运筹学最大流问题例题
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学最大流问题例题
以下是一个关于运筹学最大流问题的例题:
假设有一个有向图,有两个特殊的节点,分别是源点(S)和
汇点(T)。
图中还有一些其他的节点,表示各个任务或工作。
节点之间有一些带有容量限制的边,表示各个任务之间的关系。
假设需要将尽可能多的任务从源点发送到汇点,但要满足以下条件:
1. 每个任务只能由一个人来执行;
2. 每个人只能执行一个任务;
3. 每个任务只能在特定的时间完成;
4. 每个人只能在特定的时间段内工作。
问题:设计一个算法来确定可以完成的最大任务数。
解法:
1. 为了建立最大流问题的模型,我们需要将图中的节点和边进行转换。
首先,将源点和汇点分别用两个特殊的节点S和T
表示。
2. 对于每个任务节点,将其分解为两个节点v_in和v_out,以
表示任务开始和任务结束的时间点。
3. 对于每个容量限制的边(a, b),我们将其转换为两条边
(v_out_a, v_in_b)和(v_out_b, v_in_a),容量为边(a, b)上的容量
限制。
4. 然后,将所有节点和边加入到一个图中,并运用最大流算法(如Ford-Fulkerson算法)来找到从S到T的最大流。
5. 最终的最大流就是可以完成的最大任务数。
这是一个应用最广泛的最大流问题的例题,通过建立合适的模型,可以将实际问题转化为最大流问题,并通过最大流算法来解决。