2-3控制系统的结构图与信号流图ppt2011解析
合集下载
2011-2结构图与信号流图
39
(3)混合节点
既有输入支点又有输出支点的节点称为混 合节点。
(4)通路
从某一节点开始,沿支路箭头方向经过各 相连支路到另一节点(或同一节点)构成的路 径,称为通路。通路中各支路传输的乘积称为 通路传输(通路增益)。
40
(5)开通路 与任一节点相交不多于一次的通路称为开通路。 (6)闭通路 如果通路的终点就是通路的起点,并且与任何 其他 节点相交不多于一次的通路称为闭通路或称为回环。 (7)回环增益 回环中各支路传输的乘积称为回环增益(或传 输)。
45
1 1
2 1 La 1 be
T11 T2 2 1 2 T Tk k k 1 abcd fd (1 be) 1 be ( f abc bef ) dg
46
例2-15
xc xc x1 x1 求:Tr ,T y ,Tr1 ,T y1 xr y xr y
……
Lm
——m个互不接触回环的传输乘积之和; k ——称为第k条通路特征式的余因子,是在
中除去
第k 条前向通路相接触的各回环传输(即将其置 零)。
44
例 2-14
T1 abcd , T2 fd
1 L1 L2 1 ( La Lb Lc ) La Lc 1 be abcdg fdg befdg 1 be ( f abc bef )dg
对于单位反馈系统,有 X c ( s) WK ( s) WB ( s) X r ( s) 1 WK ( s)
34
5.系统对给定作用和扰动作用的传递函数
原则:对于线性系统来说,可以运用叠加原理, 即对每一个输入量分别求出输出量,然后再进行 叠加,就得到系统的输出量。
(3)混合节点
既有输入支点又有输出支点的节点称为混 合节点。
(4)通路
从某一节点开始,沿支路箭头方向经过各 相连支路到另一节点(或同一节点)构成的路 径,称为通路。通路中各支路传输的乘积称为 通路传输(通路增益)。
40
(5)开通路 与任一节点相交不多于一次的通路称为开通路。 (6)闭通路 如果通路的终点就是通路的起点,并且与任何 其他 节点相交不多于一次的通路称为闭通路或称为回环。 (7)回环增益 回环中各支路传输的乘积称为回环增益(或传 输)。
45
1 1
2 1 La 1 be
T11 T2 2 1 2 T Tk k k 1 abcd fd (1 be) 1 be ( f abc bef ) dg
46
例2-15
xc xc x1 x1 求:Tr ,T y ,Tr1 ,T y1 xr y xr y
……
Lm
——m个互不接触回环的传输乘积之和; k ——称为第k条通路特征式的余因子,是在
中除去
第k 条前向通路相接触的各回环传输(即将其置 零)。
44
例 2-14
T1 abcd , T2 fd
1 L1 L2 1 ( La Lb Lc ) La Lc 1 be abcdg fdg befdg 1 be ( f abc bef )dg
对于单位反馈系统,有 X c ( s) WK ( s) WB ( s) X r ( s) 1 WK ( s)
34
5.系统对给定作用和扰动作用的传递函数
原则:对于线性系统来说,可以运用叠加原理, 即对每一个输入量分别求出输出量,然后再进行 叠加,就得到系统的输出量。
机械控制工程ppt课件2-3 控制系统的结构图与信号流图.ppt
i2 C i i1
Ui
R1
R2
U0
i i1 + i2
I(S) I1(S) + I2(S)
(1)
ui i1R1 + u0
Ui (S) I1(S)R1 + U0 (S) (2)
u0 iR2
U0(S) R2I(S)
(3)
1 c
i2dt
R1i1
R1I1 (S)
1 CS
I2(S)
(4)
由(1)式有
I1(S) ++ I(S)
I
2
(
s
)
[I1(s) I2 (s)]
u1(s) uC (s) R2
1 sC1
uC
(s)
I2
(s)
1 sC2
i1 R1 u1 R2 i2
ur
1 sC1
1 sC2
uc
11:14
有变量相减,说明存在反馈和比较,比较后的信号一 般是元件的输入信号,所以将上页方程改写如下相乘 的形式:
I1
(s)
等效
n个环节串联
n
G(s) =Πi=1Gi (s)
11:14
(2) 并联
两个环节的并联等效变换:
C1(s)
R(s)
G1(s) + C(ห้องสมุดไป่ตู้)
R(s)
C(s)
G1(s)+G2(s)
+ G2(s) C2(s)
Cn(个Cs)1环=(sC)节=1(Rs的)(+s并)CG2联(1s(s))=R(Cs)2G(sG1)(=s(Rs)+)(=sRΣ)i=(Gns1)G2G(si 2()(ss))
2-3 控制系统的结构图与信号流图
其中,节点又分为三种:
输入节点(源节点):只有输出支路的节点。 混合节点:既有输入支路,又有输出支路的节点。 输出节点(阱点或汇点):只有输入支路的节点。
17:19 28
② 信号流图中常用术语 (ⅰ)、通道(通路):从一个节点开始,沿支路箭头方向 穿过各相连支路的路径。 开通道:通道与任何一个节点只相交一次。 闭通道(回环):通路的终点回到起点,而通道与任何其它节 点只相交一次。“自环”即闭通道的一种特殊情况。 前向通道:从源点开始到汇点结束的开通道。
H1 G1 1/ G1 1/ G2
17:19
G2
(2) 同时进行串联、并联
26
G 1G2 1/G1+1/G2+H1 (3)系统的C(S)/ R(S)
G1G2 ———————— 1+ G1+G2+G1G2H
C(s) G1(s)G2(s) —— = —————————————— R(s) 1+ G1(s)+G2(s)+G1(s)G2(s)H(s)
C ( S ) G3 G4 G1G2 R( S ) 1 G2G3 H
方法2:B移动到A (略)
17:19 25
例题6 试利用结构图等效变换原则,简化下述结构图,并求取系统 的C(S)/ R(S)。
R(S)
H(S)
A
G1(S)
BC
C(S)
G2(S)
解:(1) 同时将B处相加点前移、C处分支点后移:
17:19 18
⑸ 分支点的移动:移动原则同“⑷相加点的移动”。 ① 前往后移
X1
G(S)
X2 X1
X1
G(S)
X2 X1
1/ G(S)
② 后往前移
X1
G(S)
输入节点(源节点):只有输出支路的节点。 混合节点:既有输入支路,又有输出支路的节点。 输出节点(阱点或汇点):只有输入支路的节点。
17:19 28
② 信号流图中常用术语 (ⅰ)、通道(通路):从一个节点开始,沿支路箭头方向 穿过各相连支路的路径。 开通道:通道与任何一个节点只相交一次。 闭通道(回环):通路的终点回到起点,而通道与任何其它节 点只相交一次。“自环”即闭通道的一种特殊情况。 前向通道:从源点开始到汇点结束的开通道。
H1 G1 1/ G1 1/ G2
17:19
G2
(2) 同时进行串联、并联
26
G 1G2 1/G1+1/G2+H1 (3)系统的C(S)/ R(S)
G1G2 ———————— 1+ G1+G2+G1G2H
C(s) G1(s)G2(s) —— = —————————————— R(s) 1+ G1(s)+G2(s)+G1(s)G2(s)H(s)
C ( S ) G3 G4 G1G2 R( S ) 1 G2G3 H
方法2:B移动到A (略)
17:19 25
例题6 试利用结构图等效变换原则,简化下述结构图,并求取系统 的C(S)/ R(S)。
R(S)
H(S)
A
G1(S)
BC
C(S)
G2(S)
解:(1) 同时将B处相加点前移、C处分支点后移:
17:19 18
⑸ 分支点的移动:移动原则同“⑷相加点的移动”。 ① 前往后移
X1
G(S)
X2 X1
X1
G(S)
X2 X1
1/ G(S)
② 后往前移
X1
G(S)
西工大、西交大自动控制原理 第二章 控制系统的数学模型_2
5 比较点的移动 比较点的前移:
Rs
Cs
Rs
Cs
Gs
Gs
Qs
1 Qs
Gs
若要将比较点由方框后移至方框的前面,为保持信号 的等效,要在移动后的信号线上加入一个比较点所越 过的方框的倒数。
5 比较点的移动 比较点的后移:
Rs
Cs Gs
Rs Gs
Cs
Qs
Qs
G(s)
若要将比较点由方框前移至方框的后面,为保持信号的 等效,要在移动后的信号线上加入一个比较点所越过的 方框。
2-3 控制系统的结构图与信号流图
控制系统的结构图概述
控制系统的结构图(block diagram)是描述系统各元部 件之间信号传递关系的数学图形,表示了系统中各变量 间的因果关系以及对各变量所进行的运算。通过对系统 结构图进行等效变换(equivalent transform)后,可 求出系统的传递函数。
G1(s)
-1 H(s)
R(s)=0
f
(s)
C(s) F(s)
G2 ( s) 1 G2 (s)H (s)(1)G1(s)
G2 ( s) 1 G2 (s)G1(s)H (s)
G2(s) G2(s) 1 G(s)H(s) 1 Gk (s)
单位反馈系统H(s)=1,有
f
(s)
C(s) F(s)
若令:G(s) G1(s)G2(s) 为前向通路传递函数,
则:
B(s)
Gk (s) (s) G(s)H(s)
可见:系统开环传递函数Gk(s)等于前向通路传递函 数G(s)=G1(s)G2(s)与反馈通道传递函数H(s)的乘积。
R(S) ε(s) G1(s)
F(s)
自动控制原理控制系统的结构图
比较点后移
R(s)
G(s)
比较点前移
+
Q(s)
C(s)
R(s)
+
C(s) G(s)
比较点后移
Q(s)
R(s)
+
C(s) G(s)
Q(s)
C(s) R(s)G(s) Q(s)
[R(s) Q(s) ]G(s) G(s)
R(s)
C(s) G(s)
+
Q(s)
G(s)
C(s) [R(s) Q(s)]G(s)
R(s)G(s) Q(s)G(1s6 )
(5)引出点旳移动(前移、后移)
引出点前移
R(s)
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
将 C(s) E(s)G(s) 代入上式,消去G(s)即得:
E(s) R(s)
1
H
1 (s)G(s)
1
1 开环传递函数
31
N(s)
+ E(s)
++
C(s)
R(s)
G1(s)
G2 (s)
-
B(s)
H(s)
(1)
打开反馈
C(s) R(s)
1
G(s) H (s)G(s)
前向通路传递函数 1 开环传递函数
注意:进行相加减旳量,必须具有相同旳量纲。
X1 +
+
X1+X2 R1(s)
控制系统结构图与信号流图
如图2-39所示。n个传递函数依次串联的等效传递函数, 等于n个传递函数的乘积。
(2)并联连接的等效变换 G1(s)与G2(s)两个环节并联连接,其等效传递函数等于
该两个传递函数的代数和,即:
G(s)= G1(s)±G2(s)
(2.82)
等效变换结果见图2-40(b)。
18
图2-40
n个传递函数并联其等效传递函数为该n个传递函数的代 数和,如图2-41所示:
5
图2-25 RC网络的结构图
结构图:根据由微分方程组得到的拉氏变换方程组,对 每个子方程都用上述符号表示,并将各图形正确地连接 起来,即为结构图,又称为方框图。
结构图也是系统的一种数学模型,它实际上是数学模型 的图解化 。
6
(二)系统结构图的建立 建立系统的结构图,其步骤如下: (1)建立控制系统各元部件的微分方程。
图2-29 La=0的位置随动系统结构图
12
例2.2 试绘制图2-30所示无源网络的结构图。
图2-30 例2.3网络图
图2-31 例2.3网络的结构图
解:ur为网络输入,uc为网络输出。
一个系统的结构图不是唯一的,但经过变换求得的总 传递函数都应该是相同的。上例所示网络的结构图还可 用图2-32表示。
第四节
控制系统结构图与信号流图
1
提纲:
❖ 一 、控制系统的结构图 ❖ 二、控制系统的信号流图 ❖ 三、控制系统的传递函数
2
引言:
求系统的传递函数时,需要对微分方程组 或经拉氏变换后的代数方程组进行消元。而 采用结构图或信号流图,更便于求取系统的 传递函数,还能直观地表明输入信号以及各 中间变量在系统中的传递过程。因此,结构 图和信号流图作为一种数学模型,在控制理 论中得到了广泛的应用。
控制系统结构图及其等效转换
U (s) R I(s)
0 2
1 c
i dt R i
2
1 1
R I (s)
1 1
1 Cs
I (s )
2
由 (1) 式有
I1(s) + I(s)
+ I (s) 2
对 (2)式变换 1 I1 ( s ) [U i ( s ) U 0 ( s )] R
对(4)式变换 I 2 ( s) R1CsI1 ( s)
G7
解 : 将分支点 A移至B处
G6 G1 G2
-
-
G3 G4 G5
G4
G7 得系统的闭环传递函数为
G1G2 G3G4 (S ) 1 + G1G2G3G4 G7 + G3G4G5 + G2 G3G6
另外亦可把B点后移或者相加点后移
X1(s) G1(s)
X3(s) G2(s)
X2(s)
结论:二环节串联传递函数等于二传函之积。 推广:N环节串联,传递函数等于N个环节传 函之积。
G(s) G1 (s)G2 (s)G n (s)
2、并联连接的传递函数
X3(s) G1(s) + X2(s)
X1(s)
+
G2(s) X4(s)
X 2 (s) X 3 ( s) + X 4 ( s) G(s) G1 ( s) + G2 ( s) X1 (s) X 1 ( s)
+ UI(s) U0(s)
1/R I1(s) I2(s) Cs
R1 I1(s)
对(3)式有
I(s)
R2
U0(s)
Ui(s) U0(s) -
I1(s)
控制系统的结构图与信号流图
2-3 控制系统的结构图与信号流图
控制系统的结构图和信号流图:描述系统各元部件之间的信号传 递关系的一种图形化表示,特别对于复杂控制系统的信号传递过 程给出了一种直观的描述。
KA
Km s (T m s 1)
r
K1
系统结构图的组成与绘制
系统结构图一般有四个基本单元组成:(1)信号线; (2)引 出点(或测量点);(3)比较点(或信号综合点)表示对信号
Automatic Control Theory 2
M s C M U a (s )
2013-7-24
绳轮传动机构: L( s ) r m ( s )
测量电位器:
E (s)
E 2 ( s ) K 1 L( s )
M s (s)
CM
U a (s )
E1 ( s )
m (s) L (s )
2013-7-24 Automatic Control Theory 14
•回路 起点和终点同在一个节点上,而且信号通过每个节点不多 于一次的闭合通路(单独回路)。 •不接触回路 回路之间没有公共节点时,该回路称为不接触回路。
信号流图的绘制
(1)由微分方程绘制信号流图: RC串联电路的信号流图
u r (t ) i1 (t ) R1 u c (t ) u c (t ) i (t ) R2 1 i2 (t ) dt i1 (t ) R1 u1 (t ) C i1 (t ) i2 (t ) i (t )
之间的所有传递函数之乘积,记为 H(s)
开环传递函数:反馈引入点断开时,输入端对应比较器输出 E(s)
到输入端对应的比较器的反馈信号 B(s) 之间所有传递函数的乘 积,记为GK(s), GK(s)=G(s)H(s) E (s) C (s)
控制系统的结构图和信号流图:描述系统各元部件之间的信号传 递关系的一种图形化表示,特别对于复杂控制系统的信号传递过 程给出了一种直观的描述。
KA
Km s (T m s 1)
r
K1
系统结构图的组成与绘制
系统结构图一般有四个基本单元组成:(1)信号线; (2)引 出点(或测量点);(3)比较点(或信号综合点)表示对信号
Automatic Control Theory 2
M s C M U a (s )
2013-7-24
绳轮传动机构: L( s ) r m ( s )
测量电位器:
E (s)
E 2 ( s ) K 1 L( s )
M s (s)
CM
U a (s )
E1 ( s )
m (s) L (s )
2013-7-24 Automatic Control Theory 14
•回路 起点和终点同在一个节点上,而且信号通过每个节点不多 于一次的闭合通路(单独回路)。 •不接触回路 回路之间没有公共节点时,该回路称为不接触回路。
信号流图的绘制
(1)由微分方程绘制信号流图: RC串联电路的信号流图
u r (t ) i1 (t ) R1 u c (t ) u c (t ) i (t ) R2 1 i2 (t ) dt i1 (t ) R1 u1 (t ) C i1 (t ) i2 (t ) i (t )
之间的所有传递函数之乘积,记为 H(s)
开环传递函数:反馈引入点断开时,输入端对应比较器输出 E(s)
到输入端对应的比较器的反馈信号 B(s) 之间所有传递函数的乘 积,记为GK(s), GK(s)=G(s)H(s) E (s) C (s)
自动控制原理第二章3
Uc(s)
第三节控制系统的结构图和信号流图
N(s) R(s) C(s) G1(s) G2(s)
+ _
H(s) 典型反馈控制系统方框图 1)信号线:带单向箭头,表示信号流向 信号线:带单向箭头, 2)引出点:信号从引出点分开,大小和性质相同 引出点:信号从引出点分开, 3)比较点:两个或两个以上的信号相加减 比较点: 4)方框:对信号进行数学变换,方框中写入环节的传递函数 方框:对信号进行数学变换,
R1 C2S 1 C(S) 1 1 R2 +R1C R2 +1)C2S C2S2S
R(s)
_
1 R1C1S+1 R1C2S
1 R2C2S+1
C(s)
第三节控制系统的结构图和信号流图
三、控制系统的信号流图: 控制系统的信号流图:
1、定义 、 一组线性代数方程式变量间传递关系的图形表示, 一组线性代数方程式变量间传递关系的图形表示,由节 支路和支路增益组成。 点、支路和支路增益组成。 y1 典型的信号流图 x1 1 x2 a e a y2=ay1 d x3 b f x4 c x5 g 1 x6 y2
第三节控制系统的结构图和信号流图
绘制动态结构图的一般步骤为: 绘制动态结构图的一般步骤为 (1)确定系统中各元件或环节的传递函数。 )确定系统中各元件或环节的传递函数。 (2)绘出各环节的方框,方框中标出其传 )绘出各环节的方框, 递函数、输入量和输出量。 递函数、输入量和输出量。 (3)根据信号在系统中的流向,依次将各 )根据信号在系统中的流向, 方框连接起来。 方框连接起来。
p1 = abc
L1与L3
p2 = d
L3 = g L2与L3
L1 = ae
L2 = bf
第三节控制系统的结构图和信号流图
N(s) R(s) C(s) G1(s) G2(s)
+ _
H(s) 典型反馈控制系统方框图 1)信号线:带单向箭头,表示信号流向 信号线:带单向箭头, 2)引出点:信号从引出点分开,大小和性质相同 引出点:信号从引出点分开, 3)比较点:两个或两个以上的信号相加减 比较点: 4)方框:对信号进行数学变换,方框中写入环节的传递函数 方框:对信号进行数学变换,
R1 C2S 1 C(S) 1 1 R2 +R1C R2 +1)C2S C2S2S
R(s)
_
1 R1C1S+1 R1C2S
1 R2C2S+1
C(s)
第三节控制系统的结构图和信号流图
三、控制系统的信号流图: 控制系统的信号流图:
1、定义 、 一组线性代数方程式变量间传递关系的图形表示, 一组线性代数方程式变量间传递关系的图形表示,由节 支路和支路增益组成。 点、支路和支路增益组成。 y1 典型的信号流图 x1 1 x2 a e a y2=ay1 d x3 b f x4 c x5 g 1 x6 y2
第三节控制系统的结构图和信号流图
绘制动态结构图的一般步骤为: 绘制动态结构图的一般步骤为 (1)确定系统中各元件或环节的传递函数。 )确定系统中各元件或环节的传递函数。 (2)绘出各环节的方框,方框中标出其传 )绘出各环节的方框, 递函数、输入量和输出量。 递函数、输入量和输出量。 (3)根据信号在系统中的流向,依次将各 )根据信号在系统中的流向, 方框连接起来。 方框连接起来。
p1 = abc
L1与L3
p2 = d
L3 = g L2与L3
L1 = ae
L2 = bf
自动控制原理 控制系统的结构图
其他变化(比较点的移动、引出点的移动)以此三种 基本形式的等效法则为基础。
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
2.4 控制系统的结构图和信号流图
Uo(s)
6
(e)
Ui(s)
(-)
1 R1
I1(s)
(-) IC(s)
1 C1s
U(s)
(-) (f)
1 R2
1
Uo(s)
I2(s)
C2s
7
2 结构图的等效变换和简化
结构图方框之间基本连接方式主要有三种:
串联 并联 反馈
8
串联方框的简化(等效):
R(s)
G1(s)
V(s) (a)
G2(s)
uo (s)
-
②
21
R 1C 2 s
ui (s )
-
1 R1
1 C1s
u (s )
1 R 2C 2 s 1
uo (s)
③
R 1C 2 s
ui (s )
-
1 R 1C 1 s 1
1 R 2C 2 s 1
uo (s)
④
1 uo ( s ) ui ( s ) ( R1C1s 1)( R2C2 s 1) 1 R1C2 s ( R1C1s 1)( R2C2 s 1)
I1 ( s ) R1
1 C1s
u (s )
1
1
R2
uo (s)
C2s
-
I (s )
-
I 2 ( s)
C2s
ui (s )
1
I1 ( s ) R1
1 C1s
u (s )
1 R 2C 2 s 1
uo (s)
-
①
I (s )
R 1C 2 s
ui (s )
-
1 R1
1 C1s
u (s )
自动控制原理控制系统的结构图
I1(s)
I2 (s)
CR1s
7
i2
C
i
i1 R1
ui
R2
uo
(3)
I(s) I1(s) I2 (s)
I2 (s)
I (s)
I1(s)
(4)U o (s) R2 I (s)
I (s)
Uo (s)
R2
8
(1)Ui (s)
(3)
- Uo(s)
I2 (s)
(2)
1
I1(s)
I1(s)
I2 (s)
- Uo (s)
(d)
将图(b)和(c)组合起来即得到图(d),图(d)为该 一阶RC网络的方框图。
11
2.3.3 系统结构图的等效变换和简化
为了由系统的方框图方便地写出它的闭环传递函 数,通常需要对方框图进行等效变换。
方框图的等效变换必须遵守一个原则,即: 变换前后各变量之间的传递函数保持不变
在控制系统中,任何复杂系统的方框图都主要由 串联、并联和反馈三种基本形式连接而成。
u
o
idt c
对其进行拉氏变换得:
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
10
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
Ui (s)
I(s)
(b)
Uo (s)
I(s)
(c)
Uo (s)
Ui (s)
I(s)
Uo (s)
第二章-结构图信号流图
上式只有当两个电路之间有隔离放大器才成立。
结构图等效变换例子||作业 结构图等效变换例子||作业
[作业]利用结构图等效变换讨论两级RC串联电路的传递函数。 R1 u R2 [解]:不能把左图简单地看成两个 i1 RC电路的串联,有负载效应。根据 C1 i 2 C2 i uo 电路定理,有以下式子: ui
uo ( s )
C2s
ui ( s )
-
1 R1
I1(s) I(s)
1 C1s
u (s )
1 R2 C 2 s + 1
uo ( s )
R1C 2 s
ui ( s )
-
1 R1
1 C1s
u (s )
1 R2 C 2 s + 1
uo ( s )
R1C 2 s
ui ( s ) -
-
1 R1
1 C1s
u (s )
1 R2 C 2 s + 1
uo ( s )
uo (s) 1 ∴G(s) = = ui (s) ( R1C1s + 1)(R2C2s + 1) + R1C2s
闭环系统的传递函数 闭环系统的传递函数
四、闭环系统的传递函数: 闭环控制系统(也称反馈控制系统)的典型结构图如下图所示:
R(s )
E (s )
X(t)
电位器
Y(t)
结构图:
X(s)
Y(s)
G(s)=K
微分方程:y(t)=kx(t) 若已知系统的组成和各部分的传递函数,则可以画出各个 部分的结构图并连成整个系统的结构图。
控制系统的结构图和信号流图都是描述系统各 元部件之间信号传递关系的数学图形,他们表 示了系统中各变量之间的因果关系以及对各变 量所进行的运算,是控制理论中描述复杂系统 的一种简便方法。绘制系统结构图时,要考虑 负载效应分别列写系统各元部件的微分方程或 传递函数,并用方框表示;然后,根据各元部 件的信号流向,用信号线依次将各方框连接便 得到系统的结构图。 虽然系统结构图从系统元部件的数学模型得 到,但结构图中的方框与实际系统的元部件不 一定一一对应。
自动控制原理胡寿松(课堂PPT)
G2(s)G4(s)
G3(s)H(s) G4(s)H(s)
C(s) G5 (s)
3
R(s) G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s )
C(s) G5 (s)
G 3 ( s ) G 4 ( s ) H ( s )
4
R(s)
1
G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s ) 1G3(s)G4(s)H(s)
函数确定。 r (t )
1 e(t) 1/ s
1
c(t)
1
22
信号流图常用的名词术语
➢源节点(输入节点):只有信号输出支路的节点。
➢阱节点(输出节点):只有信号输入支路的节点。
C(s) G5 (s)
5
C R ( (s s) ) G 1 1 (s G )G 3 3 (( ss )) G G 4 2 (( ss ))H G 4 (( ss ))G 5(s) 6
21
• 信号流图的组成及性质
信号流图是以点和有向线段,描述系统的组成、结构、信号传 递关系的图形。它完全表述了一个系统。
C(s)
1G2(s)G3(s)H2(s) G4(s)
H3(s)/G2(s) H1(s)
G2(s)G3(s)G4(s) 1G2(s)G3(s)H2(s)
C(s)
H3(s)/G2(s) H1(s)
G1(s)
G 2(s)G 3(s)G 4(s)
C(s)
1G 2(s)G 3(s)H 2(s)G 3(s)G 4(s)H 3(s)
1
§2-3 控制系统的结构图与信号流图
1.系统结构图的组成和绘制 2.结构图的等效变换和简化 3.信号流图的组成和性质 4.信号流图的绘制 5.梅逊增益公式 6.闭环系统的传递函数
G3(s)H(s) G4(s)H(s)
C(s) G5 (s)
3
R(s) G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s )
C(s) G5 (s)
G 3 ( s ) G 4 ( s ) H ( s )
4
R(s)
1
G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s ) 1G3(s)G4(s)H(s)
函数确定。 r (t )
1 e(t) 1/ s
1
c(t)
1
22
信号流图常用的名词术语
➢源节点(输入节点):只有信号输出支路的节点。
➢阱节点(输出节点):只有信号输入支路的节点。
C(s) G5 (s)
5
C R ( (s s) ) G 1 1 (s G )G 3 3 (( ss )) G G 4 2 (( ss ))H G 4 (( ss ))G 5(s) 6
21
• 信号流图的组成及性质
信号流图是以点和有向线段,描述系统的组成、结构、信号传 递关系的图形。它完全表述了一个系统。
C(s)
1G2(s)G3(s)H2(s) G4(s)
H3(s)/G2(s) H1(s)
G2(s)G3(s)G4(s) 1G2(s)G3(s)H2(s)
C(s)
H3(s)/G2(s) H1(s)
G1(s)
G 2(s)G 3(s)G 4(s)
C(s)
1G 2(s)G 3(s)H 2(s)G 3(s)G 4(s)H 3(s)
1
§2-3 控制系统的结构图与信号流图
1.系统结构图的组成和绘制 2.结构图的等效变换和简化 3.信号流图的组成和性质 4.信号流图的绘制 5.梅逊增益公式 6.闭环系统的传递函数
第2-3 控制系统的结构图与信号流图要点
11:09 9
结构图的绘制
例1 画出RC电路的结构图。
R ui i C uo
(a ) 网络 一阶 RC
11:09
10
解:利用复阻抗的概念及元件特性可得每一元件的 输入量和输出量之间的关系如下:
U i (s) U o (s) R: I ( s) R I (s) C: U o ( s) sC
典型结构变换、结构图化简、代数化简、梅逊公
讲授技巧及注 以例题为基础,强调技巧,思路和注意事项,结 合一些形象的教学手段。 意事项
11:09 2
本节内容
结构图的组成和绘制
结构图的等效变换→求系统传递函数
信号流图的组成和绘制 MASON公式→求系统传递函数 闭环系统有关传函的一些基本概念
11:09 3
i1
ur
R1
1 sC1
u1
R2
i2
1 sC2
uc
11:09
13
有变量相减,说明存在反馈和比较,比较后的信号一 般是元件的输入信号,所以将上页方程改写如下相乘 的形式:
ur ( s ) u1 ( s ) I1 ( s ) R1 1 u1 ( s ) [ I1 ( s ) I 2 ( s )] sC 1 I ( s ) u1 ( s ) uC ( s ) 2 R2 u ( s ) I ( s ) 1 C 2 sC 2
11:09
1 [u r ( s ) u1 ( s )] R I1 ( s ) 1 1 [ I1 ( s ) I 2 ( s )] sC u1 ( s ) 1 [u ( s ) u ( s )] 1 I ( s ) C 2 1 R2 I (s) 1 u ( s) 2 C sC 2
结构图的绘制
例1 画出RC电路的结构图。
R ui i C uo
(a ) 网络 一阶 RC
11:09
10
解:利用复阻抗的概念及元件特性可得每一元件的 输入量和输出量之间的关系如下:
U i (s) U o (s) R: I ( s) R I (s) C: U o ( s) sC
典型结构变换、结构图化简、代数化简、梅逊公
讲授技巧及注 以例题为基础,强调技巧,思路和注意事项,结 合一些形象的教学手段。 意事项
11:09 2
本节内容
结构图的组成和绘制
结构图的等效变换→求系统传递函数
信号流图的组成和绘制 MASON公式→求系统传递函数 闭环系统有关传函的一些基本概念
11:09 3
i1
ur
R1
1 sC1
u1
R2
i2
1 sC2
uc
11:09
13
有变量相减,说明存在反馈和比较,比较后的信号一 般是元件的输入信号,所以将上页方程改写如下相乘 的形式:
ur ( s ) u1 ( s ) I1 ( s ) R1 1 u1 ( s ) [ I1 ( s ) I 2 ( s )] sC 1 I ( s ) u1 ( s ) uC ( s ) 2 R2 u ( s ) I ( s ) 1 C 2 sC 2
11:09
1 [u r ( s ) u1 ( s )] R I1 ( s ) 1 1 [ I1 ( s ) I 2 ( s )] sC u1 ( s ) 1 [u ( s ) u ( s )] 1 I ( s ) C 2 1 R2 I (s) 1 u ( s) 2 C sC 2
结构图与信号流图
特点
结构图能够清晰地展示系统的层次结构和组件之间的关系,便于理解和分析系 统的整体结构。
结构图的种类
层次结构图
用于描述系统的层次关系,如组织结构图、文件 系统等。
流程图
用于描述系统的工作流程和过程,包括顺序流程 图、流程图等。
网络图
用于描述网络拓扑结构和设备连接关系,如网络 设备连接图、通信网络拓扑图等。
目的与重要性
目的
通过结构图和信号流图,可以清晰地 展示系统或设备的内部结构和信号传 递路径,帮助理解和分析系统的功能 和工作原理。
重要性
在工程设计、故障诊断、系统优化等 方面,结构图和信号流图都是非常重 要的工具,能够提高工作效率、减少 错误和优化系统性能。
02
结构图
定义与特点
定义
结构图是一种用于描述系统、过程或设备的组成部分及其相互关系的图形表示 方法。
结构图的应用场景
系统设计
在系统设计阶段,结构图被用 来描述系统的整体架构和各个
组件的功能与关系。
项目管理
在项目管理中,结构图被用来 描述项目的组织结构和任务分 配。
故障诊断
在故障诊断中,结构图可以帮 助分析故障的原因和位置,以 便快速定位和解决问题。
数据分析
在数据分析中,结构图可以用 来描述数据之间的关系和数据
数据流
02
在软件工程中,信号流图用于描述程序中数据流的传递和处理
过程,有助于理解和优化程序的执行效率。
通信系统
03
在通信系统中,信号流图用于描述信号的传输和处理过程,有
助于分析和优化通信系统的性能。
结构图与信号流图结合应用案例
电子系统设计
在电子系统设计中,结构图和信号流图可以结合使用,分别 描述系统的组成和信号的传递与处理过程,有助于全面分析 和优化系统的性能。
结构图能够清晰地展示系统的层次结构和组件之间的关系,便于理解和分析系 统的整体结构。
结构图的种类
层次结构图
用于描述系统的层次关系,如组织结构图、文件 系统等。
流程图
用于描述系统的工作流程和过程,包括顺序流程 图、流程图等。
网络图
用于描述网络拓扑结构和设备连接关系,如网络 设备连接图、通信网络拓扑图等。
目的与重要性
目的
通过结构图和信号流图,可以清晰地 展示系统或设备的内部结构和信号传 递路径,帮助理解和分析系统的功能 和工作原理。
重要性
在工程设计、故障诊断、系统优化等 方面,结构图和信号流图都是非常重 要的工具,能够提高工作效率、减少 错误和优化系统性能。
02
结构图
定义与特点
定义
结构图是一种用于描述系统、过程或设备的组成部分及其相互关系的图形表示 方法。
结构图的应用场景
系统设计
在系统设计阶段,结构图被用 来描述系统的整体架构和各个
组件的功能与关系。
项目管理
在项目管理中,结构图被用来 描述项目的组织结构和任务分 配。
故障诊断
在故障诊断中,结构图可以帮 助分析故障的原因和位置,以 便快速定位和解决问题。
数据分析
在数据分析中,结构图可以用 来描述数据之间的关系和数据
数据流
02
在软件工程中,信号流图用于描述程序中数据流的传递和处理
过程,有助于理解和优化程序的执行效率。
通信系统
03
在通信系统中,信号流图用于描述信号的传输和处理过程,有
助于分析和优化通信系统的性能。
结构图与信号流图结合应用案例
电子系统设计
在电子系统设计中,结构图和信号流图可以结合使用,分别 描述系统的组成和信号的传递与处理过程,有助于全面分析 和优化系统的性能。
2-3 信号流图
1 La Lb Lc Ld Le L f
a bc def
式中 La ——所有不同回路的增益之和; a L L ——每两个互不接触回路增益乘积之和; Ld Le L f ——每三个互不接触回路增益乘积之和; def ——在 中除去与第k条前向通路 Pk 相接触的 k 回路后的特征式,称为第k条前向通路特 征式的余因子。
X1 X1
a
a1 a2 a3
X1
a1 a2 a3
X2
X2
X3
X4
X2
X3
X4
a4
X5
1
X6
(a)
(b)
(c)
三、信号流图的运算法则 a1 1.加法规则
X1
a2
X2
X 1 a1 a 2
X2
图2-39 加法规则 并联支路可以通过传输相加的方法,合并为单一支 路。见图2-39,这时不变。
2.乘法规则 串联支路的总传输,等于所有支路传输的总乘积,见 图2-40所示。这时 X a a X a a X 不变。
输入节点 (源点)
d
输入节点 (源点)
X1
a
混合节点
X
X3
输出节点 (阱点)
X5
2
b
c
3-1信号流图
二、信号流图的性质 1.支路表示一个信号对另一个信号的函数关系。信号只 能沿着支路上由箭头规定的方向流通,如图2-38(a)所 示。 2.节点可以把所有输入支路的信号叠加,并把总的信号 送到所有输出支路。如图2-38(b)(c)所示。从图2-38 (c)得 X 5 a4 X 4 而 X 4 a1 X1 a2 X 2 a3 X 3 3.具有输入和输出支路的混合节点,通过增加一个具有 单位传输的支路,可以把它变成输出节点来处理,使它相 当于阱点,但用这种方法不能将混合节点变成源点,见图 2-38(c)。 4.对于给定的系统,信号流图非唯一。因为传递函数非 唯一,信号流图必非唯一。
2-3控制系统的结构图
1 1
N(s) N(s) N(s)
G2(s)
G2(s) G22(s) G (s) HH (s) 2 (s) H(s) 2 2
C(s) C(s) C(s)
HH (s) 1 (s) H(s) 1 1
H3(s)
H3(s) H33(s) H (s)
C(s)
G1(s)
R(s) E(S) P1= –G2H3 P1=1 H1(s)
2012-6-26
U(s) U(s) U(s)
U(s)
U(s)
U(s)±R(s)
R(s)
2-3控制系统的结构图
3
二、控制系统结构图的绘制(1)
控制系统结构图绘制步骤: 建立各元件微分方程组 确定各环节的输入输出量 按信号流向连接各环节框
拉氏变换方程组(考虑负载效应) 各环节框
2012-6-26
L1L4=(–G1H1)(–G4G3)=G1G3G4H1 2-3控制系统的结构图
梅逊公式求E(s)
G3(s) R(s) R(s) R(s) R(s)
P2= - G3G2H3 △2= 1 P2△2=?
G3 (s) E(S)G(s) G33(s) E(S) E(S) E(S) GG (s) 1 (s) G(s)
△△1= 1 2HH2(s)P1△1= ? 1=1+G 2
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
2012-6-26
1 - G1H1 + G2H2
2-3控制系统的结构图
+ G1G2H3 -G1H1G2 H2
17
五、控制系统的传递函数
1.
N(s) N(s) N(s)
G2(s)
G2(s) G22(s) G (s) HH (s) 2 (s) H(s) 2 2
C(s) C(s) C(s)
HH (s) 1 (s) H(s) 1 1
H3(s)
H3(s) H33(s) H (s)
C(s)
G1(s)
R(s) E(S) P1= –G2H3 P1=1 H1(s)
2012-6-26
U(s) U(s) U(s)
U(s)
U(s)
U(s)±R(s)
R(s)
2-3控制系统的结构图
3
二、控制系统结构图的绘制(1)
控制系统结构图绘制步骤: 建立各元件微分方程组 确定各环节的输入输出量 按信号流向连接各环节框
拉氏变换方程组(考虑负载效应) 各环节框
2012-6-26
L1L4=(–G1H1)(–G4G3)=G1G3G4H1 2-3控制系统的结构图
梅逊公式求E(s)
G3(s) R(s) R(s) R(s) R(s)
P2= - G3G2H3 △2= 1 P2△2=?
G3 (s) E(S)G(s) G33(s) E(S) E(S) E(S) GG (s) 1 (s) G(s)
△△1= 1 2HH2(s)P1△1= ? 1=1+G 2
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
2012-6-26
1 - G1H1 + G2H2
2-3控制系统的结构图
+ G1G2H3 -G1H1G2 H2
17
五、控制系统的传递函数
1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
封 面
2-4目录
1、系统结构图的组成与绘制 2、结构图的等效变换与简化 3、信号流图的组成与性质 4、信号流图的绘制 5、梅森增益公式 6、闭环系统的传递函数
1、系统结构图的组成与绘制
动态结构图:根据由微分方程组得到的 拉氏变换方程组,对每个方程都用一些通路、 箭头、综合点、方框等符号组成的图形来表 示,并将各个图形正确地连结起来,即为动 态结构图。
操纵手柄
ur ( t )
u(t ) u (t ) ut (t ) max E ua ( t ) ka u( t ) uc ( t ) c ( t ) k c ( t ) max d 2 m ( t ) d m ( t ) k m ua ( t ) u ( t ) ur ( t ) uc ( t ) k [r (t ) c (t )] Tm 2 dt dt d m ( t ) 1 ut ( t ) k t c (t ) m (t ) dt i
Uc(s)
1 [U r (s) U1 (s)] I 1 (s ) R1
1 [U1 (s) U c (s)] I 2 (s ) R2
1 [I1 (s) I 2 (s)] U 1 (s ) sc1 1 I 2 (s) Uc (s) sc2
题1 (补充)
绘制动态结构图
输出
x1 (t ) n(t ) c(t )
dx 2 (t ) k 1r(t ) T2c(t ) dt
dx 1 (t ) T1 x1 (t ) k 2r(t ) x 2 (t ) n(t ) dt 输入 扰动
题1
绘制动态结构图
x1 (t ) n(t ) c(t )
r (s) k U r (s)
r
W1
W2
位置随动系统结构图绘制(补充)
U r (s ) U c (s ) U (s )
U (s) Ut (s) U(s) r 1 m (s) c (s) E i uε r ur uε
W1 k
cc (s) k U c (s)
E
m 1 + u 放大器 u 1 c J f u a m 减 SM u k a_ i f 放大器 速 电机 L L k s ( T s 1 ) ut a 器 i J L fL ut c 测速电机 kts uc + Z TG 2 _ W k2
m m
U(s) k a Ua (s) U a (s) k m m (s ) Ra La s(Tms 1) m (s) k t s Ut (s) Z
100k
100k
100k
200k
2、结构图的等效变换和简化
系统的动态结构图直观地反映了系统 内部各变量之间的动态关系。将复杂的动 态结构图进行化简可求出传递函数。 等效变换:被变换部分的输入量和输出量
动态结构图是系统数学模型的另 一种形式,它表示出系统中各变量之 间的数学关系及信号的传递过程。
(1)动态结构图的组成
信号线:带箭头的直线,表示信号传递方向,线上
标信号的原函数或象函数。
比较点(综合点):对两个及以上的信号进行加减运算。 分支点(引出点):表示信号引出或测量的位置。
方框(环节):表示对信号进行的数学变换,内往往
为元部件,系统的传递函数。
(2)动态结构图的绘制
绘制动态结构图的一般步骤为: 1)确定系统中各元件或环节的传递函数。 2)绘出各环节的方框,方框中标出其传 递函数、输入量和输出量。 3)根据信号在系统中的流向,依次将各 方框连接起来。 置系统的输入变量于左端,输出变量 (被控量)于右端,便得到系统的结构图。
r ( t ) k r ( t )
绘制双T网络结构图(补充)
R1
U1(s)
R2
urr(t) U (s)
I1(s)
sc1
I2(s)
1 C 1
I2(s)
2
1 C 2
ucc(t) U (s)
Ur(s)
R1
U1(s)
1
I1(s)
sc1
1
U1(s)
1 1 Uc(s) R2 I2(s) sc2
X1 (s)
题2 (补充)
描述系统动态性能的方程组如下,试绘制以R(s)为输入 信号、C(s)为输出信号、N(s)为干扰信号的系统结构图。
E(s)=R(s)-C(s) N(s)+X4(s)=C(s) X4(s)=X3(s)G2(s)
G4(s)
E(s)-X4(s)H(s)=X1(s) X2(s)=X1(s)G1(s)
C(s)
s T1
T2 (s T1 )X1 (s) k 2R(s) X2 (s) N(s)
[X2 (s) R(s) k 2 N(s)]
1 [R(s) k 1 C(s) T2 ] X 2 (s) s1
X1 (s) N(s) C(s)
s T1
R(s)
N(s) dx 1 (t ) k2 T1 x1 (t ) k 2r(t ) x 2 (t ) n(t ) dt 1 X1(s) 1 X2(s)
dx 2 (t ) k 1r(t ) T2c(t ) dt
C(s)
X1
(s) N(s) C(s s)
k1
sX2 (s) k 1R(s) T2C(s)
X3(s)=X2(s)+R(s)G4(s)+N(s)G3(s)
G3(s) G1(s) X2(s) H(s) X3(s) X4(s) G2(s) N(s) X4(s) C(s)
R(s)
E(s) C(s)
X1(s)
i
30k 10k 10k
20k
习题2-15
u2 功放 ua SM c TG k
3
ui +15v uo
-15v
u1
-k1
10k 10k
ut
+ -k 2
–
c
位置随动系统原理图
+15v
-15v
i
5.21
ui
3
u1
2
u2
k3 3
ua
ut
km s(Tms+1) kts
c
uo
5.21
求下图系统的传递函数(补充)
2F
200k
R6 R5
200k
1F
200k
+
A1 +
500k
+
A2 +
+
A3 +
2-4目录
1、系统结构图的组成与绘制 2、结构图的等效变换与简化 3、信号流图的组成与性质 4、信号流图的绘制 5、梅森增益公式 6、闭环系统的传递函数
1、系统结构图的组成与绘制
动态结构图:根据由微分方程组得到的 拉氏变换方程组,对每个方程都用一些通路、 箭头、综合点、方框等符号组成的图形来表 示,并将各个图形正确地连结起来,即为动 态结构图。
操纵手柄
ur ( t )
u(t ) u (t ) ut (t ) max E ua ( t ) ka u( t ) uc ( t ) c ( t ) k c ( t ) max d 2 m ( t ) d m ( t ) k m ua ( t ) u ( t ) ur ( t ) uc ( t ) k [r (t ) c (t )] Tm 2 dt dt d m ( t ) 1 ut ( t ) k t c (t ) m (t ) dt i
Uc(s)
1 [U r (s) U1 (s)] I 1 (s ) R1
1 [U1 (s) U c (s)] I 2 (s ) R2
1 [I1 (s) I 2 (s)] U 1 (s ) sc1 1 I 2 (s) Uc (s) sc2
题1 (补充)
绘制动态结构图
输出
x1 (t ) n(t ) c(t )
dx 2 (t ) k 1r(t ) T2c(t ) dt
dx 1 (t ) T1 x1 (t ) k 2r(t ) x 2 (t ) n(t ) dt 输入 扰动
题1
绘制动态结构图
x1 (t ) n(t ) c(t )
r (s) k U r (s)
r
W1
W2
位置随动系统结构图绘制(补充)
U r (s ) U c (s ) U (s )
U (s) Ut (s) U(s) r 1 m (s) c (s) E i uε r ur uε
W1 k
cc (s) k U c (s)
E
m 1 + u 放大器 u 1 c J f u a m 减 SM u k a_ i f 放大器 速 电机 L L k s ( T s 1 ) ut a 器 i J L fL ut c 测速电机 kts uc + Z TG 2 _ W k2
m m
U(s) k a Ua (s) U a (s) k m m (s ) Ra La s(Tms 1) m (s) k t s Ut (s) Z
100k
100k
100k
200k
2、结构图的等效变换和简化
系统的动态结构图直观地反映了系统 内部各变量之间的动态关系。将复杂的动 态结构图进行化简可求出传递函数。 等效变换:被变换部分的输入量和输出量
动态结构图是系统数学模型的另 一种形式,它表示出系统中各变量之 间的数学关系及信号的传递过程。
(1)动态结构图的组成
信号线:带箭头的直线,表示信号传递方向,线上
标信号的原函数或象函数。
比较点(综合点):对两个及以上的信号进行加减运算。 分支点(引出点):表示信号引出或测量的位置。
方框(环节):表示对信号进行的数学变换,内往往
为元部件,系统的传递函数。
(2)动态结构图的绘制
绘制动态结构图的一般步骤为: 1)确定系统中各元件或环节的传递函数。 2)绘出各环节的方框,方框中标出其传 递函数、输入量和输出量。 3)根据信号在系统中的流向,依次将各 方框连接起来。 置系统的输入变量于左端,输出变量 (被控量)于右端,便得到系统的结构图。
r ( t ) k r ( t )
绘制双T网络结构图(补充)
R1
U1(s)
R2
urr(t) U (s)
I1(s)
sc1
I2(s)
1 C 1
I2(s)
2
1 C 2
ucc(t) U (s)
Ur(s)
R1
U1(s)
1
I1(s)
sc1
1
U1(s)
1 1 Uc(s) R2 I2(s) sc2
X1 (s)
题2 (补充)
描述系统动态性能的方程组如下,试绘制以R(s)为输入 信号、C(s)为输出信号、N(s)为干扰信号的系统结构图。
E(s)=R(s)-C(s) N(s)+X4(s)=C(s) X4(s)=X3(s)G2(s)
G4(s)
E(s)-X4(s)H(s)=X1(s) X2(s)=X1(s)G1(s)
C(s)
s T1
T2 (s T1 )X1 (s) k 2R(s) X2 (s) N(s)
[X2 (s) R(s) k 2 N(s)]
1 [R(s) k 1 C(s) T2 ] X 2 (s) s1
X1 (s) N(s) C(s)
s T1
R(s)
N(s) dx 1 (t ) k2 T1 x1 (t ) k 2r(t ) x 2 (t ) n(t ) dt 1 X1(s) 1 X2(s)
dx 2 (t ) k 1r(t ) T2c(t ) dt
C(s)
X1
(s) N(s) C(s s)
k1
sX2 (s) k 1R(s) T2C(s)
X3(s)=X2(s)+R(s)G4(s)+N(s)G3(s)
G3(s) G1(s) X2(s) H(s) X3(s) X4(s) G2(s) N(s) X4(s) C(s)
R(s)
E(s) C(s)
X1(s)
i
30k 10k 10k
20k
习题2-15
u2 功放 ua SM c TG k
3
ui +15v uo
-15v
u1
-k1
10k 10k
ut
+ -k 2
–
c
位置随动系统原理图
+15v
-15v
i
5.21
ui
3
u1
2
u2
k3 3
ua
ut
km s(Tms+1) kts
c
uo
5.21
求下图系统的传递函数(补充)
2F
200k
R6 R5
200k
1F
200k
+
A1 +
500k
+
A2 +
+
A3 +