泗河镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
中心镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
中心镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)用不等式表示如图所示的解集,其中正确的是()A.x>-2B.x<-2C.x≥-2D.x≤-2【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:图中数轴上表达的不等式的解集为:.故答案为:C.【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
2、(2分)在4,—0.1,,中为无理数的是()A. 4B. —0.1C.D.【答案】D【考点】无理数的认识【解析】【解答】解:这四个数中,4,—0.1,,是有理数是无理数故答案为:D【分析】根据无理数的定义,无限不循环的小数是无理数;开方开不尽的数是无理数;含的数是无理数。
即可得解。
3、(2分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔A. 1B. 2C. 3D. 4【答案】D【考点】一元一次不等式的应用【解析】【解答】解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故答案为:D【分析】设出可买笔的数量,根据花费小于21元可列出一元一次不等式,解不等式即可求得买笔的最大数.4、(2分)下列方程组中,是二元一次方程组的是()A. B. C. D.【答案】B【考点】二元一次方程组的定义【解析】【解答】解:A、方程组中含3个未知数,A不是二元一次方程组;B、两个未知数,最高次数为是二元一次方程组;C、两个未知数,最高次数为不是二元一次方程组;D、两个未知数,一个算式未知数次数为不是二元一次方程组.故答案为:B.【分析】二元一次方程组满足三个条件;(1)只含有两个未知数,且未知数的最高次数都是1,且是整式方程。
泗门镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
泗门镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若是方程组的解,则a、b值为()A.B.C.D.【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入得,,.故答案为:A.【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。
2、(2分)在实数,,,0,-1.414,,,0.1010010001中,无理数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:无理数有:共2个.故答案为:A.【分析】无理数指的是无限不循环的小数,其中包括开放开不尽的数,特殊之母,还有0.1010010001000013、(2分)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.【答案】D【考点】平移的性质,利用平移设计图案【解析】【解答】解:根据平移的概念,观察图形可知图案D通过平移后可以得到.故答案为:D【分析】根据平移的定义及平移的性质,可出答案。
4、(2分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()A. 16°B. 33°C. 49°D. 66°【答案】D【考点】平行线的性质【解析】【解答】解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°.∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∴∠CEF=∠ABE=66°.故答案为:D【分析】由两直线平行,内错角相等,可求出∠ABC的度数,再用角平分线的性质可求出∠ABE的度数,即可求出∠CEF的度数.5、(2分)一种灭虫药粉30kg.含药率是15%.现在要用含药率较高的同种灭虫药粉50kg和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x的范围是()A.15%<x<28%B.15%<x<35%C.39%<x<47%D.23%<x<50%【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:先解出30kg和50kg中的灭虫药粉的含药的总量,再除以总数(50+30kg)即可得出含药率,再令其大于30%小于35%即解得:故答案为:C.【分析】含药率=纯药的质量÷药粉总质量,关系式为:20%<含药率<35%,把相关数值代入计算即可.6、(2分)若方程的解是负数,则的取值范围是()A.B.C.D.【答案】A【考点】解一元一次不等式,解含括号的一元一次方程【解析】【解答】解:解含有系数m的方程,可得x=- ,然后根据方程的解为负数,可知4m-5>0,解得m>- .故答案为:A.【分析】先把m看作已知数,解关于x的一元一次方程,求出x的值(用含m的代数式表示),由方程的解是负数可知x<0即4m-5>0,然后解不等式即可求出m的取值范围。
泗河镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
泗河镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列方程组中,属于二元一次方程组的是()A.B.C.D.【答案】C【考点】二元一次方程组的定义【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;B. 第一个方程不是整式方程,故不是二元一次方程组;C. 符合二元一次方程组的定义,是二元一次方程组;D.含有三个未知数,故不是二元一次方程组。
故答案为:C【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。
2、(2分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A. 10道题B. 12道题C. 13道题D. 16道题【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设她至少要答对x道题,则答错或不答(20﹣x)道.由题意,得10x﹣5(20﹣x)>90,解得:x>.∵x为整数,∴x至少为13.故答案为:C【分析】先设出她答对的题数,即可表示她的得分情况,再根据“得分要超过90分”即得分大于90即可列一元一次不等式,解不等式即可求得答题的最少数目.3、(2分)=()A. 2B. 3C. 4D. 5【答案】B【考点】算术平方根【解析】【解答】解:故答案为:B【分析】根据算术平方根的性质求解即可。
4、(2分)下列说法中正确的是()A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解【答案】D【考点】不等式的解及解集【解析】【解答】解:A. 代入不等式得:不是不等式的解.故A不符合题意.B. 不等式的解集是:故B不符合题意.C.不等式的解集是:故C不符合题意.D. 是不等式的解.故D符合题意.故答案为:D.【分析】先解出每个选项中的不等式的解集,根据不等式的解的定义,就能得到使不等式成立的未知数的值,即可作出判断5、(2分)a是非负数的表达式是()A.a>0B.≥0C.a≤0D.a≥0【答案】D【考点】不等式及其性质【解析】【解答】解:非负数是指大于或等于0的数,所以a≥0,故答案为:D.【分析】正数和0统称非负数,根据这个定义作出判断即可。
2018-2019年度数学学科初一年级第二学期期中考试试题+答案
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
下河乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
下河乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若是方程组的解,则a、b值为()A.B.C.D.【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入得,,.故答案为:A.【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。
2、(2分)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()A.每100克内含钙150毫克B.每100克内含钙高于150毫克C.每100克内含钙不低于150毫克D.每100克内含钙不超过150毫克【答案】C【考点】不等式及其性质【解析】【解答】解:根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故答案为:C【分析】”≥”就是“不小于”,在本题中就是“不低于”的意思。
3、(2分)如果2x a﹣2b﹣3y a+b+1=0是二元一次方程,那么a,b的值分别是()A.1,0B.0,1C.﹣1,2D.2,﹣1【答案】A【考点】二元一次方程的定义【解析】【解答】解:∵2x a﹣2b﹣3y a+b+1=0是二元一次方程,∴a﹣2b=1,a+b=1,解得:a=1,b=0.故答案为:A【分析】根据二元一次方程的定义:含有两个未知数,且两个未知数的最高次数是1次的整式方程,就可建立关于a、b的二元一次方程组,解方程组求出a、b的值。
4、(2分)所有和数轴上的点组成一一对应的数组成()A. 整数B. 有理数C. 无理数D. 实数【答案】D【考点】实数在数轴上的表示【解析】【解答】解:∵实数与数轴上的点成一一对应。
故答案为:D【分析】根据实数与数轴上的点成一一对应,即可得出答案。
5、(2分)下列方程组中,是二元一次方程组的是()A.B.C.D.【答案】B【考点】二元一次方程组的解【解析】【解答】解:A、方程6xy=7是二元二次方程,故A不符合题意;B、方程组是二元一次方程组,故B符合题意;C、方程3x2﹣x﹣3=0,是一元二次方程,故此C不符合题意;D、方程﹣1=y是分式方程,故D不符合题意.故答案为:B.【分析】二元一次方程组满足的条件:含有两个未知数;未知数的最高次数是1;是整式方程。
泗水县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
14、( 4 分 ) 将下列各数填入相应的集合中:
—7 , 0,
, —2.55555……, 3.01, +9 , 4.020020002…, +10﹣,
有理数集合:{________};
无理数集合:{________};
整数集合:{________};
分数集合:{________}
【 答 案 】 —7 , 0 ,
【解析】【解答】解 : F.
延 长 BA , 在 BA 的 延 长 线 上 取 点
第 6 页,共 21 页
①∵BD、CD 分别平分△ABC 的内角∠ABC、外角∠ACP, ∴AD 平分△ABC 的外角∠FAC, ∴∠FAD=∠DAC, ∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB, ∴∠FAD=∠ABC, ∴AD∥BC,故①正确;故①符合题意, ②∵BD、BE 分别平分△ABC 的内角∠ABC、外角∠MBC, ∴∠DBE=∠DBC+∠EBC= ∠ABC+ ∠MBC= ×180∘=90∘ , ∴EB⊥DB,故②正确,故②符合题意, ③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC, ∴2(∠BDC+∠CBD)=∠BAC+2∠DBC, ∴∠BDC=②∠BAC, ∵∠BAC+2∠ACB=180∘ , ∴ ∠BAC+∠ACB=90∘ ,
3、 ( 2 分 ) 某公司有员工 700 人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只 允许参加一项且每人均参加,则不下围棋的人共有( )
A. 259 人
B. 441 人
C. 350 人
【答案】 B 【考点】扇形统计图
第 2 页,共 21 页
普通镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
普通镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级 __________ 座号_______ 姓名____________ 分数____________ 、选择题1、(2分)如图,下列说法中错误的是(C EA. / GBD和/ HCE是同位角B. / ABD 和/ ACE是同位角C. / FBC和/ ACE是内错角D. / GBC和/ BCE是同旁内角【答案】A【考点】同位角、内错角、同旁内角【解析】【解答】解:A、/ GBD和/ HCE不符合同位角的定义,故本选项正确;B、/ ABD和/ ACE是同位角,故本选项错误;C、/FBC和/ ACE是内错角,故本选项错误;D、/ GBC和/ BCE是同旁内角,故本选项错误;故答案为:A.【分析】】/ GBD和/ HCE是由两条直线被另两条直线所截形成的两个角,一共有四条直线,不是同位角2、(2分)下列各组数中,是方程2x-y=8的解的是()【答案】C【考点】二元一次方程的解【解析】【解答】解:先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4 ,当x=0.5 时,y=-7,当x=5 时,y=2.故答案为:C.【分析】能使方程的左边和右边相等的未知数的值就是方程的解,首先将方程变形为用含x的式子表示y,再分别将每个答案中的x的值代入算出对应的y的值,将计算的y的值与每个答案中给出的y的值进行比较,如果相等,该答案就是方程的解,反之就不是方程的解。
3、(2分)小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案•小明说:我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法”小敏想了想说:设各人的任务为x、y、z,可以列出方程x+y+z=4 •” 小新接着说:那么问题就成了问这个方程有几个正整数解. ”现在请你说说看:这个方程正整数解的个数是()A. 6个B. 5个C. 4个D. 3个【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:①当x=1时,y=1 , z=2或y=2, z=1;②当y=1 时,x=1 ,z=2 或x=2 ,z=1 ;③当z=1时,x=1, y=2或y=1 , x=2 .故答案为:D.【分析】根据题意列出三元一次方程,根据每人至少1 只,分三种情况:当x=1 ;当y=1 ;当z=1 ,求出其整数解即可。
人教版2018-2019学年七年级下册期中数学试题(含答案解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
分乡镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
分乡镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级 __________ 座号_______ 姓名 ____________ 分数____________一、选择题1、(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()A. 1种B. 2种C. 3种D. 4种【答案】B【考点】二元一次方程的应用【解析】【解答】解:设用了2元x张,5元y张,则2x+5y=23 ,2x=23-5y,23-5v,x=•/ x, y均为正整数,即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.故答案为:B.【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。
产=3, 7,2、(2分)已知是二元一次方程组的解,则的值为()A. -B.—B. -■13C. 一【答案】B【考点】二元一次方程的解,解二元一次方程组严3【解析】【解答】解:••••¥= — 1是二元一次方程组3a-b — 7-上一I••• a-b=故答案为:B【分析】将已知x、y的值分别代入方程组,建立关于b的值代入代数式计算即可。
3、(2分)如图,,、、分别平分的内角、外角、外角.以下结论:①// ;②亠一亠;③•■' -15-. = :-;④•亠--二二「二1;厂;⑤ 平分•其中正确的结论有()3a、b的方程组,解方程组求出a、b的值,然后将a、••• AD 平分△ABC 的外角/ FAC,•••/ FAD= / DAC , •••/ FAC= / ACB+ / ABC ,且 / ABC= / ACB , •••/ FAD= / ABC ,• AD // BC ,故①正确;故①符合题意,② ••• BD 、BE 分别平分 AABC 的内角/ ABC 、外角/ MBC , 丄 丄 丄•••/ DBE= / DBC+ / EBC= / ABC+ / MBC= X180 =90° • EB 丄DB ,故②正确,故②符合题意,③ •••/ DCP= / BDC+ / CBD , 2 / DCP= / BAC+2 / DBC , • 2 (/ BDC+ / CBD ) = / BAC+2 / DBC ,•••/ BDC=②/ BAC ,A. 2个B. 3个C. 4个D. 5个【答案】C【考点】平行线的判定与性质,三角形内角和定理,三角形的外角性质,等边三角形的判定,菱形的判定延长 BA ,在 BA 的延长线上取点【解析】 【解答】解5、 (2分) 1.5 (。
夏镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
夏镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1、(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中,属于无理数的有:两个.故答案为:B.【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。
2、(2分)小亮在解不等式组时,解法步骤如下:解不等式①,得x>3,…第一步;解不等式②,得x>﹣8,…第二步;所有原不等式组组的解集为﹣8<x<3…第三步.对于以上解答,你认为下列判断正确的是()A. 解答有误,错在第一步B. 解答有误,错在第二步C. 解答有误,错在第三步D. 原解答正确无误【答案】A【考点】解一元一次不等式组【解析】【解答】解:解不等式①,得x>3,解不等式②,得x>﹣8,所以原不等式组的解集为x>3.故答案为:C【分析】不等式组取解集时:同大取大,即都是大于时,取大于大的那部分解集,也可以在数轴上表示出来两个解集,取公共部分.3、(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()A. 5B. 7C. 9D. 11【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设第二份餐的单价为x元,由题意得,(120+x)×0.9≤200,解得:x≤102 ,故前9种餐都可以选择.故答案为:C【分析】先利用一元一次不等式求得第二份餐的单价的取值范围,再参照价格表及优惠即可知道可以选餐的种类.4、(2分)如图所示,在△ABC中,AB=12,BC=10,点O为AC的中点,则BO的取值范围是()A. 1<BO<11B. 2<BO<22C. 10<BO<12D. 5<BO<6【答案】A【考点】一元一次不等式组的应用,三角形三边关系,平行四边形的判定与性质【解析】【解答】解:如图延长BO到D,使OB=OD,连接CD,AD,则四边形ABCD是平行四边形,在△ABD中,AD=10,BA=12,所以2<BD<22,所以1<BO<11答案。
人教版2018-2019学年初一下册期中数学试题(含答案解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
2018-2019学年七年级(下)期中数学试卷及答案解析
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
2018—2019学年度第二学期期中测试卷
1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。
泗南江乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
泗南江乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在,π,,1.5(。
)1(。
),中无理数的个数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:∵无理数有:,故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.2、(2分)如图,下列结论正确的是()A.B.C.D.【答案】B【考点】实数在数轴上的表示,实数大小的比较,实数的绝对值【解析】【解答】解:A. ,不符合题意.B. ,符合题意.C. ,不符合题意.D. ,不符合题意.故答案为:B.【分析】A 根据数轴上表示的实数,右边的总比左边的数大即可作出判断。
B 利用分子相同的两个数,分母大的反而小即可判断。
C 根据一个数的绝对值就是数轴上的点到原点的距离即可作出判断即可。
D 几个有理数相乘,积的符号由负因数的个数确定,当负因数的个数是偶数时,积为正,当负因数的个数是奇数时,积为负,据此作出判断即可。
3、(2分)下列四幅图中,∠1和∠2是同位角的是()A. (1)、(2)B. (3)、(4)C. (1)、(2)、(3)D. (2)、(3)、(4)【答案】A【考点】同位角、内错角、同旁内角【解析】【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故答案为:A.【分析】根据同位角的定义,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,观察图形即可得出答案。
4、(2分)下列说法中正确的是()A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解【答案】D【考点】不等式的解及解集【解析】【解答】解:A. 代入不等式得:不是不等式的解.故A不符合题意.B. 不等式的解集是:故B不符合题意.C.不等式的解集是:故C不符合题意.D. 是不等式的解.故D符合题意.故答案为:D.【分析】先解出每个选项中的不等式的解集,根据不等式的解的定义,就能得到使不等式成立的未知数的值,即可作出判断5、(2分)用加减法解方程组中,消x用法,消y用法()A. 加,加B. 加,减C. 减,加D. 减,减【答案】C【考点】解二元一次方程【解析】【解答】解:用加减法解方程组中,消x用减法,消y用加法,故答案为:C.【分析】观察方程组中同一个未知数的系数特点:x的系数相等,因此可将两方程相减消去x;而y的系数互为相反数,因此将两方程相加,可以消去y。
甘肃省泗水初级中学2018——2019学年第二学期七年级下数学期中试卷
2018—2019学年度第二学期期中试卷七年级数学一、选择题(每题3分,共30分)1.49的平方根是()A .7B .7-C .7± D2.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A .B .C .D .3.在下列各数:3.14,π-、13111 A .2 B .3 C .4 D .54.下列各式正确的是()A 3=B .(216=C 3=±D 4=-5.在平面直角坐标系中,点()3,5A -所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限6.交换下列命题的题设和结论,得到的新命题是假命题的是()A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a b =,则33a b -=-7.如图,//AB CD ,那么A C AEC ∠+∠+∠=()A .360︒B .270︒C .200︒D .180︒8.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D '、C '的位置,若65EFB ∠=︒,则AED '∠等于()A .50︒B .55︒C .60︒D .65︒9.若一个正数的平方根是21a -和2a -+,则这个正数是()A .1B .3C .4D .910.若平面直角坐标系内的点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-二、填空题(每小题4分,共32分)11_________;27-的立方根是________.12.把命题“对顶角相等”改写成“如果…那么…”的形式:______________.13.图中A 、B 两点的坐标分别为()3,3-、()3,3,则C 的坐标为________.14.如图所示,用直尺和三角尺作直线AB ,CD ,从图中可知,直线AB 与直线CD 的位置关系为________.15.如图,已知//a b ,170∠=︒,240∠=︒,则3∠=________度.16.已知x 、y ()220y +=,则x y =________. 17.平方根等于本身的数是_______,立方根等于本身的数是________.18.如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖_______块,第n 个图案中白色地面砖_______块.第1个第2个第3个三、解答题19.计算:(1(2)2311(2)8⎛-+-⨯- ⎝; 20.解下列方程:(1)24160x -=(2)()31125x -=-21.已知:如图,12∠=∠,C D ∠=∠.求证:A F ∠=∠.证明:12∠=∠Q (已知),又1DMN ∠=∠(____________),2∴∠=∠______(等量代换), //DB EC ∴(_____________), 180DBC C ∴∠+∠=︒(两直线平行,___________), C D ∠=∠Q (___________), DBC ∴∠+_______180=︒(等量代换)//DF AC ∴(_________,两直线平行),A F ∴∠=∠(____________)22.如图,ABC ∆在直角坐标系中,①请写出ABC ∆各点的坐标.②若把ABC ∆向上平移2个单位,再向左平移1个单位得到A B C '''∆,写出A '、B '、C '的坐标,并在图中画出平移后图形.③求出三角形ABC 的面积.23.如图,ABD ∠和BDC ∠的平分线交于E ,BE 的延长线交CD 于点F ,1290∠+∠=︒,求证:(1)//AB CD ;(2)2390∠+∠=︒.24.如图,已知12∠=∠,20BAC ∠=︒,80ACF ∠=︒.①求2∠的度数;②FC 与AD 平行吗?为什么?③根据以上结论,你能确定ADB ∠与FCB ∠的大小关系吗?请说明理由.。
泗河初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
是方程 x-2y=1 的解 ;
当 x=-1 时,y=-1 ,故 D.
是方程 x-2y=1 的解,
故答案为:B
【分析】分别将各选项中的 x、y 的值代入方程 x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
12、( 2 分 ) 已知 a<b,则下列不等式中不正确的是( )
A. a+4<b+4
16、( 1 分 ) 小亮解方程组 两个数●和★,请你帮他找回这个数 【答案】-2 【考点】解二元一次方程组
的解为 =________.
,由于不小心,滴上了两滴墨水, 刚好遮住了
【解析】【解答】解:把 x=5 代入 2x-y=12 得 2×5-y=12,解得 y=-2.
第 10 页,共 19 页
∴★为-2. 故答案为-2. 【分析】将 x=5 代入两方程,就可求出结果。 17、( 1 分 ) 如图,已知 AB∥CD,CE,AE 分别平分∠ACD,∠CAB,则∠1+∠2=________.
二、填空题
13、( 1 分 ) 下面是小芳本月的费用支出扇形统计图,如果本月小芳总共花费了 1000 元,那么在购买衣物
Hale Waihona Puke 第 8 页,共 19 页上面花费了________元。 【答案】200 【考点】扇形统计图
【解析】【解答】解:从扇形统计图可知,购买衣物占总费用的 20%,1000×20%=200(元) 故答案为:200 【分析】扇形统计图表示部分与整体之间的关系,用总花费乘购买衣物占总费用的百分率即可求出购买衣服花 费的钱数.
4、 ( 2 分 ) 下列语句正确是( )
A. 无限小数是无理数
B. 无理数是无限小数
C. 实数分为正实数和负实数
泗水镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
泗水镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各数中,属于无理数是()A. B. C. D.【答案】A【考点】无理数的认识【解析】【解答】解:A、为无理数,故A选项符合题意;B、为有理数,故B选项不符合题意;C、为有理数,故C选项不符合题意;D、为有理数,故D选项不符合题意;故答案为:A.【分析】无限不循环的小数就是无理数,常见的无理数有三类:①开方开不尽的数,②象0.1010010001…(两个1之间依次多一个0),③及含的式子,根据定义即可一一判断得出答案。
2、(2分)下列四个数中,最大的一个数是()A. 2B.C. 0D. -2【答案】A【考点】实数大小的比较【解析】【解答】解:∵0和负数比正数都小而1<<2∴最大的数是2故答案为:A【分析】根据正数都大于0和负数,因此只需比较2和的大小即可。
3、(2分)下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.【答案】A【考点】二元一次方程的解【解析】【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,符合题意;B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,不符合题意;C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,不符合题意;D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,不符合题意.故答案为:A【分析】由二元一次方程的解的意义,将选项中的x、y的值代入已知的方程检验即可判断求解。
4、(2分)如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A. ∠1+∠2B. ∠2-∠1C. 180°-∠2+∠1D. 180°-∠1+∠2【答案】C【考点】平行线的性质【解析】【解答】解:∵B∥CD∴∠1=∠BCD∵CD∥EF,∴∠2+∠DCE=180°∠DCE=180°-∠2∵∠BCE=∠BCD+ ∠DCE∴∠BCE=180°-∠2+∠1故答案为:C【分析】根据两直线平行内错角相等即同旁内角互补,可得出∠1=∠BCD,∠2+∠DCE=180°,再根据∠BCE=∠BCD+ ∠DCE,即可得出结论。
泗水乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
泗水乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D【考点】角的平分线,平行线的性质【解析】【解答】解:∵AB∥CD,∠A=120°,∴∠DCA=180°﹣∠A=60°,∵CE平分∠ACD,∴∠ECD= ∠DCA=30°,故答案为:D.【分析】先根据两直线平行,同旁内角互补,求出∠DCA的度数,再根据角平分线的定义得出∠ECD= ∠DCA,计算即可求解。
2、(2分)下列说法:①两个无理数的和一定是无理数;②两个无理数的积一定是无理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积一定是无理数。
其中正确的个数是()A. 0B. 1C. 2D. 3【答案】B【考点】无理数的认识【解析】【解答】解:①两个无理数的和不一定是无理数,如互为相反数的两个无理数的和为0;②两个无理数的积可能是无理数,也可能是有理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积可能是无理数,也可能是有理数.故正确的序号为:③,故答案为:B.【分析】无限不循环的小数就是无理数,根据无理数的定义,用举例子的方法即可一一判断。
3、(2分)下列生活现象中,属于平移的是()A. 足球在草地上滚动B. 拉开抽屉C. 投影片上的文字经投影转换到屏幕上D. 钟摆的摆动【答案】B【考点】生活中的平移现象【解析】【解答】解:拉开抽屉是平移。
【分析】根据平移的定义,平移只改变图形的位置,不改变图形的大小,方向,即可得出结论。
4、(2分)若方程ax-3y=2x+6是二元一次方程,则a必须满足()A.a≠2B.a≠-2C.a=2D.a=0【答案】A【考点】二元一次方程的定义【解析】【解答】解:先将方程移项整理可得: ,根据二元一次方程的定义可得:故答案为:A.【分析】首先将方程右边的2x改变符号后移到方程的左边,然后再合并同类项得出,根据二元一次方程的定义,方程必须含有两个未知数,从而得出不等式a-2≠0,求解即可得出a的取值范围。
泗水乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
泗水乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)不等式的解集,在数轴上表示正确的是()A.B.C.D.【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:由得:1+2x≥5x≥2,因此在数轴上可表示为:故答案为:C.【分析】先解一元一次不等式(两边同乘以5去分母,移项,合并同类项,系数化为1),求出不等式的解集,再把不等式的解集表示在数轴上即可(x≥2在2的右边包括2,应用实心的圆点表示)。
2、(2分)下列不等式组是一元一次不等式组的是()A.B.C.D.【答案】C【考点】一元一次不等式组的定义【解析】【解答】根据一元一次不等式组的定义可知选项C正确,故选:C.【分析】根据一元一次不等式组的定义可判断.不等式组中只含有一个未知数并且未知数的次数是一次的.3、(2分)如果方程组的解与方程组的解相同,则a、b的值是()A.B.C.D.【答案】A【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:由题意得:是的解,故可得:,解得:.故答案为:A.【分析】由题意把x=3和y=4分别代入两个方程组中的第二个方程中,可得关于a、b的二元一次方程组,解这个方程组即可求得a、b的值。
4、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()A. B. C. D.【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:,②−①,得3a+b=3④①×3+③,得5a−2b=19⑤由④⑤可知,选项D不符合题意,故答案为:D.【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
5、(2分)下列计算不正确的是()A. |-3|=3B.C.D.【答案】D【考点】实数的运算【解析】【解答】A、|-3|=3,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意.故答案为:D.【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=;(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.6、(2分)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒。
泗河实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
泗河实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中,属于无理数的有:两个.故答案为:B.【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。
2、(2分)下列命题不成立的是()A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等【答案】C【考点】余角、补角及其性质,对顶角、邻补角,平行线的性质【解析】【解答】A、同角或等角的补角相等,故A不符合题意;B、两直线平行,内错角相等,故B不符合题意;C、同位角不一定相等,故C符合题意;D、对顶角相等,故D不符合题意;故答案为:C【分析】根据两角互补的性质可对A作出判断;根据平行线的性质可对B、C作出判断;根据对顶角的性质可对D作出判断;即可得出答案。
3、(2分)下列各数是无理数的为()A. B. C. 4.121121112 D.【答案】B【考点】无理数的认识【解析】【解答】根据无理数的定义可知,只有是无理数,﹣9、4.121121112、都是有理数,故答案为:B.【分析】利用无理数是无限不循环的小数,可解答。
4、(2分)已知正方体的体积为64,则这个正方体的棱长为()A. 4B. 8C.D.【答案】A【考点】立方根及开立方【解析】【解答】解:∵正方体的体积是64∴正方体的棱长为=4【分析】根据正方体的体积等于棱长的三次方,开立方根求解即可。
5、(2分)某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A. 30°B. 45°C. 60°D. 75°【答案】B【考点】平行线的性质【解析】【解答】解:∵∠EAB=45°,∴∠BAD=180°-∠EAB=180°-45°=135°,∵AB∥CD,∴∠ADC =∠BAD =135°,∴∠FDC=180°-∠ADC=45°.故答案为:B【分析】利用两直线平行内错角相等即可知∠ADC=∠BAD,因为∠BAD与∠EAB是互为邻补角,所以即可知∠ADC的度数,从而求出∠CDF的值.6、(2分)某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为()A. 18B. 19C. 20D. 21【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,依题意得2×15+8x≥190,解之得,x≥20,所以平均每天至少加工20个零件,才能在规定的时间内完成任务.故答案为:C【分析】设平均每天至少加工x个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,从而根据前两天的工作量+后8天的工作量应该不小于190,列出不等式,求解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泗河镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A. 4B. 4或5C. 5或6D. 6【答案】B【考点】一元一次不等式组的应用【解析】【解答】解:设长度为4、12的高分别是a、b边上的,边c上的高为h,△ABC的面积是s,那么又∵a-b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5.【分析】先设出三边边长及第三条高的长度,利用面积与高的比值表示出三条边长,再利用三角形三边关系可以列出不等式组,将不等式组利用不等式性质即可化解求得第三条高的取值范围,进而可求得第三条高的值.2、(2分)三元一次方程组的解为()A. B. C. D.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:②×4−①得2x−y=5④②×3+③得5x−2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=−2.故原方程组的解为.故答案为:C.【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
3、(2分)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOD=70°,则∠BOD的大小为()A. 25°B. 35°C. 45°D. 55°【答案】D【考点】角的平分线,对顶角、邻补角【解析】【解答】解:∵∠EOD=70°,∴∠EOC=180°﹣70°=110°,∵OA平分∠EOC,∴∠AOC= ∠EOC=55°,∴∠BOD=∠AOC=55°;故答案为:D.【分析】根据邻补角的定义得出∠EOC的度数,再根据角平分线的定义得出∠AOC= ∠EOC=55°,根据对顶角相等即可得出答案。
4、(2分)比较2, , 的大小,正确的是()A. 2< <B. 2< <C. <2<D. < <2【答案】C【考点】实数大小的比较,估算无理数的大小【解析】【解答】解:∵1<<2,2<<3∴<2<故答案为:C【分析】根据题意判断和分别在哪两个整数之间,即可判断它们的大小。
5、(2分)下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或1【答案】C【考点】算术平方根,实数在数轴上的表示,有理数及其分类【解析】【解答】A. 实数与数轴上的点一一对应,故A不符合题意;B. =2,故B不符合题意;C. 负数立方根是负数,故C符合题意;D. 算术平方根等于它本身的数只有0或1,故D不符合题意;故答案为:C.【分析】实数与数轴上的点是一一对应的关系;两个无理数的和不一定是无理数,可能是0,也可能是有理数;负数立方根是负数,负数没有平方根;算术平方根等于它本身的数只有0或1.6、(2分)在实数范围内定义新运算:,则不等式的非负整数解为()A.B.1C.0D.【答案】D【考点】一元一次不等式的特殊解【解析】【解答】解:根据题意得3x-x+1≤3,解得,x≤1,所以原不等式的的非负整数解为0,1,故答案为:D.【分析】先根据定义新运算求出3△x=3x-x+1,然后把不等式不等式转化为3x-x+1≤3,解不等式求出x的取值范围。
再从中找出非负整数即可(正整数和0).7、(2分)在4,—0.1,,中为无理数的是()A. 4B. —0.1C.D.【答案】D【考点】无理数的认识【解析】【解答】解:这四个数中,4,—0.1,,是有理数是无理数故答案为:D【分析】根据无理数的定义,无限不循环的小数是无理数;开方开不尽的数是无理数;含的数是无理数。
即可得解。
8、(2分)若,则a的取值范围为()A. 正数B. 非负数C. 1,0D. 0【答案】C【考点】算术平方根【解析】【解答】∵,∴a≥0,a= ,即a的算术平方根等于它本身,∴a=1或0.故答案为:C.【分析】由题意知a的算术平方根等于它本身,所以a=1或0.9、(2分)如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC中,相互平行的线段有()A. 4组B. 3组C. 2组D. 1组【答案】B【考点】平行线的判定【解析】【解答】解:∠B=∠DCE,则AB∥EC(同位角相等,两直线平行);∠BCA=∠CAE,则AE∥BC(内错角相等,两直线平行);则AE∥CD,∠ACE=∠DEC,则AC∥DE(内错角相等,两直线平行).则线段AB、AC、AE、ED、EC中,相互平行的线段有:AE∥BC,AB∥EC,AC∥DE共3组.故答案为:C.【分析】∠B和∠DCE是同位角,同位角相等,两直线平行;∠ACE和∠DEC是内错角,∠BCA和∠CAE 是内错角,内错角相等,两直线平行;10、(2分)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a 的值之和是()A. ﹣3B. ﹣2C. ﹣D.【答案】B【考点】解分式方程,解一元一次不等式组【解析】【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x= ,∵x= 为整数,a≤1,∴a=﹣3或1,∴所有满足条件的a的值之和是﹣2,故答案为:B【分析】根据题意由不等式组无解,得到a的取值范围;找出最简公分母,分式方程两边都乘以最简公分母,求出分式方程的解,根据分式方程有整数解,求出a的值,得到所有满足条件的a的值之和.11、(2分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[-2.5]=-3.现对82进行如下操作:这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A. 1B. 2C. 3D. 4【答案】C【考点】估算无理数的大小【解析】【解答】解:∴对121只需进行3次操作后变为1,故答案为:C【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可。
12、(2分)下列选项中的调查,适合用全面调查方式的是()A. 日光灯管厂要检测一批灯管的使用寿命B. 了解居民对废旧电池的处理情况C. 了解现代大学生的主要娱乐方式D. 某公司对退休职工进行健康检查【答案】D【考点】全面调查与抽样调查【解析】【解答】解:A、日光灯管厂要检测一批灯管的使用寿命,适合抽样调查,故A不符合题意;B、了解居民对废旧电池的处理情况,适合抽样调查,故B不符合题意;C、了解现代大学生的主要娱乐方式,适合抽样调查,故C不符合题意;D、某公司对退休职工进行健康检查,适合全面调查,故D符合题意。
故答案为:D。
【分析】根据全面调查适合于工作量比较小,对调查结果要求比较准确,调查过程不具有破坏性,危害性,浪费等使劲的调查,即可作出判断。
二、填空题13、(1分)的最小值是,的最大值是,则________.【答案】-4【考点】代数式求值,一元一次不等式的应用【解析】【解答】解:的最小值是a,x≤-6的最大值是b,∴a=2,b=-6,∴a+b=2+(-6)=-4.故答案为:-4.【分析】由题意先求出a,b;再把a,b的在代入代数式计算即可得出答案。
14、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:∵AD∥BC(已知),∴∠1=∠3(________).∵∠1=∠2(已知),∴∠2=∠3.∴BE∥________(________).∴∠3+∠4=180°(________).【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补【考点】平行线的判定与性质【解析】【分析】根据平行线性质:两直线平行,内错角相等;根据平行线判定:同位角相等,两直线平行;根据平行线性质:两直线平行,同旁内角互补.15、(3分)已知a、b、c满足,则a=________,b=________,c=________.【答案】2;2;-4【考点】三元一次方程组解法及应用【解析】【解答】解:①﹣②,得:3a﹣3b=0④①﹣③,得:﹣4b=﹣8,解得:b=2,把b=2代入④,得:3a﹣3×2=0,解得:a=2,把a=2,b=2代入②,得2+2+c=0,解得:c=﹣4,∴原方程组的解是.故答案为:2,2,﹣4.【分析】观察方程组中同一未知数的系数特点:三个方程中c的系数都是1,因此①﹣②和①﹣③,就可求出b 的值,再代入计算求出a、c的值。
16、(1分)已知二元一次方程组则________【答案】11【考点】解二元一次方程组【解析】【解答】解:由得:2x+9y=11故答案为:11【分析】观察此二元一次方程的特点,将两方程相减,就可得出2x+9y的值。
17、(1分)如图,点O在直线AB上,OC⊥OD,OC,OF分别平分∠AOE和∠BOD,若∠AOC=20°,则∠BOF的度数为________.【答案】35°【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】由OC⊥OD,得∠COD=90°,由角的和差,得∠BOD=180°-∠AOC-∠COD=180°-20°-90°=70°,由OF分别平分∠BOD,得∠BOF= ∠BOD=35°,故答案为:35°.【分析】根据图形和角的和差,得到∠BOD=180°-∠AOC-∠COD的度数,再由角平分线性质得到∠BOF的度数.18、(4分)将下列各数填入相应的集合中:—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…,+10﹣,有理数集合:{________};无理数集合:{________};整数集合:{________};分数集合:{________}【答案】—7 , 0,, —2.55555……, 3.01, +9, +10﹣;4.020020002…,;—7 , 0, +9;, —2.55555……, 3.01, +10﹣【考点】有理数及其分类,无理数的认识【解析】【解答】有理数集合:{ —7 , 0,, —2.55555……, 3.01, +9,+10﹣ };无理数集合:{ 4.020020002…, };整数集合:{ —7 , 0, +9 };分数集合:{ , —2.55555……, 3.01, +10﹣ }【分析】整数和分数统称为有理数;无理数是无限不循环的小数;正整数、负整数、0统称为整数;正分数和负分数统称为分数,就可将各数填在相应的括号里。