长方体正方体表面积及体积练习题整理版正式版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体正方体表面积及体积练习题整理版正式版
稍复杂的长方体和正方体的体积和表面积练习
一、填空
1、一个长方体的棱长总和是48cm,宽是2cm,长是宽的2倍,它的表面积是()。

2、一个长方体方木,长2m,宽和厚都是30cm,把它的长截成2段,表面积增加
()。

3、长方体中最多可以有()条棱的长度相等,最少有()条棱的长度相等。

4、两个完全相同的长方体,长10cm,宽7cm,高4cm,拼成一个表面积最大的长方体后,表面积是(),比原来减少了();如果拼成一个表面积最小的长方体,表面积是(),比原来减少了()。

5、一个正方体的棱长总和是48厘米,它的表面积是()。

二、选择
1、一个棱长是1分米的正方体木块,横截成三个体积相等的小长方体后,表面积增加了()A、2平方分米B、4平方分米C、6平方分米
2、大正方体棱长是小正方体棱长的3倍,大正方体的表面积是小正方体表面积的
()倍。

A、3 B、6 C、9
3、一个正方体表面积是150平方厘米,把它平均分成两个长方体,每个长方体的表面积是()A、75平方厘米B、100平方厘米C、90平方厘米
4、一个长方体有四个面的面积相等,则其余两个面是()
A、长方形
B、正方形
C、不一定
5、挖一个长8米、宽6米、深4.5米的长方体水池,这个水池的占地面积至少是()
A、48平方米
B、44平方米
C、36平方米
D、222平方米
三、计算
1、一个长方体的12条棱长总和是64厘米,侧面是一个周长为24厘米的长方形,它的长是多少?
2、粮店售米用的长方体木箱(上面没有盖),长1.2米,宽0.6米,高0.8米,制作这样一个木箱至少要用木板多少平方米?
3、把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。

4、一个长方体的木块,截成两个完全相等的正方体。

两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少厘米?
5、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个表面积最小的大长方体,这个长方体的表面积是多少平方厘米?
6、一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。

扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?
7、一个棱长是5分米的正方体水池,蓄水的水面低于池口2分米,水的容量是()升
8、有大、中、小三个长方体水池,它们的口都是正方形分别是5分米、3分米、2分米,现在把两块石头分别放入中、小水池内,这两个水池的水面分别升高6厘米,如果这两块石头都沉入大水池中,那么大水池的水面将升高多少厘米?
9、一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?
10、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每4平方米需要水泥1千克,一共要水泥多少千克?
11、一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?
12、用一根长36厘米的铁丝做成一个最大的正方体框架,在框架外面全部糊上白纸,需要白纸多少平方厘米?
13、一种汽车上的油箱,里面长8分米,宽5分米,高3.5分米。

做这个油箱需要多少平方分米的铁皮?如果每升汽油5.5元钱.这个油箱装满汽油共需要多少钱?
练习一:
1、把一个正方体和一个等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原俩正方体的表面积是多少平方厘米?
思路:把一个正方体和一个等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了4个正方形的面积,每块正方形的面积是50÷4=12.5(平方厘米),那么正方体的表面积是12.5×6=75(平方厘米)
2、把两个完全一样的长方体木块拼成一个大长方体,这个大长方体的表面积比原来两个小长方体的表面积之和减少了46平方厘米,而长是原来长方体的2倍。

如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?
3、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
4、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积会减少多少平方分米?练习二:
1、长方体不同的三个面的面积分别为10、15和6平方厘米。

这个长方体的体积是多少立方厘米?
思路:长方体不同的三个面的面积分别为长×宽、长×高和宽×高。

因此,15×10×6=(长×宽×高)×(长×宽×高),而15×10×6=900=30×30。

所以,这个长方体的体积是30立方厘米。

2、一个长方体、不同的三个面的面积分别为35、15和21平方厘米,且长宽高都是素数。

这个长方体的体积是多少立方厘米?
3、一个长方体,前面和上面的面积之和是209立方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。

这个长方体的体积是多少立方厘米?
4、长方体不同的三个面的面积分别为2
5、18和8平方厘米。

这个长方体的体积是多少立方厘米?
练习三:
1、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水,如果在水中沉入一个棱长为30厘米的正方体铁块,那么水箱中水深多少分米?
思路:铁块的体积为9立方分米,沉入水中后,水上升的体积就是9立方分米,用这个体积除以水箱底面积就能得到水上升的高度。

则30厘米=3分米;3×3×3÷(15×12)+10=10.15(分米)
2、有一个长方体容器,从里面量长5分米,宽4分米,高6分米,里面注入水,水深3分米。

如果把一块长2分米的正方体铁块浸入水中,水面上升了多少分米?
3、有一个小金鱼缸,长4分米,宽3分米,水深2分米。

把一个小块假山石浸入水中后,水面上升了0.8分米。

这块假山石的体积是多少立方分米?
4、在一个长20分米,宽15分米的长方体容器中,有20分米深的水。

现在在水中沉入一个棱长30厘米的正方体铁块,这时容器中水深多少分米?
练习四:
1、将表面积分别为54、96和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

思路:因为正方体的每一个面的面积相等,所以这三个正方体的每一个面面积是9、16、25平方厘米。

故三个正方体的棱长分别是3、4、5厘米。

则大正方体的体积只需将三个正方体的体积相加即可。

2、有三个正方体铁块,它们的表面积分别为24、54和294平方厘米。

现将三块铁熔成一个大正方体(不计损耗),求这个大正方体的体积。

3、将表面积分别是216和384平方厘米的两个正方体熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

4、把8块棱长是1分米的正方体铁块熔成一个大正方体,求这个大正方体的表面积是多少平方分米?
练习五:
1、一个长方体容器的底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长15厘米的长方体铁块。

这时容器里的水深0.5米。

如果把铁块取出,容器里的水深是多少厘米?
思路:这里告诉的铁块高度是一个无用的条件,首先计算使水面升高的铁块的体积是:15×15×(0.5×100)=11250(立方厘米),这时可计算铁块使水面升高的高度:11250÷(60×60)=3.125(厘米)。

则取出铁块后水的高度为50-3.125=46.875(厘米)。

2、有一块棱长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。

取出铁块后,水面下降了0.5厘米。

这个长方体容器的底面积是多少平方厘米?
3、有一个长方体冰箱,从里面量长40厘米,宽30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。

这时水面高多少厘米?
4、有大中小三个长方形水池,它们的池口都是正方形,边长分别为6分米,3分米和2分米。

现在把两堆碎石分别沉入中小两个水池内。

这两个水池的水面分别升高了6厘米和4
厘米。

如果把这两堆碎石都沉入大池内,那么,大池的水面将升高多少厘米?(结果保留整数)
练习六:
1、有一个长方体容器,长30厘米,宽20厘米,高10厘米,里面的水深6厘米(最大面为底面),如果把这个容器盖紧(不漏水),再朝左竖起来(最小面为底面),里面的水深是多少厘米?
思路:水的形状在变化,而水的体积没有变化。

30×20×6÷(20×10)=18(厘米)
2、有两个长方体水缸,甲缸长3分米,宽和高都是2分米。

乙缸长4分米,宽2分米,里面的水深1.5分米。

现把乙缸的水倒进甲缸,水深多少分米?
3、有一块边长2分米的正方形铁块,现把它锻造成一根长方体,这个长方体的截面是一个长4厘米,宽2厘米的长方形,求它的长。

4、你能计算第一题中让中面作为底面的水的高度吗?
练习七:1、一个长方体容器内装满水,现在有大中小三个铁球,第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中。

已知每次从容器中溢出的水量情况是:第二次是第一次的3倍,第三次是第一次的2.5倍。

问:大球的体积是小球的几倍?思路:假设小球的体积是1,则第一次溢出的水的体积也是1,根据第二次溢出的水是第一次的3倍,可知第二次溢出的水是3,因为取出了小球,则中球的体积为4。

根据第三次溢出的水是第一次的2.5倍,可知第三次溢出的水为2.5,因为取出了中球,则大球的体积为2.5+4-1=5.5。

不难计算大球的体积是小球的5.5倍。

2、有一个正方形容器,边长是25厘米,里面注满了水,有一根长50厘米,横截面是12
平方厘米的长方体铁棒,现将铁棒垂直插入水中。

问:会溢出多少立方厘米的水?
3、有两个水池,甲水池长8分米,宽6分米,水深3分米,乙水池空着,它长、宽高都是4分米。

现将从甲水池中抽出一部分水到乙水池,使两水池的水面同样高。

求水面的高度。

4、一个长方体容器,底面是一个边长60厘米的正方形。

容器里直立着一个高1米,底面边长15厘米的长方体铁块,这时容器里的水深0.5米。

现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?
练习八:1、一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的小正方体,表面积增加了多少平方厘米?思路:把棱长6厘米的正方体锯成棱长为2厘米的正方体,每锯一次的表面积可增加6×6×2=72(平方厘米),一共要锯6次,则表面积增加72×6=432(平方厘米)。

2、把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的面积之和少多少平方厘米?
3、有一个棱长是1米的正方体木块,如果把它锯成相等的8个小正方体,表面积增加多少平方米?
4、把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样大的小长方体,没有涂颜色的面积是60平方厘米。

求涂上红色的面积一共是多少平方厘米?
练习九:1、一个正方体的表面涂满了红色,然后切成大小相同的27个小正方体。

⑴、三个面有红色的有几个?⑵二个面有红色的有几个?⑶一个面有红色的有几个?⑷六个面都没有红色的有几个?思路:三面有红色的正方体都在顶点处,所以有8个。

两面有红色的小正方体都在棱上,所以有12个。

只有一个面有红色的在六个面上,所以有6个,六个面都没有红色的在大正方体的中间,所以只有1个。

2、把一个棱长是5厘米的正方体六个面都涂上红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有红色的各有多少个?
3、把若干个体积相同的小正方体堆成一个大正方体,然后在大大正方体的表面涂上颜色,已知两面被涂上颜色的小正方体有24个,那么,这些小正方体一共有多少个?
4、把1立方米的正方体木块的表面涂上颜色,然后切成1立方分米的小正方体,在这些小正方体中,六个面都没有涂色的有多少个?
练习十:1、一个长方体的长宽高分别是6、5、4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体的表面积的和最大是多少平方厘米?思路:这个长方体的原表面积为148平方厘米,每切割一刀,增加两个面,切成三个体积相等的小长方体要切2刀。

一共增加4个面。

要求增加面积最大,应增加4个30平方厘米的面。

所以三个小长方体的表面积和最大是148+6×5×4=268(平方厘米)。

2、有三块完全一样的长方体木块,每块长8厘米,宽5厘米,高3厘米。

要把它们粘成一个大长方体,这个长方体的表面积最大是多少平方厘米?最少是多少平方厘米?
3、把8个同样大的小正方体拼成一个大正方体,已知每个小正方体的表面积是72平方厘米,拼成的大正方体的表面积是多少平方厘米?
4、把一个长宽高分别是7、6、5厘米的长方体截成两个小长方体,使这两个长方体的表面积的和最大。

求它们的表面积和是多少平方厘米?
练习十一:1、有一个正方体,棱长是3分米。

如果把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?思路:根据小正方体的数量为27个,在依据每个小正方体的表面积为6平方分米。

就可以得到这些小正方体的表面积之和了。

2、用棱长是1厘米的小正方体摆成一个较大的正方体,至少需要多少个?如果要摆成一个棱长是6厘米的正方体,需要多少个小正方体?
3、有一个长方体,长10厘米,宽6厘米,高4厘米。

如果把它锯成棱长是1厘米的小正方体,一共可锯多少个?这些小正方体的表面积和是多少?
4、把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米?
一、填空。

(18%)
(1)3.07立方分米=()立方厘米4500毫升=()升
900立方分米=()立方米6200立方厘米=()升
(2)长方体是由()个长方形(特殊情况有两个相对的面是正方形)围成的()图形。

(3)相交于()分别叫做长方体的长、宽、高。

(4)一个正方体的棱长是6厘米,它的棱长总和是()厘米,它的表面积是()平方厘米,它的体积是()立方厘米。

(5)一个长方体的长是8分米,宽是6分米,高是5分米,它的表面是()平方分米,体积是()立方分米。

(6)一个长方体的棱长和是96厘米,已知长是10厘米,高是8厘米,宽是()厘米。

(7)一个正方体棱长总和是132厘米,一条棱长是()。

(8)一个正方体的棱长扩大2倍,它的体积就扩大()。

(9)一个长方体的长和宽都扩大3倍,高不变,体积就扩大()。

(10)把一个表面积是40平方分米的长方体截成二个完全一样的正方体,每个正方体的表面积是()平方分米。

(11)用5个完全一样的正方体拼成一个长方体,表面积减少24平方厘米,这个长方体的表面积是()平方厘米。

二、判断题。

正确的在题后的括号里画“√”,错的画“×”,并订正。

(6%)
(1)长方体的12条棱中,长、宽、高各有4条。

………………………………()
订正:
(2)长方体体积的大小是由相交于一个顶点的三条棱长短来确定的。

……………()
订正:
小数五年级(三)第1页共4页
(3)容积(或容量)的计算方法跟体积的计算方法不一样。

…………………………()
订正:
(4)两个棱长总和相等的长方体和正方体,它们的体积相等。

………………………()
订正:
(5)用27个完全一样的正方体,可以拼成一个正方体。

…………………………()
订正:
(6)求一个无盖的长方体铁皮水箱所用的铁皮就是求这个水箱六个面的总面积。

…()
订正:
三、选择题。

将正确答案的序号填在题中的括号里。

(6%)
(1)一个长方体教具,棱长之和是64厘米,如果它的长是8厘米,宽是5厘米,高应是()厘米。

①2 ②3 ③4 ④5
(2)棱长1分米的两个正方体,拼成一个长方体后,表面积()。

①不变②增加2平方分米③减少3平方分米④减少2平方分米
(3)容器所能容纳物体的()叫做容器的容积。

①大小②长短③重量④体积
(4)计量一个物体的体积,要看这个物体含有多少个()
①长度单位②面积单位③重量单位④体积单位
(5)一瓶眼药水的容积是10()。

①毫升②升③立方分米④立方米
(6)一个能容纳64升油的长方体油桶,长8分米,宽2.5分米,那么它的高为()。

①32立方分米②32分米③0.32分米④3.2分米
四、计算。

(30%)
1、直接写出得数。

(4%)
6.5+
7.5=2.9+0.47=3-2.3 =5.3-0.8 =
5.6÷8= 2.4×0.6= 1.25×8= 1.2÷0.06=
2、用简便方法计算下面各题。

(12%)
2.5×101-2.5 0.25×12.7×4 27.25-(4.34+7.25)
小数五年级(三)第2页(共4页)
21.9-14.9-5.17.4+3.9+12.6 2.5×2.4
3、解方程。

(8%)
0.9X-17=64 33.28÷X=1.6
9.5+2X=41.2 104.4-1.3X=65.4
4、计算下面各题。

(6%)
102.7+0.84÷(1.8+2.4)14.04-[1÷(0.2+0.3)]
五、在下面的表里填上适当的数。

(9%)
六、应用题。

(31%)
1、做一个抽屉,长60厘米,宽70厘米,高12厘米,至少需要木板多少平方厘米?(4%)
2、做一个棱长是8分米的正方体的玻璃鱼缸(无盖),至少需要多少平方分米玻璃?(4%)
3、红光村要修建一个长方体蓄水池,计划能蓄水2021吨,已知水池的长是28米,宽是12米,深至少是多少米?(1立方米的水约重1吨)(用方程解)(4%)
4、一个长方体的汽油桶,底面积是30平方分米,高是6分米。

如果1升汽油重0.78千克,这个油桶可以装多少千克汽油?(4%)
5、一个长方体游泳池,长50米,宽40米,深1.5米,四壁用面积是0.25平方米的大理石砌成,需要大理石多少块?(5%)
6、粮食加工厂有一个长方体仓库。

仓库里边长24米,宽18米,存放小麦的高度是2米。

已知每立方米小麦重850千克。

这个仓库里有小麦多少吨?(5%)
7、用乳胶漆装饰一间会议室的顶棚和四壁,会议室长15米,宽12米,高3.5米,扣除门窗面积34平方米,涂漆的面积有多少平方米?如果每平方米用漆0.2千克,需要乳胶漆多少千克?(5%)
第3课时长方体和正方体的表面积
不夯实基础,难建成高楼。

1. 填一填。

(1)一个长方体,它的长是2米,宽和高都是0.6米。

它的表面积是( )平方米。

(2)一个正方体的棱长是0.4米,这个正方体的表面积是( )平方米。

(3)一个正方体的棱长和是36分米,这个正方体的表面积是( )平方分米。

(4)一个长方体的长是8厘米,宽是4厘米,高是2厘米。

这个长方体六个面中最大的一个面的面积是( )平方厘米,最小的一个面的面积是( )平方厘米。

这个长方体的表面积是( )平方厘米。

2. 计算下面形体的表面积。

(单位:厘米)
(1)
(2)
(3)
3. 一个正方体的棱长的总和是36cm,它的表面积是多少平方厘米?
重点难点,一网打尽。

4. 写出下表中物体的形状是正方体还是长方体,再求表面积和棱长总和。

5. 一个长方体木箱,长1.2米、宽0.8米、高0.6米,做这个木箱至少要用多少平方米的木板?如果这个木箱无盖呢?
6. 把一个棱长是5分米的正方体木箱的表面涂上油漆,一共需油漆多少克?(每平方分米用漆5克。

)
7. 要制作12节长方体铁皮烟囱,每节长2米、宽4分米、高3分米,要用多少平方米的铁皮?
举一反三,应用创新,方能一显身手!
8. 一块”舒肤佳”牌香皂长8厘米、宽5厘米、高4厘米,商场进行促销活动,把3块同样的香皂装在一起销售。

请你设计一下,怎样才能最节省包装纸?并且算一算至少需要多少平方厘米包装纸。

第3课时
1. (1)5.52 (2)0.96 (3)54 (4)32 8 112
2. (1)1344平方厘米(2)7
3.5平方厘米(3)528平方厘米
3. 54平方厘米
4. 略
5. (1.2×0.8+1.2×0.6+0.8×0.6)×2=4.32(平方米)
无盖:4.32-1.2×0.8=3.36(平方米)
6. 52×6×5=750(克)
7. 4分米=0.4米3分米=0.3米
(0.4×2+0.3×2)×2×12=33.6(平方米)
8. (8×5+8×4+5×4)×2×3-8×5×4=392(cm2)
4cm
2cm 4cm
长方体和正方体的表面积---1.28
一、课前检测:
1、长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是( )厘米。

2、一个正方体的棱长为6厘米,这个正方体的棱长总和是( )厘米。

3、一个正方体的棱长总和是48分米,它的棱长是()。

4、—个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是( )厘米。

5、—个长方体长6厘米,宽4厘米,高3厘米。

这个长方体上下两个面的面积各是() 平方厘米,前后两个面 的面积各是()平方厘米,左右两个面的面积各是()平方厘米。

二、长方体和正方体的表面积: 例1:计算下面图形的表面积:
练习1:一个长方体微波炉,长是27厘米,宽是50厘米,高是24厘米,要做一个微波炉的包装箱,至少要用多少平方厘米的硬纸板。

练习2:一个正方体墨水盒,棱长为6.5厘米,制作这个墨水盒至少需要多少平方厘米的硬纸板。

练习3:一个长方体宽是8分米,高是11分米,长是高的2倍,这个长方体的表面积是多少平方分米。

5cm
练习4:手工课上同学们要把棱长为50厘米的正方体纸箱的各面都贴上红纸,他们至少要准备多少平方厘米的红纸。

例2:一个长方体的棱长和是52厘米,它的长是8厘米,宽2厘米,它的表面积是多少平方厘米?
练习1:用36分米长的铁丝做一个正方体的框架,然后在各面都贴上一层纸,至少需要多少平方分米的纸?
练习2:学校要在一个长25厘米,宽50厘米,高60厘米的玻璃柜的各边安装上花边,那么要多少厘米的花边? 如果要做一个这样的玻璃柜,需要多少平方厘米的玻璃?
例3:一只无盖的长方体鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?
练习1:张大爷制作了一种卖苹果用的长方体木箱(无盖),它的长是60厘米,宽40厘米,高30厘米。

做这种箱子至少用多少木板至少平方厘米?
练习2:一间教室长8米、宽6米,高3米,现在要用涂料粉刷它的四壁和顶棚。

(1)如果扣除门、窗和黑板24平方米,求要粉刷的面积有多大?
(2)如果每平方米用涂料0.15千克,一共需要多少千克涂料?
练习3:一个长方体游泳池,长20分米,宽15分米,深5分米。

(1)现要将它的每个面贴上边长4分米瓷砖,需要这样的瓷砖多少块?
(2)如果每平方分米用水泥5千克,要用去多少水泥?
例4:一个长方体包装盒,长宽高分别为8厘米、4厘米和5厘米,需要在包装盒四周贴上商标,需要商标纸的面积是多少?
练习1:有一个长方体的糖盒长和宽都是12厘米,高10厘米,在盒的四周贴上商标纸,这张商标纸的面积是多少?
练习2:一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?
练习3:在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?做12节这样的通风管呢?练习4:一种长方体铁皮烟囱,底面是边长3分米的正方形,高4米,制这样一节烟囱至少要用铁皮多少平方米?
练习5:一款抽纸盒,长、宽、高分别是20cm, 12cm, 5cm,上面有长14cm,宽3cm的抽纸口,做这款抽纸盒需要多少硬纸片?
例5:一个长方体蓄水池,长12m,宽8m,深3m,这个水池占地面积多少平方米?
练习1:有一个长方体木箱,长0.7米,宽0.5米,高0.3米。

怎样放,这个木箱占地面积最小?最小是多少平方米?例6:把一根长20厘米,宽5厘米,高3厘米的长方体木料沿横截面锯成2段,表面积增加多少?
练习1:把一个正方体锯成两个长方体,它的表面积增加了6平方厘米,那么原正方体的表面积是多少平方厘米?练习2:两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是多少平方厘米?
三、课堂检测:
1、求长方体的表面积必须知道长方体的( )。

2、一个长方体的长是6分米,宽1.5分米,高3分米,它的表面积是多少平方分米。

3、一个正方体的棱长是0.5分米,它的表面积是多少平方分米。

相关文档
最新文档