最新初中数学二次函数难题汇编含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学二次函数难题汇编含解析
一、选择题
1.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92
t =
;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1 B .2
C .3
D .4
【答案】B 【解析】 【分析】 【详解】
解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,
∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B .
2.如图,二次函数()2
00y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,
与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:
①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()2
00ax bx c a ++=≠有
一个根为1
a
-
,其中正确的结论个数有( )
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】 【分析】
由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1
a
代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案. 【详解】
由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣
2b
a
>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣
1a ,把﹣1
a
代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C. 【点睛】
本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.
3.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4
C .-12<t ≤4
D .-12<t <3
【答案】C 【解析】 【分析】
根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解. 【详解】
解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =−2, ∴y =-x 2−2x +3,
∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,
∵当x =−1时,y =4;当x =3时,y =-12,
∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】
本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点
问题是解题关键.
4.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )
A .②④
B .①③④
C .①②④
D .②③④
【答案】C 【解析】 【分析】
利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b
x a
=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断. 【详解】
解:Q 抛物线开口向上,
0a ∴>,
Q 对称轴在y 轴的右侧,
a ∴和
b 异号,
0b ∴<,
Q 抛物线与y 轴的交点在x 轴下方,
0c ∴<,
0bc ∴>,所以①错误;
Q 当1x =时,0y <,
0a b c ∴++<,所以②错误; Q 抛物线经过点(1,0)-和点(3,0),
∴抛物线的对称轴为直线1x =,
即12b
a
-
=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,
∴△240b ac =->,
即24ac b <,所以④错误. 综上所述:③正确;①②④错误.
故选:C . 【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数2
(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.
5.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )
A .1
B .2
C .3
D .4
【答案】C 【解析】 【分析】
利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b
a
=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到
2
44ac b a
-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】
∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;
∵抛物线的对称轴为直线x=-2b
a
=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ),
∴
2
44ac b a
-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;
∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,
∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】
本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.
6.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a ﹣2b +c >0;②3a +b >0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c =n ﹣1有两个互异实根.其中正确结论的个数是( )
A .1个
B .2个
C .3个
D .4个
【答案】B 【解析】 【分析】
根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x 轴的交点情况,对照选项逐一分析即可. 【详解】
①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,
∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间, ∴当x =﹣2时,y <0,
即4a ﹣2b +c <0,所以①不符合题意;
②∵抛物线的对称轴为直线x =﹣2b
a
=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意; ③∵抛物线的顶点坐标为(1,n ),
∴244ac b a
=n ,
∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意; ④∵抛物线与直线y =n 有一个公共点, ∴抛物线与直线y =n ﹣1有2个公共点,
∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意.
故选:B .
【点睛】
本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.
7.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣
1
2
x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( )
A .3122m -+
B .0
C .1
D .2
【答案】D 【解析】 【分析】
根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.
【详解】
解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣1
2
x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ), ∵y =a (x ﹣m ﹣1)2+c (a≠0) ∴抛物线的对称轴为直线x =m+1,
∴
23
2
x x +=m+1, ∴x 2+x 3=2m+2,
∵A (x 1,m )在直线y =﹣
1
2
x 上, ∴m =﹣
1
2
x 1, ∴x 1=﹣2m ,
∴x 1+x 2+x 3=﹣2m+2m+2=2, 故选:D .
【点睛】
本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.
8.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数
b
y x
=
在同平面直角坐标系中的图象大致是( )
A .
B .
C .
D .
【答案】D 【解析】 【分析】
直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】
∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0,
∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0,
∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号,
∴b<0,
∴一次函数y=ax+c,图象经过第二、四象限,
反比例函数y=b
x
图象分布在第二、四象限,
故选D.
【点睛】
此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.
9.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线.直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()
A.5 B.6 C.7 D.8
【答案】B
【解析】
【分析】
B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.
【详解】
抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,
如图,阴影部分的面积就是ABCO的面积,S=2×3=6;
故选:B.
【点睛】
本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.
10.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )
A .1
B .2
C .3
D .4
【答案】C 【解析】 【分析】 【详解】
解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;
根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2b
a
=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;
根据函数的交点以及函数图像的位置可得④正确.
点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.
11.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )
A .
B .
C .
D .
【答案】C 【解析】 【分析】
根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
【详解】
当a >0时,二次函数的图象开口向上,
一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;
由B 、C 中二次函数的图象可知,对称轴x=-2b
a
>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B . 故选C .
12.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;
0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )
A .①②
B .①②③
C . ①③④
D . ①②④
【答案】D 【解析】 【分析】
根据抛物线开口方向得到a 0>,根据对称轴02b
x a
=-
>得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以
0a b c -+>;由对称轴1
23
b x a =-
=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.
【详解】
①根据抛物线开口方向得到0a >,根据对称轴02b
x a
=-
>得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.
③由对称轴1
23
b x a =-
=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为
23a b =-,代入可得40c b ->,故④正确. 故答案选D. 【点睛】
本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
13.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )
A .1个
B .2 个
C .3 个
D .4 个
【答案】C
【解析】
【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.
【详解】
由图象可得,
a >0,
b >0,
c <0,
∴abc <0,故①错误,
当x =1时,y =a +b +c =2,故②正确,
当x =﹣1时,y =a ﹣b +c <0,
由a +b +c =2得,a +c =2﹣b ,
则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确,
∵12b a -
>-,a >0,得122
b a >>,故③正确, 故选C .
【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
14.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
【分析】
【详解】
解:∵抛物线和x轴有两个交点,
∴b2﹣4ac>0,
∴4ac﹣b2<0,∴①正确;
∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,
∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,
∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,
∴4a+c>2b,∴②错误;
∵把(1,0)代入抛物线得:y=a+b+c<0,
∴2a+2b+2c<0,
∵b=2a,
∴3b,2c<0,∴③正确;
∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正确;
即正确的有3个,
故选B.
考点:二次函数图象与系数的关系
15.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.
C.D.
【答案】B
【解析】
【分析】
由题意可求m <﹣2,即可求解.
【详解】
∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,
∴△=4﹣4(﹣m ﹣1)<0
∴m <﹣2
∴函数y =的图象在第二、第四象限,
故选B .
【点睛】
本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.
16.如图,四边形ABCD 是正方形,8AB =,AC 、BD 交于点O ,点P 、Q 分别是AB 、BD 上的动点,点P 的运动路径是AB BC →,点Q 的运动路径是BD ,两点的运动速度相同并且同时结束.若点P 的行程为x ,PBQ △的面积为y ,则y 关于x 的函数图象大致为( )
A .
B .
C .
D .
【答案】A
【解析】
【分析】 分点P 在AB 边和BC 边上两种情况画出图形,分别求出y 关于x 的函数关系式,再结合其取值范围和图象的性质判断即可.
【详解】
解:当点P 在AB 边上,即08x ≤≤时,如图1,由题意得:AP=BQ=x ,∠ABD =45°,∴ BP =8-x ,
过点Q 作QF ⊥AB 于点F ,则QF =2222
BQ x =, 则2122(8)22224
y x x x x =-⋅=-+,此段抛物线的开口向下;
当点P 在BC 边上,即882x <≤时,如图2,由题意得:BQ=x ,BP=x -8,∠CBD =45°, 过点Q 作QE ⊥BC 于点E ,则QE =2222
BQ x =, 则2122(8)22224
y x x x x =-⋅=-,此段抛物线的开口向上. 故选A.
【点睛】
本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.
17.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12
,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )
A .2个
B .3个
C .4个
D .5个
【答案】B
【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-
2b a
=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;
因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;
根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A
(﹣3,y1)、点B(﹣1
2
,y2)、点C(7,y3)在该函数图象上,则y1=y3<y2,故(4)
不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x ﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<x2,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
18.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若
△AOB为等边三角形,则b的值为()
A3B.﹣3C.﹣3D.﹣3
【答案】B
【解析】
【分析】
根据已知求出B(﹣
2
,
24
b b
a a
-
),由△AOB为等边三角形,得到
2
b
4a
=tan60°×(﹣
2
b
a
),
即可求解;
【详解】
解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,
B(﹣
2
,
24
b b
a a
-
),
∵△AOB为等边三角形,
∴
2
b
4a
=tan60°×(﹣
2
b
a
),
∴b =﹣
故选B .
【点睛】
本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.
19.若用“*”表示一种运算规则,我们规定:a *b =ab ﹣a +b ,如:3*2=3×2﹣3+2=5.以下说法中错误的是( )
A .不等式(﹣2)*(3﹣x )<2的解集是x <3
B .函数y =(x +2)*x 的图象与x 轴有两个交点
C .在实数范围内,无论a 取何值,代数式a *(a +1)的值总为正数
D .方程(x ﹣2)*3=5的解是x =5
【答案】D
【解析】
【分析】
根据题目中所给的运算法则列出不等式,解不等式即可判定选项A ;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B ;根据题目中所给的运算法则可得a *
(a +1)=a (a +1)﹣a +(a +1)=a 2+a +1=(a +
12)2+34
>0,由此即可判定选项C ;根据题目中所给的运算法则列出方程,解方程即可判定选项D.
【详解】
∵a *b =ab ﹣a +b ,
∴(﹣2)*(3﹣x )=(﹣2)×(3﹣x )﹣(﹣2)+(3﹣x )=x ﹣1,
∵(﹣2)*(3﹣x )<2,
∴x ﹣1<2,解得x <3,故选项A 正确;
∵y =(x +2)*x =(x +2)x ﹣(x +2)+x =x 2+2x ﹣2,
∴当y =0时,x 2+2x ﹣2=0,解得,x 1=﹣x 2=﹣1B 正确; ∵a *(a +1)=a (a +1)﹣a +(a +1)=a 2+a +1=(a +12)2+34
>0, ∴在实数范围内,无论a 取何值,代数式a *(a +1)的值总为正数,故选项C 正确; ∵(x ﹣2)*3=5,
∴(x ﹣2)×3﹣(x ﹣2)+3=5,
解得,x =3,故选项D 错误;
故选D .
【点睛】
本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.
20.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( )
A.B.C.D.
【答案】C
【解析】
【分析】
根据一次函数及二次函数的图像性质,逐一进行判断.【详解】
解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴
3
2a
-<应在y
轴左侧,故此选项错误;
B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;
C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴
3
2a
->在y轴右
侧,故此选项正确;
D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;
故选:C.
【点睛】
本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.。