八年级上册压轴题 期末复习试卷专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册压轴题期末复习试卷专题练习(word版
一、压轴题
1.阅读并填空:
如图,ABC是等腰三角形,AB AC
=,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD BE
=,为什么?
解:过点E作EF AC交BC于F
所以ACB EFB
∠=∠(两直线平行,同位角相等)
D OEF
∠=∠(________)
在OCD与OFE
△中
()
________
COD FOE
OD OE
D OEF
⎧∠=∠

=

⎪∠=∠

所以OCD OFE
△≌△,(________)
所以CD FE
=(________)
因为AB AC
=(已知)
所以ACB B
=
∠∠(________)
所以EFB B
∠=∠(等量代换)
所以BE FE
=(________)
所以CD BE
=
2.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以
1/
cm s的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t(s).
(1)若点 Q 的运动速度与点 P 的运动速度相等,当t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q 的运动速度为x/
cm s,是否存在实数x,使得△ACP 与△BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
3.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC
(1)如图1,求C 点坐标;
(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;
(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标
4.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.
(1)求直线AC 的解析式;
(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;
(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐
标. 5.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.
(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;
(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );
(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;
(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.
6.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).
(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;
(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;
(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .
7.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).
(1)点M 、N 从移动开始到停止,所用时间为 s ;
(2)当ABM ∆与MCN ∆全等时,
①若点M 、N 的移动速度相同,求t 的值;
②若点M 、N 的移动速度不同,求a 的值;
(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.
8.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.
(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;
(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.
9.阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”
小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”
小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”
......
老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”
(1)求∠DFC的度数;
(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;
(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.
10.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,
如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.
(材料理解)(1)在图1中证明小明的发现.
(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).
(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.
11.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.
(1)求P点的坐标;
(2)求△APB的面积;
(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.
12.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.
(1)求直线BC的解析式;
(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);
(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ 的解析式.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.见解析
【解析】
【分析】
△≌△,写出证明过程和依据先根据平行线的性质,得到角的关系,然后证明OCD OFE
即可.
【详解】
EF AC交BC于F,
解:过点E作//
∴ACB EFB ∠=∠(两直线平行,同位角相等),
∴D OEF ∠=∠(两直线平行,内错角相等), 在OCD 与OFE △中
()()()COD FOE OD OE
D OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩
对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )
∴CD FE =(全等三角形对应边相等)
∵AB AC =(已知)
∴ACB B =∠∠(等边对等角)
∴EFB B ∠=∠(等量代换)
∴BE FE =(等角对等边)
∴CD BE =;
【点睛】
本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.
2.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩
【解析】
【分析】
(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;
(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.
【详解】
(1)当t=1时,AP= BQ=1, BP= AC=3,
又∠A=∠B= 90°,
在△ACP 和△BPQ 中,
{AP BQ
A B AC BP
=∠=∠=
∴△ACP ≌△BPQ(SAS).
∴∠ACP=∠BPQ ,
∴∠APC+∠BPQ=∠APC+∠ACP = 90*.
∴∠CPQ= 90°,
即线段PC 与线段PQ 垂直;
(2)①若△ACP ≌△BPQ ,
则AC= BP ,AP= BQ ,
34t t xt =-⎧⎨=⎩
解得11
t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,
则AC= BQ ,AP= BP ,
34xt t t =⎧⎨=-⎩
解得:232
t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232
t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】
本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.
3.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒
∠= 【解析】
【分析】
(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;
(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;
(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到
∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.
【详解】
解:(1)作CH ⊥y 轴于H ,
则∠BCH+∠CBH=90°,
因为AB BC ⊥,
所以.∠ABO+∠CBH=90°,
所以∠ABO=∠BCH ,
在△ABO 和△BCH 中,
ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩
ABO BCH ∴∆≅∆
:BH=OA=3,CH=OB=1,
:OH=OB+BH=4,
所以C 点的坐标为(1,-4);
(2)因为∠PBQ=∠ABC=90°,
,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠
在△PBA 和△QBC 中,
BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩
PBA QBC ∴∆≅∆
:.PA=CQ ;
(3) ()135,1,0APB P ︒
∠= BPQ ∆是等腰直角三角形,
:所以∠BQP=45°,
当C 、P ,Q 三点共线时,∠BQC=135°,
由(2)可知,PBA QBC ∴∆≅∆;
所以∠BPA=∠BQC=135°,
所以∠OPB=45°,
所以.OP=OB=1,
所以P 点坐标为(1,0) .
【点睛】
本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
4.(1)y =34-
x +3;(2)y =34
x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】
【分析】
(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;
(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;
(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.
【详解】
解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,
故A (0,3),C (4,0),
设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),
点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:
340b k b =⎧⎨+=⎩解得:343
k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34
-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),
设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),
点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:
-340n m n =⎧⎨+=⎩解得:343
m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34
x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .
(3)
点P 在运动过程中,||PA PB -存在最大值,
由题意可知:如图,延长AB 与直线CD 交点即为点P ,
此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),
此时,||PA PB -= AB =4,y p = y A =3,
点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:
34
x -3=3,
x =8, 故P 点坐标为(8,3),
||PA PB -的最大值为x p -x B =8-4=4.
【点睛】
本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.
5.(1) 122°;(2)12BEC α∠=
;(3)01902BQC A ;(4)119,29 ; 【解析】
【分析】
(1)根据三角形的内角和角平分线的定义;
(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;
(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;
(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.
【详解】
解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,
12PBC ABC ∴∠=∠,12
PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠
11180()22
ABC ACB =︒-∠+∠, 1180()2
ABC ACB =︒-∠+∠, 1(180180)2
A =︒-︒-∠, 1180902
A =-︒+︒∠, 9032122,
故答案为:122︒;
(2)如图2示,
CE 和BE 分别是ACB ∠和ABD ∠的角平分线, 112ACB ∴∠=∠,122
ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,
ABD A ACB ∴∠=∠+∠,
112()122
A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,
112111222
BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2
QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,
11180()()22
A AC
B A AB
C =︒-∠+∠-∠+∠, 11180()22
A A ABC AC
B =︒-∠-∠+∠+∠, 结论1902
BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQC
A , 再根据(1),可得180()BPC
PBC PCB 11180
22QBC QCB 1180
902Q 118090582
119;
由(2)可得:11582922R Q ;
故答案为:119,29.
【点睛】
本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两
个内角的和是解题的关键.
6.(1)8;(2)145°;(3)详见解析.
【解析】
【分析】
(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;
(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出
∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;
(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.
【详解】
解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,
∵A(﹣2,2)、B(4,4),
∴AD=OD=2,BE=OE=4,DE=6,
∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=1
2
×(2+4)×6﹣
1
2
×2×2﹣
1
2
×4×4=8;
(2)作CH // x轴,如图2,
∵D(0,﹣4),M(4,﹣4),
∴DM // x轴,
∴CH // OG // DM,
∴∠AOG=∠ACH,∠DEC=∠HCE,
∴∠DEC+∠AOG=∠ACB=90°,
∴∠DEC=90°﹣55°=35°,
∴∠CEF=180°﹣∠DEC=145°;
(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,
而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,
∴∠NEC=∠HEC,
∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,
∵∠HEC=90°﹣∠AOG,
∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.
【点睛】
本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.
7.(1)20
3
;(2)①t=
8
3
;②a=
18
5
;(3)t=6.4或t=
10
3
【解析】
【分析】
(1)根据时间=路程÷速度即可求得答案;
(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;
②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;
(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t
=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=10
3
,再将t=
10
3
代入分别求得AP,BP的长及a的值验证即可.【详解】
解:(1)20÷3=20
3

故答案为:20
3

(2)∵CD∥AB,
∴∠B=∠DCB,
∵△CNM与△ABM全等,
∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,
∴△CMN≌△BAM
∴AB=CM,
∴12=20-3t,
解得:t=8
3

②由题意得:CN≠BM,∴△CMN≌△BMA,
∴AB=CN=12,CM=BM,
∴CM=BM=1
2 BC,
∴3t=10,
解得:t=10 3
∵CN=at,
∴10
3
a=12
解得:a=18
5

(3)存在
∵CD∥AB,
∴∠B=∠DCB,
∵△CNM与△PBM全等,
∴△CMN≌△BPM或△CMN≌△BMP,
当△CMN≌△BPM时,则BP=CM,
若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,
∴12-2t=20-3t,
解得:t=8 (舍去)
若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,
∴2t-12=20-3t,
解得:t=6.4,
当△CMN≌△BMP时,则BP=CN,CM=BM,
∴CM=BM=1
2 BC
∴3t=10,
解得:t =
103 当t =103时,点P 的路程为AP =2t =203
, 此时BP =AB -AP =12-
203=163, 则CN =BP =
163 即at =
163, ∵t =103
, ∴a =1.6符合题意
综上所述,满足条件的t 的值有:t =6.4或t =103
【点睛】
本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.
8.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或
(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2
P -,(2,2)Q -.
【解析】
【分析】
(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;
(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.
【详解】
(1)AP PD ⊥
90APB DPC ∴∠+∠=
AB x ⊥轴
90A APB ∴∠+∠=
A DPC ∴∠=∠
在ABP ∆和PCD ∆中
A DPC A
B PC
ABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩
()ABP PCD ASA ∴∆≅∆
AP DP ∴=,3DC PB ==
(2,3)D ∴
(2)设(,0)P a ,(2,)Q b
①AB PC =,BP CQ =
223a a b ⎧-=⎪⎨+=⎪⎩
,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,
322a a b +=-⎧⎨=⎩,解得122
a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2
P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)
Q -或1(,0)2P -
,(2,2)Q -或1(,0)2
P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.
9.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.
【解析】
【分析】
(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC 的度数;
(2)在EC 上截取EG =CF ,连接AG ,证明△AEG ≌△ACF ,然后再证明△AFG 为等边三角形,从而可得出EF =EG +GF =AF +FC ;
(3)在AF 上截取AG =EF ,连接BG ,BF ,证明方法类似(2),先证明△ABG ≌△EBF ,再证明△BFG 为等边三角形,最后可得出结论.
【详解】
解:(1)∵AB=AC ,AD 为BC 边上的中线,∴可设∠BAD =∠CAD =α,
又△ABE 为等边三角形,
∴AE=AB=AC ,∠EAB=60°,∴可设∠AEC =∠ACE =β,
在△ACE中,2α+60°+2β=180°,
∴α+β=60°,
∴∠DFC=α+β=60°;
(2)EF=AF+FC,证明如下:
∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,
∴CF=2DF,
在EC上截取EG=CF,连接AG,
又AE=AC,
∴∠AEG=∠ACF,
∴△AEG≌△ACF(SAS),
∴∠EAG=∠CAF,AG=AF,
又∠CAF=∠BAD,
∴∠EAG=∠BAD,
∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,
∴△AFG为等边三角形,
∴EF=EG+GF=AF+FC,
即EF=AF+FC;
(3)补全图形如图所示,
结论:AF=EF+2DF.证明如下:
同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,
∴∠CAE=180°-2β,
∴∠BAE=2α+180°-2β=60°,∴β-α=60°,
∴∠AFC=β-α=60°,
又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,
∴由8字图可得:∠BAD =∠BEF ,
在AF 上截取AG =EF ,连接BG ,BF ,
又AB=BE ,
∴△ABG ≌△EBF (SAS ),
∴BG =BF ,
又AF 垂直平分BC ,
∴BF=CF ,
∴∠BFA=∠AFC=60°,
∴△BFG 为等边三角形,
∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,
∴AF =AG +GF =BF +EF =2DF +EF .
【点睛】
本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.
10.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.
【解析】
【分析】
(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;
(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;
(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.
【详解】
(1)证明:∵∠BAC=∠DAE ,
∴∠BAC+∠CAD=∠DAE+∠CAD ,
∴∠BAD=∠CAE ,
在△ABD 和△ACE 中,
AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△ABD ≌△ACE ;
(2)如图2,
∵△ABC 和△ADE 是等边三角形,
∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°, ∴∠BAD=∠CAE ,
在△ABD 和△ACE 中,
AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△ABD ≌△ACE ,
∴BD=CE ,①正确,∠ADB=∠AEC , 记AD 与CE 的交点为G ,
∵∠AGE=∠DGO ,
∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE , ∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB 上取一点F ,使OF=OC ,
∴△OCF 是等边三角形,
∴CF=OC ,∠OFC=∠OCF=60°=∠ACB , ∴∠BCF=∠ACO ,
∵AB=AC ,
∴△BCF ≌△ACO (SAS ),
∴∠AOC=∠BFC=180°-∠OFC=120°, ∴∠AOE=180°-∠AOC=60°,③正确, 连接AF ,要使OC=OE ,则有OC=12
CE , ∵BD=CE , ∴CF=OF=
12
BD , ∴OF=BF+OD ,
∴BF <CF , ∴∠OBC >∠BCF ,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,
所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)如图3,
延长DC至P,使DP=DB,
∵∠BDC=60°,
∴△BDP是等边三角形,
∴BD=BP,∠DBP=60°,
∵∠BAC=60°=∠DBP,
∴∠ABD=∠CBP,
∵AB=CB,
∴△ABD≌△CBP(SAS),
∴∠BCP=∠A,
∵∠BCD+∠BCP=180°,
∴∠A+∠BCD=180°.
【点睛】
此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.
11.(1)P(﹣1,﹣1);(2)3
2
;(3)T(1,0)或(﹣2,0).
【解析】
【分析】
(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;
(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+1
2
|,所以|x+
1
2
|=
3
2
,解
得即可.【详解】
解:(1)由
21
2
y x
y x
=+


=--

,解得
1
1
x
y
=-


=-


所以P(﹣1,﹣1);
(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),
则S△APB=1
2
×(1+2)×1=
3
2

(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣1
2

∴C(﹣1
2
,0),
设T(x,0),
∴CT=|x+1
2 |,
∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=1
2
•|x+
1
2
|•(1+1)=|x+
1
2
|,
∴|x+1
2
|=
3
2

解得x=1或﹣2,
∴T(1,0)或(﹣2,0).
【点睛】
本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.
12.(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+3 2
【解析】
【分析】
(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;
(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;
(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=
∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.
【详解】
(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,
∴点B(0,6),点A(﹣3,0),
∴AO=3,BO=6,
∵AB=BC,BO⊥AC,
∴AO=CO=3,∴点C(3,0),
设直线BC解析式为:y=kx+b,则
03
6
k b
b
=+


=

,解得:
2
6
k
b
=-


=


∴直线BC解析式为:y=﹣2x+6;
(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,
∴点Q(m,﹣2m+6),
∵AB=CB,
∴∠BAC=∠BCA=∠HCQ,
又∵∠PGA=∠QHC=90°,AP=CQ,
∴△PGA≌△QHC(AAS),
∴PG=HQ=2m﹣6,
∴点P的纵坐标为:2m﹣6,
∵直线AB的表达式为:y=2x+6,
∴2m﹣6=2x+6,解得:x=m﹣6,
∴点P(m﹣6,2m﹣6);
(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,
∵AB=BC,BO⊥AC,
∴BO是AC的垂直平分线,
∴AM=CM,且AP=CQ,PM=MQ,
∴△APM≌△CQM(SSS)
∴∠PAM=∠MCQ,∠BQM=∠APM=45°,
∵AM=CM,AB=BC,BM=BM,
∴△ABM≌△CBM(SSS)
∴∠BAM=∠BCM,
∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,
∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,
∴∠APM=∠AMP=45°,
∴AP=AM,
∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,
∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,
∴△APE≌△MAO(AAS)
∴AE=OM,PE=AO=3,
∴2m﹣6=3,
∴m=9
2

∴Q(9
2
,﹣3),P(﹣
3
2
,3),
设直线PQ
的解析式为:y
=ax+c,

9
3
2
3
3
2
a c
a c

-=+
⎪⎪

⎪=-+
⎪⎩
,解得:
1
3
2
a
c
=-



=
⎪⎩

∴直线PQ的解析式为:y=﹣x+
3
2

【点睛】
本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.。

相关文档
最新文档