七年级数学下册相交线与平行线考试题及答案(二)解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.若A ∠的两边与B 的两边分别平行,且20B A ∠=∠+︒,那么A ∠的度数为( ) A .80︒ B .60︒ C .80︒或100︒ D .60︒或100︒ 2.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )
A .56︒
B .58︒
C .66︒
D .68︒
3.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长
线相交于点 24H K H ∠-∠=︒,
,则K ∠=( )
A .76︒
B .78︒
C .80︒
D .82︒
4.如图,//,2,2,AB CD FEN BEN FGH CGH ∠=∠∠=∠则F ∠与H ∠的数量关系是( )
A .90F H ︒∠+∠=
B .2H F ∠=∠
C .2180H F ︒∠-∠=
D .3180H F ︒∠-∠= 5.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂直为点O ,∠BOD =50°,则∠CO
E =
( )
A .30°
B .140°
C .50°
D .60°
6.如图,////OP QR ST 下列各式中正确的是( )
A .123180∠+∠+∠=
B .12390∠+∠-∠=
C .12390∠-∠+∠=
D .231180∠+∠-∠=
7.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )
A .①②③
B .①②④
C .②③④
D .①②③④ 8.如图,平面内有五条直线 1l 、2l 、3l 、4l 、5l ,根据所标角度,下列说法正确的是
( )
A .12l l //
B .23//l l
C .13//l l
D .45//l l 9.已知,如图,点D 是射线AB 上一动点,连接CD ,过点D 作//D
E BC 交直线AC 于点E ,若84ABC ∠=︒,20CDE ∠=︒,则ADC ∠的度数为( )
A .104︒
B .76︒
C .104︒或76︒
D .104︒或64︒
10.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )
A .15°
B .25°
C .35
D .20°
二、填空题
11.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作:
第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,
第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,
第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,
…,
第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .
若BEC α∠=,则n E ∠的度数是__________.
12.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.
(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.
13.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.
14.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:
第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,
第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,
第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,
…
第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .
若1n E ∠=度,那BEC ∠等于__________度.
15.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)
16.已知:如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,若∠EOC :∠EOD =2:3,则∠BOD 的度数为________.
17.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.
①//OB AC ;
②45EOC ∠=︒;
③:1:3OCB OFB ∠∠=;
④若OEB OCA ∠=∠,则60OCA ∠=︒.
18.如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.
19.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则
1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作
2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.
20.如图.已知点C 为两条相互平行的直线,AB ED 之间一动点,ABC ∠和CDE ∠的角平分线相交于F ,若3304
BCD BFD ∠=∠+︒,则BCD ∠的度数为________.
三、解答题
21.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即
∠OPA=∠QPB .
(1)如图1,若∠OPQ =82°,求∠OPA 的度数;
(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;
(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由.
22.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.
(1)若点P ,F ,G 都在点E 的右侧.
①求PCG ∠的度数;
②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)
(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.
23.综合与实践
背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.
已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .
问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系;
(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;
(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .
24.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B 点逆时针旋转n °.
①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;
②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.
25.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .
(1)当60A ∠=︒时,ABN ∠的度数是_______;
(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);
(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.
(4)当点P 运动到使ACB ABD =∠∠时,请直接写出1
4
DBN A +∠∠的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.
【详解】
解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,
又∵∠B=∠A+20°,
∴∠A+20°=∠A,
∵此方程无解,
∴此种情况不符合题意,舍去;
当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;
又∵∠B=∠A+20°,
∴∠A+20°+∠A=180°,
解得:∠A=80°;
综上所述,A
的度数为80°,
故选:A.
【点睛】
本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.
2.A
解析:A
【分析】
过P点作PM//AB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.
【详解】
解:如图,过P点作PM//AB交AC于点M.
∵CP 平分∠ACD ,∠ACD =68°,
∴∠4=1
2∠ACD =34°.
∵AB //CD ,PM //AB ,
∴PM //CD ,
∴∠3=∠4=34°,
∵AP ⊥CP ,
∴∠APC =90°,
∴∠2=∠APC -∠3=56°,
∵PM //AB ,
∴∠1=∠2=56°,
即:∠BAP 的度数为56°,
故选:A .
【点睛】
此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键. 3.A
解析:A
【分析】
分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠.
【详解】
解:如图,分别过K 、H 作AB 的平行线MN 和RS ,
//AB CD ,
//////AB CD RS MN ∴,
12
RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠, 180NKB ABK MKC DCK ∠+∠=∠+∠=︒,
1180180()2
BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠, 180BKC NKB MKC ∠=︒-∠-∠
180ABK DCK =∠+∠-︒,
36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,
又24BKC BHC ∠-∠=︒,
24BHC BKC ∴∠=∠-︒,
1802(24)BKC BKC ∴∠=︒-∠-︒,
76BKC ∴∠=︒,
故选:A .
【点睛】
本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////⇒b c a c .
4.D
解析:D
【分析】
先设角,利用平行线的性质表示出待求角,再利用整体思想即可求解.
【详解】
设,NEB HGC αβ∠=∠=
则2,2FEN FGH αβ∠=∠=
∵//AB CD
∴H AEH HGC ∠=∠+∠
NEB HGC =∠+∠
αβ=+
F FEB FGD ∠=∠-∠
()180FEB FGC =∠-︒-∠
()31803αβ=-︒-
()3180αβ=+-︒
∴F ∠3180H =∠-︒
3180H F ∴∠-∠=︒
故选:D .
【点睛】
本题考查了平行线的性质,关键是熟练掌握平行线的性质,注意整体思想的运用. 5.B
解析:B
【详解】
试题解析:EO ⊥AB ,
90,AOE ∴∠=
50,AOC BOD ∠=∠=
5090140.COE AOC AOE ∴∠=∠+∠=+=
故选B.
6.D
解析:D 【详解】
试题分析:延长TS ,
∵OP ∥QR ∥ST , ∴∠2=∠4, ∵∠3与∠ESR 互补, ∴∠ESR=180°﹣∠3, ∵∠4是△FSR 的外角,
∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2, ∴∠2+∠3﹣∠1=180°. 故选D .
考点:平行线的性质.
7.B
解析:B 【分析】
根据角平分线的性质可得1
2ACB ACD ∠=∠,12
ACF ACG ∠=∠,,再利用平角定义可得
∠BCF =90°,进而可得①正确;首先计算出∠ACB 的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE 的度数,可分析出③错误;根据∠3和∠4的度数可得④正确. 【详解】 解:如图,
∵BC 平分∠ACD ,CF 平分∠ACG ,
∴11
22ACB ACD ACF ACG ∠=∠∠=∠,,
∵∠ACG +∠ACD =180°, ∴∠ACF +∠ACB =90°,
∴CB⊥CF,故①正确,
∵CD∥AB,∠BAC=50°,
∴∠ACG=50°,
∴∠ACF=∠4=25°,
∴∠ACB=90°-25°=65°,
∴∠BCD=65°,
∵CD∥AB,
∴∠2=∠BCD=65°,
∵∠1=∠2,
∴∠1=65°,故②正确;
∵∠BCD=65°,
∴∠ACB=65°,
∵∠1=∠2=65°,
∴∠3=50°,
∴∠ACE=15°,
∴③∠ACE=2∠4错误;
∵∠4=25°,∠3=50°,
∴∠3=2∠4,故④正确,
故选:B.
【点睛】
此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.
8.D
解析:D
【分析】
根据平行线的判定定理进行逐个选项进行分析即可得到答案.
【详解】
解:如图所示
∵∠PHD=92°
∴∠GHD=180°-∠PHD=88°
∵∠CDK=88°
∴∠GHD=∠CDK
∴l4∥l5(同位角相等,两直线平行),所以D选项正确
∴∠BCG=∠F GV=93°
∵∠ABF≠∠BCG
∴l1与l2不平行,所以A选项错误;
又∵∠CGH=93°,∠DHP=92°,
∴∠CGH≠∠DHP
∴l2与l3不平行,所以B选项错误;
∵∠IBC+∠BDK=88°+88°≠180°
∴l1与l3不平行,所以C选项错误;
故选D.
【点睛】
本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行.
9.D
解析:D
【分析】
分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D 在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.
【详解】
解:当点D在线段AB上时,如图1所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE+∠CDE=84°+20°=104°;
当点D在线段AB的延长线上时,如图2所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE-∠CDE=84°-20°=64°.
综上所述:∠ADC=104°或64°.
故选:D.
【点睛】
本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.
10.A
解析:A
【分析】
分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.
【详解】
分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC
∵
l∥2l
1
∴
l∥BC
2
∴∠CBF=∠2
∵
l∥AD
1
∴∠EAD=∠1=15゜
∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜
∵AD∥BC
∴∠DAB+∠ABC=180゜
∴∠ABC=180゜-∠DAB=180゜-110゜=70゜
∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜
∴∠2=15゜
故选:A.
【点睛】
本题考查了平行线的性质与判定等知识,关键是作两条平行线.
二、填空题
11.【分析】
先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,
解析:1
2n α
⎛⎫
⎪
⎝⎭
【分析】
先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出
∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为
E1,则可得出∠CE1B=∠ABE1+∠DCE1=1
2∠ABE+1
2
∠DCE=1
2
∠BEC;同理可得
∠BE2C=∠ABE2+∠DCE2=1
2∠ABE1+1
2
∠DCE1=1
2
∠CE1B=1
4
∠BEC;根据∠ABE2和∠DCE2的平
分线,交点为E3,得出∠BE3C=1
8
∠BEC;…据此得到规律∠E n=
n
1
2
∠BEC,最后求得度数.
【详解】
如图1,
过E作EF∥AB.
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,
∴∠BEC=∠ABE+∠DCE;如图2:
∵∠ABE 和∠DCE 的平分线交点为E 1,
∴∠CE 1B =∠ABE 1+∠DCE 1=1
2∠ABE +1
2∠DCE =1
2∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2,
∴∠BE 2C =∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=1
2∠CE 1B =14
∠BEC ;
∵∠ABE 2和∠DCE 2的平分线,交点为E 3,
∴∠BE 3C =∠ABE 3+∠DCE 3=12∠ABE 2+12∠DCE 2=1
2∠CE 2B =18∠BEC ;
…
以此类推,∠E n =n
1
2∠BEC , ∵BEC α∠=,
∴n E ∠的度数是12n
⎛⎫
⎪⎝⎭α.
故答案为:12n
⎛⎫
⎪⎝⎭α.
【点睛】
本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
12.PB′⊥QC′ 15秒或63秒或135秒. 【分析】
(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E 作EF ∥AB ,根据平行线的性质求得∠PEF 和∠QEF 的度数,进而得结论;
解析:PB′⊥QC′ 15秒或63秒或135秒. 【分析】
(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;
(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.
【详解】
(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,
过E作EF∥AB,则EF∥CD,
∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,
∴∠PEQ=90°,
∴PB′⊥QC′,
故答案为:PB′⊥QC′;
(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即4t=45+t,
解得,t=15(s);
②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,
∵AB∥CD,PB′∥QC′,
∴∠APB′=∠PED=180°﹣∠CQC′,
即4t﹣180=180﹣(45+t),
解得,t=63(s);
③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即4t﹣360=t+45,
解得,t=135(s);
综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.
故答案为:15秒或63秒或135秒.
【点睛】
本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.
13.68°
【分析】
如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,
∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.
【详解】
解:如图,延长DC交BG于M.由题意
解析:68°
【分析】
如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.
【详解】
解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.
则有22x y GMC x y E =+∠⎧⎨=+∠⎩①②
,
①-2×②得:∠GMC=2∠E, ∵∠E=34°, ∴∠GMC=68°, ∵AB ∥CD , ∴∠GMC=∠B=68°, 故答案为:68°. 【点睛】
本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.
14.【分析】
先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1, 解析:2n
【分析】
先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12
+∠DCE 1
2=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=
∠ABE 112
+∠DCE 112=∠CE 1B 1
4=∠BEC ;根据∠ABE 2和∠DCE 2的
平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 1
2
n =∠BEC ,最后求得
∠BEC 的度数. 【详解】
如图1,过E 作EF ∥AB . ∵AB ∥CD , ∴AB ∥EF ∥CD , ∴∠B =∠1,∠C =∠2. ∵∠BEC =∠1+∠2, ∴∠BEC =∠ABE +∠DCE ; 如图2.
∵∠ABE 和∠DCE 的平分线交点为E 1, ∴∠CE 1B =∠ABE 1+∠DCE 112=
∠ABE 12
+∠DCE 1
2=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=
∠ABE 112
+∠DCE 112=∠CE 1B 1
4=∠BEC ;
∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 21
2=∠CE 2B 18
=∠BEC ; …
以此类推,∠E n 1
2n
=
∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度. 故答案为:2n .
【点睛】
本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
15.【详解】
作IF ∥AB,GK ∥AB,JH ∥AB 因为AB ∥CD
所以,AB ∥CD ∥ IF ∥GK ∥JH 所以,∠IFG=∠FEC=10° 所以,∠GFI=90°-∠IFG=80° 所以,∠KGF=∠
解析:【详解】 作IF ∥AB,GK ∥AB,JH ∥AB 因为AB ∥CD
所以,AB ∥CD ∥ IF ∥GK ∥JH 所以,∠IFG=∠FEC=10° 所以,∠GFI=90°-∠IFG=80° 所以,∠KGF=∠GFI=80° 所以,∠HGK=150°-∠KGF=70° 所以,∠JHG=∠HGK=70° 同理,∠2=90°-∠JHG=20°
所以,∠1=90°-∠2=70°
故答案为70
【点睛】
本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.
16.36°
【分析】
先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x+3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC ∠EOC72°=36°,然后根据对顶
解析:36°
【分析】
先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x +3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC 12
=
∠EOC 12=⨯72°=36°,然后根据对顶角相等得到∠BOD =∠AOC =36°.
【详解】
解:设∠EOC =2x ,∠EOD =3x ,根据题意得2x +3x =180°,解得x =36°,
∴∠EOC =2x =72°,
∵OA 平分∠EOC ,
∴∠AOC 12=∠EOC 12=⨯72°=36°, ∴∠BOD =∠AOC =36°.
故答案为:36°
【点睛】
考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确:1直角=90°;1平角=180°,以及对顶角相等.
17.①④
【分析】
①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到
∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④
【分析】
①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出
OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=1
2∠BOF,∠FOC=∠AOC=1
2
∠AOF,从而
计算出∠EOC=∠FOE+∠FOC=40°.③由∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,得出∠OCB:∠OFB=1:2.④由∠OEB=∠OCA=∠AOE=∠BOC,得到∠AOE-∠COE=∠BOC-
∠COE,∠BOE=∠AOC,再得到∠BOE=∠FOE=∠FOC=∠AOC=1
4
∠AOB=20°,从而计算出
∠OCA=∠BOC=3∠BOE=60°.
【详解】
解:∵BC∥OA,∠B=∠A=100°,
∴∠AOB=∠ACB=180°-100°=80°,
∴∠A+∠AOB=180°,
∴OB∥AC.故①正确;
∵OE平分∠BOF,
∴∠FOE=∠BOE=1
2
∠BOF,
∴∠FOC=∠AOC=1
2
∠AOF,
∴∠EOC=∠FOE+∠FOC=1
2(∠BOF+∠AOF)=1
2
×80°=40°.故②错误;
∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,
∴∠OCB:∠OFB=1:2.故③错误;
∵∠OEB=∠OCA=∠AOE=∠BOC,
∴∠AOE-∠COE=∠BOC-∠COE,
∴∠BOE=∠AOC,
∴∠BOE=∠FOE=∠FOC=∠AOC=1
4
∠AOB=20°,
∴∠OCA=∠BOC=3∠BOE=60°.故④正确.
故答案为:①④.
【点睛】
本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.
18.131
【分析】
过点C作CH∥MN,根据平行线的性质求出∠NEC即可.
【详解】
解:过点C作CH∥MN,
∵,
∴CH∥PQ,
∴,
∵,
∴,
∵CH ∥MN ,
∴,
∴
故答案为:131.
解析:131
【分析】
过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.
【详解】
解:过点C 作CH ∥MN ,
∵//MN PQ ,
∴CH ∥PQ ,
∴26HCB BGF ∠=∠=︒,
∵75ACB ∠=︒,
∴49ACH ∠=︒,
∵CH ∥MN ,
∴49CEN ACH ∠=∠=︒,
∴131180CEN AEN ∠︒∠==︒-
故答案为:131.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.
19.90°
【分析】
过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E
解析:90°
902n
︒ 【分析】
过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,
∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.
【详解】
解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,
∵AB ∥CD ,
∴∠AEF +∠CFE =180°,
∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,
∵AEF ∠和CFE ∠的角平分线交于点1P ,
∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;
同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18
(∠AEF +∠CFE )=22.5°, ...,
∴902n n
P ︒∠=, 故答案为:90°,
902n ︒.
【点睛】
本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.
20.120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
解析:120°
【分析】
由角平分线的定义可得EDA ADC ∠=∠,CBE ABE ∠=∠,又由//AB ED ,得
EDF DAB ∠=∠,DFE ABF ∠=∠;设EDF DAB x ∠=∠=,DFE ABF y ∠=∠=,则DFB x y ∠=+;再根据四边形内角和定理得到3602()BCD x y ∠=︒-+,最后根据
3304
BCD BFD ∠=∠+︒即可求解. 【详解】
解:ABC ∠和CDE ∠的角平分线相交于F ,
EDA ADC ∴∠=∠,CBE ABE ∠=∠,
又//AB ED ,
EDF DAB ∴∠=∠,DEF ABF ∠=∠,
设EDF DAB x ∠=∠=,DEF ABF y ∠=∠=,
BFD EDA ADE x y ∴∠=∠+∠=+,
在四边形BCDF 中,FBC x ∠=,ADC y ∠=,BFD x y ∠=+,
3602()BCD x y ∴∠=︒-+,
04
33BCD BFD ∠=∠+︒, 120BFD x y ∴∠=+=︒,
3602()120BCD x y ∴∠=︒-+=︒,
故答案为:120︒.
【点睛】
本题考查了平行线的判定和性质,正确的识别图形是解题的关键.
三、解答题
21.(1)49°,(2)44°,(3)∠OPQ =∠ORQ
【分析】
(1)根据∠OPA =∠QP B .可求出∠OPA 的度数;
(2)由∠AOP =43°,∠BQP =49°可求出∠OPQ 的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ =∠AOP +∠BQP ,∠ORQ =∠DOR +∠RQC ,从而
∠OPQ =∠ORQ .
【详解】
解:(1)∵∠OPA =∠QPB ,∠OPQ =82°,
∴∠OPA =(180°-∠OPQ )×12=(180°-82°)×1
2=49°,
(2)作PC ∥m ,
∵m ∥n ,
∴m ∥PC ∥n ,
∴∠AOP =∠OPC =43°,
∠BQP =∠QPC =49°,
∴∠OPQ =∠OPC +∠QPC =43°+49°=92°,
∴∠OPA =(180°-∠OPQ )×12=(180°-92°)×1244°,
(3)∠OPQ=∠ORQ.
理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,
∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,
∴∠AOP=∠DOR,∠BQP=∠RQC,
∴∠OPQ=∠ORQ.
【点睛】
本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.
22.(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=1
2∠QCF+1
2
∠FCE=1
2
∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=1
2
(70°−40°)=15°,∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC =3x °,∠EFC =2x °,
①当点G 、F 在点E 的右侧时,
∵AB ∥CD ,
∴∠QCG =∠EGC =3x °,∠QCF =∠EFC =2x °,
则∠GCF =∠QCG -∠QCF =3x °-2x °=x °,
∴∠PCF =∠PCQ =12∠FCQ =1
2∠EFC =x °,
则∠ECG =∠GCF =∠PCF =∠PCD =x °,
∵∠ECD =70°,
∴4x =70°,解得x =17.5°,
∴∠CPQ =3x =52.5°;
②当点G 、F 在点E 的左侧时,反向延长CD 到H ,
∵∠EGC =3x °,∠EFC =2x °,
∴∠GCH =∠EGC =3x °,∠FCH =∠EFC =2x °,
∴∠ECG =∠GCF =∠GCH -∠FCH =x °,
∵∠CGF =180°-3x °,∠GCQ =70°+x °,
∴180-3x =70+x ,
解得x =27.5,
∴∠FCQ =∠ECF +∠ECQ =27.5°×2+70°=125°,
∴∠PCQ =12∠FCQ =62.5°,
∴∠CPQ =∠ECP =62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
23.(1)90A C ∠+∠=︒;(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质即可求解.
【详解】
解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,
∴∠C =∠AOB ,
∵AB ⊥BC ,
∴∠ABC=90°,
∴∠A+∠AOB=90°,
∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)证明:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
故答案为:105°.
【点睛】
本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.24.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
25.(1)120°;(2)90°-1
2x°;(3)不变,1
2
;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-1
2
x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知
∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;
(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得
∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得
∠ABP=∠PBN=1
2∠ABN=2∠DBN,由平行线的性质可得1
2
∠A+1
2
∠ABN=90°,即可得出答
案.
【详解】
解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,
∴∠ABN=120°;
(2)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-x°,
∴∠ABP+∠PBN=180°-x°,
∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,
∴∠CBD=∠CBP+∠DBP=1
2(180°-x°)=90°-1
2
x°;
(3)不变,∠ADB:∠APB=1
2
.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1,
∴∠ADB:∠APB=1
2
;
(4)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠ABC,∠PBN=2∠DBN,
∴∠ABP=∠PBN=2∠DBN=1
2
∠ABN,
∵AM∥BN,
∴∠A+∠ABN=180°,
∴1
2∠A+1
2
∠ABN=90°,
∴1
2
∠A+2∠DBN=90°,
∴1
4∠A+∠DBN=1
2
(1
2
∠A+2∠DBN)=45°.
【点睛】
本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.。