张铺镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张铺镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[-2.5]=-3.现对
82进行如下操作:这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()
A. 1
B. 2
C. 3
D. 4
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:
∴对121只需进行3次操作后变为1,
故答案为:C
【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可。

2、(2分)若正方形的边长是a,面积为S,那么()
A.S的平方根是a
B.a是S的算术平方根
C.a=±
D.S=
【答案】B
【考点】算术平方根
【解析】【解答】解:∵a2=s,a>0,
∴a=。

故答案为:B.
【分析】根据正方形的面积与边长的关系,结合算术平方根的意义即可判断。

3、(2分)为了直观地表示出5班女生人数在全年级女生人数中所占的比例,应该选用()。

A. 条形统计图
B. 折线统计图
C. 扇形统计图
D. 面积图
【答案】C
【考点】扇形统计图
【解析】【解答】为了直观地表示出5班女生人数在全年级女生人数中所占的比例,应该选用扇形统计图. 故答案为:C.
【分析】扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数,通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
4、(2分)x的5倍与它的一半之差不超过7,列出的关系式为()
A.5x-x≥7
B.5x-x≤7
C.5x-x>7
D.5x-x<7
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,
故答案为:B.
【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.
5、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()
A.50°
B.60°
C.70°
D.80°
【答案】D
【考点】平行线的判定与性质,三角形内角和定理
【解析】【解答】解:∵∠B+∠DAB=180°,
∴AD∥BC,
∵∠C=50°,
∴∠C=∠DAC=50°,
又∵AC平分∠DAB,
∴∠DAC=∠BAC=∠DAB=50°,
∴∠DAB=100°,
∴∠B=180°-∠DAB=80°.
故答案为:D.
【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,
根据补角定义即可得出答案.
6、(2分)下列方程组中,是二元一次方程组的是()
A. B. C. D.
【答案】B
【考点】二元一次方程组的定义
【解析】【解答】解:A、方程组中含3个未知数,A不是二元一次方程组;
B、两个未知数,最高次数为是二元一次方程组;
C、两个未知数,最高次数为不是二元一次方程组;
D、两个未知数,一个算式未知数次数为不是二元一次方程组.
故答案为:B.
【分析】二元一次方程组满足三个条件;(1)只含有两个未知数,且未知数的最高次数都是1,且是整式方程。

7、(2分)x=3是下列哪个不等式的解()
A.x+2>4
B.x2-3>6
C.2x-1<3
D.3x+2<10
【答案】A
【考点】不等式的解及解集
【解析】【解答】解:根据不等式的解的定义求解
【分析】把x=3分别代入各选项即可作出判断。

8、(2分)在下列5个数中①②③④⑤ 2 ,是无理数的是()
A. ①③⑤
B. ①②⑤
C. ①④
D. ①⑤
【答案】D
【考点】无理数的认识
【解析】【解答】解:无理数有:、2
故答案为:D
【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,即可求解。

9、(2分)如图,若∠1=∠2,DE∥BC,则下列结论中正确的有()
①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】平行线的判定与性质
【解析】【解答】解:∵DE∥BC
∴∠1=∠DCB,∠AED=∠ACB,因此②正确;
∵∠1=∠2
∴∠2=∠DCB
∴FG∥DC,因此①正确;
∴∠BFG=∠BDC,因此⑤正确;
∵∠1=∠2,
∠2+∠B不一定等于90°,因此④错误;
∠ACD不一定等于∠BCD,因此③错误
正确的有①②⑤
故答案为:C
【分析】根据已知DE∥BC可证得∠1=∠DCB,∠AED=∠ACB,可对②作出判断;再根据∠1=∠2,可对①作出判断;由∠2=∠DCB,可对⑤作出判断;③④不能证得,即可得出答案。

10、(2分)在实数范围内定义一种新运算“*”,其规则是a*b=a2-b2,如果(x+2)*5>(x-5)(5+x),则x 的取值范围是()
A. x>-1
B. x<-1
C. x>46
D. x<46 【答案】A
【考点】解一元一次不等式,定义新运算
【解析】【解答】解:根据题意得,(x+2)2-25>x2-25,
则4x+4>0,
解之:x>-1
故答案为:A
【分析】根据新定义的法则,将(x+2)*5转化为(x+2)2-25,再解不等式求解。

11、(2分)如图,点在射线上,,则等于()
A. B. 180º
C. D. 180º
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD∥EF
∴∠B=∠BCD,∠E+∠DCE=180°
∴∠DCE=180°-∠E
∵∠BCD+∠DCE+∠GCE=180°
∴∠B+180°-∠E+∠GCE=180°
∴∠GCE=∠E-∠B
故答案为:C
【分析】根据平行线的性质得出∠B=∠BCD,∠E+∠DCE=180°,再根据∠BCD+∠DCE+∠GCE=180°,即可证得结论。

12、(2分)如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()
A.∠1<∠2
B.∠1>∠2
C.∠1=∠2
D.不能确定
【答案】C
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠2=∠CFG,
又∵FG平分∠EFC,
∴∠1=∠CFG,
∴∠1=∠2,
故答案为:C.
【分析】根据平行线性质可得∠2=∠CFG,由角平分线性质得∠1=∠CFG,等量代换即可得证.
二、填空题
13、(1分)将点P向下平移3个单位,向左平移2个单位后得到点,则点P坐标为________ .【答案】
【考点】平移的性质
【解析】【解答】解:设点P的坐标为,
根据题意,,
解得,
则点P的坐标为.
故答案为:.
【分析】设点P的坐标为(x ,y ),根据平移的特征“左减右加”可得x − 2 = 3 ,y − 3 = − 1 ,解得x = 5 ,y = 2 ,即点P的坐标为(5 ,2 )。

14、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
15、(4分)作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA , OB的垂线,分
别交BO 的延长线于M 、N ,线段________的长表示点P到直线BO的距离;线段________的长表示点M到直线AO的距离; 线段ON的长表示点O到直线________的距离;点P到直线OA的距离为________.
【答案】PN;PM;PN;0
【考点】点到直线的距离,作图—基本作图
【解析】【解答】解:如图
∵PN⊥OB
∴线段PN的长是表示点P到直线BO的距离;
∵PM⊥OA
∴PM的长是表示点M到直线AO的距离;
∵ON⊥PN
∴线段ON的长表示点O到直线PN的距离;
∵PM⊥OA
∴点P到直线OA的距离为0
故答案为:PN、PM、PN、0
【分析】先根据题意画出图形,再根据点到直线的距离的定义,即可求解。

16、(1分)如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么
∠2=________°.
【答案】118°
【考点】平行公理及推论,平行线的判定与性质
【解析】解:过B作BD FA,
故答案为:118
【分析】过B作BD ∥FA,根据两直线平行,同旁内角互补可得∠1+∠ABD=180°,已知∠1=152°,所以∠ABD=180°−152°=28°,而∠ABC=90°,所以∠CBD=90°−28°=62°,由平行线的传递性可得BD∥EC,根据两直线平行,同旁内角互补可得∠2+∠DBC=180°,所以2=180°−62°=118°。

17、(2分)在下列各数:-2,-2.5,0,1,6中,不等式x>1的解有________;不等式-x>1的解有________.
【答案】6;-2,-2.5
【考点】不等式的解及解集
【解析】【解答】解:(1)∵当时,;
当时,;
当时,;
当时,;
当时,;
∴上述各数中,属于不等式的解的有6;
(2 )∵当时,;
当时,;
当时,;
当时,;
当时,.
∴上述各数中,属于不等式的解集是:和.
故答案为:(1)6;(2)和.
【分析】不等式的解就是使不等式成立的所有未知数的值。

把所给的数分别代入不等式检验即可作出判断。

18、(1分)请写出一个大于-4而小于-3的无理数________.
【答案】
【考点】估算无理数的大小
【解析】【解答】大于-4而小于-3的无理数.
【分析】由题意可知,写出的这个无理数大于而小于即可。

三、解答题
19、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。

【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。

20、(5分)把下列各数填在相应的大括号里:
,,-0.101001,,― ,0.202002…, ,0,
负整数集合:(…);
负分数集合:(…);
无理数集合:(…);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,,…);
负分数集合:(-0.101001,― ,,…);无理数集合:(0.202002…,,…);
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。

实数包括有理数和无理数。

有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。

21、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
22、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
23、(5分)如图所示是小明自制对顶角的“小仪器”示意图:
(1 )将直角三角板ABC的AC边延长且使AC固定;
(2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°.【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF 的度数.
24、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:(…);
整数集合:(…);
负分数集合:(…);
无理数集合:(…).
【答案】解:正有理数集合:(3,,-(-2.28), 3.14 …);
整数集合:(3,0,-∣-4∣…);
负分数集合:(-2.4,- ,,…);
无理数集合:(,-2.1010010001………).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。

逐一填写即可。

25、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
26、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。

相关文档
最新文档