亚稳相相结合,使合金得到最高的强度。
(4)形成第二相质点和第二相质点的聚集。
亚稳相转变为稳定相,细小的质点分布在晶粒内部,较粗大的质点分布在晶界,还相继发生第二相质点的聚集,点阵畸变剧烈地减弱,显著地降低合金的强度,提高合金的塑性。
上述几个阶段不是截然分开的,有时是同时进行的,低温时效第一、二阶段进行的程度要大些,高温时效,第三、四阶段进行得强烈些。
4 冷热循环处理
经冷热循环处理的铸件,由于多次加热和冷却引起固溶体点阵收缩和膨胀,使各相的晶格发生了少许位移,使第二相质点处于更加稳定的状态,从而提高铸件尺寸的稳定性,适于精密零件的制造。
铝合金在低温下没有脆性断裂的倾向,随着温度的降低,力学性能有某些变化,强度有所提高,但塑性却降低得很少,所以有时为了减小或消除铸件内应力,可将铸造或淬火后的铸件,冷却到-50 ℃、-70 ℃或更低的温度,保持2-3h,随后在空气或热水中加热到室温,或者是接着进行人工时效,这种工艺称冷处理。