九年级数学上册 《二次函数》《相似》《锐角三角函数》提高练习题整合(无答案) 华东师大版

合集下载

人教版九年级数学上册《二次函数》能力提升卷

人教版九年级数学上册《二次函数》能力提升卷

人教版九年级数学上册22.1.1二次函数能力提升卷一、选择题(共10小题,3*10=30)1.下列函数中,是二次函数的有( )①y=1-3x2;②y=1x2;③y=x(1+x);④y=(1-2x)(1+2x).A.1个B.2个C.3个D.4个2.若函数y=(m-2)x2+4x-5(m是常数)是二次函数,则()A.m≠-2 B.m≠2C.m≠3 D.m≠-33.对于任意实数m,下列函数一定是二次函数的是()A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x24.二次函数y=x2+bx+c中,若b+c=0,则它的图象一定经过点()A.(1,-1) B.(-1,1)C.(-1,-1) D.(1,1)5.无论m为何实数,二次函数y=x2-(2-m)x+m的图象总是过定点()A.(-1,3) B.(1,0)C.(1,3) D.(-1,0)6. 设y=y1-y2,y1与x成正比例,y2与x2成正比例,则y与x的函数关系是( )A.正比例函数B.一次函数C.二次函数D.以上都不正确7.已知二次函数y=1-3x+5x2,则它的二次项系数a,一次项系数b,常数项c分别是() A.a=1,b=-3,c=5B.a=1,b=3,c=5C.a=5,b=3,c=1D.a=5,b=-3,c=18.已知x是实数,且满足(x-2)(x-3)1-x=0,则相应的函数y=x2+x+1的值为()A.13或3 B.7或3C.3 D.13或7或39.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x元,则可卖出(350-10x)件商品,那么销售该商品所赚利润y(元)与每件商品的售价x(元)的函数关系式为()A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 35010.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为()A.y=5-x2(0≤x<5)B.y=5-x2(0≤x<5)C.y=25-x2(0≤x<25)D.y=25-x2(0≤x<5)二.填空题(共8小题,3*8=24)11.已知y=(m-2)x2+3x+6是二次函数,则m的取值范围是.12. 对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数项的和是____.13.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3.(1)当__________时,x,y之间是二次函数关系;(2)当______________时,x,y之间是一次函数关系.14.国家对某种商品价格分两次降价,若平均每次降价的百分率为x,且该药品的原价是28元/盒,降价后的价格为y元/盒,则y与x的函数关系式为y=28(1-x)2,自变量x的取值范围是__________. 15.已知二次函数y=x2-2x-2,当x=2时,y=____;当x=______________时,函数值为1. 16.当a=________时,函数y=(a-2)x a2-2+ax-1是二次函数.17.若等边三角形的边长为x,面积为y,则y与x之间的函数关系式为.18.一块矩形的草坪,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2. 则y与x的函数关系式是________ ..三.解答题(共7小题,46分)19.(6分) 写出下列函数自变量x的取值范围:(1)y=x(x-1);(2)y=x1-2x;(3)y=3x-4.20.(6分) 如图,有一根长60 cm的铁丝,用它围成一个矩形.(1)写出矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式;(2)当S=125时,求x的值.21.(6分) 如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,求重叠部分的面积y(厘米2)与时间t(秒)之间的函数关系式.22.(6分)若y=(m-1)xm2+2m-1+3.(1)m取什么值时,此函数是二次函数?(2)m取什么值时,此函数是一次函数?23.(6分)某商店以每副42元的价格购进一种手套,根据试销得知这种手套每天的销售量t(副)与每副的售价x(元)之间可以看成一次函数关系:t=-4x+204.请写出每天的销售利润y(元)与每副的售价x(元)之间的函数解析式,并确定自变量x的取值范围.24.(8分)某商场每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,这种商品每降价1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利多少元.(2)设后来该商品每件降价x元,商场一天可获利y元.①若商场经营该商品一天要获利2 160元,则每件商品要降价多少元?②求y与x之间的函数关系式.25.(8分) 如图,在△ABC 中,∠B =90°,AB =5 cm ,BC =7 cm ,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,一点到达终点后,另一点随即停止运动,设运动时间为x s ,△PBQ 的面积为y cm 2.(1)求y 与x 之间的函数关系式,并写出x 的取值范围.(2)当x 为多少时,△PBQ 的面积为4 cm 2?(3)△PBQ 的面积能否等于7 cm 2?说明理由.参考答案1-5CBDDA 6-10CDCBD11. m≠212. 013. a≠2;a =2且b≠-214. 0<x <115. -2;3或-116. -217. y =34x 218. y =x 2+14x(x≥0)19. 解:(1)任意实数 (2)x≠12(3)x >420. 解:(1)S =x·60-2x2=-x 2+30x.(2)当S =125时,-x 2+30x =125,即x 2-30x +125=0.∴ x 1=5,x 2=25.21. 解:由题意知,AM =20-2t ,则重叠部分的面积y =12×AM 2=12(20-2t)2, 即y =12(20-2t)2=2t 2-40t +200(0≤t≤10). 22. 解:(1)由⎩⎪⎨⎪⎧m -1≠0,m 2+2m -1=2, 得m =-3(2)由⎩⎪⎨⎪⎧m -1≠0,m 2+2m -1=1, 得m =-1±323. 解:y =(x -42)t =(x -42)(-4x +204),即y =-4x 2+372x -8 568.因为每副手套的进价为42元,所以x≥42.而t≥0,故-4x +204≥0,即x≤51.所以自变量x 的取值范围为42≤x≤51.24. 解:(1)商场经营该商品原来一天可获利100×(100-80)=2 000(元).(2) ①依题意,得(100-80-x)(100+10x)=2 160,即x 2-10x +16=0,解得x 1=2,x 2=8.因为要尽量减少库存,所以x 应取8,即每件商品要降价8元.②依题意,得y =(100-80-x)(100+10x)=-10x 2+100x +2 000.25. 解:(1)y =12PB·BQ =12·(5-x)·2x =-x 2+5x(0<x≤3.5). (2)由-x 2+5x =4,解得x 1=1,x 2=4(舍去).∴当x =1时,△PBQ 的面积为4 cm 2.(3)不能.理由如下:由-x 2+5x =7,得x 2-5x +7=0.∵Δ=(-5)2-4×1×7=-3<0,∴此方程无实数根.∴△PBQ 的面积不能等于7 cm 2.1、在最软入的时候,你会想起谁。

人教版九年级数学上册 二次函数(提升篇)(Word版 含解析)

人教版九年级数学上册  二次函数(提升篇)(Word版 含解析)

人教版九年级数学上册 二次函数(提升篇)(Word 版 含解析)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值;(2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ;(4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >- 【解析】【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值;(2)分m >0和m ≤0两种情况,结合二次函数性质求最值;(3)结合二次函数与x 轴交点及对称轴的性质确定取值范围;(4)结合一元二次方程根与系数的关系确定取值范围.【详解】解:(1)当1m =-时,()22613y x x x =++≥ 把(),1P a 代入,得22611a a ++=解得0a =或3a =-(2)当0m >时,,(3)F m m -此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫-- ⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0 当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△解得:m=0(舍去)或29m =- 由题意可知抛物线的对称轴为直线x=32m 且x ≥3m ∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④.(探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16【解析】【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE =90°.在Rt △OBE 中,OB 2+OE 2=BE 2.在Rt △BCE 中,BC 2+EC 2=BE 2.∴OB 2+OE 2=BC 2+CE 2.∵OB 2=y ,∴y +y =x 2+(8-x)2.∴y =x 2-8x +32∴当x=4时,y 有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.3.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案.【详解】解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++ 820.820.4a b c a b c c ⎧-+=⎪⎪++=⎨⎪=⎪⎩解得1204a b c ⎧=-⎪⎪=⎨⎪=⎪⎩2142y x ∴=-+; ()2如图21:42C y x =-+.关于(),0F m 对称的抛物线为()21:242C y x m '=-- 当C '过点()0,4D 时有()2140242m =-- 解得:2m = 当C '过点()22,0B 时有()21022242m =-- 解得:22m =222m ∴<<;()3四边形'PMP N 可以为正方形由题意设(),P n n ,P 是抛物线C 第一象限上的点2142n n ∴-+= 解得:122,2n n ==-(舍去)即()2,2P如图作HK OF ⊥,PH HK ⊥于H ,MK HK ⊥于K四边形PMP N '为正方形易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得 ()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.4.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -.(1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案.(2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠.【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩.所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->,∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C ,ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒,ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒,又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为31).点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=, 121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=, ∴直线PM 的解析式为21124x y x x +=-. ()222111221111224224·42x x x x x x x +-+-==-,∴点'N在直线PM上,∠.∴平分MPNPA【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;②利用一次函数图象上点的坐标特征找出点'N在直线PM上.5.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P 、F 的纵坐标互为相反数,可据此求出F 点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标. 【详解】(1)∵抛物线的顶点为Q (2,﹣1), ∴设抛物线的解析式为y=a (x ﹣2)2﹣1, 将C (0,3)代入上式,得: 3=a (0﹣2)2﹣1,a=1;∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3; (2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合; 令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3; ∵点A 在点B 的右边, ∴B (1,0),A (3,0); ∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时; ∵OA=OC ,∠AOC=90°, ∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2; 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩;∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3), 则有:(﹣x+3)+(x 2﹣4x+3)=0,即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1; ∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点). ∴P 点坐标为P 1(1,0),P 2(2,﹣1);(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形; 当点P 的坐标为P 2(2,﹣1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于F ; ∵P (2,﹣1), ∴可设F (x ,1); ∴x 2﹣4x+3=1,解得x 1=2﹣2,x 2=2+2; ∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.6.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】 【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解. 【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+==解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4yx x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称 设Q 的横坐标为a则()11a x --=-- ∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++ 当2x =-时,d 取最大值,此时,(2,0)M - ∴2(3)1AM =---= 设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3y x,得1y =∴(2,1)E -, ∴1EM=∴11111222AEM S AM ME ∆=⋅=⨯⨯=(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合, ∴3OQ = ∵2223(1)4yx x x∴()1,4D -过D 作DK y ⊥轴于K , 则1DK =,4OK = ∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,DQ =∴4FG ==设()2,23F m m m --+,则(,3)G m m +()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m = 当4m =-时,2235m m --+=- 当1m =时,2230m m --+=. ∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.7.如图1所示,抛物线223y x bx c=++与x轴交于A、B两点,与y轴交于点C,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P是第四象限内抛物线上的动点,四边形OPAQ是平行四边形,设点P的横坐标为m.(1)求抛物线的解析式;(2)求使△APC的面积为整数的P点的个数;(3)当点P在抛物线上运动时,四边形OPAQ可能是正方形吗?若可能,请求出点P的坐标,若不可能,请说明理由;(4)在点Q随点P运动的过程中,当点Q恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x=-+;(2)9个;(3)33,22或44,;(4)33【解析】【分析】(1)抛物线与y轴交于点C,顶点的横坐标为72,则472223cb,即可求解;(2)APC∆的面积PHA PHCS S S,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434bc,故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②, 联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.8.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A、B、C的坐标代入抛物线解析式得,9303a b ca b cc-+=⎧⎪-+=⎨⎪=⎩,解得:143abc=⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x=++,∵y=x2+4x+3=(x+2)2-1,∴顶点(2,1)D--;(2)∵A(-3,0),B(-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB 和BA 是对应边时,△ABC ∽△BAP , ∴AB ACBA BP =, 即2322=, 解得BP=32, 过点P 作PE ⊥x 轴于E , 则BE=PE=32×22=3, ∴OE=1+3=4,∴点P 的坐标为(-4,-3);综合上述,当52,33P ⎛⎫-- ⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似; 【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y值同时随着x 的增大而增大时,则x 的取值范围是_______; (2)判断四边形AMDN 的形状(直接写出,不必证明); (3)抛物线1L ,2L 均会分别经过某些定点; ①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少? 【答案】(1)()1,41m --+,13x;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+或423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。

第22章 二次函数 综合提高题 人教版数学九年级上册

第22章 二次函数  综合提高题  人教版数学九年级上册

数学《二次函数》综合提高题 2021-2022学年人教版数学九年级上册一、认真选一选,你一定很棒!1. 下列关系式中,属于二次函数(x 为自变量)的是( )A.2y x π=B.y 2x =C.1y x =D.1y x =-+ 2. 抛物线y=-3x 2+2x -1的图象与x 轴交点的个数是( )A.没有交点B.只有一个交点C.有两个交点D.有三个交点3. 已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个4. 下列函数中,不是二次函数的是( )A 、y=221x -B 、y=2(x-1)2+4C 、y=)4)(1(21+-x xD 、y=(x-2)2-x 25. 抛物线1)3(22+-=x y 的顶点坐标是( )A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)6. 由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大7. 已知二次函数y 1=x 2-x -2和一次函数y 2=x +1的两个交点分别为A (-1,0),B (3,4),当y 1>y 2时,自变量x 的取值范围是( )x <-1或x >3 B .-1<x <3 C .x <-1 D .x >38.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是A .15x -<<B .5x >C .15x x <->且D .15x x <->或9. 当m 不为何值时,函数2(2)45y m x x =-+-(m 是常数)是二次函数( ) A.-2 B.2 C.3 D.-310. 已知抛物线y =-x 2+mx +n 的顶点坐标是(-1,-3),则m 和n 的值分别是( )A .2,4B .-2,-4C .2,-4D .-2,0二、仔细填一填,你一定很准!11. 抛物线21(4)72y x =+-的顶点坐标是___________,对称轴是直线___________,它的开口向_______________,在对称轴的左侧,即当x<___________时,y 随x 的增大而_______;在对称轴的右侧,即当x>____________________时,y 随x 的增大而____________________;当x=____________________时,y 的值最________,最_____值是_______。

人教版九年级数学上册第22章 二次函数 提高练习题

人教版九年级数学上册第22章 二次函数 提高练习题

第22章二次函数提高练习题一.选择题1.抛物线y=﹣x2+4的顶点坐标是()A.(4,0)B.(0,﹣4)C.(0,4)D.(﹣4,4)2.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆的面积S与半径R之间的关系3.A(﹣,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣2)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1 4.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A.B.C.D.5.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.116.对于二次函数y=2(x﹣1)2﹣8,下列说法正确的是()A.图象开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣17.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.8.二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.abc>0 B.a+b+c=0 C.4a﹣2b+c<0 D.b2﹣4ac<0 9.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P(m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△PAB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:其中结论正确的个数是()①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y<0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大.A.4个B.3个C.2个D.1个二.填空题11.抛物线y=x2﹣2x+1与x轴的交点个数为个.12.如图,有一座抛物线拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10米,建立如图所示的平面直角坐标系,O为坐标原点,如果水位以0.2m/h的速度匀速上涨,那么达到警戒水位后,再过h水位达到桥拱最高点O.13.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),则二次函数y=x2+bx+c 的对称轴是.14.若二次函数y=x2+x+1的图象,经过A(﹣3,y1),B(2,y2),C(,y3),三点y1,y2,y3大小关系是(用“<”连接)15.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,点P的坐标为.三.解答题16.已知抛物线C1:y=x2﹣mx﹣2m交x轴于A(α,0),B(β,0),交y轴于C 点,且α<0<β,(|OA|+|OB|)2=12|OC|+1.直线l:y=kx+2(1)求m;(2)将抛物线C1平移到顶点为原点的抛物线C2,l与C2交于点P,Q,在抛物线C2上找一点M使得PM⊥QM恒成立,求M点的坐标;(3)k=2时,求矩形MPNQ的顶点N的坐标(M为上题中的点).17.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为,顶点坐标为;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.18.如图,抛物线y=ax2+bx+c与x轴交于点A和点B,与y轴交于点C,且OA=2,OB=OC=6,点D是抛物线的顶点,过点D作x轴的垂线,垂足为E.(1)求抛物线的解析式及点D的坐标;(2)连接BD,若点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标:(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请求出点Q的坐标.19.我国互联网发展日新月异,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条60元,当售价为每条100元时,每月可销售120条.为了吸引更多顾客,该网店采取降价措施.据市场调查知:销售单价每降1元,则每月可多销售6条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出300元资助贫困学生.为了保证捐款后每月利润不低于4950元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?20.某超市以20元/kg的价格购进一批商品进行销售,根据以往的销售经验及对市场行情的调研,该超市得到日销售量y(kg)与销售价格x(元/kg)之间的关系,部分数据如下表:销售价格x(元/kg)25 30 35 40 …日销售量y(kg)1000 800 600 400 …(1)根据表中的数据,用所学过的函数知识确定y与x之间的函数关系式;(2)超市应如何确定销售价格,才能使日销售利润W(元)最大?W最大值为多少?(3)供货商为了促销,决定给予超市a元/kg的补贴,但希望超市在30≤x≤35时,最大利润不超过10240元,求a的最大值.参考答案一.选择题1.解:∵抛物线y=﹣x2+4,∴该函数的顶点坐标为(0,4),故选:C.2.解:A、关系式为:y=kx+b,故A错误;B、关系式为t=,故错误;C、关系式为:C=3a,故C错误;D、S=πR2,故D正确.故选:D.3.解:二次函数y=﹣(x﹣2)2+k的图象开口向下,对称轴为x=2,点A(﹣,y1),B(1,y2)在对称轴的左侧,由y随x的增大而增大,有y1<y2,由x=﹣,x=1,x=4离对称轴x=2的远近可得,y1<y3,y3<y2,因此有y1<y3<y2,故选:B.4.解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=﹣(x+1)2﹣1.故选:B.5.解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.6.解:A、y=2(x﹣1)2﹣8,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x>1时,y随x的增大而增大;故本选项错误;C、当x<1时,y随x的增大而减小,故本选项正确;D、图象的对称轴是直线x=1,故本选项错误.故选:C.7.解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.8.解:由图象可得,a>0,b<0,c<0,∴abc>0,故选项A正确;当x=1时,y=a+b+c<0,故选项B错误;当x=﹣2时,y=4a﹣2b+c>0,故选项C错误;该函数图象与x轴两个交点,则b2﹣4ac>0,故选项D错误;故选:A.9.解:∵抛物线与x轴交于点A(x1,0),B(x2,0),且x1<x2,∴△=b2﹣4ac>0,所以①错误;若a+c=b+3,即a﹣b+c=3,则该抛物线一定经过点(﹣1,3),所以②错误;当P(m,n)为抛物线的顶点时,方程ax2+bx+c=n的解是x=m;若P(m,n)不为抛物线的顶点,则方程ax2+bx+c=n有两个不相等的实数解,所以③错误;当P点为顶点时,△PAB的面积最大.此时x=﹣=m,∵x1、x2为方程ax2+bx+c=0的两不相等的实数解,∴x1+x2=﹣,∴m=,所以④正确.故选:D.10.解:①由抛物线图象与x轴有两个不同的交点可得,判别式b2﹣4ac>0,即4ac<b2,故①正确;②因为抛物线的对称轴为直线x=1,且与x轴交于一点(﹣1,0),则另一点为(3,0),故方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;③由对称轴,可得b=﹣2a,即抛物线y=ax2﹣2ax+c,由抛物线经过(﹣1,0)代入,则a+2a+c=0,即3a+c=0,故③错误;④当y<0时,抛物线的图象应该在x轴的下方,则x的取值范围是x<﹣1或x>3,故④错误;⑤当x<0时,y随x增大而增大,故⑤正确,故正确的有3个.故选:B.二.填空题(共5小题)11.解:当y=0时,x2﹣2x+1=0,解得x1=x2=1,所以抛物线与x轴的交点坐标为(1,0),所以抛物线y=x2﹣2x+1与x轴只有一个交点.故答案是:1.12.解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,CD=10米,所以D点横坐标为5,设点B(10,n),点D(5,n+3),,解得:,∴抛物线解析式为y=﹣x2,当x=5时,y=﹣1,则t=1÷0.2=5,故答案为:5.13.解:∵点A(1,m),B(3,m)的纵坐标相等,∴两点关于抛物线的对称轴对称,∴抛物线的对称轴为:直线x==2.故答案为:直线x=2.14.解:∵y=x2+x+1=(x+)2+,∴图象的开口向上,对称轴是直线x=﹣,A(﹣3,y1)关于直线x=﹣的对称点是(2,y1),∵<2,∴y3<y1=y2,故答案为y3<y1=y2.15.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),故答案为:(0,).三.解答题(共5小题)16.解:(1)对于抛物线y=x2﹣mx﹣2m,令y=0,得x2﹣mx﹣2m=0,解得x=﹣m或4m,由题意,点C在y轴的负半轴上,﹣2m<0,∴m>0,∵y=x2﹣mx﹣2m交x轴于A(α,0),B(β,0),交y轴于C点,且α<0<β,∴α=﹣m,β=4m,∵(|OA|+|OB|)2=12|OC|+1,∴25m2﹣24m﹣1=0,解得m=1或﹣,∴m=1.(2)如图抛物线C2的解析式为y=x2,设P(x1,y1),Q(x2,y2),由消去y得到x2﹣2kx﹣4=0,∴x1+x2=2k,x1•x2=﹣4,y1+y2=2k2+4,y1•y2=4,∴PQ的中点O′坐标为(k,k2+2),∴OO′=,∴PQ====2,∴O′Q=O′P=O′O,∴△POQ是直角三角形,∴点M即为原点O,∴M(0,0).(3)当k=2时,由,解得或,∴Q(2﹣2,6﹣4),P(2+2,6+4),∴O′(2,6),∵四边形PMQN是矩形,∴NO′=OO′,∴N(4,12).17.解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于点C(﹣2,0),且经过点B (8,4),∴,解得:,∴抛物线解析式为:y=﹣x2+x+4,∵:y=﹣x2+x+4=﹣(x﹣4)2+,∴顶点坐标为(4,)故答案为:y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由如下:∵抛物线y=﹣x2+x+4与y轴交于点A,∴点A(0,4),即OA=4,∵点B(8,4),∴AB∥x轴,AB=8,∴AB⊥AO,∴∠OAB=90°,∴∠OAM+∠BAM=90°,∵AM⊥OB,∴∠BAM+∠B=90°,∴∠B=∠OAM,∴tan∠B=tan∠OAM===,∵将Rt△OMA沿y轴翻折,∴∠NAO=∠OAM,∴tan∠NAO=tan∠OAM=,∵OC=2,OA=4,∴tan∠CAO==,∴tan∠CAO=tan∠NAO,∴∠CAO=∠NAO,∴AN,AC共线,∴点N在直线AC上;(3)∵点B(8,4),点O(0,0),∴直线OB解析式为y=x,∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴AF∥OB,∴直线AF的解析式为:y=x+4,联立方程组:解得:或∴点F(,),∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴Rt△OMA≌Rt△DEF,OA=DF,OA∥DF∴S△OMA=S△DEF,四边形OAFD是平行四边形,∵四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,∴四边形AMEF的面积=S四边形OAFD=4×=22.18.解:(1)∵OA=2,OB=OC=6,∴A(﹣2,0),B(6,0),C(0,6),∴可设抛物线解析式为y=a(x+2)(x﹣6),把C点的坐标代入可得6=﹣12a,解得a=.∴抛物线解析式为y=(x+2)(x﹣6)=﹣x2+2x+6;∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴.∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴,当点F在x轴上方时,有,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,),当点F在x轴下方时,有,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,),综上可知F点的坐标为(﹣1,)或(﹣3,);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,QO′=MO′=PO′=NO′,PQ⊥MN,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上.∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).19.解:(1)由题意得:y=120+6(100﹣x)=﹣6x+720;∴y与x的函数关系式为y=﹣6x+720;(2)由题意得:w=(x﹣60)(﹣6x+720)=﹣6x2+1080x﹣43200=﹣6(x﹣90)2+5400,∵﹣6<0,当x=90时,w有最大值,最大值为5400元.∴应降价100﹣90=10(元).∴当销售单价降低10元时,每月获得的利润最大,最大利润是5400元;(3)由题意得:﹣6(x﹣90)2+5400=4950+300,解得:x1=85,x2=95.∵抛物线开口向下,对称轴为直线x=90,∴当85≤x≤95时,符合该网店要求.而为了让顾客得到最大实惠,故x=85.∴当销售单价定为85元时,即符合网店要求,又能让顾客得到最大实惠.20.解:(1)观察表格,设y=kx+b,得,,解得,∴y=﹣40x+2000.检验:当x=25时,y=1000;当x=35时,y=600,符合上述函数式,∴y=﹣40x+2000;(2)由题得W=y(x﹣20)=(﹣40x+2000)(x﹣20)=﹣40(x﹣35)2+9000,∵﹣40<0,∴当x=35时,W取最大值,最大值为9000.即销售价格为35元时,日销售利润W最大,最大利润为9000(元);(3)由题得,W=y(x﹣20+a)=(﹣40x+2000)(x﹣20+a)=﹣40x2+40(70﹣a)x﹣2000(20﹣a),对称轴,若a≥10,则当x=30时,y有最大值,即W=800(10+a)>10240(舍去),若0<a<10,则当时,y有最大值,即W=10(30+a)2≤10240,∴0<a≤2,即a的最大值为2.。

人教版九年级数学上学期《相似形》提高试题(附答案)

人教版九年级数学上学期《相似形》提高试题(附答案)

《相似形》提高试题(一)选择题:(每题2分,共24分)1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为………………………………………………………………………()(A)mnnm+(B)nmmn+2(C)nmmn+(D)mnnm2+【提示】设所要求的线段长为x,则有nxmx22+=1.【答案】B.2.如图,在正三角形ABC中,D,E分别在AC,AB上,且ACAD=31,AE=BE,则有………………………………………………………………………………………()(A)△AED∽△BED(B)△AED∽△CBD(C)△AED∽△ABD(D)△BAD∽△BCD【提示】AE=21BC,AD=21CD.【答案】B.3.P是Rt△ABC斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC 相似,满足这样条件的直线共有……………………………………()(A)1条(B)2条(C)3条(D)4条【提示】所截得的三角形为直角三角形,过P点分别作△ABC三边的垂线,可作3条.【答案】C.4.如图,∠ABD=∠ACD,图中相似三角形的对数是……………………………()(A)2(B)3(C)4(D)5【提示】△AOB∽△COD,△AOD∽△BOC,△P AC∽PDB,△P AD∽△PCB.【答案】C.5.如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是……………………………………………………()(A)∠APB=∠EPC(B)∠APE=90°(C)P是BC的中点(D)BP︰BC=2︰3【提示】当P是BC的中点时,△EPC为等腰直角三角形.【答案】C .6.如图,△ABC 中,AD ⊥BC 于D ,且有下列条件:(1)∠B +∠DAC =90°;(2)∠B =∠DAC ;(3)AD CD =ABAC; (4)AB 2=BD ·BC其中一定能够判定△ABC 是直角三角形的共有………………………………( ) (A )3个 (B )2个 (C )1个 (D )0个【提示】∵ ∠B =∠DAC ,∴ (1)错,(2)对. 【答案】A .7.如图,将△ADE 绕正方形ABCD 顶点A 顺时针旋转90°,得△ABF ,连结EF 交AB 于H ,则下列结论中错误的是………………………………………………( )(A )AE ⊥AF (B )EF ︰AF =2︰1 (C )AF 2=FH ·FE (D )FB ︰FC =HB ︰EC【提示】先检验A 、B 、D 的正确性. 【答案】C .8.如图,在矩形ABCD 中,点E 是AD 上任意一点,则有…………………( )(A )△ABE 的周长+△CDE 的周长=△BCE 的周长 (B )△ABE 的面积+△CDE 的面积=△BCE 的面积 (C )△ABE ∽△DEC (D )△ABE ∽△EBC【提示】作EF ⊥BC ,垂足为F . 【答案】B .9.如图,在□ABCD 中,E 为AD 上一点,DE ︰CE =2︰3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF ︰S △EBF ︰S △ABF 等于……………………………( ) (A )4︰10︰25 (B )4︰9︰25 (C )2︰3︰5 (D )2︰5︰25【提示】△DEF ∽△ABF ,S △DEF ︰S △BEF =DF ︰BF =DE ︰AB . 【答案】A .10.如图,直线a ∥b ,AF ︰FB =3︰5,BC ︰CD =3︰1,则AE ︰EC 为( ).(A )5︰12 (B )9︰5 (C )12︰5 (D )3︰2【提示】EC AE =CD AG =BDAG4. 【答案】C .11.如图,在△ABC 中,M 是AC 边中点,E 是AB 上一点,且AE =41AB ,连结EM 并延长,交BC 的延长线于D ,此时BC ︰CD 为……………………………( ) (A )2︰1 (B )3︰2 (C )3︰1 (D )5︰2【提示】过C 点作CF ∥BA 交ED 于F 点,则AE =CF . 【答案】A .12.如图,矩形纸片ABCD 的长AD =9 cm ,宽AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为………………………………( )(A )4 cm 、10cm (B )5 cm 、10cm(C )4 cm 、23 cm (D )5 cm 、23 cm【提示】连结BD 交EF 于O 点,则EF =2FO ,EF ⊥BD .由Rt △BOF ∽Rt △BCD , 可得BC OB =OCOF,求出OF 的长.又 DE >21AD . 【答案】B . (二)填空题:(每题2分,共20分)13.已知线段a =6 cm ,b =2 cm ,则a 、b 、a +b 的第四比例项是_____cm ,a +b 与a -b 的比例中项是_____cm . 【提示】6︰2=8︰x ;y 2=8×4.【答案】38;42. 14.若c b a +=a c b +=bc a +=-m 2,则m =______.【提示】分a +b +c ≠0和a +b +c =0两种情况.【答案】±1.15.如图,在△ABC 中,AB =AC =27,D 在AC 上,且BD =BC =18,DE ∥BC 交AB 于E ,则DE=_______.【提示】由△ABC ∽△BCD ,列出比例式,求出CD ,再用△ABC ∽△AED . 【答案】10.16.如图,□ABCD 中,E 是AB 中点,F 在AD 上,且AF =21FD ,EF 交AC 于G ,则AG ︰AC =______.【提示】延长FE 交CB 延长线于H 点,则AF =BH ,考虑△AFG ∽△CHG . 【答案】1︰5.17.如图,AB ∥CD ,图中共有____对相似三角形.【提示】分“”类和“”类两类. 【答案】6对.18.如图,已知△ABC ,P 是AB 上一点,连结CP ,要使△ACP ∽△ABC ,只需添加条件______(只要写出一种合适的条件).【提示】∵ ∠A 为公共角,∴ 考虑∠A 的两边或其他内角相等.【答案】∠B =∠ACP ,或∠ACB =∠APC ,或AC 2=AP ·AB .19.如图,AD 是△ABC 的角平分线,DE ∥AC ,EF ∥BC ,AB =15,AF =4,则DE 的长等于________.【提示】DE =AE ,CF =DE ,并考虑AB AE =ACAF. 【答案】6.20.如图,△ABC 中,AB =AC ,AD ⊥BC 于D ,AE =EC ,AD =18,BE =15,则△ABC 的面积是______.【提示】作EF ∥BC 交AD 于F .设BE 交AD 于O 点,先求出OD 长和OB 长,最后用勾股定理求出BD 的长. 【答案】144. 21.如图,直角梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =8,BC =10,则梯形ABCD 面积是_________.【提示】作AE ∥DC 交BC 于E 点,由Rt △ABE ∽Rt △CBA ,依次算出BE 、AB 的长,最后求出AE 的长,即可求出梯形面积. 【答案】36.22.如图,已知AD ∥EF ∥BC ,且AE =2EB ,AD =8 cm ,AD =8 cm ,BC =14 cm ,则S 梯形AEFD ︰S 梯形BCFE =____________.【提示】延长EA ,与CD 的延长线交于P 点,则△APD ∽△EPF ∽△BPC . 【答案】1320. (三)画图题:(4分)23.方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在图示的10×10的方格纸中,画出两个相似但不全等的格点三角形,并加以证明(要求所画三角形是钝角三角形,并标明相应字母).【提示】先任意画一个格点钝角三角形,然后三边都扩大相同的倍数,画出另一个格点钝角三角形. (四)证明题:(每题7分,共28分)24.如图,△ABC 中,CD ⊥AB 于D ,E 为BC 中点,延长AC 、DE 相交于点F ,求证BC AC =DFAF.【提示】过F 点作FG ∥CB ,只需再证GF =DF . 【答案】方法一:作FG ∥BC 交AB 延长线于点G .∵ BC ∥GF ,∴BC AC =GFAF.又 ∠BDC =90°,BE =EC , ∴ BE =DE . ∵ BE ∥GF , ∴GFDF =BEDE =1.∴ DF =GF . ∴BC AC =DF AF.方法二:作EH ∥AB 交AC 于点H . ∵BC AC =BE AH,DFAF =DEAH ,∠BDC =90°,BE =EC ,∴ BE =DE . ∴BC AC =DFAF.25.如图,在△ABC 中,AB =AC ,延长BC 至D ,使得CD =BC ,CE ⊥BD 交AD 于E ,连结BE 交AC 于F ,求证AF =FC .【提示】先证△BCF ∽△DBA ,再证AC FC =21. 【答案】∵ BC =CD ,EC ⊥BD ,∴ BE=DE ,∠FBC =∠D . 又 AB =AC ,∴ ∠BCF =∠DBA . ∴ ∠BCF ∽△DBA .∴AB FC =DBBC. 又 BD =2BC ,AB =AC ,∴ AC FC =BC BC 2=21. ∴FC =21AC .因此 AF =FC .26.已知:如图,F 是四边形ABCD 对角线AC 上一点,EF ∥BC ,FG ∥AD .求证:AB AE +CDCG=1.【提示】利用AC =AF +FC .【答案】∵ EF ∥BC ,FG ∥AD ,∴ AB AE =AC AF ,CD CG =CACF. ∴AB AE +CD CG =AC AF +CA CF =ACAC=1. 27.如图,BD 、CE 分别是△ABC 的两边上的高,过D 作DG ⊥BC 于G ,分别交CE 及BA 的延长线于F 、H ,求证:(1)DG 2=BG ·CG ;(2)BG ·CG =GF ·GH .【提示】(1)证△BCG ∽△DCG ;(2)证Rt △HBG ∽Rt △CFG . 【答案】(1)DG 为Rt △BCD 斜边上的高,∴ Rt △BDG ∽Rt △DCG .∴ DG CG =BGDG,即DG 2=BG ·CG . (2)∵DG ⊥BC ,∴ ∠ABC +∠H =90°,CE ⊥AB . ∴ ∠ABC +∠ECB =90°.∴ ∠ABC +∠H =∠ABC +∠ECB . ∴ ∠H =∠ECB .又 ∠HGB =∠FGC =90°, ∴Rt △HBG ∽Rt △CFG .∴GF BG =GCGH,∴ BG ·GC =GF ·GH .(五)解答题:(每题8分,共24分)28.如图,∠ABC =∠CDB =90°,AC =a ,BC =b .(1)当BD 与a 、b 之间满足怎样的关系时,△ABC ∽△CDB ?(2)过A 作BD 的垂线,与DB 的延长线交于点E ,若△ABC ∽△CDB .求证四边形AEDC 为矩形(自己完成图形).【提示】利用三角形相似,推出BD =ab2.【答案】(1)∵ ∠ABC =∠CDB =90°,∴ 当BC AC =BD BC时,△ABC ∽△CDB . 即 b a =BDb .∴ BD =a b 2.即当BD =ab 2时,△ABC ∽△CDB .∵ △ABC ∽△CDB , ∴ ∠ACB =∠CBD . ∴ AC ∥ED . 又 ∠D =90°, ∴ ∠ACD =90°. ∴ ∠E =90°.∴ 四边形AEDC 为矩形.29.如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC(AB >AE ).(1)△AEF 与△EFC 是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设BCAB=k ,是否存在这样的k 值,使得△AEF ∽△BFC ,若存在,证明你的结论并求出k 的值;若不存在,说明理由.【提示】(1)如图,证明△AFE ≌△DGE ,证出∠AFE =∠EFC .(2)证明∠ECG =30°,∠BCF =30°. 【答案】如图,是相似.【证明】延长FE ,与CD 的延长线交于点G .在Rt △AEF 与Rt △DEG 中, ∵ E 是AD 的中点, ∴ AE =ED .∵ ∠AEF =∠DEG , ∴ △AFE ≌△DGE . ∴ ∠AFE =∠DGE . ∴ E 为FG 的中点. 又 CE ⊥FG , ∴ FC =GC . ∴ ∠CFE =∠G . ∴ ∠AFE =∠EFC .又 △AEF 与△EFC 均为直角三角形, ∴ △AEF ∽△EFC .① 存在.如果∠BCF =∠AEF ,即k =BCAB =23时,△AEF ∽△BCF .证明:当BC AB =23时,DEDC=3,∴ ∠ECG =30°.∴ ∠ECG =∠ECF =∠AEF =30°. ∴ ∠BCF =90°-60°=30°.又 △AEF 和△BCF 均为直角三角形, ∴ △AEF ∽△BCF .② 因为EF 不平行于BC , ∴ ∠BCF ≠∠AFE .∴ 不存在第二种相似情况.30.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,CA =8 cm ,动点P 从点C 出发,以每秒2 cm 的速度沿CA 、AB 运动到点B ,则从C 点出发多少秒时,可使S △BCP =41S △ABC?【提示】先求CP ,再求DP .【答案】当点P 从点C 出发,运动在CA 上时,若S △BCP =41S △ABC,则21·CP ·BC =41·21AC ·BC , ∴ CP =41·AC =2(cm ). 故由点P 的运动速度为每秒2 cm ,它从C 点出发1秒时,有S △BCP =41S △ABC.当点P 从点C 出发运动到AB 上时,如图,可过点P 作PD ⊥BC 于D .若S △BCP =41S △ABC,则21PD ·BC =41·21AC ·BC .∴ PD =41AC =2(cm ). ∵ Rt △BAC ∽Rt △BPD , ∴AB BP =ACPD. 又 AB =22BC AC +=10, 故BP =8102⋅=25,AP =AB -BP =10-25=7.5.也就是说,点P 从C 出发共行15.5 cm ,用去7.75秒,此时S △BCP =41S △ABC.答:1秒或7.75秒.。

【教师卷】初中九年级数学上册第二十二章《二次函数》提高卷(课后培优)

【教师卷】初中九年级数学上册第二十二章《二次函数》提高卷(课后培优)

一、选择题1.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( ) A . B . C . D .D 解析:D【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ),∴两个函数图象交于y 轴上的同一点,故B 选项错误;当a >0,c <0时,二次函数开口向上,一次函数经过一、三、四象限,故C 选项错误; 当a <0,c >0时,二次函数开口向下,一次函数经过一、二、四象限,故A 选项错误,D 选项正确;故选:D .【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.2.()11,y -()20,y ()34,y 是抛物线22y x x c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<C 解析:C【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系.【详解】解:∵在22y x x c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小,∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3,∴312y y y <<,【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.3.将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+B .()212y x =--C .()212y x =++D .()=+-2y x 12C 解析:C【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++.故答案为:C .【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键. 4.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++A解析:A【分析】加上一次项系数的一半的平方凑成完全平方式,把一般式化为顶点式.【详解】 221y x x =+-=22111x x ++--=2(1)2y x =+-,故选:A .【点睛】此题考查二次函数的一般式转化为顶点式,掌握方法是解题的关键.5.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A . B .C .D .B【分析】根据两个函数图象与y 轴交于同一点可排除选项A ,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择.【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ),∴两个函数图象交于y 轴上的同一点,故A 不符合题意;当a >0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而增大,故D 不符合题意;当a <0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而减小,故C 不符合题意.故选:B .【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.6.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12B .15C .17D .20B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .【点睛】 本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.7.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .3C解析:C【分析】 ①由抛物线的开口方向、与y 轴的交点判定a 、c 的符号,根据对称轴确定b 的符号; ②根据二次函数图象与x 轴的交点解答;③利用对称轴和二次函数的图象的性质作出判断;④将x=2代入函数关系式,结合图象判定y 的符号.【详解】解:①∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-b 2a>0,c <0, 即b <0,∴abc >0,正确;②二次函数y=ax 2+bx+c 的图象与x 轴的交点是(-1,0)、(3,0),∴方程ax 2+bx+c=0的根为x 1=-1,x 2=3故本选项正确;③函数对称轴是直线x=1,根据图象当x >1时,y 随x 的增大而增大;④根据图象可知抛物线与x 轴的交点坐标是(-1,0),(3,0),∴当x=2时,y <0∴当x=1时4a+2b+c <0,正确.共有四个正确的,故选:C .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性,还是一道比较容易出错的题目.8.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥C【分析】根据抛物线与x 轴的交点情况可得到方程280x x q ++=根的情况,进而得到根的判别式大于等于0,即可得到关于q 的不等式,最后解不等式即可得到答案.【详解】解:∵抛物线28y x x q =++与x 轴有交点∴方程280x x q ++=有实数根∴2248416440b ac q q ∆=-=-⨯⋅=-≥∴16q ≤.故选:C【点睛】本题考查了二次函数图象性质与一元二次方程根的情况的关系、解一元一次不等式等,体现了数形结合的思想.9.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( )A .0m ≤B .12m <C .102m <<D .12m <<B 解析:B【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y 轴,由此列出关于m 的不等式解之即可 .【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y > ∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0;第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解; 综上所述得12m <. 故选:B .【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小.10.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是A .B .C .D .C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.二、填空题11.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_____________.【分析】根据AB 两点的横坐标可得−1<x<3时ax2+c<mx+n即可得出ax2−mx+c<n 的解集【详解】∵抛物线与直线交于A(−1p)B(3q)抛物线开口向上∴−1<x<3时ax2+c<mx+n解析:13x【分析】根据A 、B 两点的横坐标可得 −1<x<3 时, ax 2+c<mx+n ,即可得出 ax 2−mx+c<n 的解集.【详解】∵抛物线与直线交于 A(−1,p) , B(3,q) ,抛物线开口向上,∴ −1<x<3 时, ax 2+c<mx+n ,∴ ax 2−mx+c<n 的解集为 −1<x<3 .故答案为: −1<x<3【点睛】本题考查二次函数与不等式,根据两函数图象的上下关系找出不等式的解集是解题关键. 12.如图,在平面直角坐标系中,抛物线2y x x 2=--分别交y 轴,x 轴于点A ,B ,动点E 在抛物线上,EF x ⊥轴,交直线AB 于点F .则EF 的长为______(用含字母x 的式子来表示).【分析】先分别令y=0x=0求出AB 点的坐标求出直线AB 的解析式在用字母分别表示出EF 点的纵坐标相减即可【详解】令y=0得解得:B (20)令x=0得y=-2A (0-2)设AB 所在直线解析式为:代入A 解析:22x x -【分析】先分别令y =0,x =0,求出A 、B 点的坐标,求出直线AB 的解析式,在用字母分别表示出E 、F 点的纵坐标,相减即可.【详解】令y =0,得220x x --=解得:121,2x x =-=∴ B (2,0)令x =0,得y =-2,∴A (0,-2)设AB 所在直线解析式为:y kx b =+代入A 、B 解得:2y x =-设动点E 的横坐标为x ,∴ F 点的横坐标为x ,E 点的纵坐标为:22x x -- 又F 点在直线AB 之上, ∴F 点的纵坐标为:2x - 又EF x ⊥∴EF 的长度为:22(2)x x x ---- 化简得:22x x - 故答案为:22x x -【点睛】本题主要考查了二次函数与坐标轴的交点问题,二次函数与一次函数的综合问题以及线段长度的计算,分别用字母表示出E 、F 点的纵坐标是解决本题的关键.13.抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程()2220a x bx b c -+-+=的解是________________.【分析】由题意得当y=0时则有的两个根为进而根据同解方程可进行求解【详解】解:∵抛物线y =ax2+bx+c 经过点A (﹣30)B (40)两点∴当y=0时则有的两个根为∴的解为:或解得:;故答案为【点睛解析:121,6x x =-=【分析】由题意得当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,进而根据同解方程可进行求解.【详解】解:∵抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,∴当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,∴()2220a x bx b c -+-+=的解为:23x -=-或24x -=, 解得:121,6x x =-=;故答案为121,6x x =-=.【点睛】本题主要考查二次函数与一元二次方程的关系,熟练掌握二次函数与一元二次方程的关系是解题的关键.14.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x, 故答案为:13x. 【点睛】本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键.15.若二次函数26y x x c =-+的图象经过()11,A y -,()22,B y ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,33()C y 中,|33||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.16.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.(30)(-10)【分析】设一元二次方程的另一个根为利用根与系数的关系即可求得进而得到对应的函数与轴的交点坐标【详解】设一元二次方程的另一个根为∵即解得:∴抛物线与轴的交点坐标为(30)(-10)故解析:(3,0),(-1,0)【分析】设一元二次方程220x x k -++=的另一个根为2x ,利用根与系数的关系即可求得2x ,进而得到对应的函数22y x x k =-++与x 轴的交点坐标. 【详解】设一元二次方程220x x k -++=的另一个根为2x , ∵12b x x a+=-,即232x +=, 解得:21x =-,∴抛物线22y x x k =-++与x 轴的交点坐标为(3,0),(-1,0),故答案为:(3,0),(-1,0).【点睛】本题考查了一元二次方程根与系数的关系,抛物线与x 轴交点的坐标.解题时,注意二次函数22y x x k =-++与一元二次方程22y x x k =-++间的转化关系.17.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.【分析】先把配成顶点式再利用顶点式写出平移后的抛物线的解析式【详解】此抛物线的顶点坐标为()把点()向下平移个单位长度再向左平移个单位长度所得对应点的坐标为()即()所以平移后得到的抛物线的解析式为 解析:2710y x x =++【分析】先把2y x x =+配成顶点式,再利用顶点式写出平移后的抛物线的解析式.【详解】2211()24y x x x =+=+-,此抛物线的顶点坐标为(12-,14-), 把点(12-,14-)向下平移2个单位长度,再向左平移3个单位长度, 所得对应点的坐标为(132--,124--),即(72-,94-), 所以平移后得到的抛物线的解析式为279()24y x =+-,即2710y x x =++. 故答案为:2710y x x =++.【点睛】 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 18.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.19.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.20.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号) ①③④⑤【分析】由抛物线的开口方向判断a与0的关系由抛物线与y 轴的交点判断c 与0的关系然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下∴a <0∴对称轴∴故①正确;∵抛物解析:①③④⑤【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下,∴a <0,∴对称轴123b x a =-=-, ∴32a b =,故①正确; ∵抛物线与x 轴有两个交点,∴24b ac ->0,故②错误;∵对称轴123b x a =-=-,a <0, ∴32a b =<0, ∴ab >0,故③正确;当1x =时,y >0,即,y <0,∴a b c ++<0,故④正确;当1x =-时,y >0,即,a b c -+>0,∴222a b c -+>0,∵32a b =, ∴322b b c -+>0,∴2b c +>0,故⑤正确;故答案是①③④⑤.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.三、解答题21.如图用长为30m 的篱笆围成一个一边靠墙的矩形养鸡场ABCD ,已知墙长14m ,设边AB 的长为xm ,矩形ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并求出函数y 的最大值.(2)当y =108时,求x 的值.解析:(1)y =﹣12(x ﹣15)2+112.5,y 的最大值为112m 2;(2)x 的值为12 【分析】(1)根据长方形的面积等于长乘以宽及墙体长度为14米,即可求出y 与x 的函数关系式,结合二次函数增减性得出二次函数最值;(2)把y=108代入(1)中的解析式,解方程得出答案.【详解】(1)根据题意可得:AD =12(30﹣x )m , y =12x (30﹣x ) =﹣12x 2+15x =﹣12(x ﹣15)2+112.5, ∵墙长为14m ,∴0<x≤14,则x≤15时,y 随 x 的增大而增大,∴当x =14m ,即AB =14m ,BC =8m 时,长方形的面积最大,最大面积为:14×8=112(m 2);∴y 的最大值为112m 2;(2)当y =108时,108=12x (30﹣x ), 整理得:x 2﹣30x+216=0,解得:x 1=12,x 2=18(不合题意舍去),答:x 的值为12.【点睛】本题考查了二次函数在实际问题中的应用,根据题意正确得出函数关系式并明确二次函数的性质是解题的关键.22.如图,已知90,30Rt OAB OAB ABO ∠=︒∠=︒,,斜边4OB =,将Rt OAB 绕点O 顺时针旋转60︒,得到ODC △,连接BC .(1)填空:OBC ∠=_________︒;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在OCB 边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路匀速运动,当两点相遇时运动停止,己知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN 的面积为y ,求y 与x 的函数关系式.解析:(1)60;(2)2217;(3)()22233808333823483531234 4.82x x x x x x x ⎧⎛⎫<≤⎪ ⎪⎝⎭⎪⎪⎪⎛⎫-+<≤⎨ ⎪⎝⎭⎪⎪⎪-<≤⎪⎩【分析】(1)由旋转性质可知:OB=OC ,∠BOC=60°,则△OBC 是等边三角形,即可求解;(2)证明△BOC 是等边三角形,BC=OB=4,而∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,故2227AC AB BC =+=,S △AOC 112232322OA AB =⋅⋅=⨯⨯=,即可求解; (3)分880, 4.4 4.833x x x <≤<≤<≤三种情况,利用面积公式求解即可. 【详解】 解:(1)由旋转性质可知:OB=OC ,∠BOC=60°,∴△OBC 是等边三角形,∴∠OBC=60°.故答案为:60;(2)如图1,904,30BAP OB ABO ∠=︒=∠=︒,,123232OA OB AB OA ∴====,由旋转得:BOC 是等边三角形,4BC OB ==∴6090OBC ABC ABO OBC ∠=︒∠=∠+∠=︒,,∴2227AC AB BC =+=∴112232322AOC S OA AB =⋅⋅=⨯⨯=. ∴243221727AOC S OP AC ===. (3)①当803x <≤时,M 在OC 上运动,N 在OB 上运动,如图2,过点N 作NE OC ⊥且交OC 于点E .则13322OE x NE ON x ===,, 1131.5222OMNS OM NE x x ∴=⋅⋅=⨯⨯. ∴2338y x =; ②当843x <≤时,M 在BC 上运动,N 在OB 上运动,如图2,作MH OB ⊥于H ,则)38 1.5,8 1.5BM x MH x =-=- ∴2133232y ON MH x x =⨯⨯=+ ③当4 4.8x <≤时,M 、N 都在BC 上运动,作OG BC ⊥于G .12 2.5MN x =-,23OG AB == ∴15312322y MN OG x =⋅⋅= 综上所述,()2223380333823483531234 4.82x x x x x x ⎛⎫<≤ ⎪⎝⎭⎪⎪⎪⎛⎫-+<≤⎨ ⎪⎝⎭⎪⎪⎪<≤⎪⎩【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题. 23.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 解析:223y x x =--+【分析】将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】 由题意得,93304235a b a b -+=⎧⎨++=-⎩ 解得,12a b =-⎧⎨=-⎩, 则二次函数的解析式为223y x x =--+.【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.24.如图,抛物线2y x 2x 3=-++与x 轴交于A ,B 两点,交y 轴于点C ,点M 抛物线的顶点.(1)连接BC ,求BC 与对称轴MN 的交点D 坐标.(2)点E 是对称轴上的一个动点,求OE CE +的最小值.解析:(1)(1,2)D ;(213【分析】(1)先根据抛物线的解析式求出点B 、C 的坐标和对称轴,从而可得点D 的横坐标,再利用待定系数法求出直线BC 的函数解析式,然后将点D 的横坐标代入直线BC 的函数解析式即可得其纵坐标;(2)先根据二次函数的对称性可得点C 关于对称轴的对称点的坐标,然后根据两点之间线段最短、两点之间的距离公式求解即可得.【详解】(1)对于二次函数2y x 2x 3=-++,当0y =时,2230x x -++=,解得1x =-或3x =,则(1,0),(3,0)A B -,当0x =时,3y =,则(0,3)C ,二次函数2y x 2x 3=-++化成顶点式为2(1)4y x =--+, 则二次函数的对称轴为1x =,点D 为BC 与二次函数的对称轴的交点,∴点D 的横坐标为1,设直线BC 的函数解析式为y kx b =+,将点(3,0),(0,3)B C 代入得:303k b b +=⎧⎨=⎩,解得13k b =-⎧⎨=⎩, 则直线BC 的函数解析式为3y x =-+,将1x =代入得:132y =-+=,即点D 的坐标为(1,2)D ;(2)如图,作点C 关于对称轴MN 的对称点C ',连接C E ',由二次函数的对称性得:点C '一定在此二次函数的图象上,其纵坐标与点C 的纵坐标相同,且C E CE '=,则OE CE OE C E '+=+,由两点之间线段最短得:当点,,O E C '共线时,OE C E '+取最小值,最小值为OC ', 设点C '的坐标为(,3)C a ',二次函数的对称轴为1x =,点C 的坐标为(0,3)C , 012a +∴=, 解得2a =,即(2,3)C ',则最小值22(20)(30)13OC '=-+-=,故OE CE +的最小值为13.【点睛】本题考查了二次函数的图象与性质、利用待定系数法求一次函数的解析式、两点之间线段最短等知识点,较难的是题(2),利用二次函数的对称性找出最小值是解题关键. 25.情境阅读:小敏同学期中复习时,再读九年级上册一本辅导书“一元二次方程”的“数学活动”时,重新思考了“活动围长方形”.下面呈现的是“活动内容”及“小敏反思”的部分:问题解决:请根据“小敏发现”,应用二次函数解决“能围出面积大于900cm 2的长方形吗?” 解析:不能围出,理由见解析.【分析】设长方形的长为xcm ,围成的面积为2ycm ,再根据长方形的面积公式可得y 与x 之间的函数关系式,然后利用二次函数的性质即可得.【详解】不能围出,理由如下:设长方形的长为xcm ,围成的面积为2ycm ,则12022x y x ,即()60y x x =-, 将其化成顶点式为()230900y x =--+,由二次函数的性质可知,当30x =时,y 取得最大值,最大值为900,即用长度为120cm 长的细绳围成的长方形的面积最大为2900cm ,故不能围出面积大于2900cm 的长方形.【点睛】本题考查了二次函数的几何应用,熟练掌握二次函数的性质是解题关键.26.小强根据学习函数的经验,对函数24(1)1y x =-+;图象与性质进行了探究,下面是小强的探究过程,请补充完整,并解决相关问题:(1)函数24(1)1y x =-+;的自变量x 的取值范围是______; (2)如表是y 与x 的几组对应值.x ...2- m 12- 0 12 1 32 2 52 3 4 ... y ... 25 45 163 2 165 4 165 2 1613 45 n... 表中m 的值为______,n 的值为______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数24(1)1y x =-+的大致图象;(4)结合函数图象,请写出函数24(1)1y x =-+的一条性质:______. (5)解决问题:如果方程2421(1)1a x =--+的实数根有2个,那么a 的取值范围是______.解析:(1)全体实数;(2)1-,25;(3)答案见解析;(4)当1x =时,函数有最大值4等;(5)1522a <<. 【分析】 (1)根据分式有意义的条件即可解决;(2)根据表格中的数据可知,此函数图象关于直线x =1对称,据此判定即可; (3)用平滑的曲线连接各点即可;(4)观察函数图象,即可得到函数的一条性质;(5)观察图象可得:当0<y <4时,方程有两个实数根,即可求出a 的取值范围. 【详解】(1)∵(x−1)2+1≥1,∴自变量x 的取值范围是全体实数;故答案为:全体实数;(2)由表格中可以看出,函数关于x =1对称,∴m =−1,n =25; 故答案为:m =−1,n =25; (3)如图所示:(4)由函数图象可知:当x =1时,该函数由最大值,故答案为:当x =1时,该函数由最大值;(5)根据图象可得:0<y≤4.∵方程2421(1)1a x =--+的实数根有2个 即0<21a -<4,解得:1522a <<. 【点睛】 本题考查了函数的性质、分式方程的解的综合应用,解决此题的关键是能根据列表法、图象法观察图象,从而得到结论.27.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+(1)①当2n =时,求点D 的坐标和抛物线的顶点坐标;②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.解析:(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)3n n <<<或【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有, 12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD = ∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,12n +>12n +<,即,n >或12n <- ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 的取值范围为:11322n n <<<-或 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值. 28.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A 'B 'O .一抛物线经过点A '、B '、B .(1)求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB 'A 'B 的面积是△A 'B 'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解析:(1)22y x x =-++;(2)存在,P (1,2).【分析】(1)利用旋转的性质得出A′(−1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可.【详解】解:(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的,又A (0,1),B (2,0),O (0,0),∴A′(−1,0),B′(0,2),∵A′(−1,0),B′(0,2),B (2,0),设抛物线的解析式为:y =a (x +1)(x−2)将B′(0,2)代入得出:2=a (0+1)(0−2),解得:a =−1,故抛物线的解析式为y =−(x +1)(x−2)=−x 2+x +2;(2)∵P 为第一象限内抛物线上的一动点,设P (x ,y ),则x >0,y >0,P 点坐标满足y =−x 2+x +2.连接PB ,PO ,PB′,∴S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB , =12×1×2+12×2×x +12×2×y , =x +(−x 2+x +2)+1,=−x 2+2x +3,∵A′O =1,B′O =2,∴△A′B′O 面积为:12×1×2=1, 假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,则4=−x 2+2x +3,即x 2−2x +1=0,解得:x 1=x 2=1,。

九年级数学上册 二次函数(提升篇)(Word版 含解析)

九年级数学上册 二次函数(提升篇)(Word版 含解析)

九年级数学上册二次函数(提升篇)(Word版含解析)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD =QE =2,DQ =A 1'E =﹣m , ∴点A 1'的坐标为(﹣m +1,m ﹣2), 代入y =﹣x 2+2x +3中, 解得,m =﹣3或m =2(舍), ∴Q 的坐标为(1,﹣3),∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值.(3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;(3或4【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为)454d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()1244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出454AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可. 【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE 的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-;∵二次函数()()4f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()2242max f t f ==⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键3.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1,∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-.(3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.4.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【解析】 【分析】(1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN =32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P (173,509); 当点P 在AB 下方时,同理可得:点P (3,﹣2); 综上,点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.5.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小.【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-; 综上:21a -≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.6.二次函数22(0)63m my x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标; (2)若点Q (a ,b )在二次函数22(0)63m my x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD . ①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4. 【解析】 【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m my x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可;(3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可. 【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m mb a a m =-+, 即:2263m mb m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m), 当x=0时,y=m , ∴点A (0,m ), ∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0), 把点A (0,m ),点P (2,3m)代入,得: 23m b mk b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m-x+m , 当y=0时,x=3, ∴点B (3,0); ∴OB=3;∵四边形ABCD 是正方形, ∴AD=AB ,∠DAF+∠FAB=90°, 且∠OAB+∠FAB =90°, ∴∠DAF=∠OAB , 在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3, ∴点D 的坐标为:(m ,m+3); ②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m mm m -+≤+,化简得:32418m m -≤.∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4;当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥,∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4. 【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.7.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②,联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.8.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x ≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=kx的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,m=12+或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】 (1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以3212m+=.综上所述:m的取值范围是m<0,m=113+或m=321+.(4)∵四边形ECP'D是菱形,∴点E与点P'关于x轴对称.∵点E的坐标为(2,n),∴点P'的坐标为(2,﹣n).①当点P在y轴左侧时,点P的坐标为(﹣2,﹣n).代入y=(x﹣2)2+n,得:﹣n=(﹣2﹣2)2+n,解得:n=﹣8.②当点P在y轴右侧时,点P的坐标为(﹣n,﹣2).代入y=(x﹣2)2+n,得:﹣2=(﹣n﹣2)2+n.解得:n1=﹣2,n2=﹣3.综上所述:n的值是n=﹣8,n=﹣2,n=﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣23x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴二次函数的关系解析式为y=﹣23x 2﹣43x+2; (2)∵当x=0时,y=2,∴C (0,2)设直线AC 的解析式为y kx b =+,把A 、C 两点代入得 0=32k b b -+⎧⎨=⎩ 解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的函数解析式为223y x =+; (3)存在.如图: 连接PO ,作PM⊥x 轴于M ,PN⊥y 轴于N设点P 坐标为(m ,n ),则n=224233m m --+),PN=-m ,AO=3 当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯-∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258,解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H ,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a ,又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′== 此时aP92-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.。

人教版数学九年级上册第22章《二次函数》综合训练提高题(含答案)

人教版数学九年级上册第22章《二次函数》综合训练提高题(含答案)

《二次函数》综合训练提高题一.选择题1.对于抛物线y=﹣2(x﹣1)2+3,下列判断正确的是()A.抛物线的开口向上B.抛物线的顶点坐标是(﹣1,3)C.对称轴为直线x=1D.当x>1时,y随x的增大而增大2.对于抛物线y=3(x+2)2﹣1,下列判断不正确的是()A.抛物线的开口向上B.抛物线的顶点坐标为(﹣2,﹣1)C.对称轴为直线x=﹣2D.若y随x的增大而增大,则x>23.已知抛物线y=(x﹣3)2﹣1与y轴交于点C,则点C的坐标为()A.(3,6)B.(0,8)C.(0,﹣1)D.(4,0)或(2,0)4.关于抛物线y1=(2+x)2与y2=(2﹣x)2的说法,不正确的是()A.y1与y2的顶点关于y轴对称B.y1与y2的图象关于y轴对称C.y1向右平移4个单位可得到y2的图象D.y1绕原点旋转180°可得到y2的图象5.某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1﹣x)2B.y=a(1+x)2C.y=ax2D.y=x2+a6.二次函数y=x2﹣2ax+3(a为常数)在自变量x的值满足2≤x≤3时,其对应的函数值y 有最小值2a,则a的值为()A.﹣3B.1C.D.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.a﹣b+c>0D.ax2+bx+c﹣3=0有两个不相等的实数根8.二次函数y=﹣x2+bx+c的图象如图所示,若点A(﹣1,y1),B(2,y2),C(4,y3)在此函数图象上,则y1,y2与y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y19.已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:下列结论中:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=3,其中正确的结论有()A.①②③B.①②③④⑤C.①③⑤D.①③④⑤10.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴相交于负半轴,给出五个结论:①a+b+c=0,②abc<0,③2a+b>0,④a+c=1,⑤当﹣1<x<1时,y<0;其中正确的结论的序号()A.①③⑤B.②③④C.①③④D.②③⑤11.已知二次函数y=ax2+k的图象如图所示,则对应a,k的符号正确的是()A.a>0,k>0B.a>0,k<0C.a<0,k>0D.a<0,k<0 12.在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.13.下列四个说法中正确的是()①已知反比例函数y=,则当y≤时自变量x的取值范围是x≥4;②点(x1,y1)和点(x2,y2)在反比例函数y=﹣的图象上,若x1<x2,则y1<y2;③二次函数y=2x2+8x+13(﹣3≤x≤0)的最大值为13,最小值为7④已知函数y=x2+mx+1的图象当x≤时,y随着x的增大而减小,则m=﹣.A.④B.①②C.③④D.四个说法都不对14.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“亲密点”.例如:点(1,2)的“亲密点”为点(1,3),点(﹣1,3)的“亲密点”为点(﹣1,﹣3).若点P在函数y=x2﹣2x﹣3的图象上,则其“亲密点”Q的纵坐标y′关于x的函数图象大致正确的是()A.B.C.D.二.填空题15.若实数a,b满足a+b2=3,则a2+8b2的最小值为.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=8,D为AB中点,E、F是边AC、BC 上的动点,E从A出发向C运动,同时F以相同的速度从C出发向B运动,F运动到B停止,当AE为时,△ECF的面积最大.17.已知点A(﹣1,y1),B(﹣2,y2),C(3,y3)在二次函数y=﹣(x﹣2)2+4的图象上,则y1,y2,y3的大小关系是.18.若函数y=a(x﹣h)2+k(a≠0)的图象经过原点,最大值为16,且形状与抛物线y=4x2+2x﹣3相同,则此函数的关系式为.19.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题;若p、q(p<q)是关于x 的方程2﹣(x﹣a)(x﹣b)=0的两根,且a<b,则请用“<”来表示a、b、p、q的大小关系是.20.如图,将抛物线C1:y=x2+2x沿x轴对称后,向右平移3个单位长度,再向下平移5个单位长度,得到抛物线C2,若抛物线C1的顶点为A,点P是抛物线C2上一点,则△POA的面积的最小值为三.解答题21.如图,用6米的铝合金型材做个如图所示的“日”字形矩形窗框,应做成长,宽各多少米时,才能使做成的矩形窗框透光面积S(平方米)最大,最大透光面积是多少?设矩形窗框的宽为x米(铝合金型材宽度不计).22.“双十一”时,电商小王经销某种商品,进价是50元/件,试销一段时间后发现:当售价是80元/件时,每周可卖出160件:若售价每件可降低2元,则每周可多卖出20件,设售价每件降纸x元(x为偶数),每周销售量为y件.(1)请直接写出y与x的函数表达式;(2)当售价为多少元时,每周销售利润最大,最大利润是多少?23.2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?24.在平面直角坐标系中,点A是y轴上一点,其坐标为(0,6),点B在x轴的正半轴上.点P,Q均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PM ∥x轴,QM∥y轴,则称△PQM为点P,Q的“肩三角形.(1)若点B坐标为(4,0),且m=2,则点P,B的“肩三角形”的面积为;(2)当点P,Q的“肩三角形”是等腰三角形时,求点B的坐标;(3)在(2)的条件下,作过O,P,B三点的抛物线y=ax2+bx+c①若M点必为抛物线上一点,求点P,Q的“肩三角形”面积S与m之间的函数关系式,并写出自变量m的取值范围.②当点P,Q的“肩三角形”面积为3,且抛物线=ax2+bx+c与点P,Q的“肩三角形”恰有两个交点时,直接写出m的取值范围.25.如图,已知:抛物线y=a(x+1)(x﹣3)与x轴相交于A、B两点,与y轴的交于点C(0,﹣3).(1)求抛物线的解析式的一般式.(2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.(3)直线l:y=kx﹣k+2与抛物线交于E、F两点,当点B到直线l的距离最大时,求△BEF的面积.。

九年级中考数学锐角三角函数解答题压轴题提高专题练习附详细答案.doc

九年级中考数学锐角三角函数解答题压轴题提高专题练习附详细答案.doc

九年级中考数学锐角三角函数解答题压轴题提高专题练习附详细答案 一、锐角三角函数1.如图,某无人机于空中 A 处探测到目标 B 、D 的俯角分别是 30 、60 ,此时无人机的飞行高度 AC 为 60m ,随后无人机从 A 处继续水平飞行 30 3 m 到达 A ' 处 .(1)求 之间的距离(2)求从无人机A ' 上看目标 的俯角的正切值.【答案】( 1) 120 米;( 2)23.5【解析】 【分析】(1)解直角三角形即可得到结论; (2)过 A ' 作 A ' EBC 交 BC 的延长线于 E ,连接 A' D ,于是得到 A 'E AC 60 ,CE AA' 30 3 ,在 Rt △ ABC 中,求得 DC=3AC=203 ,然后根据三角函数的定义3即可得到结论. 【详解】解:( 1)由题意得: ∠ ABD=30°, ∠ADC=60°, 在 Rt △ ABC 中, AC=60m ,60AC= 1 =120( m ) AB=sin302(2)过 A '作 A ' EBC 交 BC 的延长线于 E ,连接 A' D ,则 A' E AC 60 , CE AA'30 3 ,在 Rt △ ABC 中, AC=60m , ∠ ADC=60°,DC=3AC=20 33DE=50 3tan ∠ A A ' D= tan ∠ A' DC=A ' E=602 3=DE50 3 5答:从无人机 A ' 上看目标 D 的俯角的正切值是23 .5【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.2.如图,海上观察哨所 B 位于观察哨所 A 正北方向,距离为 25 海里.在某时刻,哨所 A 与哨所 B 同时发现一走私船,其位置 C 位于哨所 A 北偏东 53°的方向上,位于哨所 B 南偏东 37°的方向上.( 1)求观察哨所 A 与走私船所在的位置 C 的距离;( 2)若观察哨所 A 发现走私船从 C 处以 16 海里 / 小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东 76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据: sin37 °= cos53°≈,cos37 =sin53 °≈去, tan37 °≈2,tan76 °≈)【答案】( 1)观察哨所A 与走私船所在的位置 C 的距离为 15 海里;( 2)当缉私艇以每小时6 17 海里的速度行驶时,恰好在 D 处成功拦截 .【解析】【分析】(1)先根据三角形内角和定理求出 ∠ ACB =90°,再解 Rt △ ABC ,利用正弦函数定义得出AC 即可;(2)过点 C 作 CM ⊥AB 于点 M ,易知, D 、 C 、 M 在一条直线上.解Rt △ AMC ,求出CM 、 AM .解 Rt △ AMD 中,求出 DM 、 AD ,得出 CD .设缉私艇的速度为 x 海里 / 小时,根据走私船行驶 CD 所用的时间等于缉私艇行驶 AD 所用的时间列出方程,解方程即可.【详解】(1)在 △ ABC 中, ACB 180 B BAC 180 37 53 90 . 在 RtVABC 中, sin BAC,所以 ACAB sin 37 253 15 (海里) .AB5答:观察哨所 A 与走私船所在的位置C 的距离为 15 海里 .(2)过点 C 作 CM AB ,垂足为 M ,由题意易知, D 、 C 、 M 在一条直线上 . 在 RtVACM 中, CMAC sin CAM15 412 ,5AM AC cos CAM39 .155在 Rt △ ADM 中, tan DAMMD,AM所以 MD AM tan7636.所以 ADAM2MD2923629 17, CD MDMC 24 .设缉私艇的速度为 v 海里 / 小时,则有24 9 17,解得 v6 17 .16v经检验, v6 17 是原方程的解 .答:当缉私艇以每小时 6 17 海里的速度行驶时,恰好在 D 处成功拦截 .【点睛】此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.3.小红将笔记本电脑水平放置在桌子上,显示屏时,感觉最舒适(如图 1),侧面示意图为图OB 与底板 OA 所在水平线的夹角为 120 ° 2;使用时为了散热,她在底板下面垫入散热架 ACO '后,电脑转到AO ' B '位置(如图3),侧面示意图为图4.已知OA=OB=24cm ,O ' C ⊥ OA 于点 C , O ' C=12cm .( 1)求 ∠ CAO '的度数.( 2)显示屏的顶部 B '比原来升高了多少?( 3)如图 4,垫入散热架后,要使显示屏O 'B '与水平线的夹角仍保持 120°,则显示屏O ' B '应绕点 O '按顺时针方向旋转多少度?【答案】( 1 ) ∠ CAO ′=30° 2 36 ﹣ 12 ) cm ;( 3)显示屏 O ′B ′ O ′ ;( )( 应绕点 按顺时针 方向旋转 30°.【解析】试题分析:( 1)通过解直角三角形即可得到结果;(2)过点 B 作 BD⊥ AO 交 AO 的延长线于D,通过解直角三角形求得BD=OBsin∠ BOD=24×=12 ,由 C、 O′、B′三点共线可得结果;(3)显示屏 O′B应′绕点 O′按顺时针方向旋转30°,求得∠ EO′B′=∠ FO′A=30,°既是显示屏O′应B′绕点 O′按顺时针方向旋转30°.试题解析:( 1)∵ O′C⊥ OA 于 C, OA=OB=24cm,∴sin∠ CAO′=,∴∠ CAO′ =30;°(2)过点 B 作 BD⊥ AO 交 AO 的延长线于D,∵sin∠ BOD=,∴BD=OBsin∠BOD,∵∠ AOB=120 ,°∴∠BOD=60 ,°∴ BD=OBsin∠ BOD=24 ×=12,∵O′C⊥OA,∠CAO′ =30,°∴∠ AO′ C=60,∵°∠ AO′ B′ =120,∴∠°AO′ B∠′+AO′ C=180,°∴O′ B′ ﹣+OBD=24+12′C﹣ 12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣ 12)cm;(3)显示屏O′B应′绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠ EO′ F=120,°∴∠ FO′ ∠A=CAO′ =30,°∵∠ AO′ B′ =120,°∴∠EO′ B∠′=FO′ A=30,°∴显示屏 O′应B′绕点 O′按顺时针方向旋转 30 °.考点:解直角三角形的应用;旋转的性质.4.在正方形ABCD中,对角线AC, BD 交于点 O,点 P 在线段 BC上(不含点B),1∠BPE=∠ ACB,PE交BO于点E,过点B作BF⊥ PE,垂足为F,交 AC 于点 G.2(1)当点 P 与点 C 重合时(如图1).求证:△ BOG≌ △ POE;(2)通过观察、测量、猜想:BF,并结合图 2 证明你的猜想;=PE(3)把正方形 ABCD改为菱形,其他条件不变(如图3),若∠ ACB=α,求BF的PE值.(用含α的式子表示)【答案】( 1)证明见解析(2)BF1 ( 3)BF 1tan PE 2 PE 2【解析】解:( 1)证明:∵四边形 ABCD是正方形, P 与 C 重合,∴O B="OP" ,∠ BOC=∠ BOG=90 .°∵P F⊥ BG ,∠ PFB=90,°∴∠GBO=90 —°∠BGO,∠ EPO=90 —°∠BGO.∴∠ GBO=∠ EPO .∴ △ BOG≌ △ POE( AAS).(2)BF1 .证明如下:PE 2如图,过P 作 PM//AC 交 BG 于 M ,交 BO 于 N,∴∠ PNE=∠ BOC=900,∠ BPN=∠ OCB.∵∠ OBC=∠ OCB =450,∴ ∠ NBP=∠NPB.∴NB=NP.00∵∠ MBN=90 —∠BMN ,∠ NPE=90 —∠ BMN ,∴ ∠MBN=∠ NPE.1∵∠ BPE=∠ ACB,∠ BPN=∠ ACB,∴ ∠ BPF=∠ MPF.2∵P F⊥ BM,∴ ∠ BFP=∠ MFP=900.又∵ PF=PF,∴ △BPF≌ △ MPF( ASA).∴ BF="MF" ,即 BF= 1BM.21 BF 1 ∴BF= PE , 即PE.22( 3)如图,过 P 作 PM//AC 交 BG 于点 M ,交 BO 于点 N ,∴∠ BPN=∠ ACB= α, ∠ PNE=∠BOC=900.由( 2)同理可得 BF=1BM , ∠ MBN=∠EPN .2∵∠ BNM=∠ PNE=900, ∴△ BMN ∽ △ PEN .BM BN∴.PEPNBN BM,即2BF 在 Rt △ BNP 中, tan =, ∴= tan= tan .PNPEPE∴BF = 1tan .PE 2( 1)由正方形的性质可由 AAS 证得 △ BOG ≌ △ POE .( 2)过 P 作 PM//AC 交 BG 于 M ,交 BO 于 N ,通过 ASA 证明 △ BMN ≌ △ PEN 得到BF 1BM=PE ,通过 ASA 证明 △ BPF ≌ △ MPF 得到 BF=MF ,即可得出的结论.PE 2( 3)过 P 作 PM//AC 交 BG 于点 M ,交 BO 于点 N ,同( 2)证得 BF= 1BM ,2∠MBN=∠ EPN ,从而可证得 △BMN ∽△ PEN ,由BM BN和 Rt △ BNP 中 tan =BN即PEPNPN可求得BF = 1tan .PE 25.如图,平台 AB 高为 12m ,在角为 30°,求楼房 CD 的高度(B 处测得楼房 3 = 1. 7).CD 顶部点D 的仰角为45°,底部点C 的俯【答案】 32.4 米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点 B 作 BE⊥CD 于点 E,根据题意,∠ DBE=45°,∠ CBE=30°.∵AB⊥ AC, CD⊥ AC,∴四边形 ABEC为矩形,∴C E=AB=12m,在Rt△ CBE中, cot ∠ CBE=BE,CE∴BE=CE?cot30 ° =12 ×,3 =12 3在Rt△ BDE中,由∠DBE=45°,得 DE=BE=12 3.∴CD=CE+DE=12( 3 +1)≈32..4答:楼房CD 的高度约为32.4m .考点:解直角三角形的应用——仰角俯角问题.6.如图( 1),在平面直角坐标系中,点A(0,﹣ 6),点 B(6, 0). Rt△ CDE中,∠C DE=90 ,°CD=4, DE=4 ,直角边 CD 在 y 轴上,且点 C 与点 A 重合. Rt△CDE沿 y 轴正方向平行移动,当点 C 运动到点 O 时停止运动.解答下列问题:(1)如图( 2),当 Rt△ CDE运动到点 D 与点 O 重合时,设 CE交 AB 于点 M,求∠ BME的度数.(2)如图( 3),在 Rt△ CDE的运动过程中,当CE经过点 B 时,求 BC的长.(3)在 Rt△CDE的运动过程中,设AC=h,△ OAB 与△ CDE的重叠部分的面积为S 与 h 之间的函数关系式,并求出面积S 的最大值.S,请写出【答案】( 1)∠ BME=15°;(2BC=4;(3) h≤2时, S=﹣h2+4h+8,当h≥2时, S=18﹣ 3h.【解析】试题分析:( 1)如图 2,由对顶角的定义知,∠ BME=∠ CMA,要求∠ BME 的度数,需先求出∠ CMA 的度数.根据三角形外角的定理进行解答即可;(2)如图 3,由已知可知∠ OBC=∠ DEC=30°,又 OB=6,通过解直角△ BOC就可求出 BC 的长度;(3)需要分类讨论:①h≤2时,如图 4,作 MN ⊥y 轴交 y 轴于点 N,作 MF⊥ DE 交 DE于点F,S=S△EDC﹣ S△EFM;② 当 h≥2时,如图 3,S=S△OBC.试题解析:解:( 1)如图 2,∵在平面直角坐标系中,点A( 0,﹣ 6),点B( 6, 0).∴OA=OB,∴∠ OAB=45 ,°∵∠ CDE=90 ,°CD=4,DE=4 ,∴∠ OCE=60 ,°∴∠ CMA=∠ OCE﹣∠ OAB=60 ﹣°45 °=15 ,°∴∠ BME=∠CMA=15 °;如图 3,∵∠ CDE=90 ,°CD=4,DE=4 ∴∠ OBC=∠ DEC=30 ,°∵OB=6,∴BC=4;(3)①h≤2时,如图4,作,MN⊥ y 轴交y 轴于点N,作MF⊥ DE 交DE 于点F,∵C D=4, DE=4 , AC=h,AN=NM ,∴C N=4﹣ FM, AN=MN=4+h ﹣FM,∵△ CMN∽ △ CED,∴,∴,解得 FM=4﹣,△EDC S△ EFM=× 4×4﹣(4 4 h × 4﹣= h 2∴S=S ﹣﹣)()﹣+4h+8,②如图 3,当 h≥2时,S=S△OBC=OC× OB= ( 6﹣h )× 6=18﹣ 3h.考点: 1、三角形的外角定理;2、相似; 3、解直角三角形7.如图,在矩形 ABCD中, AB= 6cm ,AD= 8cm,连接 BD,将△ABD 绕 B 点作顺时针方向旋转得到△A′B′D′( B′与 B 重合),且点 D′刚好落在 BC 的延长上, A′D′与 CD相交于点 E.(1)求矩形 ABCD与△ A′B′D′重叠部分(如图 1 中阴影部分 A′B′CE)的面积;(2)将△ A′B′D′以每秒 2cm 的速度沿直线 BC 向右平移,如图 2 ,当 B′移动到 C 点时停止移动.设矩形ABCD与△ A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出 y 关于 x的函数关系式,并指出自变量x 的取值范围;(3)在( 2)的平移过程中,是否存在这样的时间x,使得△ AA′B′成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.【答案】( 1)45;( 2)详见解析;( 3)使得 △ AA ′B ′成为等腰三角形的 x 的值有: 02 秒、3秒、66 9 . 25【解析】 【分析】(1)根据旋转的性质可知B ′D ′= BD = 10, CD ′= B ′D ′﹣ BC = 2,由 tan ∠ B ′D ′A ′=A 'B ' CE可求出 CE ,即可计算 △ CED ′的面积, S ABCE = S ABD ′﹣ S CED ′;A ' D ' CD '(2)分类讨论,当0≤x ≤11时和当11< x ≤4时,分别列出函数表达式;55( 3)分类讨论,当 AB ′= A ′B ′时;当 AA ′= A ′B ′时;当 AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:( 1) ∵ AB = 6cm , AD = 8cm , ∴BD =10cm , 根据旋转的性质可知A 'B ' CE∵ t an ∠ B ′D ′A ′=A ' D ' CD '6 CE∴28∴CE = 3 cm ,2∴S ABCE = S ABD ′﹣ S CED ′= 8 6232 45 ( cm 2);22 2( 2) ① 当 0≤x <11时, CD ′= 2x+2, CE = 3( x+1),52△CD ′E323 ,22∴y =1 3 23 3 2 45 × 6×8﹣x ﹣ 3x ﹣=﹣x ﹣ 3x+;22222② 当11 ≤x ≤4时, B ′C = 8﹣ 2x , CE = 4( 8﹣2x ) 53B ′D ′=BD =10cm , CD ′=B ′D ′﹣ BC = 2cm ,∴ y14 8 2x 2 = 8 x 2﹣64x+ 128 .2 33 3 3(3) ① 如图 1,当 AB ′= A ′B ′时, x =0 秒;② 如图 2,当 AA ′= A ′B ′时, A ′N =BM = BB ′+B ′M = 2x+18, A ′M = NB =24,55∵AN 2+A ′N 2= 36,∴( 6﹣24) 2+( 2x+18) 2=36,55解得: x =669, x =6 6 9(舍去);55③ 如图 2,当 AB ′= AA ′时, A ′N = BM = BB ′+B ′M =2x+18, A ′M =NB =24,5 5∵AB 22= AN 2+A ′N 2+BB ′∴ 36+4x 2=( 6﹣24) 2+( 2x+18) 255解得: x =3.2综上所述,使得 △ AA ′B ′成为等腰三角形的x 的值有: 0 秒、3秒、66 9 .25【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,在平面直角坐标系中,直线 DE 交 x 轴于点 E (30, 0),交 y 轴于点 D (0,140),直线 AB : y = x+5 交 x 轴于点 A ,交 y 轴于点 B ,交直线DE 于点 P ,过点 E 作3EF ⊥ x 轴交直线 AB 于点 F ,以 EF 为一边向右作正方形 EFGH .(1)求边 EF 的长;(2)将正方形 EFGH 沿射线 FB 的方向以每秒10 个单位的速度匀速平移,得到正方形E 1F 1G 1H 1,在平移过程中边 F 1G 1 始终与 y 轴垂直,设平移的时间为 t 秒( t >0).① 当点 F 1 移动到点 B 时,求 t 的值;② 当 G 1,H 1 两点中有一点移动到直线DE 上时,请直接写出此时正方形E 1F 1G 1H 1 与 △ APE重叠部分的面积.【答案】( 1) EF = 15;( 2) ①10 ; ②120 ; 【解析】 【分析】(1)根据已知点 E ( 30, 0),点 D (0 ,40),求出直线 DE 的直线解析式 y=-4x+40,可3求出 P 点坐标,进而求出 F 点坐标即可;(2) ① 易求 B ( 0 , 5),当点 F 1 移动到点 B 时, t=10 10 ÷ 10 =10;②F 点移动到 F'的距离是 10 t , F 垂直 x 轴方向移动的距离是 t ,当点 H 运动到直线 DE 上时,在 Rt △ F'NF 中,NF = 1 , EM=NG'=15-F'N=15-3t ,在 Rt △ DMH'中,MH4 ,NF 3EM 31 45 1023 ;当点 G 运动到直线 PK = 1t=4 , S= × (12+) × 11=DE 上时,在 Rt △ F'PK 中,,248F K 3PK=t-3, F'K=3t-9,在 Rt △PKG'中,PK=t 3 = 4, t=7,S=15×( 15-7) =120.KG15 3t 9 3【详解】( 1)设直线 DE 的直线解析式 y = kx+b ,将点 E ( 30, 0),点 D ( 0, 40),30k b 0∴,b 40k4∴3 ,b 404 ∴ y =﹣ x+40,3直线 AB 与直线 DE 的交点 P ( 21, 12),由题意知 F ( 30,15),∴ E F = 15;( 2) ① 易求 B ( 0, 5),∴BF = 10 10 ,∴当点 F 1 移动到点 B 时, t = 10 10 10 = 10;② 当点 H 运动到直线 DE 上时,F 点移动到 F'的距离是 10 t ,在 Rt △ F'NF 中,NF = 1,NF3∴ FN = t , F'N = 3t , ∵MH' = FN = t ,在 Rt △ DMH' 中,MH 4,EM3∴t4,15 3t3∴ t =4,∴EM =3, MH' = 4,∴S = 1 (12 45)11 1023 ;2 48当点 G 运动到直线DE 上时,F 点移动到F'的距离是10 t,∵P F= 3 10∴PF'=10,t﹣ 310 ,在Rt△ F'PK中,PK 1 ,F K 3∴PK= t﹣3, F'K= 3t﹣ 9,PK t 3=4在 Rt△ PKG'中,=3t ,KG 15 9 3∴t=7,∴S=15 ×( 15﹣ 7)= 120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.9.如图 1,以点 M(- 1, 0)为圆心的圆与y 轴、 x 轴分别交于点A、 B、 C、D,直线 y=-x-与⊙M 相切于点 H,交 x 轴于点 E,交 y 轴于点 F.(1)请直接写出 OE、⊙M 的半径 r、CH 的长;(2)如图 2,弦 HQ 交 x 轴于点 P,且 DP: PH=3 :2,求 cos∠ QHC 的值;(3)如图 3,点 K 为线段 EC上一动点(不与 E、 C 重合),连接 BK 交⊙M 于点 T,弦 AT交 x 轴于点 N.是否存在一个常数a,始终满足MN·MK= a,如果存在,请求出 a 的值;如果不存在,请说明理由.【答案】( 1) OE=5, r=2, CH=2( 2);(3)a=4【解析】【分析】5;连接(1)在直线y=-x-中,令y=0,可求得 E 的坐标,即可得到OE的长为MH ,根据△ EMH 与△ EFO相似即可求得半径为2;再由EC=MC=2,∠ EHM=90°,可知CH 是 RT△ EHM 斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH 的长;(2)连接 DQ、 CQ.根据相似三角形的判定得到△ CHP∽ △ QPD,从而求得DQ 的长,在直角三角形CDQ 中,即可求得∠ D 的余弦值,即为cos∠ QHC的值;(3)连接 AK, AM,延长 AM,与圆交于点 G,连接 TG,由圆周角定理可知,∠GTA=90 ,°∠3=∠ 4,故∠ AKC=∠ MAN ,再由△ AMK∽ △ NMA 即可得出结论.【详解】(1) OE=5, r=2, CH=2(2)如图 1,连接 QC、 QD,则∠ CQD =90°,∠ QHC =∠ QDC,易知△ CHP∽ △ DQP,故,得DQ=3,由于CD=4,;(3)如图 2,连接 AK, AM,延长 AM,与圆交于点 G,连接 TG,则由于,,故,;而,故在和中,;故△ AMK∽ △NMA;即:故存在常数,始终满足常数 a="4"解法二:连结BM,证明∽得10.如图,公路AB为东西走向,在点A北偏东 36.5 方向上,距离 5 千米处是村庄M,在点A北偏东 53.5 方向上,距离 10 千米处是村庄 N ;要在公路 AB 旁修建一个土特产收购站 P (取点 P 在AB上),使得M,N两村庄到 P 站的距离之和最短,请在图中作出P 的位置(不写作法)并计算:(1)M,N两村庄之间的距离;(2)P到M、N距离之和的最小值.(参考数据: sin36.5 =°0.6, cos36.5 °= 0.8, tan36.5 °=0.75 计算结果保留根号 .)【答案】 (1) M, N 两村庄之间的距离为29 千米;(2)村庄M、N到P站的最短距离和是5 5 千米.【解析】【分析】(1)作 N 关于 AB 的对称点 N'与 AB 交于 E,连结 MN’与 AB 交于 P,则 P 为土特产收购站的位置.求出 DN, DM ,利用勾股定理即可解决问题.(2)由题意可知,M、 N 到 AB 上点 P 的距离之和最短长度就是MN′的长.【详解】解:作 N 关于 AB 的对称点 N'与 AB 交于 E,连结 MN ’与 AB 交于 P,则 P 为土特产收购站的位置.(1)在 Rt△ANE 中, AN=10,∠NAB=36.5 °∴NE=AN?sin∠ NAB=10?sin36.5 ,°=6AE=AN?cos∠ NAB=10?cos36.5 °,=8过M 作 MC⊥ AB 于点C,在 Rt △ MAC 中, AM=5, ∠ MAB=53.5 °∴AC=MA ?sin ∠AMB=MA?sin36.5 ,° =3MC=MA ?cos ∠AMC=MA ?cos36.5 °,=4 过点 M 作 MD ⊥ NE 于点 D ,在 Rt △ MND 中, MD=AE-AC=5, ND=NE-MC=2,22 2= 29 ,∴MN = 5即 M ,N 两村庄之间的距离为 29 千米.(2)由题意可知, M 、 N 到 AB 上点 P 的距离之和最短长度就是 MN ′的长. DN ′ =10, MD=5,在 Rt △ MDN ′中,由勾股定理,得 MN ′=52102 =5 5 (千米)∴村庄 M 、 N 到 P 站的最短距离和是 5 5 千米.【点睛】本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.11. 如图,在 Rt △ ABC 中, ∠ C = 90°, ∠ A = 30°, AB =4,动点 P 从点 A 出发,沿 AB 以每秒 2 个单位长度的速度向终点B 运动.过点 P 作 PD ⊥ AC 于点 D(点 P 不与点 A ,B 重合 ),作∠ DPQ = 60°,边 PQ 交射线 DC 于点 Q .设点 P 的运动时间为 t 秒.( 1)用含 t 的代数式表示线段 DC 的长: _________________ ; ( 2)当 t =__________时,点 Q 与点 C 重合时;( 3)当线段 PQ 的垂直平分线经过 △ ABC 一边中点时,求出 t 的值.【答案】( 1);( 2) 1;( 3) t 的值为 或 或 .【解析】【分析】( 1)先求出 AC ,用三角函数求出 AD ,即可得出结论; ( 2)利用 AQ=AC ,即可得出结论;( 3)分三种情况,利用锐角三角函数,即可得出结论.【详解】( 1) ∵ AP= , AB=4,∠ A =30°∴ A C=, AD=∴CD=;( 2) AQ=2AD=当AQ=AC时, Q 与 C 重合即=∴t=1 ;(3)①如图,当PQ 的垂直平分线过AB 的中点 F 时,∴∠ PGF= 90 °, PG= PQ=AP= t, AF= AB= 2.∵∠ A=∠ AQP= 30 °,∴ ∠ FPG= 60 °,∴ ∠ PFG=30 °,∴ PF=2PG= 2t,∴AP+PF=2t +2t =2 ,∴ t =②如图,当PQ的垂直平分线过AC的中点 N 时,∴∠ QMN= 90 °, AN=AC=,QM=PQ=AP=t.在Rt△ NMQ 中,∵AN+NQ= AQ,∴③如图,当PQ的垂直平分线过BC的中点 F 时,∴B F= BC=1, PE= PQ= t,∠ H= 30 °.∵∠ ABC= 60 °,∴ ∠ BFH= 30 °=∠ H,∴ BH= BF= 1.在Rt△ PEH中, PH= 2PE=2t.∵AH= AP+ PH= AB+ BH,∴ 2t+ 2t= 5,∴ t= .即当线段PQ 的垂直平分线经过△ ABC一边中点时,t 的值为或或.【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.12.如图,建筑物上有一旗杆,从与相距的处观测旗杆顶部的仰角为,观测旗杆底部的仰角为,求旗杆的高度.(参考数据:,,)【答案】旗杆的高度约为.【解析】【分析】在 Rt△ BDC中,根据tan∠ BDC= 求出BC,接着在Rt△ ADC中,根据tan∠ ADC= = 即可求出AB 的长度【详解】解:∵在 Rt△ BDC 中, tan∠ BDC==1,∴ BC=CD= 40m 在Rt△ ADC中, tan∠ADC= =∴tan50 =°=1.19∴AB7.6m答:旗杆AB 的高度约为7.6m.【点睛】此题主要考查了三角函数的应用13.已知抛物线y=﹣1x2﹣2x+2 与x 轴交于点A, B 两点,交y 轴于 C 点,抛物线的对6 3称轴与x 轴交于H 点,分别以OC、 OA 为边作矩形AECO.(1)求直线AC 的解析式;(2)如图, P 为直线 AC上方抛物线上的任意一点,在对称轴上有一动点面积最大时,求|PM ﹣ OM| 的值.M ,当四边形AOCP(3)如图,将△ AOC 沿直线 AC 翻折得△ ACD,再将△ACD 沿着直线AC 平移得△ A'C ′.D'使得点 A′、 C'在直线 AC 上,是否存在这样的点D′,使得△ A′ED为′直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】 (1) y=1x+2; (2) 点 M 坐标为(﹣ 2,5)时,四边形AOCP的面积最大,此时3 3| PM﹣ OM| 有最大值61 ; (3)存在, D′坐标为:( 0, 4)或(﹣ 6, 2)或( 3 ,19 ).6 5 5 【解析】【分析】(1)令 x=0,则 y=2 ,令 y= 0,则 x= 2 或﹣ 6,求出点 A、B、 C 坐标,即可求解;(2)连接 OP交对称轴于点 M,此时, | PM﹣ OM| 有最大值,即可求解;(3)存在;分① A′D′⊥ A′E;② A′D′⊥ ED′;③ ED′⊥ A′E 三种情况利用勾股定理列方程求解即可.【详解】(1)令 x=0,则 y=2 ,令 y= 0,则 x= 2 或﹣ 6,∴ A(﹣ 6,0)、 B( 2, 0)、 C( 0,2),函数对称轴为: x=﹣ 2,顶点坐标为(﹣ 2,8), C 点坐标为( 0, 2),则过点 C 3的直线表达式为:y=kx+2,将点 A 坐标代入上式,解得: k 1,则:直线 AC 的表达式3为: y 1x+2;3(2)如图,过点P 作 x 轴的垂线交 AC 于点 H.四边形 AOCP面积=△ AOC的面积 +△ ACP的面积,四边形AOCP面积最大时,只需要△ ACP的面积最大即可,设点1m22m+2),则点 G 坐标为( m,1P 坐标为( m,3m+2),6 3△ACP 1 1 1 m 221 1 m 2﹣ 3m,当 m=﹣ 3 时,上式S PG?OA ?(m+2 m﹣ 2) ?622633 2取得最大值,则点 P 坐标为(﹣ 3 , 5).连接 OP 交对称轴于点 M ,此时, | PM ﹣ OM| 有2 最大值,直线 OP 的表达式为: y5 x ,当 x =﹣ 2 时, y5 6 ,即:点 M 坐标为(﹣ 2,35), | PM ﹣ OM| 的最大值为:( 3 2)2(55)222( 5)2= 61 . 32 336(3)存在.∵AE = CD , ∠AEC = ∠ ADC =90 °, ∠EMA =∠ DMC ,∴ △ EAM ≌ △DCM ( AAS ), ∴EM = DM , AM = MC ,设: EM = a ,则: MC = 6﹣ a .在 Rt △DCM 中,由勾股定理得: MC 2=DC 2+MD 2,即:( 6﹣ a ) 2= 22+a 2,解得: a810,则: MC,过点 D 作 x 轴的垂线交 x33轴于点 N ,交 EC 于点 H .在 Rt △ DMC 中,1DH?MC 1 MD?DC ,即: DH 108 2,223 38, HCDC 2DH 26 ,即:点 D 的坐标为(6 18则: DH5 , );55 5设: △ ACD 沿着直线 AC 平移了 m 个单位,则:点 A ′坐标(﹣ 3m m ),点 D ′坐标610,10为(6 3m 18 m ),而点 E 坐标为(﹣ 6,2),则5,1010 5A' D '2= ( 6 6 )2( 18 )2 =36,A 'E 2= (3m)2( m 2) 2 = m 2 4m 4 ,5 5 10 10 10 2243m 2 8 m 22 32 m 128 △ A ′ED ′= () () = m.若ED '10 105为直角三角形,分三种情5105况讨论:① 当 A ' D '2+ A ' E 2 = ED '2时, 36+ m 24m4 = m 2 32m 128 ,解得: m=210 ,1010 55此时 D ′(63m 18m 0, 4);510 ,)为(510② 当 A ' D '2 + ED '2 = A ' E 2 时, 36+ m 232m 128 =m 24m4 ,解得:10 5 10m= 8 106 3m 18 m ,此时 D′(10,105 5 5)为(- 6,2);③当 A' E 2 + ED '2 = A' D '2时,m24m4+m232m 12810 10 5=36,解得: m=8 105或 m= 10 6 3m 18 m6, 2)或(-319 ).,此时 D′(10,)为(-,5 5 5 10 5 5综上所述: D 坐标为:( 0, 4)或(﹣ 6,2)或(-3,19 ).5 5【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中( 3)中图形是本题难点,其核心是确定平移后A′、D′的坐标,本题难度较大.14.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.(1)填空:点的坐标为,抛物线的解析式为;(2)当点在线段上运动时(不与点,重合),① 当为何值时,线段最大值,并求出的最大值;② 求出使为直角三角形时的值;(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.【答案】( 1),;(2)①当时,有最大值是3;②使为直角三角形时的值为 3 或;(3)点,,,构成的四边形的面积为: 6 或或.【解析】【分析】(1)把点 A 坐标代入直线表达式y=,求出 a= - 3,把点 A、B 的坐标代入二次函数表达式,即可求解;(2)①设:点 P( m,), N( m,)求出 PN 值的表达式,即可求解;②分∠ BNP= 90°、∠ NBP= 90°、∠BPN= 90°三种情况,求解即可;(3)若抛物线上有且只有三个点N 到直线 AB 的距离是 h ,则只能出现:在 AB 直线下方抛物线与过点N 的直线与抛物线有一个交点N,在直线 AB 上方的交点有两个,分别求解即可.【详解】解:( 1)把点坐标代入直线表达式,解得:,则:直线表达式为:,令,则:,则点坐标为,将点的坐标代入二次函数表达式得:,把点的坐标代入二次函数表达式得:,解得:,故:抛物线的解析式为:,故:答案为:,;(2)① ∵在线段上,且轴,∴点,,∴,∵,∴抛物线开口向下,∴当时,有最大值是 3 ,② 当时,点的纵坐标为 -3,把代入抛物线的表达式得:,解得:或 0(舍去),∴;当时,∵,两直线垂直,其值相乘为 -1,设:直线的表达式为:,把点的坐标代入上式,解得:,则:直线的表达式为:,将上式与抛物线的表达式联立并解得:或 0(舍去),当时,不合题意舍去,故:使为直角三角形时的值为3或;(3)∵,,在中,,则:,,∵轴,∴,若抛物线上有且只有三个点到直线的距离是,则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个 .当过点的直线与抛物线有一个交点,点的坐标为,设:点坐标为:,则:,过点作的平行线,则点所在的直线表达式为:,将点坐标代入,解得:过点直线表达式为:,将拋物线的表达式与上式联立并整理得:,,将代入上式并整理得:,解得:,则点的坐标为,则:点坐标为,则:,∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,即:过点与平行的直线与抛物线的交点为另外两个点,即:、,直线的表达式为:,将该表达式与二次函数表达式联立并整理得:则点作,解得:、的横坐标分别为交直线于点,,,,则,作轴,交轴于点,则:,,,则:,同理:,故:点,,,构成的四边形的面积为: 6 或或.【点睛】本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中( 3)中确定点N 的位置是本题的难点,核心是通过△ =0,确定图中N 点的坐标.15.如图,正方形ABCD的边长为2 +1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、 BD 于 E、 F,(1)求证:△ ABF∽ △ ACE;(2)求 tan∠BAE 的值;(3)在线段 AC 上找一点 P,使得 PE+PF最小,求出最小值.【答案】( 1)证明见解析;(2) tan∠ EAB=2﹣ 1;( 3) PE+PF的最小值为2 2.【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图 1 中,作 EH⊥ AC 于 H.首先证明 BE=EH=HC,设 BE=EH=HC=x,构建方程求出 x 即可解决问题;(3)如图 2 中,作点 F 关于直线AC 的对称点H,连接 EH 交 AC 于点 P,连接 PF,此时PF+PE的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形 ABCD是正方形,∴∠ ACE=∠ ABF=∠ CAB= 45 °,∵AE 平分∠ CAB,∴∠ EAC=∠ BAF= 22.5 ,°∴△ ABF∽ △ ACE.(2)解:如图 1 中,作 EH⊥ AC 于 H.∵EA 平分∠CAB,EH⊥ AC, EB⊥ AB,∴BE=EB,∵∠ HCE= 45 °,∠ CHE= 90 °,∴∠ HCE=∠HEC= 45 °,∴HC=EH,∴BE=EH= HC,设 BE=HE= HC= x,则 EC=2 x,∵BC= 2 +1,∴x+x=2 +1,∴x= 1,在Rt△ ABE中,∵ ∠ABE= 90°,∴tan∠ EAB=BE= 1=2 ﹣1.AB 2 1(3)如图 2 中,作点 F 关于直线 AC 的对称点 H,连接 EH 交 AC 于点 P,连接 PF,此时PF+PE的值最小.作 EM⊥ BD 于 M . BM=EM= 2 ,2∵AC=AB 2BC2=2+2,∴OA=OC= OB=1AC=22 ,2 2∴OH=OF= OA?tan∠ OAF= OA?tan∠ EAB=2 2(2﹣1)= 2 ,2 2∴HM =OH+OM=22 ,22 2在 Rt△ EHM 中, EH=EM 2 HM 2= 2 2 2 = 2 2 ..2 2∴PE+PF的最小值为2 2 ..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.。

中考数学总复习《二次函数与相似三角形综合压轴题》专项提升训练题-附答案

中考数学总复习《二次函数与相似三角形综合压轴题》专项提升训练题-附答案

中考数学总复习《二次函数与相似三角形综合压轴题》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,抛物线:y=x2+bx+c的图像与x轴交于A和B(−3,0)两点,与y轴交于C(0,−3),直线y=x+m经过点B,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和E点坐标;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△BOD相似,若存在,直接写出点P的坐标:若不存在,试说明理由.2.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c过点A(−1,0)、B(2,0),和点C(0,−4)三点.(1)求抛物线的表达式;(2)P为抛物线第四象限上的一个动点,连接AP交线段BC于点G,如果AG:GP=3,求点P的坐标.3.在平面直角坐标系中,抛物线y=−x2−4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(−5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值,并求出此时点P的坐标;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.4.如图,抛物线y=−x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.图1备用图(1)求抛物线的解析式;(2)如图1,D是BC上方抛物线上一点,连接AD交线段BC于点E,若AE=2DE,求点D的坐标;(3)抛物线上是否存在点P使得∠PAB=∠ABC,如果存在,请求出点P的坐标,如果不存在,请说明理由.5.综合与探究如图,二次函数y=ax2+bx+4的图像经过x轴上的点A(6,0)和y轴上的点B,且对称轴.为直线x=72(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图像上,以OE,AE为边作平行四边形OEAF.当平行四边形OEAF为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.x2+bx+c的图象与y轴交于点A(0,8),6.如图,在平面直角坐标系中,二次函数y=−14与x轴交于B、C两点,其中点B的坐标是(−8,0),点P(m,n)为该二次函数在第二象限内图象上的动点,点D为(0,4),连接BD.(1)求该二次函数的表达式;(2)依题补图1:连接OP,过点P作PQ⊥x轴于点Q;当△OPQ和△OBD相似时,求m的值;(3)如图2,过点P作直线PQ∥BD,和x轴交点为Q,在点P沿着抛物线从点A到点B运动过程中,当PQ与抛物线只有一个交点时,求点Q的坐标.x2+bx+c图像交x轴于点A,B(A在B的左侧),与y轴交7.如图,二次函数y=−12于点C(0,3),CD⊥y轴,交抛物线于另一点D,且CD=5,P为抛物线上一点,PE∥y轴,与x轴交于E,与BC,CD分别交于点F,G.(1)求二次函数解析式;(2)当P在CD上方时,是否存在点P,使得以C,P,G为顶点的三角形与△FBE相似,若存在,求出△CPG与△FBE的相似比,若不存在,说明理由.(3)点D关于直线PC的对称点为D′,当点D′落在抛物线的对称轴上时,此时点P的坐标为________.x2+x+3与x轴交于A,B两点(点A在点B 8.综合与探究:如图,抛物线y=−14的左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P在直线BC上方的抛物线上,过点P作x轴的垂线l,连接AP交BC于点D.当PD最AD的最大值;大时,求点P的坐标及PDAD(3)在(2)的条件下,在l上是否存在点Q,使△BCQ是直角三角形.若存在,请直接写出点Q的坐标;若不存在,请说明理由.9.已知抛物线y=x2+2x−3的图像经过点A(−3,0),点B(n,0),且与y轴交于点C.(1)求出点B的坐标;(2)若点P为x轴上方的抛物线上任意一点.①如图1,若点Q为线段BC上一点,连接PQ,PQ交x轴于点M,连接CM,当∠MCQ=45°时,求点M的坐标;①如图2,连接BC、BP,若满足∠ABP=2∠BCO,求此时点P的坐标.10.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点OA=1,tan∠BAO=3将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t①是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,直接写出当△CEF与△COD 相似时,点P的坐标.11.如图,已知二次函数y=−x2+bx+c的图象与x轴交于点A(−4,0)和点B,与y 轴相交于点C(0,4).(1)求该二次函数的解析式;(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P.①连接AP,CP,当三角形ACP的面积最大时,求此时点P的坐标;①探究是否存在点P使得以点P,C,Q为顶点的三角形与△ADQ相似?若存在,求出点P的坐标;若不存在,说明理由.12.已知:如图,顶点为A(1,−1)的抛物线y=ax2+bx+c经过原点O,且与直线y=−x+2交于B,C两点(点C在点B的右边).(1)求抛物线的解析式;(2)猜想以点A为圆心,以AC为半径的圆与直线BC的位置关系,并加以证明;(3)若点P为x轴上的一个动点,过点P作PQ⊥x轴与抛物线交于点Q,则是否存在以O,P,Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.13.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x−2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.x+2与x轴交于点A,与y轴交于点C,14.如图,在平面直角坐标系中,直线y=12,且经过A、C两点与x轴的另一交点抛物线y=ax2+bx+c的对称轴是直线x=−32为B.(1)①直接写出点B的坐标;①求抛物线的解析式;(2)点E为直线AC上方抛物线上的一动点,过点E作ED⊥x轴于点G,交AC于点D,连接AE、CE、CG,当四边形AGCE面积最大时,求出E点的坐标.(3)抛物线上是否存在点M,过点M作MN⊥x轴于点N,使得以点A、M、N为顶点的△AMN与△ABC相似?若存在,直接写出点M的坐标,若不存在,请说明理由.15.抛物线y=ax2+bx+5经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=2x+5相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM 相似?若存在,直接写出满足条件的点P的坐标;若不存在,说明理由.参考答案: 1.(1)y =x 2+2x −3 E(2,5)(2)(0,5)或(0,7)2.(1)y =2x 2−2x −4(2)P(1,−4)3.(1)(0,5)(2)点P 到直线AC 距离为25√28,此时P (−52,354) (3)点M 的坐标为(−3,8)或(−7,−16)或(3,−16)4.(1)y =−x 2+2x +3(2)点D 的坐标为(1,4)或(2,3)(3)存在,点P 的坐标为(2,3)或(4,−5)5.(1)y =23x 2−143x +4(2)F(3,4);菱形OEAF 的面积为24(3)存在,点P 坐标为(0,4)或(2413,3613)6.(1)y =−14x 2−x +8(2)m 的值为−4或−1−√33(3)Q (−412,0)7.(1)y =−12x 2+52x +3;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与△FBE 相似,△CPG 与△FBE 的相似比为2或25;(3)P 点横坐标5+2√33或5−2√33.8.(1)A (−2,0),B (6,0),C (0,3)(2)P (3,154),PD AD 的最大值为916(3)存在,(3,−6)或(3,3+√52)或(3,3−√52)或(3,9)9.(1)B(1,0)(2)①M (−32,0);①P (−154,5716)10.(1)y =−x 2−2x +3(2)①存在,最大值为12124,①P (−1,4)或(−2,3)11.(1)解析式为y =−x 2−3x +4(2)①P(−2,6);①存在,P(−3,4)或P(−2,6)12.(1)y =x 2−2x ;(2)相切(3)存在满足条件的点P ,坐标为(53,0)或(73,0)或(−1,0)或(5,0).13.(1)y =−x 2+2x ;C(−1,−3)(2)存在,N 点,其坐标为(53,0)或(73,0)或(−1,0)或(5,0)14.(1)①B 的坐标为(1,0);① y =−12x 2−32x +2(2)E (−32,258) (3)存在,点M 的坐标为(0,2)或(−3,2)或(2,−3)或(5,−18)15.(1)y =x 2−6x +5(2)(32,−74)或(3,−4)。

九年级数学上册 (二次函数)(相似)(锐角三角函数)提高练习题整合(无答案) 华东师大版 试题

九年级数学上册 (二次函数)(相似)(锐角三角函数)提高练习题整合(无答案) 华东师大版 试题

二次函数补充题1.指出下列二次函数图像的开口方向、对称轴、顶点坐标,y=2x 2 ⑵ y=2x 2+1 ⑶ 2)2(2-=x y ⑷2)2(22--=x y 22x y -= ⑹122+-=x y ⑺2)2(2--=x y ⑻1)2(22+--=x y2.指出下列二次函数图像的特征,⑴2ax y = ⑵c ax y +=2 ⑶bx ax y +=2⑷))((21x x x x a y --= ⑸k h x a y +-=2)( 3.画出下列函数的图像⑴2x y = ⑵1212-=x y ⑶12312-+-=x x y4.求下列函数的解析式⑴二次函数的图像经过点 )10,1(- (1,4) (2,7); ⑵抛物线的顶点为(2,3),且经过(3,1); ⑶抛物线经过(2,0) )0,3(- (1,5);⑷二次函数c bx ax y ++=2,当x=4时取得最小值8-, 且它的图像与x y 212-=的交点的横坐标为6;⑸抛物线b ax x y +-=22过(2,4),且顶点在y=2x+1上.5.⑴求抛物线52312+--=x x y 的顶点坐标及对称轴;⑵c bx ax y ++=2的图像如图所示,其中M 是顶点, 请判断ac b 42-、a 、b 、c 的符号⑶二次函数c bx ax y ++=2(a ≠0)的图像如图所示 M 是顶点,ON=2,MN=1,OB ·OC=3 求①a, b,c②x 取何值时y >0 ③ABCS ∆6.k 为何值,抛物线5122-+=x kx y 在x 轴的下方. 7.已知抛物线12)3(2-++-=m x m x y ⑴证明:不论m 取何值,抛物线都与x 轴有两个交点; ⑵m 取何值,交点分别在y 轴的两侧; ⑶m 取何值, 交点分别在y 轴的右侧.8. 已知抛物线c bx ax y ++=2过点)1,1(--,对称轴为x=2, 且与x 轴的两交点间的距离为22,求解析式.9.若抛物线12+=x y 的图象都在直线m x y --=2的上方, 求m 的取值范围.10.已知二次函数的图象经过点A )9,1(--及B )1,1(-,且与x 轴相切, 求解析式.11.抛物线c bx ax y ++=2经过点)18,1(-,与x 轴的两交点的距离为3, 且942=-ac b ,顶点在第四象限,求解析式.12.抛物线)23()12(2+--+=k x k x y 与x 轴的两交点都在点(2,0) (4,0)之间, 是否有这样的k 使之成立,若有请求出k 的值,若没有,试述理由.13.a b 为正数,b ax x y 22++=与a bx x y ++=22都与x 轴有交点, 求22b a +的最小值.14.抛物线4)334(2+++=x a ax y 的开口向下,且与x 轴交于A B 两点,与y 轴交于点C,若△ABC 为等腰三角形,求a 的值.BAB+CD=AC+BD15.抛物线1)1(22++-+-=m x m x y 与x 轴交于A B 两点,A 在y 轴的右侧,B 在y 轴的左侧,OA 的长为a,OB 的长度为b, ⑴求m 的取值范围;⑵若a:b=3:1,求m 的值及解析式;⑶设⑵中的抛物线与y 轴的交点为C,顶点为M,问抛物线上是否存在一点p, 使△ABP 的面积等于△BCM 的面积的8倍,若存在,求出p 点,若不存在请说明理由. 16.已知b c 为整数,方程052=++c bx x 两根都大于1-且小于0,求b c 的值. 17.作函数342+-=x x y 的图象 18.作函数122+-=x x y 的图象19.已知抛物线1)12(2++-+=k x k x y ⑴抛物线过原点,求k 的值;⑵在⑴中,抛物线与x 轴从左到右交于A B 两点,问在对称轴的右侧的图象上是否存在 点M,使锐角三角形AMB 的面积等于3,若存在,请求出点M,若不存在,请说明理由. ⑶在⑴⑵条件下,点P 是抛物线上的点,且∠PAM=90°,求APM S ∆.20. 抛物线c x ax y +-=32交x 轴正半轴于A B 两点(A 在B 的左侧),交y 轴,正半轴于C 点,过A B C 三点作⊙O 且与y 轴相切, ⑴求a c 满足的关系式; ⑵设∠ACB=α, 求tan α;⑶设抛物线的顶点为P,判断直线PA 与⊙O 的关系并证明. 自编题例1.已知如图,AB 是⊙O 的直径,P 是AB 上的一点, 弦CD 经过点P,且∠DPB=45°, 求证:PC 2+PD 2=2R 2例2.点M 在X 轴上, ⊙M 交X 轴于A B 两点,交Y 轴于(-2,0), (1)求直线BC 的解析式; (2) 连结MF 、BC,求证:MF//BC例3.如图,弦AB=8,CD=4, 求阴影部分的面积。

(必考题)初中九年级数学上册第二十二章《二次函数》提高练习(答案解析)

(必考题)初中九年级数学上册第二十二章《二次函数》提高练习(答案解析)

一、选择题1.设A(﹣2,y 1),B(1,y 2),C(2,y 3)是抛物线y =﹣(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2 2.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<- 3.设函数()()12y x x m =--,23y x =,若当1x =时,12y y =,则( ) A .当1x >时,12y y <B .当1x <时,12y y >C .当0.5x <时,12y y <D .当5x >时,12y y >4.下列函数关系式中,属于二次函数的是( )A .21y x =+B .21y x x =+C .()()221y x x x =+--D .21y x =-5.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法确定 6.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥ 7.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 8.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .49.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >> 10.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x 时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤ 11.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-12.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3- C .13- D .27-13.抛物线2288y x x =-+-的对称轴是( )A .2x =B .2x =-C .4x =D .4x =- 14.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D . 15.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<二、填空题16.如图,抛物线y =﹣x 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,则bc 的值为_____(填正或负).17.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M 平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.18.已知抛物线y =x 2+9的最小值是y =_____.19.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.20.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .21.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.22.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)23.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.24.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.25.如图,抛物线2y x 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移42个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.26.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)三、解答题27.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元? 28.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值;(2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴. 29.疫情期间,某防疫物晶销售量y (件)与售价x (元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润. 售价x (元)... 70 65 60 ... 销售量y (个) ... 300 350 400 ... (2)售价为多少时利润最大?最大利润为多少?30.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+ (1)①当2n =时,求点D 的坐标和抛物线的顶点坐标;②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.。

华东师大版九年级数学上册《锐角三角函数》提高题(无答案)

华东师大版九年级数学上册《锐角三角函数》提高题(无答案)

新维度九年级数学上册《锐角三角函数》提高题一、选择题1.如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D.若AC =5,BC =2,则sin ∠ACD 的值为( )第1题图 第3题图 第4题图2.在△ABC 中,若|sinA-12|+(cosB-23)2=0,则∠C=( )3.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是( )4.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么AB的值为( )5.如图所示,将圆桶中的水倒入一个直径为40 cm ,高为55 cm 的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ). A .10 cm B .20 cm C .30 cm D .35 cm6.如图所示,已知坡面的坡度1i =,则坡角α为( ).A .15°B .20°C .30°D .45°第5题图 第6题图 第7题图7.如图所示,在高为2 m ,坡角为30°的楼梯上铺地毯,则地毯的长度至少应为( ).A .4 mB .6 mC ..(2+8.因为1sin 302=°,1sin 2102=-°,所以sin 210sin(18030)sin 30=+=-°°°°;因为sin 452=°,sin 225=°,所以sin 225sin(18045)sin 45=+=-°°°°,由此猜想,推理知:一般地,当α为锐角时有sin(180°+α)=-sin α,由此可知:sin240°=( ).A .1-2B .-2C .D .9.如图,在△ABC 中,∠C =90°,∠B =60°,D 是AC 上一点,DE ⊥AB 于E ,且CD =2,DE =1,则BC 的长为( )10.如图,△ABC 中,∠ACB=90°,AB=10,tanA=12.点P 是斜边AB 上一个动点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .二、填空题11.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF = .第11题图 第12题图 第13题图 第14题图12.如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕.若AE =3,则sin ∠BFD 的值为 .13.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径是4,sinB =14,则线段AC 的长为 .14.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠DAB =∠CDB =90°,∠ABD =45°,∠DCA =30°,AB =6,则AE = .15. 1sin 2α=-,则锐角α的取值范围是________16. 在△ABC 中,AB =8,∠ABC =30°,AC =5,则BC =________17. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为 .18. 如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45°,翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E ,若AD=2,BC=8.则(1)BE 的长为 . (2)∠CDE 的正切值为 . 三、解答题19.计算:|-3|+2sin45°+tan60°-(-13)-1-12+(π-3)0.20.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α-3tan(α+15°)的值.21.如图,在△ABC 中,AD 是BC 边上的高,tan B =cos ∠DAC.(1)求证:AC =BD ;(1)若sin C =1213,BC =12,求△ABC 的面积.22.如图,在Rt △ABC 中,∠ACB=90°,sinB= 53,D 是BC 上一点,DE ⊥AB 于E ,CD=DE ,AC+CD=9cm .求BC 的长23.如图,游客在点A处坐缆车出发,沿A-B-D的路线可至山顶D处,假设AB和BD都是直线段,且AB =BD=600 m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,2≈1.41)24. 已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.25. 如图所示,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C 在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?( 1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.如图,在南北方向的海岸线MN上,有A,B两艘巡逻船,现均收到故障船C的求救信号.已知A,B两船相距100(√3+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D间的距离AC和AD(如果结果有根号,请保留根号);(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁的危险?(参考数据:√2≈1.41,√3≈1.73)27.如图所示,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.28. 如图所示,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.29.如图(1),点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60︒,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t =21秒时,则OP = ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值;(3)如图(2),当AP =AB 时,过点A 作AQ ∥BP ,并使得∠QOP =∠B ,求证:AQ ·BP =3.。

初三数学二次函数和锐角三角函数习题训练

初三数学二次函数和锐角三角函数习题训练

(1)求b和c的值; (2〕试判断点P〔-1,2〕是否在此函数图像上?23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米.(1)求出S与x之间的函数关系式,并确定自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.24、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.〔1〕如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;〔2〕增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m,跨度为40m,现把它放在如下列图的直角坐标系里,•假设要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?2经过点A(1,0),与y轴交于点B.24、如图,抛物线n-=5y++xx⑴求抛物线的解析式;⑵P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.〔〕A .150 B .375 C .9 D .7 8.在△ABC 中,∠C=90°,BC=2,2sin 3A =,那么边AC 的长是〔 〕 A .5B .3C .43D .13 9.如图,两条宽度均为40m 的公路相交成α角,那么这两条公路在相交处的公共局部(图中阴影局部)的路面面积是〔 〕 A.αsin 1600(m 2) B.αcos 1600(m 2) C.1600sin α(m 2) D.1600cos α(m 2) 10.如图,延长Rt △ABC 斜边AB 到D 点,使BD =AB ,连结CD ,假设tan ∠BCD =31,那么tanA =〔 〕A.1B. 31C.23D.32α第4题图CDBA〔第9题〕 〔第10题〕二、填空题11.α为锐角,sin(α-090)=0.625,那么cos α=___ 。

2021年九年级数学上册第二十二章《二次函数》提高练习(答案解析)

2021年九年级数学上册第二十二章《二次函数》提高练习(答案解析)

一、选择题1.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个2.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个4.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .125.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x;⑤当0x >时,y 随着x的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥6.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:x ﹣1 0 2 3 4 y5﹣4﹣3A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2 7.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =8.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .49.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米 B .12米 C .25米 D .35米 10.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>11.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤12.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x =B .22(-1)-3y x =C .2(21)-3y x =+D .22(1)-3y x =+13.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-14.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .15.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<二、填空题16.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac ab ->;其中正确的结论有_________.17.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.18.若抛物线22y x x c =++与坐标轴有两个交点,则c 应满足的条件是_______. 19.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)20.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.21.高尔夫球运动是一项具有特殊魅力的运动,运动员会利用不同的高尔夫球杆将高尔夫球打进球洞,从而使其在优美的自然环境中锻炼身体,并陶冶情操. 如图,某运动员将一只高尔夫球沿某方向击出时,小球的飞行路线是一条抛物线. 如果不考虑空气阻力等因素,小球的飞行高度 h (单位:米)与飞行时间 t (单位:秒)之间满足函数关系2205h t t =- .则小球从飞出到落地瞬间所需的时间为________秒.22.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)23.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.24.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)25.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”) 26.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.三、解答题27.已知二次函数y =﹣x 2+4x +5,完成下列各题: (1)求出该函数的顶点坐标. (2)求出它的图象与x 轴的交点坐标. (3)直接写出:当x 为何值时,y >0.28.如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线y kx b =+与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)直接写出抛物线的解析式. (2)求证:BF BC =.(3)若1k =,在直线y kx b =+下方抛物线上是否存在点Q ,使得QBF 的面积最大?若存在,求出点Q 的坐标及QBF 的最大面积;若不存在,请说明理由.29.若二次函数y =x 2-x-2的图象与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求A ,B 两点的坐标;(2)若P(m ,-2)为二次函数y =x 2-x-2图象上一点,求m 的值. 30.对于抛物线243y x x =-+. (1)求抛物线与坐标轴的交点坐标. (2)求抛物线的顶点坐标.。

九年级数学上册(二次函数相似锐角函数解直角三角形)练习卷(无答案) 新人教版 试题

九年级数学上册(二次函数相似锐角函数解直角三角形)练习卷(无答案) 新人教版 试题

湖南省宁乡县三仙坳初级中学九年级数学上册《二次函数+相似+锐角函数+解直角三角形》练习卷 新人教版一、填空题1.分别用定长为L 的线段围成矩形和圆,_________的面积大。

2.已知矩形的周长为36cm ,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽分别为_______时圆柱的侧面积最大。

3.在周长为定值p 的扇形中,半径是 时扇形的面积最大。

4.在菱形ABCD 中,∠A=30,若菱形边长xcm ,菱形面积ycm 2则y 与x 的关系是_________. 二、解答题5. 某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y (万件)与销售单价x (元)存在如图所示的一次函数关系,每年销售该种产品的总开支z (万元)(不含进价)与年销售量y (万件)存在函数关系1042.5z y =+. (1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品年获利w (万元)关于销售单价x (元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x 为何值时,年获利最大?最大值是多少? (3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?6.某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A B ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?7.光明公司生产某种产品,每件成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x( 万元)时,产品的年销售量是原销售量的y 倍,且y=277101010x x -++. 如果把利润看作是销售总额减去成本和广告费:(1)试写出年利润s(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:项目 A B C D E F 每股(万元) 5 2 6 4 6 8 收益(万元)0.550.40.60.50.91如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元, 问有几种符合要求的方式?写出每种投资方式所选的项目.8. 如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度20AB =米,顶点M 距水面6米(即6MO =米),小孔顶点N 距水面4.5米(即 4.5NC =米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF .9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm/s•的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.1 35 0 13579x(元y (万 EM FNCB D OAyx正常水(1)设运动开始后第ts 时,五边形APQCD 的面积是Scm 2,写出S 与t 的函数关系式,并指出自变量t 的取值范围;(2)t 为何值时,S 最小?最小值是多少?相似三角形的判定练习一、知识回顾:两个三角形相似的判定方法有哪些?归纳:1、如果____________________________________,那么它们相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数补充题1.指出下列二次函数图像的开口方向、对称轴、顶点坐标,y=2x 2 ⑵ y=2x 2+1 ⑶ 2)2(2-=x y ⑷2)2(22--=x y 22x y -= ⑹122+-=x y ⑺2)2(2--=x y ⑻1)2(22+--=x y2.指出下列二次函数图像的特征,⑴2ax y = ⑵c ax y +=2 ⑶bx ax y +=2⑷))((21x x x x a y --= ⑸k h x a y +-=2)( 3.画出下列函数的图像⑴2x y = ⑵1212-=x y ⑶12312-+-=x x y4.求下列函数的解析式⑴二次函数的图像经过点 )10,1(- (1,4) (2,7); ⑵抛物线的顶点为(2,3),且经过(3,1); ⑶抛物线经过(2,0) )0,3(- (1,5);⑷二次函数c bx ax y ++=2,当x=4时取得最小值8-, 且它的图像与x y 212-=的交点的横坐标为6;⑸抛物线b ax x y +-=22过(2,4),且顶点在y=2x+1上. 5.⑴求抛物线52312+--=x x y 的顶点坐标及对称轴;⑵c bx ax y ++=2的图像如图所示,其中M 是顶点, 请判断ac b 42-、a 、b 、c 的符号⑶二次函数c bx ax y ++=2(a ≠0)的图像如图所示 M 是顶点,ON=2,MN=1,OB ·OC=3求①a, b,c②x 取何值时y >0 ③ABCS ∆6.k 为何值,抛物线5122-+=x kx y 在x 轴的下方. 7.已知抛物线12)3(2-++-=m x m x y ⑴证明:不论m 取何值,抛物线都与x 轴有两个交点;⑵m 取何值,交点分别在y 轴的两侧; ⑶m 取何值, 交点分别在y 轴的右侧.8. 已知抛物线c bx ax y ++=2过点)1,1(--,对称轴为x=2, 且与x 轴的两交点间的距离为22,求解析式.9.若抛物线12+=x y 的图象都在直线m x y --=2的上方, 求m 的取值范围.10.已知二次函数的图象经过点A )9,1(--及B )1,1(-,且与x 轴相切, 求解析式.11.抛物线c bx ax y ++=2经过点)18,1(-,与x 轴的两交点的距离为3, 且942=-ac b ,顶点在第四象限,求解析式.12.抛物线)23()12(2+--+=k x k x y 与x 轴的两交点都在点(2,0) (4,0)之间, 是否有这样的k 使之成立,若有请求出k 的值,若没有,试述理由. 13.a b 为正数,b ax x y 22++=与a bx x y ++=22都与x 轴有交点, 求22b a +的最小值.14.抛物线4)334(2+++=x a ax y 的开口向下,且与x 轴交于A B 两点,与y 轴交于点C,若△ABC 为等腰三角形,求a 的值.15.抛物线1)1(22++-+-=m x m x y 与x 轴交于A B 两点,A 在y 轴的右侧,B 在y 轴的左侧,OA 的长为a,OB 的长度为b,⑴求m 的取值范围;⑵若a:b=3:1,求m 的值及解析式;⑶设⑵中的抛物线与y 轴的交点为C,顶点为M,问抛物线上是否存在一点p,使△ABP 的面积等于△BCM 的面积的8倍,若存在,求出p 点,若不存在请说明理由. 16.已知b c 为整数,方程052=++c bx x 两根都大于1-且小于0,求b c 的值. 17.作函数342+-=x x y 的图象BAB+CD=AC+BD18.作函数122+-=x x y 的图象19.已知抛物线1)12(2++-+=k x k x y ⑴抛物线过原点,求k 的值;⑵在⑴中,抛物线与x 轴从左到右交于A B 两点,问在对称轴的右侧的图象上是否存在 点M,使锐角三角形AMB 的面积等于3,若存在,请求出点M,若不存在,请说明理由. ⑶在⑴⑵条件下,点P 是抛物线上的点,且∠PAM=90°,求APM S ∆.20. 抛物线c x ax y +-=32交x 轴正半轴于A B 两点(A 在B 的左侧),交y 轴,正半轴于C 点,过A B C 三点作⊙O 且与y 轴相切,⑴求a c 满足的关系式; ⑵设∠ACB=α, 求tan α;⑶设抛物线的顶点为P,判断直线PA 与⊙O 的关系并证明.自编题例1.已知如图,AB 是⊙O 的直径,P 是AB 上的一点, 弦CD 经过点P,且∠DPB=45°, 求证:PC 2+PD 2=2R 2例2.点M 在X 轴上, ⊙M 交X 轴于A B 两点,交Y 轴于点A 的坐标为(-2,0), (1)求直线BC 的解析式;(2) 连结MF 、BC,求证:MF//BC例3.如图,弦AB=8,CD=4,求阴影部分的面积。

例4.已知:如图,圆O 的内接四边形ABCD ,∠AOB=120°,∠DAB=52.5°,∠ABC=97.5°,AB=a,BC=b,CD=c, DA=d,求四边形ABCD 的面积例5.如何用无刻度的直尺过一点(非圆上)做直径的垂线例6.已知:如图,正五边形ADNEF 中,AB ⊥NE 于B,AC ⊥EF 于C,半径OB=2,求21AB+AC 的值例7. 请阅读下列材料:在 ∆ABC 中,若AB=AC ,D 为BC 中点, 连结AD 则AD ⊥BC, 那么有AB 2-AD 2=BD 2=BD DC当点D 是底边BC 上任意点时过点A 作AM ⊥BC 于M ,∵AB=AC ∴BM=CM ∴AB 2-AD 2=(AM 2+ BM 2)-(AM 2+ DM 2)= BM 2- DM 2=(BM+DM )(BM -DM )=(CM+DM )(BM -DM )=CD ∙BD 结论成立;(1)当点D 在底边BC 的延长线上时请你直接写出你的结论 ;(2)经过不在⊙A 上的一点D 的直线l 与圆交与点B C,DC DB ⋅有怎样的变化?写出你的结论并证明; (3)如图,⊙O 的切线AB 、AC 分别切⊙O 于点B 、C ,直线AE 交⊙O 于E 、F ,交线段BC 于点D ,请你结合(1)(2)的结论,证明)11(211AFAE AD += 思维的定势与求异问题1 甲乙两人分别从A 、B 两地同时出发,相向而行。

甲走8米后两人第一次相遇,然后甲继续向前到B 立即返回,乙继续向前走到A 立即返回,两人在距离B 地6米处第二次相遇,求A 、B 两地的距离。

分析:一般的思路是把问题归结为行程问题,重点放在理清路程、速度、时间三个量及三个量之间的关系上,此题中既没有速度具体数值,也没有时间的具体数值,路程的两个具体值A也无法与问题的所求扯上关系,确实有点扑朔迷离,直接利用路程、速度、时间三者之间的数量关系是不容易解决的,只能另辟溪经。

反观题目的整个过程,只是两个相遇的过程,而每一个过程中甲、乙所用的时间相等,每个人的行程则取决于自己的速度,也就是说,两人路程之比等于他们的速度之比,两个过程皆如此,这就为问题的解决找到了出口。

解:设第一次相遇距B 地x 米,由题意可得 102148++=x xx解之得 ,101=x 82-=x (不合题意,舍去)x+8=18答 A 、B 两地的距离为18米。

至此问题得以解决。

尽管问题的解决并不是中规中矩的行程问题的方法,但仍没有脱离行程问题的一般思路。

利用方程的思想,但若换个角度去思考,则会另有一番风味。

从整个过程来看,甲、乙的速度都没有变化,第一次相遇甲乙合走一个全程甲单独走了8米,那么第二次相遇甲乙合走三个全程甲应单独走了三个8米即24米,甲事实上走了一个全程多6米,因此A 、B 两地的距离是18米。

问题2 某人在公路上匀速行走,环路公共汽车每隔4分钟就有一辆与之迎面相遇;每隔6分钟就有一辆从后越过此人;汽车站每隔几分钟双向各发一辆车?解:设汽车的速度为x ,人行走的速度为y ,每隔t 分钟发一辆车,由题意得,⎩⎨⎧=-=+ytx y yty x 6644 y y x t +=4 yxy t -=6 两式相加可得:264=+tt ∴ 8.464642=+⨯⨯=t (分)此题中一般化的结论设汽车的速度为x ,人行走的速度为y ,每隔t 分钟发一辆车,相遇时间为a 分钟,追及时间为b 分钟 ,由题意得, ⎩⎨⎧=-=+ytbx by ytay ax有y y x a t += yx y b t -= 两式相加可得:2=+bta t ∴ ba abt +=2 与前一个问题类似,这个问题仍是行程问题,此问题的解决也仍采用的是方程的思想,但有一个设而不求的问题,理解、接受是比较困难的。

换个角度,这个问题中的两个过程分别是相遇和追及的过程,这与顺水航行与逆水航行的过程的数量关系是比较一致的,若用下面的思路:设两车的发车间隔的距离为1,相遇的时间是a,则车和人的速度的和为a1,追及的时间为b,则车和人的速度的差为b 1,由此可以得出车的速度为)11(21ba +,进而可以得出汽车的发车时间为)11(211ba +=b a ab +2。

问题3 x 为整数,求+-+-+-321x x x ------+19-x 的最小值。

这个问题的一般方法是分类讨论,但这个问题的数值较多,无法直接去解决,先把问题特殊化,从1-x 开始分类讨论得出一般结论,再对21-+-x x 分类讨论得出一般结论,再对321-+-+-x x x 分类讨论得出一般结论,用不完全归纳的方法得出一般结论进而得出问题的解90。

换一个角度,1-x 的几何意义是点x 到点1的距离,当点x 与点1重合时,1-x 的值最小为1;21-+-x x 的几何意义是点x 到点1、x 到点2的距离的和,利用数轴可以看出,当点x 与点1或点2重合或在点1与点2之间时,这个距离的和等于1,点x 位于其他位置时这个距离大于1;321-+-+-x x x 的几何意义是点x 到点1、x 到点2、x 到点3的距离的和,利用数轴可以看出,当点x 与点1重合时,这个距离的和等于2,点x 位于其他位置时这个距离大于2;不完全归纳得出结论:有奇数个零点时,x 取中间的点值最小;有偶数个零点时,x 取中间的两个点的值或取它们之间的任何值,值最小。

由此可以得出此题在x 取10时值最小,值为90。

二次函数提高与综合1 若m 、n (m<n )是关于x 的方程1()()0x a x b ---=的两根, 且a < b , 则a 、b 、m 、n 的大小关系是A. m < a < b< nB. a < m < n < bC. a < m < b< nD. m < a < n < b2 我们知道:能使方程两边相等的未知数的值叫方程的解.例:若x=1是一元二次方程02=++c bx ax 的解,则有0=++c b a ;若有0=++c b a ,则一元二次方程02=++c bx ax 有解x=1 利用根的概念解答下列问题(1) a b c 为有理数且b a ≠ ,证明:))((4)(2a cb ac b --≥-(2) a b m n 为四个不相等的有理数,且2))((,2))((=++=++n b m b n a m a求))((m b m a ++的值3 已知:02<++c ab a 求证:c b 42>4 已知:二次函数c bx ax y ++=2的图象的一部分如图所示.(1) 试确定c b a 、、的符号; (2) 试求c b a ++的取值范围.5 抛物线1222+-+=b ax x y 与1)3(22-+++-=b x a x y 都经过x 轴上的两点A B, 求a b 的值6 .已知抛物线722-++=m mx x y 与x 轴的交点在点(1,0)的两侧, 求m 的值7已知:b c 为整数,方程052=++c bx x 的两根都在01和-之间, 求 b c8已知关于x 的方程 2220x ax a b --+=,其中a 、b 为实数.(1)若此方程有一个根为2 a (a <0),判断a 与b 的大小关系并说明理由; (2)若对于任何实数a ,此方程都有实数根,求b 的取值范围. 9已知:关于x 一元二次方程0232=++c bx ax , (Ⅰ)若1==b a ,1-=c ,求该方程的解;(Ⅱ)若1==b a ,且当11<<-x 时,方程只有一个解,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的0>c ;12=x 时,对应的023>++c b a ,试判断当10<<x 时,一元二次方程0232=++c bx ax 是否有实数解?若有,请证明你的结论;若没有,阐述理由.综合题1.已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位, 求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图 象回答:当直线1(2y x b b k =+<)与此图象有两 个公共点时,b 的取值范围.2. 如图,在平面直角坐标系中,Rt △AOB 的顶点坐标分别为A (-2,0),O (0,0),B (0,4),把△AOB 绕点O 按顺时针方向旋转90,得到△COD .(1)求C 、D 两点的坐标;(2)求经过A 、B 、D 三点的抛物线的解析式;(3)在(2)中的抛物线的对称轴上取两点E 、F (点E 在点F 的上方),且EF =1,使四边形ACEF 的周长最小,求出E 、F 两点的坐标.3. 已知:某函数的自变量0>x 时,其相应的函数值1>y . (1)请写出一个满足条件的一次函数的解析式;(2)当函数的解析式为m x m x m y -++-+=5)4(2)4(2时,求m 的取值范围; (3)过动点C(0,n)作直线l ⊥y 轴,点O 为坐标原点.①当直线l 与(2)中的抛物线只有一个公共点时, 求n 的取值范围;②当直线l 与(2)中的抛物线相交于A 、B 两点时,是否存在实数n ,使得△AOB 的面积为定值? 如果存在,求出n 的值;如果不存在,说明理由.4.已知:抛物线 221)2)y a x a a =--- 与x 轴交于点A (x 1,0)、B (x 2,0),且x 1 < 1 < x 2 .(1)求A 、B 两点的坐标(用a 表示);(2)设抛物线得顶点为C , 求△ABC 的面积;(3)若a 是整数, P 为线段AB 上的一个动点(P 点与A 、B 两点不重合),在x 轴上方作等边△APM 和等边△BPN ,记线段MN 的中点为Q ,求抛物线的 解析式及线段PQ 的长的取值范围.5.已知:抛物线2y ax bx c =++与x 轴交于点(2,0)A -、(8,0)B ,与y 轴交于点)4,0(-C .直线y x m =+与抛物线交于点D 、E (D 在E 的左侧),与抛物线的对称轴交于点F . (1) 求抛物线的解析式;(2) 当2m =时,求DCF ∠的大小;(3) 若在直线y x m =+下方的抛物线上存在点P ,使得45DPF ∠=︒,且满足条件的点P 只有两个,则m 的值为 .(第(3)问不要求写解答过程)备用图1 备用图26.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠两角和的度数.解:(1)7. 如图,在平面直角坐标系xOy中,经过点A,C,B的抛物线的一部分与经过点A,E,B的抛物线的一部分组合成一条封闭曲线,我们把这条封闭曲线称为“双抛物线”.已知P为AB中点, 且P(-1,0), C(2-1, 1), E(0,-3), S△CPA=1.(1)试求“双抛物线”中经过点A,E,B的抛物线的解析式;(2)若点F在“双抛物线”上,且S△FAP=S△CAP, 请你直接写出点F的坐标;(3)如果一条直线与“双抛物线”只有一个交点,那么这条直线叫做“双抛物线”的切线.若过点E与x轴平行的直线与“双抛物线”交于点G,求经过点G的“双抛物线”切线的解析式.)的抛物线交y轴于A点,交x轴于B,8.如图,在平面直角坐标系中,顶点为(4,1C两点(点B在点C的左侧). 已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.相似三角形综合复习(一)一.选择题:1.下列判断中,正确的个数有 ( ) (1)全等三角形是相似三角形 (2)顶角相等的两个等腰三角形相似 (3)所有的等边三角形都相似 (4)所有的直角三角形都相似 (A )1个 ; (B )2个 ; (C )3个 ; (D )4个. 2.已知dc b a =,则下列各式中不正确的是( )x(第23题)A 、ad=bc ;B 、d b c a = ; C 、c d a b = ; D 、bdb c c a +=+ 3. 如图,在ABC ∆中,DE ∥BC ,AD ︰DB =1︰2,则ADE S ∆︰=∆ABC S ( ) (A )1∶2 (B )1∶4(C )1∶8 (D )1∶94.如图,D,E,F 在ABC ∆各边上,且DE//BC,EF//AB,则下列各式不成立的是 ( )(A)AC AE AB AD =; (B)FCBFEC AE =; (C)FC BF BD AD =; (D)FCBFAD BD =. 5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )6.如图,G 是⊿ABC 的重心,⊿EFG 的面积为1,则⊿ABC 的面积为 ( )(A ) 4 (B ) 8 (C ) 10 (D ) 12 二.填空题:7.比例尺为6000000:1地图上,量得甲、乙两地在地图上的距离为12 cm ,,那么甲、乙两地的实际距离为 ; 8.D 、E 为△ABC 的边AB 、AC 上两点,AB=8,AC=6,AD=4,AE=3,则A D E S ∆∶ABC S ∆=_______; 9. 顺次连结三角形三边中点构成的三角形的面积与原三角形的面积比为 10. 两个相似三角形对应高的比为 1∶3,则它们的面积比为 ; 11. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D , AC =6, AB =9, 则AD 的长是___________________(A )(B)(C)(D)AB AB C FGBACDE 12.在 ΔABC 中, D 为 AB 的中点,AB = 4 ,AC = 7 ,若 AC 上有一点E ,且 ΔADE 与原三角形ΔABC 相似,则 AE = __________;13. 梯形ABCD 中,AD∥BC,EF∥BCAE:EB=1:3,AD=5BC=9则 EF=14.如图3,正方形ABCD 中,E 是AD 的中点, BM ⊥CE,AB=6,则BM=______.15. 两个相似三角形的面积之比为1∶5,小三角形的周长为4,则另一个三角形的周长为_____.16. 如图4,Rt ΔABC 中,∠C=900,D 为AB 的中点,DE ⊥AB,AB=20,AC=12, 则四边形ADEC 的面积为__________. 17. ΔABC 中,DE ∥FG ∥BC,AD ∶DF ∶FB=1∶2∶3, 则S 四边形DFGE ∶S 四边形FBCG =_________.18.如图,在△ABC 中,D 、E 为AB 、BC 上两点,若31==AB BD BC CE , 则FEAF 的值为 。

相关文档
最新文档