从面积到乘法公式1导学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3).(7–3x)(7 + 3x) (4).n(n + 2)(2n + 1)
【思维拓展】
1.计算
(1)
(2) [3(x-y)2]·[-2(x-y)3]·[4(x-y)]
提示:可以把a+b.x-y看作一个字母。比如(1)中把a+b看作m,那么(1)可转化为 来计算。
2.解方程:2x(7-2x)+5x(8-x)=3x(5-3x)-39
3.①已知ab2=-6,求-ab(a2b5-ab3-b)的值
②当a=-3,b=-1时,求3ab[2ab-5(ab- a2b)]的值
4.先化简,再求值:
(3x+1)(2x-3)-(6x-5)(x-4),其中x=-2
5.解下列方程:
(2x+3)(x-1)-28=(1+x)(2x+11)
6.试说明不论x为何值时,代数式(x+3)2+(x-3)-2(x+3)(x-3)恒为定值。
(2).2x·( ) = 2x2+ 14x
3.计算:
(1).(q + r–13)·a (2).-3xy(4y -2x–1)
.-0.5x3y2·(4y + 8xy3) (4).(3a3b - 2ab2+ ab3)(-2ab)
4.计算:
(1).(x + 1)(x–3) (2).(3m+ 2n)(7m–来自n)弘文教育学科导学案
教师:彭晴晴学生:常笑日期:2012.8.1星期:三时段:10—12
课题
从面积到乘法公式 1
学习目标
考点分析
1.熟练运用单项式乘单项式法则进行运算;
2.经过单项式乘单项式法则的运用;
3.让学生从计算面积得出单项式乘多项式的法则;
4.能熟练地进行单项式乘多项式的计算;
5.灵活运用乘法对加法的分配律,把单项式乘多项式转化为单项式乘单项式;
学习方法
讲练结合
学习内容与过程
【反馈训练】
1.计算
(1).2x2y.3xy2(2).4a2x5.(-3a3bx)
(3).5an+1b.(-2a)(4).(a2c)2.6ab(c2)3
(5).5an+1b.(-2a)(6).(a2c)2.6ab(c2)3
2.填空:
(1).( )·(3x-4)= 3x2- 4x
6.让学生利用面积计算和乘法的分配律得出多项式乘多项式的法则;
7.掌握多项式乘多项式的法则;
8.会准确熟练地用法则进行计算。
学习重点
1.熟练运用单项式乘单项式法则进行运算;
2.能熟练地进行单项式乘多项式的计算;
3.灵活运用乘法对加法的分配律,把单项式乘多项式转化为单项式乘单项式;
4.会准确熟练地用法则进行计算。
相关文档
最新文档