高中力学总复习
高中物理复习力学的基本概念与公式
高中物理复习力学的基本概念与公式力学是物理学的一个重要分支,研究物体的运动规律以及其与力的关系。
在高中物理学习中,力学是一个重点内容。
本文将介绍一些力学的基本概念和公式,以帮助大家更好地复习力学知识。
内容一:力的基本概念力是能够改变物体状态或形状的原因,是描述物体相互作用的物理量。
力的大小用牛顿(N)作为单位,方向通过矢量表示。
常见的力包括重力、摩擦力、弹力等。
1. 重力:地球对物体产生的引力称为重力,它的大小与物体的质量有关,可以用公式F=mg表示,其中F是重力的大小,m是物体的质量,g是重力加速度,近似取9.8 m/s²。
2. 摩擦力:当物体相对于另一物体或表面移动时,两者之间会产生摩擦力。
它可以分为静摩擦力和动摩擦力。
静摩擦力是物体未开始滑动时的摩擦力,动摩擦力是物体已经开始滑动时的摩擦力。
3. 弹力:当物体受到拉伸或压缩时,会产生弹力。
弹力的大小与物体发生形变的程度有关,符合胡克定律,可以用公式F=kx表示,其中F是弹力的大小,k是弹簧的劲度系数,x是物体的形变量。
内容二:牛顿运动定律牛顿运动定律是经典力学的基石,描述了物体的运动规律与力的关系。
它包括三个定律:1. 牛顿第一定律:也称为惯性定律,指出当物体不受力时,保持静止或匀速直线运动。
这意味着物体没有受到合力或合力为零时,物体将保持原来的状态。
2. 牛顿第二定律:也称为动力学定律,指出物体受力时会产生加速度。
它可以用公式F=ma表示,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
3. 牛顿第三定律:也称为作用-反作用定律,指出两个物体相互作用时,彼此施加的力大小相等,方向相反。
即“作用力与反作用力大小相等,方向相反”。
内容三:动量守恒定律动量是描述物体运动状态的物理量,定义为物体的质量乘以其速度。
动量守恒定律指出,在没有外力作用的封闭系统中,系统的总动量保持不变。
动量守恒定律可以用以下公式表示:m1v1 + m2v2 = m1'v1' + m2'v2'其中m1和m2分别为两个物体的质量,v1和v2为它们的初始速度,m1'和m2'为它们的质量,v1'和v2'为它们的最终速度。
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。
2、冲量也是矢量,它是力在时间上的积累。
冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。
在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。
在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。
动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。
4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。
外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。
(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。
d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。
(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。
b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。
(5)动量守恒定律的应用步骤。
第一,明确研究对象。
第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。
高中物理力学复习题及参考答案
高中物理力学复习题及参考答案1. 一个重物体静止放在斜面上,斜面倾角为30°。
若斜面长度为4m,重物体质量为10kg,重力加速度为10m/s²,求斜面上的摩擦力和物体所受的分力。
解答:根据力的平衡条件,在斜面上受力情况如下图所示:![斜面受力示意图](image1.png)设物体所受的分力为F,斜面上的摩擦力为f。
根据几何关系可以得到斜面上的重力分力为Gsinθ,斜面垂直方向上的重力分力为Gcosθ。
根据受力平衡条件:沿斜面方向:F - f - Gsinθ = 0垂直斜面方向:Gcosθ = 0解以上方程可得:F = Gsinθ + fGcosθ = 0代入已知数值进行计算:G = m * g = 10kg * 10m/s² = 100Nθ = 30°Gsinθ = 100N * sin(30°) = 50N联立方程求解:F = 50N + ff = F - 50N所以斜面上的摩擦力为F - 50N,物体所受的分力为50N。
2. 一个弹簧的劲度系数为200 N/m,当受到20 N的外力压缩3 cm时,求弹簧的位移和所受的弹力大小。
解答:根据弹簧弹性力学公式,弹力大小与位移成正比。
设弹簧的位移为x,所受的弹力为F。
根据已知条件和弹簧弹性力学公式:k = F / x20 N = 200 N/m * xx = 20 N / 200 N/m = 0.1 m所以弹簧的位移为0.1 m,所受的弹力大小为20 N。
3. 一个物体从高度10 m处自由下落,求物体落地时的速度和下落时间。
解答:根据自由落体运动规律,物体下落的速度和时间与下落的高度有关。
根据已知条件:初速度为0 m/s加速度为重力加速度9.8 m/s²下落高度为10 m根据自由落体运动规律可以得到:v² = v₀² + 2aΔy代入已知数值进行计算:v² = 0 + 2 * 9.8 m/s² * 10 mv = √(196 m²/s²) = 14 m/s所以物体落地时的速度为14 m/s。
2025高考物理总复习力学三大观点的综合应用
台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
高中物理力学的知识点总结
高中物理力学的知识点总结高中物理力学的知识11.力的作用、分类及图示⑴力是物体对物体的作用,其特点有一下三点:①成对出现,力不能离开物体而独立存在;②力能改变物体的运动状态(产生加速度)和引起形变;③力是矢量,力的大小、方向、作用点是力的三要素。
⑵力的分类:①按力的性质分类;②按力的效果分类。
⑶力的图示:画图的几个关键点①作用点,即物体的受力点;②力的方向,在线的末端用箭头标出;③选定标度,并按大小结合标度分段。
2.重力⑴产生:①由于地球吸引而产生(但不等于万有引力)。
②方向竖直向下。
③作用点在重心。
⑵大小:①G=mg,在地球上不同地点g不同。
②重力的大小可用弹簧秤测出。
⑶重心:①质量分布均匀的有规则形状物体的重心,在它的几何中心。
②质量分布不均匀或不规则形状物体的重心,除与物体的形状有关外,还与质量的分布有关。
③重心可用悬挂法测定。
④物体的重心不一定在物体上。
3.弹力⑴产生:①物体直接接触且产生弹性形变时产生。
②压力或支持力的方向垂直于支持面而指向被压或被支持的物体;③绳的拉力方向沿着绳而指向绳收缩的方向。
有接触的物体间不一定有弹力,弹力是否存在可用假设法判断,即假设弹力存在,通过分析物体的合力和运动状态判断。
⑵胡克定律:在弹性限度内,F=KX,X-是弹簧的伸长量或缩短量。
4.摩擦力⑴静摩擦力:①物接触、相互挤压(即存在弹力)、有相对运动趋势且相对静止时产生。
②方向与接触切,且与相对运动趋势方向相反。
③除最大静摩擦力外,静摩擦力没有一定的计算式,只能根据物体的运动状态按力的平衡或F=ma求。
判断它的方向可采用“假设法”,即如无静摩擦力时物体发生怎样的相对运动。
⑵滑动摩擦力:①物接触、相互挤压且在粗糙面上有相对运动时产生。
②方向与接触面相切且与相对运动方向相反(不一定与物的运动方向相反)②大小f=μFN。
(FN不一定等于重力)。
滑动摩擦力阻碍物体间的相对运动,但不一定阻碍物体的运动。
摩擦力既可能起动力作用,也可能起阻力作用。
高三总复习力学基础测试(教 师用)
高三总复习力学基础测试高中物理(时间:120分钟)(总分:100)1.(0分)1.如图所示,质量m=10kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向右的推力F=20N 的作用,则物体产生的加速度是(g取为10m/s2)1.如图所示,质量m=10kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向右的推力F=20N的作用,则物体产生的加速度是(g取为10m/s2)A、B、4m/s2,水平向右C、2m/s2,水平向左D、2m/s2,水平向右正确答案:B解析:因为物体在水平面上向左运动,所以物体所受滑动摩擦力(f=umg)方向水平向右,物体所受合力 F合=F+f=40N;根据牛二定律F合=ma,物体加速度a=4m/s2,,方向水平向右;B正确。
2.(0分)2-个静止的质点,在0—4s时间内受到力F的作用,力的方向始终在同一直线上,力F随时间t的变化如图所示,则质点在A、第2s末速度改变方向B、第2s末位移改变方向C、第4s末回到原出发点D、第4s末运动速度为零正确答案:D解析:根据牛顿第二定律,结合图象分析可得:物体在0-1s内做加速度逐渐增加的加速运动;1-2s内做加速度逐渐减小的加速运动,第2s末速度达到最大值;2-3s内做加速度逐渐加大的减速运动,3-4s做加速度逐渐减小的减速运动。
通过计算可得D正确3.(0分)3、如图所示,A、B两物体之间用轻质弹簧连接,用水平恒力F拉A,使A、B 一起沿光滑水平面做匀加速运动,这时弹簧长度为L1,若将A、B置于粗糙水平面上,且A、B与粗糙水平面之间的动摩擦因数相同,用相同的水平恒力F拉A,使A、B一起做匀加速运动,此时弹簧的长度为L2,则A、L2 = L1B、L2 > L1C、L2 < L1D、由于A、B的质量关系未知,故无法确定L1、L2的大小关系正确答案:A解析:当物体在水平面拉动时:当物体在粗糙水平面运动时:F=(mA+mB)a1 F-u(mA+mB)g =(mA+mB)a2F1=mBa1 ;F1=k(l1-l) F2-umBg=mBa2 ; F2=k(l2-l)因为拉力F相同,所以 ug=a1-a2带入得:F2=mBa1所以l1=l24.(0分)4、在铁路的拐弯处,路面要造得外高内低,以减小车轮对铁轨的冲击,某段铁路拐弯半径为R,路面与水平面的夹角为θ,要使列车通过时轮缘与铁轨的作用力为零,列车的车速v应为A、B、C、D、正确答案:C解析:对火车进行受力分析可知:FNcosθ=mgFNsinθ=F向支持力的水平分力提供火车做圆周运动的向心力: F向=mv2/R Mgtanθ=mv2/RV=5.(0分)5.平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v-t图线,如图所示,若平抛运动的时间大于2t1,下列说法中正确的是A、图线2表示水平分运动的v-t图线B、t1时刻的速度方向与初速度方向夹角为30°C、t1时间内的竖直位移与水平位移之比为1:2D、2t1时刻的速度方向与初速度方向夹角为60°正确答案:C解析:在v-t图像中,直线与时间轴围成的面积为物体运动位移,在平抛运动中:水平方向:物体做匀速直线运动,如图1直线所示,x=vt;竖直方向:物体做自由落体运动,如图2直线所示,y=1/2gt2。
理论力学总复习(3)
二、选择题
1、已知刚体质心 C 到相互平行的 、
z ′、z
轴的距离分别为
a、b
,刚体的质量为 m ② 的计算公式为__________________。 的计算公式为 。 ① ② ③
,对 z 轴的转动惯量为 J z ,则
Jz
′
′ J z = J z + m( a 2 − b 2 )
′ ② J z = J z − m (a 2 − b 2 )
& −ω2x = 0 & x
摆锤质量m,悬挂点O以加速度 2、已知摆长 OM = L ,摆锤质量 ,悬挂点 以加速度 a0 、 ' ' 向上运动, 向上运动,则相对于 Ox y 坐标系的相对运动动力学方程为 _________________________。 。
& & φ + (a0+g) sin φ / L = 0
p A > pB
p A < pB
p A = pB
3、 3、质量分别为 m1 = m2 = 2m 的两个小球 M 1 , M 2 用长为L而重量不计的刚杆相连 而重量不计的刚杆相连。 用长为 而重量不计的刚杆相连。现将 M 1 置于光滑水平面上, 置于光滑水平面上,且 M 1 M 2 与水平面成 则当无初速释放、 球落地时, 60° 角,则当无初速释放、M 2 球落地时, ② M 1 球移动的水平距离为 球移动的水平距离为___________。 。 ① L/3; ; ② L/4; ; ③ L/6; ; ④ 0。 。
① 30N; ; ② 20N; ; ③ 16N; ; ④ 24N。 。
三、填空题 1、光滑细管绕铅垂轴 以匀角速度 ω 转动。管内有一小球以相对于管 、光滑细管绕铅垂轴z以匀角速度 点运动, 的初速度 v r 0 朝O点运动,则小球相对细管的相对运动微分方程为 点运动 __________________。 。
力学总复习
力学练习题一。
选择题1.对于固定端约束,不管约束反力的分布情况如何复杂,都可以简化到该固定端的()A.一个力B.一组力C.一个力偶D.一个力和一个力偶2.当力的作用线通过矩心时,力矩的值为多大;()A无穷大B无穷小C1D03、在光滑的水平面上放置一平板并使其处于静止状态,若在平板上座用以水平力偶,平板将如何运动?()A静止不动B平动C绕通过其质心的铅垂轴转动D平面运动4、关于作用力和反作用力,下面说法中正确的是(C)A一个作用力和它的反作用力的合力等于零B作用力和反作用力可以是不同性质的力C作用力和反作用力同时产生,同时消失D只有两个物体静止时,他们的作用力和反作A、力等于零B、力臂等于零C、力通过转动中心D、力和力臂均不等于用力的大小才相等5、三直角折杆AB、BC、BD连接如题3图示,不计自重。
其中属二力杆的杆件是()A.AB杆B.BC杆C.AB杆和BC杆D.BD杆6、作用在同一物体上的两个力,若其大小相等,方向相反,则它们()A、只能是一个力偶B、只能是一对平衡力C、可能是一对平衡力或一个力偶D、可能是一对作用力和反作用力7、带传动中,带所产生的约束力属于()A、光滑面约束B、柔性约束C、活动铰链约束D、固定铰链约束8、若力系中各力对物体的作用效果彼此抵消,该力系为()A、等效力系B、汇交力系C、平衡力系D、平行力系9、工程上常见的约束类型有柔性约束、光滑面接触约束、()和固定端约束A、固定铰链约束B、活动铰链约束C、光滑铰链约束D、没有正确答案10、下列动作中属于力矩作用的是()A.夯打地基B.手指拧动墨水瓶盖子C.用扳手拧紧螺母D.螺丝刀拧螺钉11.下图四个力偶,其作用面在同一平面内,属于等效力偶的是()A.a和b B.a和c C.b和c D.a和d12、作用在刚体上的三个相互平衡的力,若其中两个力的作用线相交于一点,则个力的作用线()A必定交于同一点B不一定交于同一点C必定交于同一点且三个力的作用线共面D交于一点但不共面13、作用有汇交于一点,互不平行三力的刚体()状态。
理论力学复习总结(知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
理论力学总复习
【复习题】 图示杆系,已知m、l。求A、B处 约束力。 解: 1、 首先分析杆AD
FA
FC
FA
FB
2、然后取整体为研究 对象 FA FB m
l
练习:求A 、B两点处 的约束力。
解: 1、首先分析杆BC
FA
FC
FB
m
FB
2、然后分析杆ACD或整体
FA
FC'
杆ACD
m 2m FA FB 0 l sin 45 l
【复习题】 图示结构, 已知M = 800 N· m, 求A 、C两点的约束力。
B C
M
A
FC
45º
FA
解:杆BC为二力杆,可取整体为研究对象,画 受力图如图。
B C
45º
M
A FA
ห้องสมุดไป่ตู้
FC
M i 0 M AC M 0
M AC FC d 0.255FC (N.m)
FA FC 3143 N
【复习题】卷扬机如图, 鼓轮在常力偶M的作用 下将圆柱上拉。已知鼓轮的半径为 R1, 质量为 m1, 质量分布在轮缘上; 圆柱的半径为R2, 质量 为m2, 质量均匀分布。设斜坡的倾角为 a, 圆柱 只滚不滑。系统从静止开始运动, 求圆柱中心C 经过路程s 时的速度。 FOy 解: 以系统为研究对象, 受力如图。系 M FOx 统在运动过程中所有力所作的功为 O s W12 M m2 g sin a s C R1 m1g 系统在初始及终止两状态 m2g Fs 的动能分别为 FN a 1 3 2 2 T1 0 T2 J11 m2 vC 2 4
3
2
1
【复习题】平面结构如图所示.q=5kN/m F1=10kN,F2=20kN作用于 BD 杆的中点.。 求A和E处的约束反力.(图中长度单位是米)
高中物理知识点总复习资料
高中物理知识点总复习资料一、运动学1. 位移、速度与加速度的关系- 位移(s):物体从出发点到终点所走过的路径长度,可以是正负值。
- 速度(v):物体在单位时间内所发生的位移。
- 加速度(a):物体在单位时间内速度的变化量。
2. 匀速直线运动- 特点:速度恒定,加速度为零。
- 位移公式:s = vt,其中s表示位移,v表示速度,t表示时间。
- 速度公式:v = s/t,其中v表示速度,s表示位移,t表示时间。
3. 匀变速直线运动- 特点:速度随时间变化,加速度不为零。
- 位移公式:s = v0t + (1/2)at^2,其中s表示位移,v0表示初速度,t 表示时间,a表示加速度。
- 速度公式:v = v0 + at,其中v表示速度,v0表示初速度,t表示时间,a表示加速度。
- 速度平方公式:v^2 = v0^2 + 2as,其中v表示速度,v0表示初速度,a表示加速度,s表示位移。
4. 自由落体运动- 特点:物体只受重力作用,竖直方向上为加速度。
- 位移公式:h = (1/2)gt^2,其中h表示高度,g表示重力加速度,t表示时间。
5. 斜抛运动- 特点:物体同时有竖直方向和水平方向上的速度。
- 位移公式(竖直方向):h = v0yt - (1/2)gt^2,其中h表示高度,v0y表示初速度在竖直方向上的分量,g表示重力加速度,t表示时间。
- 位移公式(水平方向):x = v0xt,其中x表示水平方向上的位移,v0x表示初速度在水平方向上的分量,t表示时间。
二、力学1. 牛顿运动定律- 第一定律:惯性定律,物体静止或匀速直线运动的状态会保持下去,直到有外力作用。
- 第二定律:动力学定律,物体受到的合力等于质量与加速度的乘积。
- 第三定律:作用力与反作用力大小相等、方向相反,并且作用在不同物体上。
2. 其他力学相关知识点- 弹簧力:弹性物体受到的力。
- 摩擦力:两个物体接触表面之间的相互作用力。
- 重力:地球或其他物体之间的吸引力。
理论力学复习总结(知识点)
第一篇静力学第 1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F'工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理 4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理 5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1. 柔性体约束2•光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1. 平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+F n=E F2. 矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3. 力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo (F) =± Fh)4. 把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F')。
力学总复习
解:(1)t=2s, t=4s
x = 4, y = 0
x = 8, y = 6 x y 84 60 v= i+ j= i+ j = 2i + 3 jm / s t t 42 42
(2)在t=4s时的速度
dx vx = =2 dt
dy vy = =t =4 dt
2 2
v = 2i + 4 jm / s
Fxdt
Fydt
F dt z
m 2z m 1z = ∫ v v
冲量的任何分量等于 在它自己方向上的动 量分量的增量
§1.8 动量守恒定律
一,质点系动量定理 二,动量守恒定律 即p= 保持不变 ∑ pi 保持不变 .
i
I =
∫ ∑
t t0 i
i
Fi d t =
∑
i
pi
∑
i
pi0
两小车反弹.swf 两小车反弹 则系统的总动量守恒 守恒, = ∑ Fi = 0 则系统的总动量守恒,
(1) 物理意义: 物理意义: 质点动量的变化依赖于作用力的时间累积过程 质点动量矢量的变化 合力对质点作用的冲量 (2) 矢量性: 矢量性: 冲量的方向与动量的增量方向相同 动量定理的分量形式
I mv2
m 2x m 1x = ∫ v v
m 2y m 1y = ∫ v v
t2 t1 t2
t1
t2 t1
O
z P
y 参照物
三,理想化模型 ——物理学方法 地球公转.avi 物理学方法 例如:当我们研究地球绕太阳公转时,由于地球 到太阳的平均距离约为地球半径的倍,则地球上各 点对于太阳的运动可以看作是相同的.所以,在研 究地球绕太阳公转时,可以把地球当作质点.
高中力学知识点总结6篇
高中力学知识点总结6篇第1篇示例:高中力学知识点总结力学是物理学的一个重要分支,研究物体的运动规律和相互作用。
在高中阶段,学生学习的力学知识主要包括牛顿运动定律、动能和势能、功和能量、机械振动等内容。
下面我们就来系统总结一下这些知识点。
一、牛顿运动定律牛顿运动定律是经典力学的基础,共包括三条定律:1. 牛顿第一定律(惯性定律):物体在静止或匀速直线运动时,若外力合成力为零,则物体将保持原来的状态。
2. 牛顿第二定律(运动定律):物体所受合外力等于该物体的质量与加速度的乘积。
3. 牛顿第三定律(作用与反作用定律):两个物体之间的相互作用力大小相等,方向相反。
二、动能和势能1. 动能:一个物体由于运动所具有的能力,其大小等于物体质量乘以速度的平方再乘以1/2。
2. 势能:物体在某一位置上由于位置而具有的能量,包括重力势能、弹性势能等。
三、功和能量1. 功:力对物体做功的大小等于力与物体位移方向相同部分的乘积。
2. 能量:系统具有的做功能力的量称为机械能,包括动能和势能。
机械能守恒原理是宇宙间一种基本的能量守恒规律。
四、机械振动1. 单摆:单摆是清晰的简谐运动,其周期与振幅无关,只与摆长有关。
2. 弹簧振动:弹簧振动是一种简谐振动,其频率与弹簧的劲度系数和质量有关。
以上是高中力学知识点的简要总结,希望可以帮助同学们更好地理解力学知识,提高解题能力。
在学习力学知识时,要多做题,善于总结,加深理解。
只有通过不断练习和思考,才能真正掌握力学知识,为将来的学习打下坚实的基础。
【2000字】第2篇示例:高中力学知识点总结力学是物理学的一个重要分支,研究物体的运动规律和力的作用关系。
在高中物理学教学中,力学是一个重要的内容,学生需要掌握一些基本的力学知识点。
本文将对高中力学知识点进行总结,方便学生复习和回顾。
一、牛顿三定律1. 第一定律:一个物体如果处于静止状态或匀速直线运动状态,其速度不会改变,除非受到外力的作用。
高中物理复习力学部分
高中物理复习力学部分物理学中的力学部分是研究物体在力的作用下的运动规律的学科。
它是物理学的基础,对我们深入理解自然界的规律和现象非常重要。
本文将从力学的基本概念、运动学、动力学以及受力分析等几个方面进行复习。
1. 力学的基本概念力学是研究物体运动的学科,主要包括质点运动和刚体运动两个部分。
质点是物理学中简化的模型,它忽略了物体的大小和形状,只考虑物体的质量和所受到的力。
刚体则是在力的作用下保持形状不变的物体。
力学研究的对象可以是质点也可以是刚体。
2. 运动学运动学是力学的一个分支,主要研究物体的位置、速度和加速度之间的关系。
对于质点的运动,我们通常使用位置矢量、速度矢量和加速度矢量来描述。
位置矢量是指物体在给定坐标系下的位置,速度矢量是位置矢量对时间的导数,加速度矢量是速度矢量对时间的导数。
3. 动力学动力学是研究物体运动的原因和规律的学科,它分为静力学和动力学两个部分。
静力学研究物体在平衡状态下的力学性质,动力学则研究物体在外力作用下的运动规律。
牛顿三定律是动力学的基本原理,它们分别是惯性定律、动量定律和作用-反作用定律。
4. 受力分析受力分析是解决物体受力情况的方法,它是力学研究的基本手段之一。
在受力分析中,首先要确定作用在物体上的全部力,然后根据牛顿第二定律,计算物体的加速度。
在实际问题中,通常会出现多个力同时作用于物体上的情况,这时可以将这些力分解为水平方向和竖直方向的分力,然后求和得到总力和总加速度。
5. 力学的应用力学在工程学、天文学、地球科学等领域都有着广泛的应用。
在工程学中,力学可以用来研究结构的稳定性和强度,从而保证工程的安全性。
在天文学中,力学可以用来研究天体的轨道运动规律,如行星围绕太阳的运动等。
在地球科学中,力学可以用来研究地球上的板块运动和地震等现象。
总结:力学是物理学中重要的学科,它研究物体在力的作用下的运动规律。
本文对力学的基本概念、运动学、动力学和受力分析进行了复习,并介绍了力学在不同领域的应用。
高中力学复习
一:运动的描述1.质点(A)(1)没有形状、大小,而具有质量的点。
(2)质点是一个理想化的物理模型,实际并不存在。
(3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。
2.参考系(A):(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。
(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。
对参考系应明确以下几点:①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。
②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。
③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系3.路程和位移(A)(1)位移是表示质点位置变化的物理量。
路程是质点运动轨迹的长度。
(2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。
因此,位移的大小等于物体的初位置到末位置的直线距离。
路程是标量,它是质点运动轨迹的长度。
因此其大小与运动路径有关。
(3)一般情况下,运动物体的路程与位移大小是不同的。
只有当质点做单一方向的直线运动时,路程与位移的大小才相等。
(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。
路程不能用来表达物体的确切位置。
比如说某人从O点起走了50m路,我们就说不出终了位置在何处。
4、速度、平均速度和瞬时速度(A)(1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。
即v=s/t。
速度是矢量,既有大小也有方向,其方向就是物体运动的方向。
在国际单位制中,速度的单位是(m/s)米/秒。
(2)平均速度是描述作变速运动物体运动快慢的物理量。
一个作变速运动的物体,如果在一段时间t内的位移为s, 则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。
高中物理力学复习知识点
高中课程复习专题高中课程复习专题——物理力学专题1、力1-1 力的概念⑴ 力:力是物体间的相互作用,力不能离开物体独立存在,一个物体受到力的作用,一定有另外的物体对它施加这种作用。
⑵ 力的效果:使受力物体体积或形状发生变化,或使受力物体的运动状态发生改变,我们可以通过力的作用效果来检验力的存在与否,上述两种效果可以独立产生,也可以同时产生。
⑶ 力的表示方法:力是矢量,存在三要素力的大小、力的方向、力的作用点。
要完整的表述一个力,既要说明它的大小,又要说明它的方向,为形象、直观的表述一个力,我们一般用带箭头的线段来表示力的大小、方向、作用点,这种表示力的方法称为力的图示。
作力的图示应注意以下两个问题,一是不能用不同的标度画同一物体所受的不同力;二是力的图示与力的示意图不同,力的图示要求严格,而力的示意图着重于力的方向,不要求做出标度。
⑷ 力的分类:在力学中,按照力的性质可分为重力、弹力、摩擦力等等,按力的效果可分为拉力、压力、支持力、动力、阻力等等。
性质相同的力效果可以不同,也可以相同;效果相同的力性质可以相同,也可以不同。
⑸力的单位:在国际单位制中,力的单位是牛顿,字母表示为N。
⑹ 力的量度:测量力的工具称为测力计。
1-2 重力⑴ 重力的产生:重力是由于地球吸引而产生。
⑵重力的大小:重力与质量的关系为 G=mg ,重力的大小可以由测力计测出。
其大小在数值上等于物体静止时对水平支持面的压力或对竖直悬绳的拉力。
⑶ 重力的方向:重力的方向为竖直向下。
⑷ 重心:重心是物体所受重力的等效作用点。
质量分布均匀的物体,重心的位置只跟物体的形状有关,形状规则且质量分布均匀的物体,它的重心就在其几何中心上。
不规则物体的重心位置,除跟物体的形状有关之外,还跟物体的质量分布有关,对于形状不规则或者质量分布不均匀的薄板,可以用悬挂法测定其重心的位置。
因为重心是一等效概念,所以物体的重心不一定在物体上,可能在物体外,也可能在物体之内。
高三复习物理力学全部公式
高三复习物理力学全部公式1常见的力1.重力G=mg 方向竖直向下,作用点在重心,适用于地球表面附近2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数N/m,x:形变量m}3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力N}4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反,fm为最大静摩擦力5.万有引力F=Gm1m2/r2 G=6.67×10-11Nm2/kg2,方向在它们的连线上6.静电力F=kQ1Q2/r2 k=9.0×109Nm2/C2,方向在它们的连线上7.电场力F=Eq E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同8.安培力F=BILsinθ θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=09.洛仑兹力f=qVBsinθθ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0强调:1劲度系数k由弹簧自身决定;2摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;3fm略大于μFN,一般视为fm≈μFN ;4其它相关内容:静摩擦力大小、方向用力的平衡或运动定律解决;5物理量符号及单位;B:磁感强度T,L:有效长度m,I:电流强度A,V:带电粒子速度m/s,q:带电粒子带电体电量C; 6安培力与洛仑兹力方向均用左手定则判定。
2力的合成与分解1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 F1>F22.互成角度力的合成:F=F12+F22+2F1F2cosα1/2余弦定理F1⊥F2时:F=F12+F221/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinββ为合力与x轴之间的夹角tgβ=Fy/Fx强调:1力矢量的合成与分解遵循平行四边形定则;2合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;3除公式法外,也可用作图法求解,此时要选择标度,严格作图;4F1与F2的值一定时,F1与F2的夹角α角越大,合力越小;5同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中力学复习专题力学复习(一)包括力的概念、力的分类、力的合成与分解、受力分析的方法、共点力作用下力的平衡等。
[知识要点复习]1. 力的概念:力是物体对物体的作用(1)力不能脱离物体独立存在(力的性质)(2)力的相互性、受力物体和施力物体总是成对出现,施力物体也是受力物体。
(3)力是矢量,既有大小,又有方向,可以用“力的图示”形象表示。
(4)力的效果:使物体发生形变或改变其运动状态。
2. 重力(1)产生:由于地球的吸引而产生。
(2)大小:G=mg,g一般取9.8m/s2,粗略计算中可认为g=10m/s2,地球上不同位置g 值一般有微小差异,一般的g值在两极比在赤道处大,在地势低处比地势高处大。
(3)方向:竖直向下3. 弹力(1)产生条件:“直接接触”+“弹性形变”(2)弹力的方向:由物体发生形变方向判断:绳沿绳的方向,支持力和压力都垂直于支持面(或被压面),若支持面是曲面时则垂直于切线方向。
由物体的运动情况结合动力学知识判断。
(3)弹力的大小一般的弹力与弹性形变的程度有关,形变越大,弹力越大,具体大小由运动情况判断;弹簧弹力的大小:f=kx;k是劲度系数,单位N/m,x是弹簧形变量的长度。
4. 摩擦力(1)产生条件:“相互接触且有弹力”+“接触面粗糙”+“有相运动或相对运动趋势”。
(2)摩擦力的方向a. 滑动摩擦力的方向:沿着接触面与物体的相对滑动方向相反。
[注意相对运动(以相互作用的另一物体为参照物)和运动(以地面为参照物)的不同]b. 静摩擦力的方向:沿着接触面与物体的相对运动趋势方向相反。
(3)摩擦力的大小a. 滑动摩擦力的大小f=μN,μ是滑动摩擦系数,仅与材料、接触面的粗糙程度有关,无单位。
N是正压力,它不一定等于重力。
b. 静摩擦力的大小0<f≤f m,f m与正压力成正比,在正压力一定时f m是一定值,它比同样正压力下的滑动摩擦力大,粗略运算中可以认为相等;静摩擦力的大小可以根据平衡条件或牛顿定律进行计算。
5. 合力与分力,一个力如果它产生的效果跟几个力共同作用所产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力,由于合力与分力产生的效果相同,一般情况下合力与分力可以相互替代。
6. 力的合成与分解求几个力的合力叫力的合成,求一个力的分力叫力的分解。
运算法则:平行四边形法则,见图(A),用表示两个共点力F1和F2的线段为邻边作平行四边形,那么这两个邻边之间的对角线就表示合力F的大小和方向。
三角形定则:求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾相接地画出,见图(B),把F1、F2的另外两端连接起来,则此连线就表示合力F的大小、方向。
三角形定则是平行四边形定则的简化,本质相同。
正交分解法,这是求多个力的合力常用的方法,根据平行四边形定则,把每一个力都分解到互相垂直的两个方向上,分别求这两个方向上的力的代数和F x,F y,然后再求合力。
7. 力矩a. 力臂,从转动轴到力作用线的垂直距离。
b. 力矩,力与力臂的积,即M=FL,力矩决定着物体的转动作用。
8. 共点力a. 共点力,几个力作用于同一点或它们的延长线交于同一点,这几个力就叫共点力。
b. 共点力作用下物体的平衡条件:当共点力的合力为零时,物体处于平衡状态(静止、匀速运动或匀速转动)【例题分析】例1. 如图1所示,劲度系数为k2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物块,另一劲度系数为k1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起,要想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高多大的距离?解析:解决本题的关键是明确每根弹簧的状态变化,有效的办法是明确每根弹簧的初末状态,必要时画出直观图。
末态时物块受力分析如图2所示,其中F1’,F2’分别是弹簧k1、k2的作用力。
由几何关系知所求为:点评:(1)复杂的物理过程,实质上是一些简单场景的有机结合。
通过分析弹簧的初末状态,明确弹簧的状态(压缩、原长、伸长)变化,使复杂的过程分解为各个小过程,然后找出各状态或过程符合的规律,使问题得以解决。
这是解决复杂问题常用的方法。
(2)因为弹簧的弹力F与形变量x成正比,所以当弹簧在原基础上再伸长(或缩短)Δx 时,弹力的改变量ΔF=kΔx。
例2. 如图3示,在平直公路上,有一辆汽车,车上有一木箱,试判断下列情况中,木箱所受摩擦力的方向。
(1)汽车由静止加速运动时(木箱和车面无相对滑动);(2)汽车刹车时(二者无相对滑动);(3)汽车匀速运动时(二者无相对滑动);(4)汽车刹车,木箱在车上向前滑动时;(5)汽车在匀速过程中突然加速,木箱在车上滑动时。
解析:(1)木箱随汽车一起由静止加速运动时,假设二者的接触面是光滑的,则汽车加速时,木箱由于惯性要保持原有静止状态,因此它将相对于汽车向后滑动,而实际木箱没有滑动,说明只有相对汽车向后滑动的趋势,所以,木箱受到向前的静摩擦力。
(2)汽车刹车时,速度减小,假设木箱与汽车的接触面是光滑的,则木箱将相对汽车向前滑动,而实际木箱没有滑动,说明只有相对汽车向前滑动的趋势,所以木箱受到向后的静摩擦力。
(3)木箱随汽车一起匀速运动时,二者无相对滑动,假设木箱受水平向左的摩擦力,则其受力如图4所示,跟木箱接触的物体只有汽车,汽车最多能对它施加两个力(支持力F1和摩擦力F2),由二力平衡条件知:F1与G抵消,但没有力与F2抵消,物体不能做匀速直线运动,这与题意矛盾,所以假设错误,即木箱不受摩擦力。
(4)汽车刹车,木箱相对于汽车向前滑动,易知木箱受到向后的滑动摩擦力。
(5)汽车在匀速过程中突然加速,木箱相对于汽车向后滑动,易知木箱受到向前的滑动摩擦力。
点评:(1)假设法是判断相对运动趋势方向的有效方法;(2)摩擦力的方向可以与物体运动的方向相同,也可以与物体运动的方向相反,即摩擦力可以是动力也可以是阻力;(3)摩擦力总是阻碍物体间的相对运动,但不一定阻碍物体的运动;(4)静摩擦力不仅存在于两静止的物体之间,两运动的物体间也可以有静摩擦力。
例3. 将已知力F分解为F1、F2两个分力,如果已知F1的大小及F2与F的夹角为θ<90°,那么当F2有一个解、两个解时,F1分别满足的条件为___________。
解析:如图,以点A为圆心,以F1的大小为半径画圆。
当圆与直线OB相切时,力F、F1、F2构成一个直角三角形,即力F2有一个解。
此时F1=Fsinθ;当圆与直线OB相交时,力F、F1、F2构成两个三角形,即力F2有二个解,此时F>F1>Fsin θ。
答案:例4. 如图5所示,小车M在恒力作用下,沿水平地面做直线运动,由此可判断()A. 若地面光滑,则小车一定受三个力作用B. 若地面粗糙,则小车可能受三个力作用C. 若小车做匀速运动,则小车一定受四个力作用D. 若小车做加速运动,则小车可能受三个力作用解析:先分析重力和已知力F;再分析弹力,由于F的竖直分力可能等于重力,因此地面可能对物体无弹力作用,选项A错误。
F的竖直分力可能小于重力,地面对物体有弹力作用,若地面粗糙,小车受摩擦力作用,共四个力的作用;若F的竖直分力恰好等于重力,这时没有地面对物体的弹力,也没有摩擦力作用,只有两个作用于物体;若F的竖直分力大于重力,物体不可能在平面上运动,不符合题意。
综上,不存在三个力的情况,B选项错。
若小车匀速运动,那么水平方向上必受摩擦力与F的分力平衡,这时小车一定受重力、恒力F、地面弹力、摩擦力四个力作用。
选项C正确。
若小车做加速运动,当地面光滑时,小车受重力和力F作用或受重力、力F、地面弹力作用,选项D正确。
点评:(1)在常见的几种力中,重力是主动力,而弹力、摩擦力是被动力,其中弹力存在又是摩擦力存在的前提,所以分析受力时应按重力、弹力、摩擦力的顺序去分析。
(2)物体的受力情况要与其运动情况相符,因此,常常从物体的运动状态入手,去分析某个力是否存在,如本例中选项CD的分析。
例5. 重为G的木块与水平地面间的动摩擦因数为μ,一人欲用最小的作用力F使木块做匀速运动,则此最小作用力的大小和方向应如何?解析:木块在运动中受摩擦力作用,要减小摩擦力,应使作用力F斜向上,设当F斜向上与水平方向的夹角为α时,F的值最小。
(1)正交分解法木块受力分析如图6所示。
由平衡条件列方程:(2)三角形法由于f=μN,故不论N如何改变,f与N的合力的方向都不会发生改变,如图7示,合力F1与竖直方向的夹角一定为 =arctgμ,力F1、G、F组成三角形,由几何关系知,当F与F1方向垂直时,F有最小值,由几何关系得:点评:力的三角形法与正交分解法是解决共点力平衡问题的最常见的两种解法。
前者适于三力平衡问题,简捷、直观,后者适于多力平衡问题,是最基本的解法,但有时有冗长的演算过程,因此要灵活地选择解题方法。
例6. 固定在水平面上的光滑半球,半径为R,球心O的正上方固定一个小定滑轮,细线一端拴一小球,置于半球面上的A点,另一端绕过定滑轮,如图8所示,现缓慢地将小球从A 点拉到B点,则此过程中,小球对半球的压力大小N、细线的拉力大小T的变化情况是()A. N变大,T不变B. N变小,T变大C. N不变,T变小D. N变大,T变小解析:(1)三角形法小球缓慢运动,合力为零,由于重力G、半球的弹力N、绳的拉力T的方向始终沿竖直方向、半径方向、绳的收缩方向,所以由G、N、T组成的力三角形与长度三角形ΔAOC相似,所以有拉动过程中,AC变小,OC与R不变,所以N不变,T变小。
(2)正交分解法设A到OC间的距离为x,则【模拟试题】1. 如图9所示,A、B、C三个物体叠放在桌面上,在A的上面再加一个作用力F,则C物体受到竖直向下的作用力除了自身的重力之外还有()A. 1个力B. 2个力C. 3个力D. 4个力2. 如图10所示,质量为m的小物块P位于倾角为的粗糙斜面上,斜面固定在水平面上,水平力F作用在物块P上,F的大小等于mg,物块P静止不动,下列关于物块P受力的说法中正确的是()A. P受4个力的作用,斜面对P的支持力N与F的合力方向为垂直于斜面向上B. P受4个力的作用,N与F的合力方向为垂直于水平面向上C. P受3个力的作用,N与F的合力方向为垂直于斜面向上D. P受3个力的作用,N与F的合力方向为垂直于水平面向上3. 大小不同的在同一平面上的三个共点力,同时作用在一个物体上,以下各组中,能使物体平衡的一组是()A. 3N,4N,8NB. 2N,6N,7NC. 4N,7N,12ND. 4N,5N,10N4. 有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图11),现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是()A. N不变,T变大B. N不变,T变小C. N变大,T变大D. N变大,T变小5. 如图12所示,一球被竖直光滑挡板挡在光滑斜面上处于静止状态,现缓慢转动挡板,直至挡板水平,则在此过程中,球对挡板的压力_________,球对斜面的压力_________。