bypass_capacitors_decoupling_KCP

合集下载

MB90F546GSPF中文资料

MB90F546GSPF中文资料

2
MB90540/540G/545/545G Series
(Continued) • UART 1 With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized serial (extended I/O serial) can be used. • External interrupt circuit (8 channels) A module for starting an extended intelligent I/O service (EI2OS) and generating an external interrupt which is triggered by an external input. • Delayed interrupt generation module Generates an interrupt request for switching tasks. • 8/10-bit A/D converter (8 channels) 8/10-bit resolution can be selectively used. Starting by an external trigger input. Conversion time : 26.3 µs • FULL-CAN interfaces MB90540 series : 2 channel MB90545 series : 1 channel Conforming to Version 2.0 Part A and Part B Flexible message buffering (mailbox and FIFO buffering can be mixed) • External bus interface : Maximum address space 16 Mbytes • Package: QFP-100, LQFP-100

STM32固件库使用手册的中文翻译版

STM32固件库使用手册的中文翻译版
该固态函数库通过校验所有库函数的输入值来实现实时错误检测。该动态校验提高了软件的鲁棒性。实时 检测适合于用户应用程序的开发和调试。但这会增加了成本,可以在最终应用程序代码中移去,以。
因为该固件库是通用的,并且包括了所有外设的功能,所以应用程序代码的大小和执行速度可能不是最优 的。对大多数应用程序来说,用户可以直接使用之,对于那些在代码大小和执行速度方面有严格要求的应 用程序,该固件库驱动程序可以作为如何设置外设的一份参考资料,根据实际需求对其进行调整。
1.3.1 变量 ................................................................................................................................................ 28 1.3.2 布尔型 ............................................................................................................................................ 28 1.3.3 标志位状态类型 ........................................................................................................................... 29 1.3.4 功能状态类型 .............................................................................................................

Raspberry Pi RP2040微控制器数据手册说明书

Raspberry Pi RP2040微控制器数据手册说明书

ColophonCopyright © 2020 Raspberry Pi (Trading) Ltd.The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).Portions Copyright © 2019 Synopsys, Inc.All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 ARM Limited.All rights reserved. Used with permission.build-date: 2021-01-04build-version: githash: 1f2b413-dirty (pico-sdk: 04605c3-clean pico-examples: cc4c1c7-clean)IP ContributorsIntellectual property from the following companies was used in RP2040:•ARM Limited (M0+, UART, SPI)•Synopsys, Inc. (I2C, SSI)•Taiwan Semiconductor Manufacturing Company Limited (TSMC) (standard cells, memories)•Dolphin Design SAS (Voltage Regulator, Power-on Reset/Brown-out Detector)•Aragio Solutions (GPIO and Crystal Pad library)•Silicon Creations (PLL)•GF Micro (ADC, TS, USB PHY)Legal Disclaimer NoticeTECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI (TRADING) LTD (“RPTL) "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the RESOURCES or any products described in them at any time and without further notice.The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for their selection and use of the RESOURCES and any application of the products described in them. User agrees to indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the RESOURCES.RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other useHIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, weapons systems or safety-critical applications (including life support systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High Risk Activities.Raspberry Pi products are provided subject to RPTL’s Standard Terms. RPTL’s provision of the RESOURCES does not expand or otherwise modify RPTL’s Standard Terms including but not limited to the disclaimers and warranties expressed in them.Table of ContentsColophon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 IP Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Legal Disclaimer Notice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.1. Why is the chip called RP2040?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.2. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.3. The Chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.4. Pinout Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.4.1. Pin Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.4.2. Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.4.3. GPIO Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182. System Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1. Bus Fabric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1.1. AHB-Lite Crossbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.1.1.1. Bus Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.1.1.2. Bus Performance Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.1.2. Atomic Register Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.1.3. APB Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.1.4. Narrow IO Register Writes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.1.5. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2. Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.2.1. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.2.2. Detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.3. Processor subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.3.1. SIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.3.1.1. CPUID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.3.1.2. GPIO Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.3.1.3. Hardware Spinlocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.3.1.4. Inter-processor FIFOs (Mailboxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.3.1.5. Integer Divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.3.1.6. Interpolator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.3.1.6.1. Lane Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.3.1.6.2. Blend Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402.3.1.6.3. Clamp Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.3.1.6.4. Sample Use Case: Linear Interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432.3.1.6.5. Sample Use Case: Simple Affine Texture Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442.3.1.7. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462.3.2. Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752.3.3. Event Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752.3.4. Debug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.3.4.1. Software control of SWD pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.3.4.2. Rescue DP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.4. Cortex-M0+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772.4.1. Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772.4.1.1. Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772.4.1.2. Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782.4.1.3. ARM architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782.4.2. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782.4.2.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782.4.2.2. Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792.4.2.3. NVIC features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792.4.2.4. Debug features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792.4.2.4.1. Debug Access Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802.4.2.5. MPU features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802.4.2.8. Power Management Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802.4.2.8.1. Power Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812.4.2.8.2. Wait For Event and Send Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812.4.2.8.3. Wait For Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822.4.2.8.4. Wakeup Interrupt Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822.4.2.9. Reset Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822.4.3. Programmer’s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832.4.3.1. About the programmer’s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832.4.3.2. Modes of operation and execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832.4.3.3. Instruction set summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832.4.3.4. Memory model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862.4.3.5. Processor core registers summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872.4.3.6. Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872.4.3.6.1. Exception handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872.4.4. System control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882.4.4.1. System control register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882.4.4.1.1. CPUID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882.4.5. NVIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.4.5.1. About the NVIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.4.5.1.1. SysTick timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.4.5.1.2. Low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.4.5.2. NVIC register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.4.6. MPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902.4.6.1. About the MPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902.4.6.2. MPU register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902.4.7. Debug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902.4.8. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.5. Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042.5.1. ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052.5.2. SRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052.5.2.1. Other On-chip Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062.5.3. Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062.5.3.1. XIP Cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072.5.3.2. Cache Flushing and Maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.5.3.3. SSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.5.3.4. Flash Streaming and Auxiliary Bus Slave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092.5.3.5. Performance Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092.5.3.6. List of XIP Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 2.6. Boot Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2.7. Bootrom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132.7.1. Bootrom Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142.7.2. Processor Controlled Boot Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142.7.2.1. Watchdog Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152.7.2.2. Flash Boot Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152.7.2.3. Flash Second Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162.7.2.3.1. Checksum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162.7.3. Bootrom Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162.7.3.1. Bootrom Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172.7.3.1.1. Fast Bit Counting / Manipulation Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172.7.3.1.2. Fast Bulk Memory Fill / Copy Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182.7.3.1.3. Flash Access Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182.7.3.1.4. Debugging Support Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192.7.3.1.5. Miscellaneous Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202.7.3.2. Fast Floating Point Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202.7.3.2.1. Implementation Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202.7.3.2.2. Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212.7.3.3. Bootrom Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272.7.4. USB Mass Storage Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272.7.5. USB PICOBOOT Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292.7.5.1. Identifying The Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292.7.5.2. Identifying The Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292.7.5.3. Identifying The Endpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302.7.5.4. PICOBOOT Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302.7.5.4.1. EXCLUSIVE_ACCESS (0x01). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302.7.5.4.2. REBOOT (0x02). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312.7.5.4.3. FLASH_ERASE (0x03). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312.7.5.4.4. READ (0x84). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322.7.5.4.5. WRITE (0x05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322.7.5.4.6. EXIT_XIP (0x06). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322.7.5.4.7. ENTER_XIP (0x07). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322.7.5.4.8. EXEC (0x08). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332.7.5.4.9. VECTORIZE_FLASH (0x09). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332.7.5.5. Control Requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342.7.5.5.1. INTERFACE_RESET (0x41). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342.7.5.5.2. GET_COMMAND_STATUS (0x42). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 2.8. Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352.8.1. Digital IO Supply (IOVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352.8.2. Digital Core Supply (DVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362.8.3. On-Chip Voltage Regulator Input Supply (VREG_IOVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362.8.4. USB PHY Supply (USB_IOVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362.8.5. ADC Supply (ADC_IOVDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362.8.6. Power Supply Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372.8.7. Power Supply Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372.8.7.1. Single3.3V Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372.8.7.2. External Core Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382.8.7.3. 1.8V Digital IO with Functional USB and ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382.8.7.4. Single 1.8V Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 2.9. On-Chip Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392.9.1. Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402.9.2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402.9.2.1. Normal Operation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402.9.2.2. High Impedance Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412.9.2.3. Shutdown Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412.9.3. Output Voltage Select. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412.9.4. Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412.9.5. Current Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412.9.6. List of Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412.9.7. Detailed Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 2.10. Power Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1442.10.1. Top-level Clock Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1442.10.2. SLEEP State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452.10.3. DORMANT State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452.10.4. Memory Power Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452.10.5. Programmer’s Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462.10.5.1. Sleep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462.10.5.2. Dormant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2.11. Chip-Level Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1472.11.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1472.11.2. Power-on Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1482.11.2.1. Detailed Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1482.11.3. Brown-out Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1492.11.3.1. Detection Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1492.11.3.2. Adjusting the Detection Threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1502.11.3.3. Detailed Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1502.11.4. Supply Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1512.11.4.1. Detailed Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151。

Decoupling Capacitors

Decoupling Capacitors

Decoupling Capacitors电子制作2007-10-15 20:10:45 阅读143 评论0 字号:大中小在数字电路中,我们常常见到在数字芯片的电源管脚附近放置了电容,它们也可能集中出现在原理图的某一页中,但在Layout的过程中,这些电容还会最终被分配给数字芯片的电源管脚。

通常大家称其为去藕或者滤波电容,其作用自然也无非就是去藕或者滤波了。

然而对于这些电容的叫法和作用存在一定的争议和误解。

Decoupling和Filtering分别是去藕和滤波的英文翻译,相信大家对滤波的意义都很清楚,电子学上的Filtering无非就是通过某种手段,从频率上加以区分,去除掉不想要的或者保留希望得到的信号的过程。

再谈去藕,我们都知道耦合的意思,通常会见到,直流耦合,交流耦合,电阻耦合和电容耦合等等说法,无非是将一个信号或者一部分能量通过某种方法,施加到另外一个信号或者部分能量上面。

而Decoupling的意思是,必然和Coupling是相对应的,就是通过某种方法阻止信号或者能量在某一点的传递。

滤波是实现去藕多种方式中的一种。

这里关于电容的讨论里面,去藕和滤波这两个概念是等同的。

旁路(Bypass)电容是另外一种叫法,其意思无非是给某一个频率的信号或者能量提供了一个通道,等同于上述的滤波。

在真正理解了这些电容在数字电路中的作用以后,称谓也就变得不重要了。

那么究竟是什么原因致使需要这些的电容的存在哪?数字芯片的电源有两个作用,一是为里面的逻辑电路工作提供能量;二是提供一个参考电平,为输入信号提供一个判决的参考-------差分输入的电路除外,差分电路的两个输入彼此参考。

针对第一个功能,要提供稳定充足的电流和电压,作为参考电平,自然对电压有一定的要求。

造成电源不理想的因素大致有如下几个:电源自身纹波,噪声以及数字电路工作在开关状态时引起的电流电压的波动。

由于电源自身的工作原理决定了,电源自身纹波不可避免,尤其是开关电源,所以通常可以看到电源的输出端会放置几颗电容,来滤除纹波-----道理自然很简单,纹波是施加在直流上面的交流成份,利用电容通交隔直作用,避免纹波被施加到后面电路。

知从青龙BOOTLOADER产品手册说明书

知从青龙BOOTLOADER产品手册说明书

知从青龙BOOTLOADER产品手册知从®青龙BootLoader1功能概述知从青龙BootLoader是由知从科技自主研发的程序刷新软件(BootLoader)。

使用知从青龙BootLoader的控制器,可以通过CAN、LIN、SPI等通信方式实现应用程序的更新功能。

目前,知从青龙BootLoader已支持NXP、Infineon、Renesas、ST等多家芯片,并且支持多家整车厂程序刷新规范,可提供定制开发服务。

通常每家整车厂都有各自的程序刷新规范,目前知从青龙BootLoader支持的整车厂程序刷新规范包括:广汽、长安、上汽、一汽、东风商用车、东风、上海通用、吉利、奇瑞、上汽通用五菱、萨博、长城、北汽新能源等(以上排名不分先后)。

2应用领域知从青龙BootLoader可应用于整车各个域中的控制器程序刷新功能。

支持的控制器包括:车身系统车身控制器、空调控制器、车门控制器、网关等动力系统发动机控制器、电池管理系统、电机控制器、整车控制器等底盘系统电动助力转向系统、制动防抱死系统、电气稳定系统等ADAS系统雷达、摄像头系统等3芯片支持4开发背景目前,汽车上的电子电气架构越来越复杂,并伴随着汽车的电动化、智能化、网联化、共享化,软件的研发在汽车上占比越来越大。

软件更新的频率越来越高。

而且,在汽车的整个生命周期中,包括研发阶段、生产阶段、售后阶段,各个阶段都需要实现软件的更新功能。

因此,客户对软件程序更新的需求越来越迫切。

对于整车厂或供应商,BootLoader是控制器开发必备的功能。

并且,不同的整车厂有不同的程序更新规范,同时BootLoader驱动又依赖于不同的芯片。

因此,为了满足不同的整车厂程序更新规范,又适配不同的芯片,知从科技提供了完整的BootLoader解决方案—知从青龙BootLoader。

知从青龙BootLoader既适用于不同的整车厂程序更新规范,又适用于不同芯片厂商的芯片,让客户更专注与自己的控制器产品研发。

kb9012qf工作原理

kb9012qf工作原理

KB9012QF是由仁宝(Compal)生产的主板EC(Embedded Controller),这款芯片在2012年进行了升级。

其工作原理是将BIOS程序内置于芯片内部,不同于传统的将BIOS存储于外部的128KB闪存中。

除了BIOS管理之外,KB9012QF还负责各种硬件初始化和电源管理功能。

当你打开或关闭计算机时,EC会执行一系列自检程序,以确保所有硬件都在正常工作状态。

如果发现任何问题,EC会生成相应的错误代码并显示在屏幕上。

KB9012QF还具有高级电源管理(APM)功能,这是早期用于管理笔记本电脑电池寿命的一种技术。

通过这种技术,EC可以自动调整系统性能和功耗,以延长电池寿命。

HCPL788J中文资料

HCPL788J中文资料

VDD2 10
8 GND1
GND2 9
µC 0.1 µF
4.7 kΩ TO OTHER PHASE OUTPUTS A/D VREF
GND
Figure 1. Current Sensing Circuit.
Pin Descriptions
Symbol
Description
VIN+ Positive input voltage (± 200 mV recommended).
12345678
0.406 ± 0.10 (10.312 ± 0.254) 9°
0.345 ± 0.010 (8.986 ± 0.254)
ALL LEADS TO BE COPLANAR ± 0.002
Package Characteristics
Parameter
Symbol
Input-Output Momentary
INPUT
+
CURRENT RSHUNT
0.02 Ω
39 Ω .01 µF
0.1 µF
ISOLATED +5 V
0.1 µF
1 VIN+
HCPL-788J
GND2 16
2 VIN-
VDD2 15
3 CH
FAULT 14
4 CL
ABSVAL 13
5 VDD1
VOUT 12
6 VLED+
VREF 11
7 VDD1
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/ or degradation which may be induced by ESD.

FS2115B夸克微芯片规格书

FS2115B夸克微芯片规格书

F e a t u r e sFixed 5V ± 4% OutputVIN Range: 2.5V to 5VOutput Current: Up to 250mAConstant Frequency Operation at All Loads Low Noise Constant Frequency (400kHz) OperationAutomatic Soft-Start Reduces Inrush CurrentShutdown Current <1µAShort-Circuit ProtectionNo InductorsAvailable in Low Profile 6-Lead SOT23 PackageA p p l i c a t i o nWhite LED BacklightingLi-Ion Battery Backup SuppliesLocal 3V to 5V ConversionSmart Card ReadersPCMCIA Local 5V Supplies D e s c r i p t i o nThe FS2115B is a low noise, constant frequency (400kHz) switched capacitor voltage doubler. It produce a regulated output voltage from a 2.5V to 4.5V input with up to 250mA of output current. Low external parts count (one flying capacitor and two small bypass capacitors at VIN and VOUT) make the FS2115B ideally suited for small, battery-powered applications.A new charge-pump architecture maintains constant switching frequency to zero load and reduces both output and input ripple. The FS2115B have thermal shutdown capability and can survive a continuous short circuit from VOUT to GND. Built-in soft-start circuitry prevents excessive inrush current during start-up.High switching frequency enables the use of small ceramic capacitors. A low current shutdown feature disconnects the load from VIN and reduces quiescent current to <1uA.The FS2115B is available in the industry standard SOT-23-6 power packages.T y p i c a l A p p l i c a t i o n sFigure 1: Regulated 5V Output Figure 2: USB Port to Regulated 5V Power SupplyFigure 3: Lithium-Ion Battery to 5V White or Blue LED DriversP i n D e s c r i p t i o nPIN NUMBER SOT-23-6PIN NAME 1 VOUT 2 GND 3 EN 4 C- 5 VIN 6C+FS2115B夸克微原厂技术支持A b s o l u t e M a x i m u m R a t i n g s (Note 1)V IN ……………………………….…………………………….…….….…..….………- 0.3V to 6V V OUT ………………………………………………………………………………….….- 0.3V to 5.5V VOUT Short-circuit Duration.…………………………………………..….………………indefinite V EN ……………………………………………………...…………………….…...……- 0.3V to 6V IOUT (Note 2) …………………….................................………………………...................... 300mA Operating Temperature Range (Note 3)……………………………………………...……- 30℃ to 85℃ Lead Temperature (Soldering 10 sec.) ……………………………………..………………300℃ Storage Temperature Range ………………………………………………..…..- 65℃ to 125℃Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Based on long term current density limitations.Note 3: The FS2115B are guaranteed to meet performance speci fications from 0°C to 70°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.E l e c t r i c a l C h a r a c t e r i s t i c sThe specifications are at TA = 25 ℃. EN= V IN , C IN =C OUT =2.2uF unless otherwise noted. * EFFI = [(Output Voltage × Output Current) / (Input Voltage × Input Current)] × 100%PARAMETERC O ND I T I O N S MIN TYP MAX UNITS Input Voltage Range (V IN )2.55.5 V Output Voltage Range (V OUT ) 2.7V <V IN < 5.5V, I OUT < 65mA 4.7 5 5.2 VI SHDN Shutdown Current EN=0V,V OUT = 0V 0.3 µA No load input current I OUT = 0mA, V IN = 2.7V 0.65 mA Output current limit250 mA Output Ripple (VR) V IN = 2.7V , I OUT = 100mA 150 mVP-P EfficiencyV IN = 2.7V, I OUT =100mA 81 %Open-Loop Output Resistance R OL =(2V IN -V OUT )/I OUTV IN = 2.7V, I OUT = 100mA 4 Ω Switching Frequency ( f osc )400kHzFS2115B夸克微原厂技术支持FS2115B T y p i c a l P e r f o r m a n c e C h a r a c t e r i s t i c sVOUT Soft-Start Ramp (VIN=3V)P i n F u n c t i o n sVOUT (Pin 1): Regulated Output Voltage. VOUT should be bypassed with a low ESR ceramic capacitor providing at least 2µF of capacitance as close to the pin as possible for best performance.GND (Pin 2): Ground. These pins should be tied to a ground plane for best performance. The exposed pad must be soldered to PCB ground to provide electrical contact and optimum thermal performance. EN (Pin 3): Active Low Shutdown Input. This pin must not be allowed to float. C- (Pin 4): Flying Capacitor Negative Terminal.VIN (Pin 5): Input Supply Voltage. VIN should be bypassed with a 1µF to 4.7µF low impedance ceramic capacitor.C+ (Pin 6): Flying Capacitor Positive Terminal.FS2115BFS2115B A p p l i c a t i o n I n f o r m a t i o nOperationThe FS2115B use a switched capacitor charge pump to boost VIN to a regulated output voltage. Regulation is achieved by sensing the output voltage through an internal resistor divider and modulating the charge pump output current based on the error signal. A 2-phase nonoverlapping clock activates the charge pump switches. The flying capacitor is charged from VIN on the first phase of the clock. On the second phase of the clock it is stacked in series with VIN and connected to VOUT. This sequence of charging and discharging the flying capacitor continues at a free running frequency of 0.4MHz (typ).In shutdown mode all circuitry is turned off and the FS2115B draw only leakage current from the VIN supply. Furthermore, VOUT is disconnected from VIN. The EN pin is a CMOS input with a threshold voltage of approximately 0.8V. The FS2115B is in shutd own when a logic low is applied to the EN pin. Since the EN pin is a high impedance CMOS input it should never be allowed to float. To ensure that its state is defined it must always be driven with a valid logic level.Short-Circuit ProtectionThe FS2115B have built-in short-circuit current limitin g. During short-circuit conditions, they will automatically limit their output current to approximately 200mA.Soft-StartThe FS2115B have built-in soft-start circuitry to prevent excessive current flow at VIN during start-up. The soft-start time is preprogrammed to approximately 1ms, so the start-up current will be primarily dependent upon the output capacitor.VIN, VOUT Capacitor SelectionThe style and value of capacitors used with the FS2115B d etermine several important parameters suchas regulator control loop stability, output ripple, charge pump strength and minimum start-up time.To reduce noise and ripple, it is recommended that low ESR (< 0.1Ω) ceramic capacitors be used for both CIN and COUT. These capacitors should be 0.47uF or greater. Tantalum and aluminum capacitors are not recommended because of their high ESR.The value of COUT directly controls the amount of output ripple for a given load current. Increasing the size of COUT will reduce the output ripple at the expense of higher minimum turn on time and higher start-up current. The peak-to-peak output ripple is approximately given by the expression:Where f OSC is the FS2115B oscillator frequency (typically 0.4MHz) a nd COUT is the output charge storage capacitor.FS2115B Both the style and value of the output capacitor can significantly affect the stability of the FS2115B. The FS2115B use a linear control loop to adjust the stren gth of the charge pump to match the current required at the output. The error signal of this loop is stored directly on the output charge storage capacitor. The charge storage capacitor also serves to form the dominant pole for the control loop. To prevent ringing or instability on the FS2115B it is important for the output capacitor to maintain at least 0.47uF of capacitance over all conditions.Likewise excessive ESR on the output capacitor will tend to degrade the loop stability of theFS2115B Ceramic capacitors typically have exceptional ESR performance and combined with a tight board layout should yield very good stability and load transient performance.As the value of COUT controls the amount of output ripple, the value of CIN controls the amount of ripple present at the input pin (VIN). The input current to the FS2115B will be relatively constant while t he charge pump is on either the input charging phase or the output charging phase but will drop to zero during the clock nonoverlap times. Since the nonoverlap time is small (~25ns), these missing “notches” will result in only a small perturbation on the input power supply line. Note that a higher ESR capacitor such as tantalum will have higher input noise due to the input current change times the ESR. Therefore ceramic capacitors are again recommended for their exceptional ESR performance.Flying Capacitor SelectionWarning: A polarized capacitor such as tantalum or aluminum should never be used for the flying capacitor since its voltage can reverse upon start-up of the FS2115B. Low ESR ceramic capacitors should always be used for the flying capacitor.The flying capacitor controls the strength of the charge pump. In order to achieve the rated output current it is necessary to have at least 0.68uF of capacitance for the flying capacitor.For very light load applications the flying capacitor may be reduced to save space or cost. The theoretical minimum output resistance of a voltage doubling charge pump is given by:Where f OSC is the switching frequency (0.4Hz typ) and CFLY is the value of the flying capacitor. The charge pump will typically be weaker than the theoretical limit due to additional switch resistance, however for very light load applications the above expression can be used as a guideline in determininga starting capacitor value.Power EfficiencyThe power efficiency of the FS2115B is similar to that of a linear regulator with an effective input voltageof twice the actual input voltage. This occurs because the input current for a voltage doubling charge pump is approximately twice the output current. In an ideal regulating voltage doubler the power efficiency would be given by:FS2115BAt moderate to high output power the switching losses and quiescent current of the FS2115B are negligible and the expression above is valid. For example with VIN = 3V, IOUT = 50mA and VOUT =5V the measured efficiency is 80% which is in close agreement with the theoretical 83.3% calculation.Layout ConsiderationsDue to its high switching frequency and the high transient currents produced by the FS2115B, careful board layout is necessary. A true ground plane and short connections to all capacitors will improve performance and ensure proper regulation under all conditions. Figure 4 shows an example layout for the FS2115B.Figure 4: Recommended LayoutP a c k a g i n g I n f o r m a t i o nSOT-23-6 Package Outline DimensionDimensions In Millimeters Dimensions In Inches SymbolMin Max Min MaxA 1.050 1.250 0.041 0.049A1 0.000 0.100 0.000 0.004 A2 1.050 1.150 0.041 0.045b 0.300 0.500 0.012 0.020c 0.100 0.200 0.004 0.008D 2.820 3.020 0.111 0.119E 1.500 1.700 0.059 0.067E1 2.650 2.950 0.104 0.116e 0.950(BSC) 0.037(BSC)e1 1.800 2.000 0.071 0.079 L 0.300 0.600 0.012 0.024 θ0°8°0°8°FS2115B。

ADuC8XX系列常见问题解答

ADuC8XX系列常见问题解答

ADuC8XX系列常见问题解答问题:ADUC8XX系列的开发方法和开发工具是怎样的?答案:ADuC8xx的开发方法是非常简便的。

ADUC8XX系列提供了评估板套件,以帮助用户熟悉ADuC8xx的开发方法和开发环境。

以ADUC831为例,EVAL- ADUC831QSZ套件包括评估板一块,下载线,9V电源和相应的软件光盘。

评估版套件中的光盘中包含了开发中用到的所有的软件,数据手册,应用笔记,评估板原理图、例子代码等信息。

如果没有购买评估板的用户想要得到此光盘, 可以联系800-810-1742或者发email至china.support@索取。

下面根据光盘中提供的各种开发软件对开发方法做一介绍。

1.Aspire它是一个集成开发环境。

可以编辑、编译、仿真及在线调试基于汇编语言和C语言的程序。

如果要使用在线调试功能,需要使用ACCUTRON公司的ACE仿真器。

这个ACE仿真器与PC的接口是USB,与芯片的接口只需一个管脚,所以称为单管脚调试。

2.Keil它是一个集成开发环境。

它支持编辑、编译、软件仿真。

目前最新版本的Keil C51支持UART口直接硬件在线调试,而不需仿真器(ACE)。

用户可在Keil的网站下载最新版本的软件。

3.WSD它是下载程序的工具。

当用Aspire或Keil编译生成*.hex文件后,可以用此软件把程序从PC上下载到芯片中。

PC与芯片之间的连接是通过串口实现的。

在两种评估板套件中,都包含了串口下载线。

如果没有购买评估板套件,您也可以自己在市场上买一根串口线。

但是需要在您的电路板上加入一颗RS232电平转换芯片。

如果您已经有ACE 仿真器,也可以不用WSD,而用ACE直接下载。

4.DEBUGV2它是在线调试汇编语言的工具。

也是通过串口来实现的。

不需要任何仿真器。

5.WASP它是用来评估ADuC8xx产品内部ADC性能的软件。

它也是通过串口与芯片通信。

不需要任何仿真器。

如需更加详细的软件使用方法,请参看光盘中的文档8XXGetStartedvx.x.pdf。

LNK625DG;LNK623DG;LNK623PG;LNK625PG;LNK626PG;中文规格书,Datasheet资料

LNK625DG;LNK623DG;LNK623PG;LNK625PG;LNK626PG;中文规格书,Datasheet资料

LNK623-626LinkSwitch-CV Family September 2009Energy-Effi cient, Off-line Switcher with Accurate Primary-side Constant-Voltage (CV) Control®Output Power TableProduct 3230 VAC ±15%85-265 VAC Adapter 1Peak or Open Frame 2Adapter 1Peak or Open Frame 2LNK623PG/DG 6.5 W 9 W 5.0 W 6 W LNK624PG/DG 7 W 11 W 5.5 W 6.5 W LNK625PG/DG 8 W 13.5 W 6.5 W 8 W LNK626PG/DG10.5 W17 W8.5 W10 WTable 1. Output Power Table. Based on 5 V Output. Notes:1. Minimum continuous power in a typical non-ventilated enclosed adapter measured at +50 °C ambient.2. Maximum practical continuous power in an open frame design with adequate heatsinking, measured at 50 °C ambient (see Key Application Considerations section for more information).3. Packages: P: DIP-8C, D: SO-8C.Product HighlightsDramatically Simplifi es CV Converters• Eliminates optocoupler and all secondary CV control circuitry • Eliminates bias winding supply – IC is self biasingAdvanced Performance Features• Compensates for external component temperature variations • Very tight IC parameter tolerances using proprietary trimming technology• Continuous and/or discontinuous mode operation for design fl exibility• Frequency jittering greatly reduces EMI fi lter cost• Even tighter output tolerances achievable with external resistor selection/trimming Advanced Protection/Safety Features• Auto-restart protection reduces delivered power by >95% for output short circuit and all control loop faults (open and shorted components)• Hysteretic thermal shutdown – automatic recovery reduces power supply returns from the fi eld• Meets HV creepage requirements between Drain and all other pins, both on the PCB and at the package EcoSmart ® – Energy Effi cient• No-load consumption <200 mW at 230 VAC and down to below 70 mW with optional external bias • Easily meets all global energy effi ciency regulations with no added components• ON/OFF control provides constant effi ciency down to very light loads – ideal for mandatory EISA and ENERGY STAR 2.0 regulations• No primary or secondary current sense resistors – maximizes effi ciency Green Package• Halogen free and RoHS compliant packageApplications • DVD/STB • Adapters• Standby and auxiliary supplies• Home appliances, white goods and consumer electronics • Industrial controlsDescriptionThe LinkSwitch-CV dramatically simplifies low power, constant voltage (CV) converter design through a revolutionary control technique which eliminates the need for both an optocoupler and secondary CV control circuitry while providing very tight output voltage regulation. The combination of proprietary IC trimming and E-Shield™ transformer construction techniques enables Clampless™ designs with the LinkSwitch-CV LNK623/4.Figure 1. Typical Application Schematic (a) and Output Characteristic Envelope (b).*Optional with LNK623-624PG/DG. (see Key Application Considerations section forclamp and other external circuit design considerations).LinkSwitch-CV provides excellent cross-regulation for multiple-output flyback applications such as DVDs and STBs. A 700 V power MOSFET and ON/OFF control state machine, self-biasing, frequency jittering, cycle-by-cycle current limit, and hysteretic thermal shutdown circuitry are all incorporated onto one IC.Rev. E 09/09Pin Functional DescriptionDRAIN (D) Pin:This pin is the power MOSFET drain connection. It provides internal operating current for both start-up and steady-state operation.BYPASS (BP) Pin:This pin is the connection point for an external bypass capacitor for the internally generated 6 V supply.FEEDBACK (FB) Pin:During normal operation, switching of the power MOSFET is controlled by this pin. This pin senses the AC voltage on the bias winding. This control input regulates the output voltage based on the fl yback voltage of the bias winding.SOURCE (S) Pin:This pin is internally connected to the output MOSFET source for high voltage power and control circuit common returns.Figure 2 Functional Block Diagram.Figure 3. Pin Confi guration.Rev. E 09/09LinkSwitch-CV Functional DescriptionThe LinkSwitch-CV combines a high voltage power MOSFET switch with a power supply controller in one device. Similar to the LinkSwitch-LP and TinySwitch-III it uses ON/OFF control to regulate the output voltage. The LinkSwitch-CV controllerconsists of an oscillator, feedback (sense and logic) circuit, 6 V regulator, over-temperature protection, frequency jittering, current limit circuit, leading-edge blanking, and ON/OFF state machine for CV control.Constant Voltage (CV) OperationThe controller regulates the feedback pin voltage to remain at V FBth using an ON/OFF state-machine. The feedback pinvoltage is sampled 2.5 μs after the turn-off of the high voltage switch. At light loads the current limit is also reduced to decrease the transformer fl ux density. Auto-Restart and Open-Loop ProtectionIn the event of a fault condition such as an output short or an open loop condition the LinkSwitch-CV enters into an appropriate protection mode as described below.In the event the feedback pin voltage during the Flyback period falls below V FBth -0.3 V before the feedback pin sampling delay (~2.5 μs) for a duration in excess of 200 ms (auto-restart on-time (t AR-ON ) the converter enters into Auto-restart, wherein the power MOSFET is disabled for 2.5 seconds (~8% Auto-Restart duty cycle). The auto-restart alternately enables and disables the switching of the power MOSFET until the fault condition is removed.In addition to the conditions for auto-restart described above, if the sensed feedback pin current during the Forward period of the conduction cycle (switch “on” time) falls below 120 μA, theconverter annunciates this as an open-loop condition (topresistor in potential divider is open or missing) and reduces the Auto-restart time from 200 ms to approximately 6 clock cycles (90 μs), whilst keeping the disable period of 2.5 seconds. This effectively reduces the Auto-Restart duty cycle to less than 0.01%.Over-Temperature ProtectionThe thermal shutdown circuitry senses the die temperature. The threshold is set at 142 °C typical with a 60 °C hysteresis. When the die temperature rises above this threshold (142 °C) the power MOSFET is disabled and remains disabled until the die temperature falls by 60 °C, at which point the MOSFET is re-enabled.Current LimitThe current limit circuit senses the current in the power MOSFET. When this current exceeds the internal threshold(I LIMIT ), the power MOSFET is turned off for the remainder of that cycle. The leading edge blanking circuit inhibits the current limit comparator for a short time (t LEB ) after the power MOSFET is turned on. This leading edge blanking time has been set so that current spikes caused by capacitance and rectifi er reverse recovery time will not cause premature termination of the MOSFET conduction.6.0 V RegulatorThe 6 V regulator charges the bypass capacitor connected to the BYPASS pin to 6 V by drawing a current from the voltage on the DRAIN, whenever the MOSFET is off. The BYPASS pin is the internal supply voltage node. When the MOSFET is on, the device runs off of the energy stored in the bypass capacitor. Extremely low power consumption of the internal circuitry allows the LinkSwitch-CV to operate continuously from the current drawn from the DRAIN pin. A bypass capacitor value of 1 μF is suffi cient for both high frequency decoupling and energy storage.Rev. E 09/09Applications ExampleCircuit DescriptionThis circuit is confi gured as a three output, primary-side regulated fl yback power supply utilizing the LNK626PG. It can deliver 7 W continuously and 10 W peak (thermally limited) from an universal input voltage range (85 – 265 VAC). Effi ciency is >67% at 115 VAC/230 VAC and no-load input power is <140 mW at 230 VAC.Input FilterAC input power is rectifi ed by diodes D1 through D4. The rectifi ed DC is fi ltered by the bulk storage capacitors C1 and C2. Inductor L1, L2, C1 and C2 form a pi (π) fi lter, which attenuates conducted differential-mode EMI noise. This confi guration along with Power Integrations transformerE-shield ™ technology allow this design to meet EMI standard EN55022 class B with good margin without requiring aY capacitor. Fuse F1 provides protection against catastrophic failure. Negative temperature coeffi cient thermistor RT1 limits the inrush current when AC is fi rst applied to below themaximum rating of diodes D1 through D4. Metal oxide varistor RV1 clamps the AC input during differential line transients, protecting the input components and maintaining the peakdrain voltage of U1 below its 700 V BV DSS rating. For differential surge levels at or below 2 kV this component may be omitted.LNK626 PrimaryThe LNK626PG device (U1) incorporates the power switching device, oscillator, CV control engine, startup, and protectionfunctions. The integrated 700 V MOSFET provides a large drain voltage margin in universal input AC applications, increasing reliability and also reducing the output diode voltage stress by allowing a greater transformer turns ratio. The device can be completely self-powered from the BYPASS pin and decoupling capacitor C4. In this design a bias circuit (D6, C6 and R4) was added to reduce no load input power below 140 mW.The rectifi ed and fi ltered input voltage is applied to one side of the primary winding of T1. The other side of the transformer’s primary winding is driven by the integrated MOSFET in U1. The leakage inductance drain voltage spike is limited by the clamp circuit D5, R1, R2, C3 and VR1. The zener bleed clamparrangement was selected for lowest no-load input power but in applications where higher no-load input power is acceptable VR1 may be omitted and the value of R1 increased to form a standard RCD clamp.Output Rectifi cationThe secondaries of the transformer are rectifi ed by D7, D8 and D9. A Schottky barrier type was used for the main 5 V output for higher effi ciency. The +12 V and -22 V outputs use an ultrafast rectifi er diode. The main output is post fi ltered by L3 and C10 to remove switching frequency ripple. Resistors R7, R8 and R9 provide a preload to maintain the output voltages within their respective limits when unloaded. To reduce high frequency ringing and associated radiated EMI an RC snubber formed by R10 and C13 was added across D7.Figure 4. 7 W (10 W peak) Multiple Output Flyback Converter for DVD Applications with Primary Sensed Feedback.Rev. E 09/09Output RegulationThe LNK626 regulates the output using ON/OFF control, enabling or disabling switching cycles based on the sampled voltage on the FEEDBACK pin. The output voltage is sensed using a primary referenced winding on transformer T1 eliminating the need for an optocoupler and a secondary sense circuit. The resistor divider formed by R3 and R6 feeds the winding voltage into U1. Standard 1% resistor values were used to center the nominal output voltages. Resistor R5 and C5 reduce pulse grouping by creating an offset voltage that is proportional to the number of consecutive enabled switching cycles. Key Application ConsiderationsOutput Power TableThe data sheet maximum output power table (Table 1)represents the maximum practical continuous output power level that can be obtained in a Flyback converter under the following assumed conditions:1. The minimum DC input voltage is 100 V or higher at 90 VACinput. The value of the input capacitance should be large enough to meet these criteria for AC input designs.2. Secondary output of 5 V with a Schottky rectifi er diode.3. Assumed effi ciency of 80%.4. Continuous conduction mode operation (K P = 0.4).5. Refl ected Output Voltage (V OR ) of 110 V .6. The part is board mounted with SOURCE pins soldered to asuffi cient area of copper to keep the SOURCE pin tempera-ture at or below 110 °C for P package and 100 °C for D packaged devices.7. Ambient temperature of 50 °C for open frame designs andan internal enclosure temperature of 60 °C for adapter designs.Note: Higher output power are achievable if the effi ciency is higher than 80%, typically for high output voltage designs.Bypass Pin CapacitorA 1 μF Bypass pin capacitor (C4) is recommended. The capacitor voltage rating should be equal to or greater than 6.8 V. The capacitor’s dielectric material is not important. The capacitor must be physically located close to the LinkSwitch-CV BYPASS pin.Circuit board layoutLinkSwitch-CV is a highly integrated power supply solution that integrates on a single die, both the controller and the highvoltage MOSFET. The presence of high switching currents and voltages together with analog signals makes it especiallyimportant to follow good PCB design practice to ensure stable and trouble free operation of the power supply.When designing a board for the LinkSwitch-CV based power supply, it is important to follow the following guidelines:Single Point GroundingUse a single point (Kelvin) connection at the negative terminal of the input fi lter capacitor for the LinkSwitch-CV SOURCE pin and bias winding return. This improves surge capabilities by returning surge currents from the bias winding directly to the input fi lter capacitor. Bypass CapacitorThe BYPASS pin capacitor should be located as close as possible to the SOURCE and BYPASS pins.Feedback ResistorsPlace the feedback resistors directly at the FEEDBACK pin of the LinkSwitch-CV device. This minimizes noise coupling.Thermal ConsiderationsThe copper area connected to the source pins provide the LinkSwitch-CV heat sink. A rule of thumb estimate is that the LinkSwitch-CV will dissipate 10% of the output power. Provide enough copper area to keep the source pin temperature below 110° C to provide margin for part to part R DS(ON) variation.Secondary Loop AreaTo minimize leakage inductance and EMI, the area of the loop connecting the secondary winding, the output diode and the output fi lter capacitor should be minimized. In addition, suffi cient copper area should be provided at the anode and cathode terminal of the diode for heatsinking. A larger area is preferred at the quiet cathode terminal. A large anode area can increase high frequency radiated EMI.Electrostatic Discharge Spark GapIn chargers and adapters ESD discharges may be applied to the output of the supply. In these applications the addition of a spark gap is recommended. A trace is placed along theisolation barrier to form one electrode of a spark gap. The other electrode, on the secondary side, is formed by the output return node. The arrangement directs ESD energy from the secondary to the primary side AC input. A 10 mil gap is placed near the AC input. The gap decouples any noise picked up on the spark gap trace to the AC input. The trace from the AC input to the spark gap electrode should be spaced away from other traces to prevent unwanted arcing occurring and possible circuit damage.Rev. E 09/096Figure 5. PCB Layout Example.Figure 6. Schematic Representation of Recommended Layout Without External Bias.Figure 7. Schematic Representation of Recommended Layout WithExternal Bias.+-AC INPI-5269-122408Y1-Capacitor(optional)Isolation Barrier TransformerT1Output RectifiersPrimary SideSecondary SideR1JP1J1C1R3R4C12R10D9C11C13D7C9R9R8D816R7C8L3C10C2R2C3D1D3D5VR1D6C6R6R5C5C4D4RV1F1D2RT1L2L1J2Input Filter Capacitor Drain trace area miniminzed ClampComponentsCopper area maximized for heatsinkingDC OutputsESD spark gapBypass Capacitor close to device Feedback Resistors close to device10 mil gapU1SFB BP D S S S Output Filter CapacitorRev. E 09/09Figure 8. Schematic Representation of Electrical Impact of Improper Layout.Rev. E 09/09Drain ClampRecommended Clamp CircuitsComponents R1, R2, C3, VR1 and D5 in fi gure 4 comprise the clamp. This circuit is preferred when the primary leakage inductance is greater than 125 μH to reduce drain voltageovershoot or ringing present on the feedback winding. For best output regulation, the feedback voltage must settle to within 1% at 2.1 μs from the turn off of the primary MOSFET. This requires careful selection of the clamp circuit components. The voltage of VR1 is selected to be ~20% above the refl ected output voltage (V OR ). This is to clip any turn off spike on the drain but avoid conduction during the fl yback voltage interval when the output diode is conducting. The value of R1 should be the largest value that results in acceptable settling of the feedback pin voltage and peak drain voltage. Making R1 too large will increase the discharge time of C3 and degrade regulation. Resistor R2dampens the leakage inductance ring. The value must be large enough to dampen the ring in the required time but must not be too large to cause the drain voltage to exceed 680 V.If the primary leakage inductance is less than 125 μH, VR1 can be eliminated and the value of R1 increased. A value of 470 k Ω with an 820 pF capacitor is a recommended starting point. Verify that the peak drain voltage is less than 680 V under all line and load conditions. Verify the feedback winding settles to an acceptable limit for good line and load regulation.Effect of Fast (500 ns) versus Slow (2 μs) RecoveryDiodes in Clamp Circuit on Pulse Grouping and Output Ripple.A slow reverse recovery diode reduces the feedback voltage ringing. The amplitude of ringing with a fast diode represents 8% error in Figure 10.Figure 9. RCD Clamp, Low Power or Low Leakage Inductance Designs. RCD Clamp With Zener Bleed. High Power or High Leakage Inductance Designs.Figure 10. Effect of Clamp Diode on Feedback Pin Settling. Clamp Circuit (top). Feedback Pin Voltage (bottom).Black Trace: D C1 is a FR107 (fast type, trr = 500 ns)Gray Trace: D C1 is a 1N4007G (standard recovery, trr = 2 us)Rev. E 09/09Figure 11. Not Pulse Grouping (<5 Consecutive Switching Cycles).Pulse Grouping (>5 Consecutive Switching Cycles).Top Trace: Drain Waveform (200 V/div)Bottom Trace: Output Ripple Voltage (50 mV/div)Split Screen with Bottom Screen Zoom Top Trace: Drain Waveform (200 V/div)Bottom Trace: Output Ripple Voltage (50 mV/div)Clampless DesignsClampless designs rely solely on the drain node capacitance to limit the leakage inductance induced peak drain-to-sourcevoltage. Therefore the maximum AC input line voltage, the value of V OR , the leakage inductance energy, (a function of leakage inductance and peak primary current), and the primary winding capacitance determine the peak drain voltage. With no signifi -cant dissipative element present, as is the case with an external clamp, the longer duration of the leakage inductance ringing can increase EMI.The following requirements are recommended for a universal input or 230 VAC only Clampless design:1. Clampless designs should only be used for P O ≤5 W using aV OR of ≤90 V2. For designs with P O ≤5 W, a two-layer primary must be usedto ensure adequate primary intra-winding capacitance in the range of 25 pF to 50 pF . A bias winding must be added to the transformer using a standard recovery rectifi er diode(1N4003– 1N4007) to act as a clamp. This bias winding may also be used to externally power the device by connecting a resistor from the bias winding capacitor to the BYPASS pin. This inhibits the internal high-voltage current source, reducing device dissipation and no-load consumption.3. For designs with P O >5 W, Clampless designs are not practicaland an external RCD or Zener clamp should be used.4. Ensure that worst-case, high line, peak drain voltage is belowthe BV DSS specifi cation of the internal MOSFET and ideally ≤650 V to allow margin for design variation.V OR (Refl ected Output Voltage), is the secondary output plus output diode forward voltage drop that is refl ected to the primary via the turns ratio of the transformer during the diode conduction time. The V OR adds to the DC bus voltage and the leakage spike to determine the peak drain voltage.Pulse GroupingPulse grouping is defi ned as 6 or more consecutive pulses followed by two or more timing state changes. The effect of pulse grouping is increased output voltage ripple. This isshown on the right of Figure 11 where pulse grouping has caused an increase in the output ripple.To eliminate group pulsing verify that the feedback signal settles within 2.1 μs from the turn off of the internal MOSFET. A Zener diode in the clamp circuit may be needed to achieve the desired settling time. If the settling time is satisfactory, then a RC network across R LOWER (R6) of the feedback resistors is necessary.The value of R (R5 in the Figure 12) should be an order of magnitude greater than R LOWER and selected such that R×C = 32 μs where C is C5 in Figure 12.Quick Design ChecklistAs with any power supply design, all LinkSwitch-CV designs should be verifi ed on the bench to make sure that component specifi cations are not exceeded under worst-case conditions.Figure 12. RC Network Across R BOTTOM (R6) to Reduce Pulse Grouping.Rev. E 09/09The following minimum set of tests is strongly recommended:1. Maximum drain voltage – Verify that peak V DS does not exceed680 V at highest input voltage and maximum output power. 2. Maximum drain current – At maximum ambient temperature,maximum input voltage and maximum output load, verify drain current waveforms at start-up for any signs of trans-former saturation and excessive leading edge current spikes. LinkSwitch-CV has a leading edge blanking time of 215 ns to prevent premature termination of the ON-cycle. Verify that the leading edge current spike is below the allowed current limit envelope for the drain current waveform at the end of the 215 ns blanking period.3. Thermal check – At maximum output power, both minimumand maximum input voltage and maximum ambient tempera-ture; verify that temperature specifi cations are not exceeded for LinkSwitch-CV , transformer, output diodes and output capacitors. Enough thermal margin should be allowed for the part-to-part variation of the R DS(ON) of LinkSwitch-CV , as specifi ed in the data sheet. It is recommended that the maximum source pin temperature does not exceed 110 °C.Design ToolsUp-to-date information on design tools can be found at the Power Integrations web site: 分销商库存信息:POWER-INTEGRATIONSLNK625DG LNK623DG LNK623PG LNK625PG LNK626PG LNK624DG LNK623DG-TL LNK624DG-TL LNK624PG LNK625DG-TL LNK626DG-TL LNK626DG RDK-201。

XN297L_Datasheet_V4p3

XN297L_Datasheet_V4p3

XN297L Datasheet Single Chip 2.4GHz TransceiverFEATURES●Low Power16mA TX at 0dBm output power15mA RX at 2Mbps air data rate2uA in power down●Low Cost BOMFew external componentsFour Capacitors, One crystaloscillator●High PerformanceExcellent Receiver sensitivity-85dBm@2Mbps-88dBm@1Mbps-93dBm@250KbpsProgrammable Output Power Up to 13dBm APPLICATIONS●TV and STB remote controls ●Wireless M ouse and keyboard ●Toys and wireless audio●Wireless gamepads●Active RFID●Smart home automationGENERAL DESCRIPTIONThe XN297L is a single chip 2.4GHz transceiver , designed for operation in the world wide ISM frequency band at 2.400~2.483GHz. The XN297L integrates radio frequency (RF) transmitter and receiver, frequency synthesizer, crystal oscillator, baseband GFSK modem, and so on. The XN297L supports one to multiple network and communication with ACK. TX power, frequency channel, and data rate can be1 Electrical characteristics Table1 XN297L Electrical characteristicsreceiver sensitivity degrades about 2dB; and modulation quality of the emission signal (EVM) falls by 10%.* Note: In 250KBps mode, it should not be more than 16 bytes of payload length, because of frequency drift in open-loop transmition.2 Absolute maximum ratingsTable 2 XN297L absolute maximum ratings* Note: Exceeding one or more of the limiting values may cause permanent damage to XN297L.* Caution: Electrostatic sensitive device, comply with protection rules when operating.3 Block diagramMISO MOSI CSN SCKIRQ CEANTX C 1X C 2V S S V D DFigure 1 XN297L block diagram4 Pin definitionCE CSNSCK MOSI MISO I R QV D DV S SX IX ONCNC ANT NCVDD S SN CN C N C N CFigure2 XN297L pin definitionTable 3 Pin function5 Operational ModesThis chapter describes XN297L all kinds of working mode, and is used to control the chip into the working mode of method. XN297L own state machine is controlled by chip internal registers configuration values and external signal pin. 5.1 State diagramSix kinds of working mode in table 4 gives the corresponding mode of control register and FIFO registers.Table 4 Control BIT and function description5.2 State diagramFigure 3 is XN297L working state diagram, said six working mode between jump XN297L in VDD is greater than 2.2 V to begin to work properly into sleep mode, the MCU can be sent via SPI configuration commands and CE pin into the other five state.STB2->STB3: 10usFigure3 state diagram5.3 IRQ PINIn the status register TX_DS RX_DR or MAX_RT is 1, report and the corresponding interrupt enable bit is 0, IRQ pins interrupt trigger. The MCU writes 1 to the corresponding interrupt source, clear the interrupt. IRQ pins interrupt trigger can be blocked or enabled, report by setting the interrupt enable bit is 1, ban IRQ pins interrupt triggered.6 DATA FIFOFigure 4 FIFO block diagramThe XN297L contains TX FIFO, RX FIFO. It is sent via SPI read/write command. It writes TX FIFO in TX mode by W_TX_PAYLOAD and W_TX_NO_ACK instructions. If MAX_RT interruption, data will be cleared in the TX FIFO. It reads PAYLOAD in RX FIFO in receiving mode by R_RX_PAYLOAD, and it reads the length of the PAYLOAD by R_RX_PL_WID instruction. FIFO_STATUS register indicates FIFO states.7 SPI CONTROLThe XN297L is controlled by SPI port for read and write register, and command. The XN297L is a slave terminal, SPI transfer rate depends on the MCU interface speed, and the maximum data transfer rate is 8 MBps.SPI interface is a standard SPI interface are shown in table 5, you can use the general I/O for MCU simulation SPI interface. CSN pin to 0, SPI interface instructions to be performed. From 1 to 0 a CSN pin changes execute one instruction. After the change from 1 to 0 CSN pin can be read by MISO status register contents.Table 5 SPI port7.1 SPI CommandsTable 6 SPI command format<Command word: MSBit to LSBit (one byte)><Data bytes: LSByte to MSByte, MSBit in each byte first>The R_REGISTER and W_REGISTER commands can operate on single or multi-byte registers. When accessing multi-byte registers, first read or write theMSBit of LSByte. Terminate the writing before all bytes in a multi-byte register are written, then it leaves the unwritten MSByte(s) unchanged. For example, the LSByte of RX_ADDR_P0 can be modified by writing only one byte to the RX_ADDR_P0 register.7.2 SPI TimingCSNSCK MOSIMISOFigure 5 SPI read operationCSNSCKMOSIMISOFigure 6 SPI write operationCSNSCKMOSIMISOFigure 7 SPI NOP timing diagram8 Packet format description8.1 Packet format for normal BurstTable 7 Packet format for normal burstconfiguration bits.8.2 Packet format for Enhanced Burst Table 8 Packet format for enhanced burstaccording to scrambler configuration bits.8.3 Packet format for Enhanced Burst ACK Table 9 Packet format for enhanced burst ackscrambler configuration bits.9 Application exampleFigure 8 XN297L application *Note 1: NC pin can be floating.*Note 2: the external components10 Package sizeFigure 9 QFN20L 0303 package size。

MORNSUN B05_XT-2WR3 Series DC DC Converter Datashe

MORNSUN B05_XT-2WR3 Series DC DC Converter Datashe

2W isolated DC-DC converterFixed input voltage,unregulated single outputPatent Protection RoHSFEATURES●Continuous short-circuit protection ●No-load input current as low as 8mA●Operating ambient temperature range:-40℃to+105℃●High efficiency up to 86%●Compact SMD package●I/O isolation test voltage 1.5k VDC●Industry standard pin-outB05_XT-2WR3series are designed for use in distributed power supply systems and especially suitable in applications such as pure digital circuits,low frequency analog circuits,relay-driven circuits and data switching circuits.Selection GuideCertificationPart No.Input Voltage (VDC)OutputFull Load Efficiency (%)Min./Typ.Capacitive Load(µF)Max.Nominal (Range)Voltage (VDC)Current(mA)Max./Min.--B0503XT-2WR35(4.5-5.5) 3.3400/4074/782400B0505XT-2WR35400/4080/842400B05X7XT-2WR37286/2980/841000B0509XT-2WR39222/2281/851000B0512XT-2WR312167/1781/85560B0515XT-2WR315133/1382/86560B0524XT-2WR32483/882/86220Input SpecificationsItemOperating ConditionsMin.Typ.Max.UnitInput Current(full load /no-load)5VDC input3.3VDC output--339/8357/--mA5VDC/7VDC output --477/8500/--9VDC/12VDC output --471/8494/--15VDC/24VDC output--466/8488/--Reflected Ripple Current*--15--Surge Voltage (1sec.max.)-0.7--9VDCInput Filter Capacitance filter Hot PlugUnavailableNote:*Reflected ripple current testing method please refer to DC-DC Converter Application Note for specific operation.Output SpecificationsItemOperating ConditionsMin.Typ.Max.UnitVoltage AccuracySee output regulation curve (Fig.1)Linear RegulationInput voltage change:±1%3.3VDC output----±1.5--5VDC/7VDC/9VDC/12V DC/15VDC/24VDC output ----±1.2Load Regulation10%-100%load3.3VDC output --1020%5VDC/7VDC output--9159VDC output--81012VDC/15VDC output --71024VDC output--610Ripple &Noise*20MHz bandwidth --75200mVp-p Temperature Coefficient Full load--±0.02--%/℃Short-circuit ProtectionContinuous,self-recoveryNote:*The“parallel cable”method is used for ripple and noise test,please refer to DC-DC Converter Application Notes for specific information. General SpecificationsItem Operating Conditions Min.Typ.Max.UnitIsolation Input-output electric strength test for1minute with aleakage current of1mA max.1500----VDC Insulation Resistance Input-output resistance at500VDC1000----MΩIsolation Capacitance Input-output capacitance at100kHz/0.1V--20--pFOperating Temperature Derating when operating temperature≥85℃,(seeFig.2)-40--105℃Storage Temperature-55--125Case Temperature Rise Ta=25℃--25--Storage Humidity Non-condensing5--95%RHReflow Soldering Temperature*Peak temp.Tc≤245℃,maximum durationtime≤60s over217℃Vibration10-150Hz,5G,0.75mm.along X,Y and Z Switching Frequency Full load,nominal input voltage--220--kHz MTBF MIL-HDBK-217F@25℃3500----k hours Moisture Sensitivity Level(MSL)IPC/JEDEC J-STD-020D.1Level1Note:*See also IPC/JEDEC J-STD-020D.1.Mechanical SpecificationsCase Material Black plastic;flame-retardant and heat-resistant(UL94V-0)Dimensions13.20x11.40x7.25mmWeight 1.4g(Typ.)Cooling Method Free air convectionElectromagnetic Compatibility(EMC)Emissions CE CISPR32/EN55032CLASS B(see Fig.4for recommended circuit) RE CISPR32/EN55032CLASS B(see Fig.4for recommended circuit)Immunity ESD IEC/EN61000-4-2Air±8kV,Contact±6kV perf.Criteria B Typical Characteristic Curves3.3VDC output5VDC/7VDC/9VDC/12VDC/15VDC/24VDC outputFig.1Design Reference1.Typical applicationInput and/or output ripple can be further reduced,by connecting a filter capacitor from the input and/or output terminals to ground as shown in Fig.3.Choosing suitable filter capacitor values is very important for a smooth operation of the modules,particularly to avoid start-up problems caused by capacitor values that are too high.For recommended input and output capacitor values refer to Table 1.Vin0VDCCinDC CoutFig.3Table 1:Recommended input and output capacitor valuesVin Cin Vo Cout5VDC 4.7µF/16V3.3VDC/5VDC 10µF/16V ----7VDC/9VDC4.7µF/16V ----12VDC 2.2µF/25V ----15VDC 1µF/25V ----24VDC0.47µF/50V2.EMC compliance circuitFig.4EmissionsC1,C24.7µF /16VC3Refer to the Cout in Fig.3CY 270pF/2kV LDM6.8µH3.For additional information,please refer to DC-DC converter application notes on80O u t p u t P o w e r P e r c e n t (%)Ambient Temp.()℃Temperature Derating CurveSafe Operating AreaFig.2Dimensions and Recommended Layout Tape and Reel InfoNotes:1.For additional information on Product Packaging please refer to .Tube Packaging bag number:58210024,RollPackaging bag number:58200054;2.If the product is not operated within the required load range,the product performance cannot be guaranteed to comply with allparameters in the datasheet;3.The maximum capacitive load offered were tested at input voltage range and full load;4.Unless otherwise specified,parameters in this datasheet were measured under the conditions of Ta=25℃,humidity<75%RH with nominalinput voltage and rated output load;5.All index testing methods in this datasheet are based on our company corporate standards;6.We can provide product customization service,please contact our technicians directly for specific information;7.Products are related to laws and regulations:see"Features"and"EMC";8.Our products shall be classified according to ISO14001and related environmental laws and regulations,and shall be handled byqualified units.MORNSUN Guangzhou Science&Technology Co.,Ltd.Address:No.5,Kehui St.1,Kehui Development Center,Science Ave.,Guangzhou Science City,Huangpu District,Guangzhou,P.R.China Tel:86-20-38601850Fax:86-20-38601272E-mail:***************。

射频中的“Bypass”与“Decoupling”

射频中的“Bypass”与“Decoupling”

射频中的“Bypass”与“Decoupling”射频电路工作频率高,与数字、模拟电路相比,射频电路非理想特性众多,寄生效应复杂。

实际应用中,需要对射频信号串扰、不同器件间隔离等做良好处理,稍有不慎,便会出现干扰、震荡等问题。

在射频电路的测试中,实测结果与仿真结果不一致是家常便饭,实测被仿真完美预测的情况寥寥无几。

“旁路(Bypass)”与“去耦(Decoupling)”处理不好是造成射频实测异常的重要原因之一。

虽然对于这两个问题在设计时有一些经验可循,但如果对问题成因理解不深,很有可能造成问题无法本质解决,严重时还会引起其他更严重的后果。

而且“Bypass”和“Decoupling”很多时候结构类似,很多人也将“Bypass电容”与“Decoupling电容”用做同义词,不过二者的使用目的和设计考虑是不同的。

本文尝试对“Bypass”和“Decoupling”的概念做一个讨论,理解二者设计的基本理念,同时给出二者设计时注意的要点。

一、Bypass”与'Decoupling'的定义图:Bypass与Decoupling Bypass Bypass(旁路)是指为射频信号提供一个低阻通路(通常使用电容,如上图中的),使射频信号沿此低阻通路流动,减少射频信号向其他高阻路径的流动。

Decoupling目的是将共用连接线上的不同电路做隔离,一般由低通网络构成。

隔离的目标是不让电路间的噪声互相传播干扰。

在上图中Decoupling电路设计中,Bypass电容和Decoupling电路、共同完成Decoupling,这种设计方法在射频电路实现中经常使用。

以下将对Bypass和Decoupling电路做详细讨论。

二、Bypass电路理想情况下,电压源提供低阻阻抗,但实际应用并非如此。

电压源的阻抗随着频率的升高而升高;另外由于电源走线的寄生电感效应,以及电源上连接其他器件的寄生效应,射频芯片端口的射频阻抗已经不再保证是低阻,这个时候,就需要用Bypass电容来提供低阻路径。

KCXP用户应用编程指南

KCXP用户应用编程指南

·strVersion
表示 KCXP_GMO 结构体的版本号,其值为“1.0.0.0”;
·Options
该字段主要用来控制 KCXP_Get 函数的行为,也就是说,怎样读取消 息,它又可以分为以下 3 种选项来进行组合,但是每种选项内又会有不 同的值,它们是互相排斥的:
·Wait Option: 1. KCXP_GMO_WAIT: 等待方式读取消息,其相关联的值有 WaitInterval 字段,它表 示等待的时延,其单位是秒; 2. KCXP_GMO_NO_WAIT: 非等待方式读取消息,这时的 WaitInterval 字段就不起作用; 3. KCXP_GMO_FAIL_IF_QUIESCING: 这个值比较特殊,它可以跟其他任何值进行组合,因为它是用来
文档信息
项目名称 标题 类别 子类别 摘要 当前版本 日期 作者 文档拥有者 送交人员 文件
版本号 1.0 2.0 2.0
金证通讯交换平台(Kingdom Communication eXchange Platform) 《KCXP API》编程指南
V2.0 2003.03 郑一、王鑫、田雪、黄文光
的一个输入/输出参数,在程序中声明其变量时赋初值为
KCXP_DEFAULT_GMO,可以根据不同的需要进行修改其某些字段的值,那
么取得的消息可能也不尽相同。
ቤተ መጻሕፍቲ ባይዱ
·strStrucId
标识 KCXP_GMO 结构体,其值为“GMObbbb”(b 表示一个空格); 特特别别申申明明::假如有应用程序要使用该字段,请务必使用内存操作函数(例 如 memcpy、memcmp 等)而不要使用字符串操作函数(例如 strcpy、strcmp 等);
项目管理类文档

反射大师脱壳原理

反射大师脱壳原理

反射大师脱壳原理引言:反射大师是一种常用的软件脱壳工具,它可以帮助用户将加密或保护的软件进行解密,使其恢复成原始状态。

本文将介绍反射大师脱壳的原理和相关技术。

一、脱壳概述脱壳是指将被加壳的软件还原成原始的可执行文件的过程。

加壳是为了保护软件的安全性,但有时也会给软件分析和破解带来困难。

反射大师作为一种优秀的脱壳工具,能够解决这个问题。

二、反射大师的工作原理1. 反汇编反射大师首先会对被加壳的软件进行反汇编,将其转化为汇编代码。

通过反汇编,可以获取软件的所有指令和数据。

2. 动态调试反射大师使用动态调试技术,通过在软件运行时对其进行调试和监控。

这样可以追踪软件的执行过程,了解其运行时的状态和数据。

3. 寻找解密函数在动态调试过程中,反射大师会寻找解密函数。

解密函数是加壳软件中负责解密的核心部分,通过它可以还原加密的数据和代码。

4. 内存分析反射大师会对软件的内存进行分析,识别出被加密的数据和代码。

通过读取内存中的数据,可以还原被加密的部分。

5. 反向工程反射大师会将解密函数进行反向工程,还原出其源代码。

通过分析解密函数的逻辑和算法,可以了解加壳软件的加密方式。

6. 数据还原根据解密函数的源代码和加密方式,反射大师可以将被加密的数据还原成原始数据。

这样就实现了脱壳的目标。

三、反射大师的应用领域反射大师在软件安全领域有着广泛的应用。

它可以帮助安全研究人员分析和破解加壳软件,发现其中的漏洞和安全隐患。

同时,它也可以用于软件逆向工程,帮助开发人员理解和优化加壳软件的性能和安全性。

四、反射大师的优势和局限性1. 优势反射大师是一种功能强大的脱壳工具,具有以下优势:- 可以对多种加壳软件进行脱壳;- 支持动态调试和内存分析,可以实时监控软件的运行状态;- 可以还原加密的数据和代码,方便后续的分析和研究。

2. 局限性反射大师也存在一些局限性:- 无法脱壳一些特殊的加壳软件,特别是使用硬件加密芯片的软件; - 对于使用多层加壳的软件,可能需要多次分析和脱壳才能还原全部数据;- 在某些情况下,脱壳过程可能会破坏软件的完整性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Yet More On Decoupling...Kendall Castor-Perry A collection of articles first publishedin 2008, reproduced with kindpermission of the author.Yet More On Decoupling, Part 1: The Regulator’s Interaction with capacitors Kendall Castor-PerryIn “Know the sometimes-surprising interactions in modelling a capacitor-bypass network” (/showArticle.jhtml?articleID=202402836, abbreviated to “Know the...” when referred to here), Tamara Schmitz of Intersil and I provided some simulation background behind the interaction between multiple decoupling capacitors used in parallel. The series inductances inherent in the capacitors cause several resonant peaks and dips in the impedance response, sometimes at frequencies that might be critical for circuit operation. We advised that, if you intend to use decoupling capacitors of different values in parallel (there’s almost always more than one capacitor attached to the power rail), you’d better be sure that the location of the resonant peak won’t cause trouble in your circuit. But we didn’t say what kind of trouble that might be.So this series of articles is an attempt to quantify what’s happening on the supply line of a representative analog circuit with regulated supply rails and decoupling capacitors. We’ll do this entirely in simulation – mainly to show that this is both possible and revealing – and the path to interesting results will prove a somewhat bumpy one. Over the course of the six articles we will:•look at the overall supply impedance seen by a component when we include the decoupling caps, the voltage regulator and the board traces providing thecomponent’s power. In passing, we’ll discover just how supply voltageaffects the value of some ceramic capacitors;•see how such an impedance responds with a characteristic voltage transient when you ‘ping’ it with a small test current step such as an IC might demandfrom the power rail. Choice of capacitor dielectric turns out to have asignificant effect;•see how these supply variations punch through to the output of an op-amp running on these supplies;•discover that many op-amp simulation models, used for this purpose, are so inaccurate that they can produce seriously misleading and even physicallyimpossible results;•run a signal through the attached op-amp, drive a load, and see how the actual load current interacts with the modelled supply, and how this affects theamplifier output;•see that simulations provide an objective approach to selecting decoupling capacitors in order to alleviate a previously poorly documented effect on theprecision of op-amp circuits. And discover another way in which many op-amp simulation models are so inaccurate they are useless for this work! Paralleled decoupling capacitors – the story so farIf you didn’t catch them first time round, why not first review the article linked to above. The graphs in that article show the dramatic impedance excursions possible withparalleled decoupling capacitors of different values. A valid criticism of these plots is that they just refer to the capacitance that the device sees. They don’t include the impedance actually already present on the power supply rail, determined by the voltage regulator (which usually also has its own output capacitor), and the tracks or power planes that connect them all up. They don’t reflect any loss mechanisms that might lessen the severity of these effects. First step, therefore, is to rectify these omissions. Now, instead of just looking at just the theoretical impedance of the decoupling capacitors themselves, we’ll connect up a ‘real’ regulator IC to ‘real’ capacitors and connect all of this to a ‘real’ amplifier which is handling a ‘real’ signal. All in our virtual world, of course.For all the simulation work in these articles I’ve used SwitcherCad 3, which uses their LTspice simulation engine, and is available free from the Linear Technology website (/designtools/software/switchercad.jsp). If anyone is interested in experimenting further with the material presented here, I’ll be uploading the test files to the LTSpice Users Group (/group/LTspice/), so that you can reproduce this work and adapt the fixtures to your own needs. I had loaded SwitcherCad up as part of another project to fearlessly evaluate, on your behalf, some of the free software out there for circuit simulation, and for filter design (something close to my heart). The LTspice engine seems to be admirably robust, accurate and speedy, and SwitcherCad comes with a large library of Linear Technology op-amps, regulators and other devices, which I used here as typical of the parts that would be used on a quality, precision analog design.After some browsing through the SwitcherCad library I chose the LT1761-5 and LT1964-5 as the +5V and -5V regulators for the dual supplies on this virtual project, on the assumption that it will be handling bipolar analog signals. These are low-dropout regulators (LDOs); this type of regulator is commonly used for local regulation of power on analog subsystems.The regulator’s output capacitorThe LT data sheets indicates that output capacitors with low ESR value can be used with these parts, which is not always the case with low dropout regulators. The regulators were each operated with a 2.2uF output capacitor, and the common choices for that part would be a ceramic or a tantalum device. On cost grounds, my initial choice was a ceramic component, and additional help on capacitor parameters was taken from the program SpiCap3 which can be downloaded for free from AVX’s website(/SpiApps/default.asp).SpiCap3 provides an LCR capacitor model for any AVX ceramic capacitor, given operating conditions such as temperature and voltage, which change the capacitance of high value ceramic caps in a big way. The program was used to check parasitic inductance and ESR, and it provided some eye-opening insight into voltage dependency.I initially chose Y5V dielectric for the 2.2uF ceramic alternative, on the basis that temperature and voltage performance weren’t likely to be significant, while small sizeand low cost was. But when you dial in the voltage across the capacitor you find that at 31% of rated voltage – 5V used on a 16V part – the capacitance is down to one quarter of the rated value! In other words, my chosen Y5V 2.2uF part was only a 0.55uF capacitor. Note that while 2.2uF is above the specified minimum output capacitor value for these regulators, 0.55uF is below it, so you’d be violating LT’s guidelines without realising it. Note to AVX: why not make setting working voltage easier to do in the program? Each time you change the rated voltage you have to reset the percent of rated voltage slider, why not have the user enter an operating voltage and get the program to scale it?As designers, we all know that voltage dependency in high-k ceramics is an issue. But when the information is right there in front of you, it becomes much more real, and a huge red flag for all users of high value ceramic capacitors. The final ceramic choice was a 16V 1206 part with ESR of 8 milliohms, and an X5R dielectric to ensure that the actual value under 5V bias is 2.1uF, pretty close to nominal. Another note to AVX: how about having the program tell you the part number of the component you just selected? Getting on trackPrinted board construction varies greatly, and this affects the impedance of the power supply connections at low and high frequencies. I couldn’t find comprehensive models for typical printed circuit traces and started out with standard microstrip models, using the formulas in /pcbtlc2/microstrip.html to estimate inductance and capacitance (the latter is entirely negligible here), and straightforward physics to get the resistance. Nevertheless, a referee of an early draft of this paper felt sure that some acknowledgement of skin depth loss in the PCB traces would be needed, to produce simulations which better reflected physical reality. Accordingly, I adapted some published work on the losses that skin effect introduces into high speed cables.The specific dimension I’ve taken for my copper power trace is: length 50mm (one-tenth of a wavelength long at 600MHz, I’m only planning on analyzing up to 100MHz), width 1.27mm, thickness 35um (1oz copper, though sometimes inner layers are thinner than this), on a 4-layer board with the ground plane on an adjacent layer.only ground this morningWhatever you like to call it – ground, GND, 0V, Vdd, common – this connection causes just as much trouble in simulation as it does in the real world. Ironically, it’s because the ground net in SPICE is perfect, ubiquitous and available anywhere in your circuit at a mouse-click that it yields physically unrealistic results. The makers’ device models also have a rather unhealthy relationship with GND, as we’ll see. As far as the project layout goes, I’ve referred all the inductance impeding the flow of supply current to the supply connections – it’s the total voltage variation at the amplifier under test that I’ll be interested in, and I won’t be asking tough questions about ground voltage variation across my ‘circuit board’.Before we actually fit an amplifier, we’ll just look at the decoupling. We’ll consider a single capacitor per rail (this is in addition to the output capacitor of the regulator), and step its value from 22nF to 470nF, a pretty common spread for single decouplingcapacitors. The SpiCap3 program gave ESR values for each cap choice once I’d decided size and voltage (X7R dielectric used in all cases), but the spread was not that dramatic so an average value of 33milliohms was used. Another parameter I’ve made constant is the parasitic inductance of the capacitor. This is determined by capacitor body size and mounting details, as discussed in “Know the...”. As the capacitor value gets larger, the chosen size of the capacitor rises from 0402 to 0603; for simplicity I have included aconstant 0.7nH for the parasitic inductance and have ignored the ~0.2nH difference you’d get between the two case sizes. This doesn’t have significant effect on the results here.All together now...Figure 1.1 shows the test circuit so far: regulators with their ceramic output capacitors, with 20mA of (constant) load current taken out of them; power supply traces with some skin effect modelling, and a capacitor which we’ll be using as a decoupling device for some subsequent electronics. Figure 1.2 is a busy graph showing various impedances calculated as the AC voltage response on the supply rail divided by the value of the test current source, plotted in dB referred to 1 Ohm. Because the test current has a value of 1, just plotting the voltage also gives the impedance. Don’t worry, this is a linear, level-independent analysis, it doesn’t mean I’m using a test current of 1 Amp!100Hz1KHz 10KHz 100KHz 1MHz 10MHz 100MHz-30dB-20dB -10dB 0dB 10dB 20dB 30dB 40dB50dB 60dB 70dB 80dB 90dB100dBV(n012)/i(r4)V(n006)/i(c7)V(n006)Figure 1.1(L):basic supply impedance test circuit, see text Figure 1.2(R): basic supply impedance test results, see textThere’s a lot going on here. The red traces show the change in impedance of the decoupling capacitor as it is swept; no surprises there. As the value falls, the mow frequency impedance rises, as does the notch frequency where it’s resonating with its self-inductance. At very high frequencies the impedance is rising and isn’t dependent on capacitor value.The blue trace, shown just for the negative rail, is the apparent impedance of everything else connected to the decoupling capacitor. At very low frequencies the impedance is low, as you’d expect for a regulator. As the frequency increases, the impedance rises – why, we’ll come to in a moment. Then above about 10kHz it starts to fall again, and it reaches a minimum just below 1MHz. This is the frequency at which the regulator’soutput capacitor resonates with the layout inductance. After that the impedance rises – we are just seeing the impedance of the power trace.The green traces show the combined effect, shown this time for the +ve rail, primarily to illustrate that the ‘bump at 10kHz is there as well, and it has a pretty similar shape. As expected from “Know the...” there’s now an impedance peak in between the notches; its height (i.e. the ‘Q’ of the resonance) and frequency increase as the decoupling capacitor value is reduced. Shortly we’ll start to look at what happens when some current is demanded from this strange, peaky impedance.But what about the impedance bump around 10kHz – what component is causing this resonance – looks like it must be a very large inductor? Well, it’s the regulator itself , and here’s why. An LDO’s output stage is basically a buffer amplifier with high-ish output impedance and feedback around it to bring that down. The internal amplifier has only moderate bandwidth and approximates an integrator, as indeed the vast majority of op-amps do (hold that thought for the next part). This helps the regulator to be stable with a variety of reactive loads. So the effectiveness of the feedback in reducing the output impedance lessens at higher frequencies, and so the output impedance rises with increasing frequency. The regulator thus acquires an inductive output impedance.Feeling a little ‘peaky’The ‘bump’ at 10kHz is the result of this inductive output impedance resonating with the 2.2uF output capacitor. And it changes with the load current; figure 1.3 shows a load current sweep from 1mA to 50mA. At lower currents the height of the impedance peak can rise dramatically. Some LDO regulator data sheets do tell you this in the graphical small print at the back, but often don’t dwell on the consequences. We can also see that the two regulators don’t behave in the same way as current is changed. Green trace is the composite for the decoupled +ve rail; both rails look the same at high frequencies. Blue trace is the –ve regulator and traces at low frequencies, and represents either regulator at higher frequencies. In the figures, the decoupling capacitor is held at 100nF (red trace).100Hz1KHz 10KHz 100KHz 1MHz 10MHz 100MHz -40dB-30dB -20dB -10dB 0dB 10dB 20dB 30dB 40dB 50dB 60dB 70dB 80dB 90dB V(n012)/i(r4)V(n006)/i(c7)V(n006)100Hz1KHz 10KHz 100KHz 1MHz 10MHz 100MHz-40dB-30dB -20dB -10dB 0dB 10dB 20dB 30dB 40dB 50dB 60dB 70dB 80dB 90dB V(n006)/i(r1)V(n006)/i(c7)V(n016)Figure 1.3(L): variation of theregulator’s effective inductance with load current Figure 1.4(R): as figure 1.3 but with ‘noise bypass’ caps fittedThe maker of these particular regulators has thoughtfully provided an extra pin, which can be connected back to the output with a capacitor (the noise bypass capacitor confusingly also called a ‘bypass’ capacitor). This reduces the high frequency gain, with the main intention of reducing the output noise of the regulator. Does it also have an effect on the output impedance? It sure does, figure 1.4 shows how the peaks can be managed by attaching a suitable capacitor (not the same for each regulator; I used 2200pF on the +ve regulator and 150pF on the –ve regulator). The tracking and matching is not perfect but it looks to me like a worthwhile improvement, because not all circuits attached to these supplies can be assumed to have perfect power supply rejection performance. To be continued...Takeaways from this part:•If you are using Y5V capacitors with DC bias across them – as you always do in a supply decoupling application – carefully calculate the effectivecapacitance value. You could be ‘out’ by enough to seriously impair circuitperformance and reliability.•LDOs have an effective output inductance; it varies with output current (goes higher as the current falls) and causes an output impedance peak with theoutput capacitor. Use an LDO with a “noise bypass” capacitor connection toflatten out the impedance.Yet More On Decoupling, Part 2: ring the changes, change the ringsKendall Castor-PerryPreviously on “Yet more...” we built up a pair of regulators with output capacitors, and connected them to some decoupling caps with a short length of copper trace. We looked at the impedance at these decoupling caps, and saw some peaks. What happens when we start taking some current from these imperfect supplies?Figures 2.1 and 2.2 show what happens in the time domain when we take a squarewave current switching between 0 and +10mA at 100kHz from the positive regulator, and one switching between -10mA and 0 on the negative regulator. The rationale is that later on, we’ll either be taking current from the +ve rail, or dumping it into the –ve rail. Remember that the regulators have a static load of 20mA as well, so we are not taking regulator current down to zero. The swept parameter is once again the value of the local decoupling capacitor, 22nF (top trace, blue) to 470nF (bottom trace, pink), and the traces are offset from the top down by 10mV each time.Figure 2.1(L): pinging the positive rail with 100kHz 0 to +10mA square wave, 5mV/div, traces spread by 10mV Figure 2.2(R): pinging the negative rail with 100kHz 0-10mA square wave,5mV/div, traces spread by 10mVAs expected, the smallest capacitor shows the highest amplitude of additional ringing, occurring at the highest frequency. As the capacitor value goes up, the magnitude of the ringing falls. Constant in all this is the effective impedance at the 100kHz fundamental, which seems to be about 0.7ohms for either supply. Note that these voltages are in phase. The frequent assumption about the supply variations being symmetrical around ground is not true in this case; indeed, hardly ever true.The high frequency ringing looks unsightly and may well impact our circuits – what could we do about that? We need some damping somewhere, perhaps by adding some series resistance to one of the capacitors. This will help to dissipate stored energy in the resonant circuits more rapidly, reducing the ‘Q’. Now, with other regulator designs we might have been forced to have this extra series resistance, because some LDO designs are not stable when the main output capacitor has too low an ESR. Often in those designs a tantalum capacitor is used, so let’s pick one.AVX have another useful utility on their download page, SpiTanII, which assists with the selection of tantalum capacitors, and the associated SPICE library contains models which accurately portray the frequency-dependent loss of that type of cap. This should lead to much more accurate simulation than just guessing a resistive ESR value. A 2.2uF 1206-sized part (TPSA225K016R1800, same footprint as the ceramic previously deployed, and with 16V working voltage) was chosen; it has a rated maximum ESR of 1.8ohms at 100kHz, which is about as good as it gets for a small tantalum. Important tip: fit this capacitor the right way round in your simulations. In the simulation world as well as in the real world, the tantalum capacitor doesn’t work properly under reverse polarity!100Hz1KHz 10KHz 100KHz 1MHz 10MHz 100MHz-40dB-30dB -20dB -10dB 0dB 10dB 20dB 30dB 40dB 50dB 60dB 70dB 80dB 90dB V(plus)V(minus)v(plus)/i(c7)Figure 2.3(L):same as fig 2.1 but using a 2.2uF tantalum output cap on the +ve regulator Figure 2.4(R): impedance plots of the supply rails with tantalum capacitors. Contrast with figure 1.2 in part 1What a difference; a lot less high frequency rubbish (especially on the –ve rail which is not shown). The impedance curves show why; with the tantalum capacitor, the +veregulator particularly is still showing some peaking just below 1MHz. Still, looks like an improvement, but we will keep testing this choice in the work to come, to see what consequences the ringing has.Can you hear me?Most of this work is concerned with effects in the MHz region, but in passing, let’s look at what happens with lower frequency stimulation of the rails. This may be interesting for people working on audio applications.Figure 2.5 shows the rail impedances as we step up the regulator output capacitor from our current 2.2uF up to a whopping 2200uF (ESR was set at 0.1ohm for all of them, as might come from a physically large aluminium electrolytic used in audio circuits). The decoupling capacitor was fixed at 100nF; none of the high frequency effects pointed out earlier are relevant at this timescale. As the capacitance value increases, the audio band impedance becomes flatter, then finally rather less flat as the very largest capacitor does a better job than the regulator does. Figure 2.6 shows the voltage response of the +ve rail to a test current of 0-10mA at 333Hz.100Hz1KHz 10KHz 100KHz 1MHz 10MHz 100MHz-40dB-30dB -20dB -10dB 0dB 10dB 20dB 30dB 40dB 50dB 60dB 70dB 80dB 90dB V(plus)V(minus)v(plus)/i(c7)Figure 2.5(L): rail impedance as we increase the regulator output cap from 2.2uF up to 2200uF, decade steps. This is with the noise bypass caps. Figure 2.6(R): voltage on the rails when 0-10mA squarewave at 333Hz is applied. 2.2uF top, 2200uF bottom.As the output capacitor increases, it provides progressively more ‘support’ for theregulator. Going only on the traces in figure 2.6, it looks like a 220uF capacitor would do a good job of delivering an ‘uncoloured’, frequency-independent output impedance in the audio band. The square-wave response for the 2200uF is actually less accurate, though judgements like these will depend on the actual test frequency and there’s no one “right answer”.Remember that we suppressed some impedance peaking at 10kHz in part 1 by adding the noise bypass capacitors. What happens if we lift these off and run this test again?: The resulting rail impedance is shown in figure 2.7; the location of the peak falls as the output capacitor is increased, but even with an enormous 2200uF capacitor it’s still well into the audible band. The consequences of this peak are clear in the current transient test. Perhaps it’s not surprising that advocates of ultimate audio quality insist that capacitor selection can have an effect on a system’s sonic performance even where you’d think it couldn’t, like on the output of a regulator. Fit those noise bypass caps!100Hz1KHz 10KHz 100KHz 1MHz 10MHz 100MHz-40dB-30dB -20dB -10dB 0dB 10dB 20dB 30dB 40dB 50dB 60dB 70dB 80dB 90dB V(plus)V(minus)v(plus)/i(c7)Figure 2.7(L): as figure 2.5 but with the noise bypass capacitors removed. Note the resonant peak in the audio band Figure 2.8(R): the response of figure 2.7 to the 0-10mA 333Hz square wave. Talk about ringing!Still to come: we’ll look at ‘real’ operational amplifiers (well, models of them, anyway) and see what actually happens at their output when their supply pins are waved around.And then we’ll bring those amplifiers and the power supply from this part together. It won’t be pretty! To be continued...Takeaways from this part:•Whatever the LDO datasheet says, high-ESR output capacitors give better control of high frequency supply resonances•The smaller you make the main ceramic decoupling capacitor, the faster and larger will be the ringing that occurs on a load current step – this is a small-signal effect and occurs for any current change, not just large ones.•If you are designing audio circuits which don’t have impeccable power supply rejection, the LDO regulator impedance bump could cause coloration as itusually occurs within the audio band. Huge output capacitors don’t cure it, infact they could make it worse. Use that noise bypass connection.Yet More On Decoupling, Part 3 – Some gain, some painKendall Castor-PerryPreviously on “Yet More...” we looked at the impedance of a typical regulator and decoupling capacitor combination, and showed what happened when you ‘shock’ it with some dynamic current consumption. Now we’re going to look at whether we should be concerned about the wobbling supply voltage that analog components will experience when connected. We’ll focus on a staple ingredient of the analog designer’s toolbox: the op-amp.“Bah, Humbug!”, I hear from somewhere in the audience. “Modern precision op-amps are so fantastic that their enormous power supply rejection will extinguish any possible effect that varying supplies could have on a circuit! My dear boy, decoupling capacitors are only there to quell the evil spirits of oscillation, they don’t actually affect the performance of the circuit! Simulate the power supply rail? Haven’t you got anything better to do with that new-fangled slide rule of yours?”Well, we’ll see. By now, most analog engineers are (or should be) wise to the myth that ‘op-amps have almost infinite gain and everything is sorted out by the negative feedback loop, whose properties completely dominate the closed-loop performance’. However, despite huge advertised ‘open loop gains’, it is the destiny of any op-amp’s gain curve to trend downwards at roughly 6dB per octave until at some frequency (the unity-gain frequency, numerically equal to gain bandwidth product in simple cases, though the terms don’t mean the same thing), there’s none left, it’s just unity, or 0dB. As frequency rises, falling loop gain means a falling amount of feedback to correct errors inside the loop. What’s more, some amplifiers don’t even have very high low frequency open loop gain either. This is particularly true either of very fast amplifiers or very cheap amplifiers. OK, so we may not have that much loop gain, but why does it matter – surely a competent designer can suppress the sensitivity to supply rail variations just through architecture choices. Not so! Here’s a blunt assertion you may not have seen before: it is not possible to build a conventional op-amp (a pair of differential inputs, two power pins, one single-ended output pin) which is insensitive to voltage variations on one or other of its power pins. The device converts the voltage difference between the signal inputs into a single-ended output – but that output has to be referenced to something other than ground, because the op-amp doesn’t have a ground pin! Depending on the design, the output voltage will be referenced either to one or other supply pin, or to a voltage somewhere along a potential divider between those two pins (think of it as produced by the ratio of output conductances of the current paths in the main gain stage to the two supply pins).So, you can’t build a precision op-amp which behaves like it had its own private voltage regulators inside to prevent the output voltage from moving when the supplies do. That kind of device would require a ground connection to reference those private regulators to, which our standard pinout does not give us. And indeed this is borne out by the PSRR plots in amplifier data sheets, which usually show curves with the same general shape asthe open-loop gain. Figure 3.1 shows the open loop gain of LT’s LT1723 and figure 3.2 shows the PSRR of the amplifier when connected as a unity gain buffer. The curves for rejection from the +ve and –ve supplies deviate at low frequencies but are very similar above 1MHz.Figure 3.1(L): the open-loop gain response of the LT1723 to signals applied at its input pins Figure 3.2(R): the closed-loop gain response of the LT1723 to signals applied at its power pinsThe question of common-mode performance effects on the input stage is a complicating factor and I want to skirt round that for this article. Of course the input stage is attached to the power supplies, and the apparent input voltage at the device can be distorted by the input stage’s reaction to supply variations. But, unlike the power supply rejection problem, this one is amenable to design, layout and processing fixes. Also, the common mode rejection capabilities of current-feedback amplifiers often fall short of good voltage mode op-amps. For clarity of purpose, I’ll use voltage-feedback op-amps in an inverting amplifier configuration as my circuit under test. This means that the input stage only has to reject the (hopefully small) supply variations, and not any applied input signal as well. Figure 3.3 shows a basic test fixture for measuring the power supply gain (PSG) of a simulation model. The PSG is just the ratio between the small-signal voltage response at the output pin (with respect to ground) to the voltage variation applied to the supply pin (again with respect to ground). The component values depend on whether we’re testing the open-loop (OLPSG) or closed-loop PSG. For the open-loop measurement, we ensure that a good operating point is set by a feedback loop with such a large time constant that it doesn’t allow AC feedback at any frequency we’re simulating over. For the closed-loop test, we just run the amplifier at a gain of -1, by editing the capacitor’s value down from very large (an AC short circuit at all frequencies) to very small (an AC open circuit at all frequencies).。

相关文档
最新文档