【35套试卷合集】四川省旺苍县两乡镇初级中学2019-2020学年数学九上期末模拟试卷含答案
2024年四川省广元市旺苍县中考一模数学试题(原卷版)
![2024年四川省广元市旺苍县中考一模数学试题(原卷版)](https://img.taocdn.com/s3/m/64edecd050e79b89680203d8ce2f0066f53364b5.png)
旺苍县2023年秋学业水平测试九年级数学说明:1.全卷满分150分,考试时间120分钟.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三个大题26个小题.3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B 铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.第Ⅰ卷选择题(共30分)一、单选题(下列每小题给出的四个选项中,只有一个是符合题意的.每小题3分,共30分)1. 用配方法解方程,下列配方结果正确的是( )A B. C. D. 2. 若点,关于原点对称,则m 、n 的值为( )A. ,B. ,C. ,D. ,3. 剪纸艺术是最古老中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.4. “文明丰都·幸福你我”,丰都正在积极创建全国文明城市.丰都宏运公司楼顶公益广告牌上“文明丰都”几个字是霓红灯,几个字一个接一个亮起来(亮后不熄灭)直至全部亮起来再循环,当路人一眼望去,能够看到几个字全在的概率是( )A. B. C. D. 5. 已知是二次函数,则的值为( )A. 0 B. 1 C. -1 D. 1或-16. 如图,直线与x 轴、y 轴分别相交于、B 两点,,圆心的坐标为,与y 轴相切于原点O ,若将沿x 轴向右移动,当与该直线相交时,横坐标为整数的点P 的个.的24100x x --=2(2)14x +=2(2)6x +=2(2)14x -=2(26)x -=(),2A m ()3,B n 3m =-2n =3m =2n =-3m =-2n =-3m =2n =1314151621(1)23my m x x +=++-m AB (3,0)A 30BAO ∠=︒P (1,0)-P e P e P e数是( )A. 2B. 3C. 4D. 57. 关于的一元二次方程中,若,,,则这个方程的根的情况是( )A. 有两个相等的实数根B. 没有实数根C. 有一个正根和一个负根D. 有两个正实数根8. 如图,是的两条直径,是劣弧的中点,若,则的度数是( )A. B. C. D. 9. 如图1,矩形中,点E 为的中点,点P 沿从点B 运动到点C ,设B ,P 两点间的距离为x ,,图2是点P 运动时y 随x 变化的关系图象,则的长为( )A. 6B. 7C. 8D. 910. 如图,二次函数.的图象经过点,且与轴交点的横坐标分别为,其中,,下列结论:的x 20ax bx c ++=0a >0b >0c <EF CD 、O e A »DF32EOD ∠=︒CDA ∠37︒74︒53︒63︒ABCD BC BC PA PE y -=BC ()²00y ax bx c a =++=≠()1,2x 12,x x 10x -<<₁212x <<①;②;③;④;⑤;其中,结论正确的个数有( )A. 2个B. 3个C. 4个D. 5个第Ⅱ卷 非选择题(共120分)二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)11. “八月十五云遮月,正月十五雪打灯”是一句谚语,意思是说如果八月十五晚上阴天的话,正月十五晚上就下雪,你认为农谚说的是______(填写“必然事件”或“不可能事件”或“随机事件”).12. 已知,则__________.13. 若点,是二次函数图象上的两点,则______(填).14. 如图,要拧开一个边长为a =12mm 的六角形螺帽,扳手张开的开口b 至少要_______mm .15. 如图,一根长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊(羊只能在草地上活动),那么小羊在草地上的最大活动区域面积是__________平方米.16. 如图,在中,,,,将绕点A 旋转,使点C 落在边上的点E 处,点B 落在点D 处,连接,,延长交于点F ,则的长为________.0abc >20a b +<420a b c ++<248ac b a +>1a ≤-()()2230x y x y +-+-=x y +=()13,A y -()20,B y ()2211y x =--1y 2y ,,>=<5m A A ABC V 90ACB ∠=︒3AC =4BC =ABC V AB BD CE CE BD EF三、解答题(要求写出必要的解答步骤或证明过程.共96分)17. 选择适当的方法解方程;(1)(2)18.先化简,再求值,其中为方程的根.19. 唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的轮子被水面截得的弦长8m ,设圆心为,交水面于点D ,轮子的吃水深度为2m ,求该桨轮船的轮子直径.20. 如图,在平面直角坐标系xOy 中,点,,.(1)以点C 为旋转中心,把逆时针旋转,画出旋转后的;(2)在(1)的条件下,①点A 经过的路径的长度为__________(结果保留);②连接,线段的中点的坐标为__________.()()3121x x x -=-()428x x x-=-2222421121x x x x x x x ---÷+--+x 220x x +-=AB O OC AB ⊥AB CD xOy ()3,3A ()4,0B ()0,1C -ABC V 90︒A B C '''V AA 'πBB 'BB '21. 关于x 方程-(2k +1)x +=0.(1)求证:方程有两个不相等实数根;(2)已知等腰△ABC 的一边长c =3,另两边长a 、b 恰是方程的两个根,求△ABC 的周长.22. 后屯农户收获杏时,有农户种杏树44株,现进入第三年收获.收获时,先随机采摘5株果树上的杏,称得每株果树上杏重量如下(单位:kg ):35,35,34,39,37.(1)试估计这一年该农户杏的总产量约是多少?(2)若市场上每千克杏售价5元,则该农户这一年卖杏的收入为多少?(3)已知该农户第一年果树收入5500元,根据以上估算第二年、第三年卖杏收入的年平均增长率.23. 高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓展视野.为了解学生寒假阅读情况,开学初学校进行了问卷调查,并对部分学生假期(28天)的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为t (小时),阅读总时间分为四个类别:A (0≤t <12),B (12≤t <24),C (24≤t <36),D (t ≥36),将分类结果制成两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为 ,请补全条形统计图;(2)扇形统计图中a 的值为 ,圆心角β的度数为 ;(3)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?(4)政教处决定从本次调查阅读时长前四名学生甲、乙、丙、丁中,随机抽取2名同学参加该校“阅读之星”竞选,请用树状图或列表法求恰好选中甲和乙的概率.24. 我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规定甲产品每天至少生产20件.设每天安排人生产乙产品.(1)根据信息填表:的的2x 2k k +()1x x ≥产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10乙(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?25. 如图,等腰直角与交于点B ,C ,,延长与分别交于点D ,E ,连接,并延长至点F ,使得.(1)求的度数;(2)求证:与相切;(3)若的半径为2,求的长.26. 如图,二次函数,与时的函数值相等,其图象与x 轴交于A 、B 两点,与y 轴正半轴交于C点.(1)求二次函数的解析式.(2)在第一象限的抛物线上求点P ,使得最大.(3)点Q 是抛物线上x 轴上方一点,若,求Q 点坐标.x 402x-ABC V O e 90ACB ∠=︒AB AC ,O e CD ED ,ED FBD BCD ∠=∠CED ∠BF O e O e CD ()()()21121y t x t x t -++=+≠0x =3x =PBC S V 45CAQ ∠=︒。
2023届四川省旺苍县两乡镇初级中学数学九上期末学业水平测试试题含解析
![2023届四川省旺苍县两乡镇初级中学数学九上期末学业水平测试试题含解析](https://img.taocdn.com/s3/m/3b7266f2250c844769eae009581b6bd97f19bc68.png)
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( )A .k >﹣1B .k ≥﹣1C .k >﹣1且k ≠0D .k ≥﹣1且k ≠02.一元二次方程x 2﹣3x+5=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .只有一个实数根D .有两个不相等的实数根3.下列事件属于必然事件的是( )A .篮球队员在罚球线上投篮一次,未投中B .掷一次骰子,向上一面的点数是6C .任意画一个五边形,其内角和是540°D .经过有交通信号灯的路口,遇到红灯 4.如图,一条公路的转弯处是一段圆弧,点O 是这段弧所在圆的圆心,40AB m =,点C 是AB 的中点,D 是AB 的中点,且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m5.一元二次方程210x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断6.下列事件中,随机事件是( )A .任意画一个三角形,其内角和为180°B .经过有交通信号的路口,遇到红灯C .在只装了红球的袋子中摸到白球D .太阳从东方升起 7.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAE CAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A .①②③B .①C .①②D .②③8.如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D ,AF 平分∠CAB,交CD 于点E ,交CB 于点F ,若AC=3,AB=5,则CE 的长为( )A .32B .43C .53D .859.如图,,A B 两点在反比例函数1k y x =的图象上,,C D 两点在反比例函数1k y x=的图象上,AC y ⊥轴于点E ,BD y ⊥轴于点F ,3,2,5AC BD EF ===,则12k k -的值是( )A .2B .3C .4D .610.如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的坐标为(2,0),若抛物线 2y x n =+(n 为常数)与扇形 OAB 的边界总有两个公共点则 n 的取值范围是( )A .n>-4B .14n <C .1 -4n 4<<D .1 -4n 4≤≤ 二、填空题(每小题3分,共24分)12.如图,将ABC ∆沿BC 方向平移得到A B C '''∆,ABC ∆与A B C '''∆重叠部分(即图中阴影部分)的面积是ABC ∆面积的13,若3BC =,则ABC ∆平移的距离BB '是__________. ,13.从地面竖直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的关系式是h =30t ﹣5t 2,小球运动中的最大高度是_____米.14.二次函数y=()21x -+2的顶点坐标为 .15.已知方程x 2﹣3x ﹣5=0的两根为x 1,x 2,则x 12+x 22=_________.16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.18.如图,直线a // b // c ,点B 是线段AC 的中点,若DE =2,则DF 的长度为_________.三、解答题(共66分)19.(10分)如图,∠MON =60°,OF 平分∠MON ,点A 在射线OM 上, P ,Q 是射线ON 上的两动点,点P 在点Q 的左侧,且PQ=OA ,作线段OQ 的垂直平分线,分别交OM ,OF ,ON 于点D ,B ,C ,连接AB ,PB .(1)依题意补全图形;(2)判断线段 AB ,PB 之间的数量关系,并证明;(3)连接AP ,设AP k OQ,当P 和Q 两点都在射线ON 上移动时,k 是否存在最小值?若存在,请直接写出k 的最小值;若不存在,请说明理由.20.(6分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B=60°.(1)求∠ADC 的度数;(2)求证:AE 是⊙O 的切线.21.(6分)如图,将等边△ABC 绕点C 顺时针旋转90°得到△EFC ,∠ACE 的平分线CD 交EF 于点D ,连接AD 、AF .(1)求∠CFA 度数;(2)求证:AD ∥BC .22.(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.23.(8分)如图,反比例函数y 1=k x与一次函数y 2=ax +b 的图象交于点A (﹣2,5)和点B (n ,l ). (1)求反比例函数和一次函数的表达式;(2)请结合图象直接写出当y 1≥y 2时自变量x 的取值范围;(3)点P 是y 轴上的一个动点,若S △APB =8,求点P 的坐标.24.(8分)解方程:2(1)x + -2(x+1)=325.(10分)(1)计算:|3﹣2|+(π﹣3)1+2sin61°.(2)解下列方程:x 2﹣3x ﹣1=1.26.(10分)如图,抛物线y =ax 2+bx ﹣4经过A (﹣3,0),B (5,﹣4)两点,与y 轴交于点C ,连接AB ,AC ,BC . (1)求抛物线的表达式;(2)求△ABC 的面积;(3)抛物线的对称轴上是否存在点M ,使得△ABM 是直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1、C【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.2、A【解析】Δ=b2-4ac=(-3)2-4×1×5=9-20=-11<0,所以原方程没有实数根,故选 A.3、C【分析】必然事件就是一定发生的事件,根据定义即可判断.【详解】解:A、篮球队员在罚球线上投篮一次,未投中,是随机事件.B、掷一次骰子,向上一面的点数是6,是随机事件.C、任意画一个五边形,其内角和是540°,是必然事件.D、经过有交通信号灯的路口,遇到红灯,是随机事件.故选:C.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【分析】根据题意,可以推出AD =BD =20,若设半径为r ,则OD =r ﹣10,OB =r ,结合勾股定理可推出半径r 的值.【详解】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+,设半径为r 得:()2221020r r =-+,解得:25r m =, ∴这段弯路的半径为25m故选A .【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r 后,用r 表示出OD 、OB 的长度. 5、A【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】21,1,14145a b c b ac ==-=-∴∆-=+=∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.6、B【分析】由题意根据随机事件就是可能发生也可能不发生的事件这一定义,依次对选项进行判断.【详解】解:A 、任意画一个三角形,其内角和为180°,是必然事件,不符合题意;B 、经过有交通信号的路口遇到红灯,是随机事件,符合题意;C 、在只装了红球的袋子中摸到白球,是不可能事件,不符合题意;D 、太阳从东方升起,是必然事件,不符合题意;故选:B .【点睛】本题主要考查必然事件、不可能事件、随机事件的概念,熟练掌握必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,AE∴AC AD AB AE=∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AB∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE ,即可得出EC=FC ,再利用相似三角形的判定与性质得出答案.【详解】过点F 作FG ⊥AB 于点G ,∵∠ACB =90°,CD ⊥AB ,∴∠CDA =90°,∴∠CAF +∠CFA =90°,∠FAD +∠AED =90°,∵AF 平分∠CAB ,∴∠CAF =∠FAD ,∴∠CFA =∠AED =∠CEF ,∴CE =CF ,∵AF 平分∠CAB ,∠ACF =∠AGF =90°,∴FC =FG ,∵∠B =∠B ,∠FGB =∠ACB =90°,∴△BFG ∽△BAC ,∴BF FG AB AC=,∵AC =3,AB =5,∠ACB =90°,∴BC =4,∴453FC FG -=,∵FC =FG ,∴453FC FC -=,解得:FC =32,即CE 的长为32.故选A . 【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE .9、D【分析】连接OA 、OB 、OC 、OD ,由反比例函数的性质得到112AOE BOF S S k ==,221122COE DOF S S k k ===-,结合两式即可得到答案.【详解】连接OA 、OB 、OC 、OD ,由题意得112AOE BOF SS k ==,221122COE DOF S S k k ===-, ∵AOC AOE COE SS S =+, ∴1211()22AC OE k k ⋅=-, ∵BOD BOF DOF SS S =+, ∴1211()22BD OF k k ⋅=-, ∴BD OF AC OE ⋅=⋅,∵AC=3,BD=2,EF=5,∴解得OE=2,故选:D.【点睛】此题考查反比例函数图象上点的坐标特点,比例系数与三角形面积的关系,掌握反比例函数解析式中k 的几何意义是解题的关键.10、D【分析】根据∠AOB =45°求出直线OA 的解析式,然后与抛物线解析式联立求出有一个公共点时的n 值,即为一个交点时的最大值,再求出抛物线经过点B 时的n 的值,即为一个交点时的最小值,然后写出n 的取值范围即可.【详解】解:由图可知,∠AOB =45°,∴直线OA 的解析式为y =x ,联立2y x n y x⎧=+⎨=⎩得:20x x n -+=, 24140b ac n ∆=-=-=,得14n =时,抛物线与OA 有一个交点, 此交点的横坐标为12, ∵点B 的坐标为(2,0),∴OA =2,∴点A 的横坐标与纵坐标均为:2sin 452⨯︒=,∴点A 2,2,∴交点在线段AO 上;当抛物线经过点B (2,0)时,40n +=,解得n=-4,∴要使抛物线2y x n =+与扇形OAB 的边界总有两个公共点, 则实数n 的取值范围是1 -4n ≤≤,故选:D .【点睛】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据根与系数的关系即可求出答案.【详解】解:设另外一个根为x ,由根与系数的关系可知:﹣x =﹣1,∴x =1,故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,熟知根与系数的关系是解题的关键.121【分析】A B ''与AC 相交于点G ,因为平移,CB G CBA '213CB G CBA S CB S CB ''⎛⎫== ⎪⎝⎭ 由此求出CB ',从而求得BB '【详解】解:A B C '''∆由ABC ∆沿BC 方向平移得到 CB G CBA '∴213CB G CBA S CB S CB ''⎛⎫∴== ⎪⎝⎭CB CB '∴=1CB '∴=1BB '=【点睛】本题考查了平移的性质,以及相似三角形的性质.13、1【分析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h =30t ﹣5t 2的顶点坐标即可.【详解】解:h =﹣5t 2+30t=﹣5(t 2﹣6t +9)+1=﹣5(t ﹣3)2+1,∵a =﹣5<0,∴图象的开口向下,有最大值,当t =3时,h 最大值=1.故答案为:1.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.14、(1,2).【解析】试题分析:由二次函数的解析式可求得答案.∵y=(x ﹣1)2+2,∴抛物线顶点坐标为(1,2).故答案为(1,2).考点:二次函数的性质.15、1.【解析】试题解析:∵方程2350x x --=的两根为12,x x ,12123,5x x x x ∴+==-,222121212()291019.x x x x x x ∴+=+-=+=故答案为1.点睛:一元二次方程20ax bx c ++=的两个根分别为12,.x x1212,.b c x x x x a a+=-= 16、3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案. 【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案. 17、140°.【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.18、1【分析】根据平行线分线段成比例的性质可得222ABAB EF=+,从而计算出EF的值,即可得到DF的值.【详解】解:∵直线a∥b∥c,点B是线段AC的中点,DE=2,∴AB DEAC DF=,即222ABAB EF=+,∴12=22EF+,∴EF=2,∵DE=2∴DF=DE+EF=2+2=1故答案为:1.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.三、解答题(共66分)19、(1)补全图形见解析;(2)AB=PB.证明见解析;(3)存在,12k=.【分析】(1)根据题意补全图形如图1,(2)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;(3)连接BQ.只要证明△ABP∽△OBQ,即可推出AP ABOQ OB=,由∠AOB=30°,推出当BA⊥OM时,ABOB的值最小,最小值为12,由此即可解决问题.【详解】解:(1)如图1,(2)AB=PB.证明:如图,连接BQ.∵BC的垂直平分OQ,∴OB =BQ,又∵OF平分∠MON,∴∠AOB = ∠BOP.∴∠AOB = ∠BQP.又∵PQ=OA,∴△AOB≌△PQB,∴AB=PB.(3))∵△AOB≌△PQB,∴∠OAB=∠BPQ,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴AP AB OQ OB,∵∠AOB=30°,∴当BA⊥OM时,ABOB的值最小,最小值为12,∴k=12.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1)60°(2)见解析【分析】(1)根据“同弧所对的圆周角相等”可以得到∠ADC=∠B=60°.(2)欲证明AE是⊙O的切线,只需证明BA⊥AE即可.【详解】解:(1)∵∠B与∠ADC都是弧AC所对的圆周角,∠B=60°,(2)证明:∵AB是⊙O的直径,∴∠ACB=90°∵∠B=60°,∴∠BAC=30°又∵∠EAC =60°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.又∵AB是⊙O的直径,∴AE是⊙O的切线.21、(1)75°(2)见解析【解析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22、 (1)25;(2)35.【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)y1=﹣10x,y2=12x+6;(2)x≤﹣10或﹣2≤x<0;(3)点P的坐标为(0,4)或(0,1).【分析】(1)先把A点坐标代入y=kx中求出k得到反比例函数解析式为y=﹣10x,再利用反比例函数解析式确定B(﹣10,1),然后利用待定系数法求一次解析式;(2)根据图象即可求得;(3)设一次函数图象与y轴的交点为Q,易得Q(0,6),设P(0,m),利用三角形面积公式,利用S△APB=S△BPQ﹣S△APQ得到12|m﹣6|×(10﹣2)=1,然后解方程求出m即可得到点P的坐标.【详解】解:(1)把A(﹣2,5)代入反比例函数y1=kx得k=﹣2×5=﹣10,∴反比例函数解析式为y1=﹣10x,把B(n,1)代入y1=﹣10x得n=﹣10,则B(﹣10,1),把A (﹣2,5)、B (﹣10,1)代入y 2=ax +b 得25101a b a b -+=⎧⎨-+=⎩,解得126a b ⎧=⎪⎨⎪=⎩, ∴一次函数解析式为y 2=12x +6; (2)由图象可知,y 1≥y 2时自变量x 的取值范围是x ≤﹣10或﹣2≤x <0;(3)设y =12x +6与y 轴的交点为Q ,易得Q (0,6),设P (0,m ), ∴S △APB =S △BPQ ﹣S △APQ =1,12|m ﹣6|×(10﹣2)=1,解得m 1=4,m 2=1. ∴点P 的坐标为(0,4)或(0,1).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式. 24、122,2x x ==-【分析】先将2(1)x + -2(x+1)=3化成2(1)x + -2(x+1)-3=0,再将x+1当作一个整体运用因式分解法求出x+1,最后求出x .【详解】解:∵2(1)x + -2(x+1)=3化成2(1)x + -2(x+1)-3=0∴(x+1-3)(x+1+1)=0∴x+1-3=0或x+1+1=0∴122,2x x ==-【点睛】本题考查了一元二次方程的解法,掌握整体换元法是解答本题的关键.25、(1)3;(2)123322x x +== 【分析】(1)由题意先计算绝对值、零指数幂,代入三角函数值,再进一步计算可得;(2)根据题意直接利用公式法进行求解即可.【详解】解:(1)2|+(π﹣3)1+2sin61°=2+1+2×2=2=3;(2)∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>1,则x,即x1=32,x2=32.【点睛】本题主要考查含三角函数值的实数运算以及解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26、(1)y=16x2﹣56x﹣4;(2)10;(3)存在,M1(52,11),M2(52,﹣223),M3(52﹣2),M4(52,2).【分析】(1)将点A,B代入y=ax2+bx﹣4即可求出抛物线解析式;(2)在抛物线y=16x2﹣56x﹣4中,求出点C的坐标,推出BC∥x轴,即可由三角形的面积公式求出△ABC的面积;(3)求出抛物线y=16x2﹣56x﹣4的对称轴,然后设点M(52,m),分别使∠AMB=90°,∠ABM=90°,∠AMB=90°三种情况进行讨论,由相似三角形和勾股定理即可求出点M的坐标.【详解】解:(1)将点A(﹣3,0),B(5,﹣4)代入y=ax2+bx﹣4,得9340 25544 a ba b--=⎧⎨+-=-⎩,解得,1656ab⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为:y=16x2﹣56x﹣4;(2)在抛物线y=16x2﹣56x﹣4中,当x=0时,y=﹣4,∴C(0,﹣4),∵B(5,﹣4),∴BC∥x轴,∴S△ABC=12 BC•OC=12×5×4=10,∴△ABC的面积为10;(3)存在,理由如下:在抛物线y=16x2﹣56x﹣4中,对称轴为:522bxa=-=,设点M(52,m),①如图1,当∠M1AB=90°时,设x轴与对称轴交于点H,过点B作BN⊥x轴于点N,则HM1=m,AH=112,AN=8,BN=4,∵∠AM1H+∠M1AN=90°,∠M1AN+∠BAN=90°,∴∠M1AH=∠BAN,又∵∠AHM1=∠BNA=90°,∴△AHM1∽△BNA,∴1HM AH BN NA =, 即11248m =,解得,m =11,∴M 1(52,11); ②如图2,当∠ABM 2=90°时,设x 轴与对称轴交于点H ,BC 与对称轴交于点N , 由抛物线的对称性可知,对称轴垂直平分BC ,∴M 2C =M 2B ,∴∠BM 2N =∠AM 2N ,又∵∠AHM 2=∠BNM 2=90°,∴△AHM 2∽△BNM 2, ∴22HM AH BN NM =, ∵HM 2=﹣m ,AH =112,BN =52,M 2N =﹣4﹣m , ∴112542m m-=--, 解得,223m =-,∴M 2(52,﹣223); ③如图3,当∠AMB =90°时,设x 轴与对称轴交于点H ,BC 与对称轴交于点N ,则AM 2+BM 2=AB 2,∵AM 2=AH 2+MH 2,BM 2=BN 2+MN 2,∴AH 2+MH 2+BN 2+MN 2=AB 2,∵HM =﹣m ,AH =112,BN =52,MN =﹣4﹣m , 即()22222211544822m m ⎛⎫⎛⎫+++--=+ ⎪ ⎪⎝⎭⎝⎭, 解得,m 1=552﹣2,m 2=﹣552﹣2, ∴M 3(5255﹣2),M 4(52552); 综上所述,存在点M 的坐标,其坐标为M 1(52,11),M 2(52,﹣223),M 3(5255﹣2),M 4(5255﹣2).【点睛】本题考查了待定系数法求解析式,三角形的面积,直角三角形的存在性,相似三角形的判定与性质等,解题关键是注意分类讨论思想在解题中的运用.。
四川省旺苍县两乡镇初级中学2019-2020学年中考数学模拟试卷
![四川省旺苍县两乡镇初级中学2019-2020学年中考数学模拟试卷](https://img.taocdn.com/s3/m/289f7c3bf01dc281e53af0b4.png)
四川省旺苍县两乡镇初级中学2019-2020学年中考数学模拟试卷一、选择题1.如图,在△ABC 中,点D 为AB 上一点,过点D 作BC 的平行线交AC 于点E ,过点E 作AB 的平行线交BC 于点F ,连接CD ,交EF 于点K ,则下列说法正确的是( )A .DE AD BC EF = B .FK BF KE FC = C .DE AE FC EC = D .BD BF AD FC= 2.浙江广厦篮球队5名场上队员的身高(单位:cm )是:184,188,190,192,194.现用一名身高为170cm 的队员换下场上身高为190cm 的队员,与换人前相比,场上队员的身高( )A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大 3.已知关于x 的一元二次方程kx 2﹣2x+3=0有两个不相等的实数根,则k 的取值范围是( )A .k <13B .k >﹣13C .k >﹣13且k≠0D .k <13且k≠0 4.下列运算中正确的是( ) A .236x x x ⋅= B .238()x x = C .222()xy x y -=- D .633x x x ÷=5.如图,线段AB 是两个端点在2(0)y x x=>图象上的一条动线段,且1AB =,若A B 、的横坐标分别为a b 、,则()()22214b a a b ⎡⎤⎣⎦--+的值是( )A .1B .2C .3D .46.已知一次函数y =﹣x+m 和y =2x+n 的图象都经过A (﹣4,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( )A.48B.36C.24D.187.如图,60AOB ∠=,以点O 为圆心,以任意长为半径作弧交OA ,OB 于,C D 两点,分别以,C D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A.3 C.6 D.8.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10129.某企业2018年初获利润300万元,到2020年初计划利润达到507万元,求这两年的年利润的平均增长率,设企业这两年的年利润平均增长率为x,则可列方程为()A.300(1+x)2=507 B.300(1﹣x)2=507C.300(1+2x)=507 D.300(1+x2)=50710.如图,D,E分别是△ABC边AB,AC的中点,则△ADE与△ABC的面积比为()A.1:2 B.1:4 C.2:1 D.4:111.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①BE=2AE;②△DFP~△BPH;③35PFPH=;④DP2=PH•PC;其中正确的是()A.①②③④B.①③④C.②③D.①②④12.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是6,……,则第2019次输出的结果是()A.1 B.3 C.6 D.8二、填空题13.如图,在边长为3的正方形ABCD的外部作等腰Rt AEF,AE1=,连接DE,BF,BD,则22DE BF+=______.14.数轴上的两个数﹣3与a ,并且a >﹣3,它们之间的距离可以表示为_____.15.“清明时节雨纷纷”是_______事件.(填“必然”“不可能”或“随机”)16.如图,在平面直角坐标系中,直线l :y=3x+1交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴的正半轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 6B 7A 7的周长是______.17.计算:1623ax x x-+--=_____. 18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________三、解答题19.某商场计划购进A 、B 两种新型节能台灯,已知B 型节能台灯每盏进价比A 型的多40元,且用3000元购进的A 型节能台灯与用5000元购进的B 型节能台灯的数量相同.(1)求每盏A 型节能台灯的进价是多少元?(2)商场将购进A 、B 两型节能台灯100盏进行销售,A 型节能台灯每盏的售价为90元,B 型节能台灯每盏的售价为140元,且B 型节能台灯的进货数量不超过A 型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?20.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?21.如图,在平面直角坐标系中,直线y=12x b +与抛物线y=211322x x --+交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为-4,点P 为直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点Q ,PH ⊥AB 于H .(1)求b 的值及sin ∠PQH 的值;(2)设点P 的横坐标为t ,用含t 的代数式表示点P 到直线AB 的距离PH 的长,并求出PH 之长的最大值以及此时t 的值;(3)连接PB ,若线段PQ 把△PBH 分成成△PQB 与△PQH 的面积相等,求此时点P 的坐标.22.先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =. 23.如图,△ABC 内接于⊙O ,AB =AC ,P 为⊙O 上一动点(P ,A 分别在直线BC 的两侧),连接PC .(1)求证:∠P =2∠ABC ;(2)若⊙O 的半径为2,BC =3,求四边形ABPC 面积的最大值.24.如图,一辆轿车在经过某路口的感应线B 和C 处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC 为6m ,在感应线B 、C 两处测得电子警察A 的仰角分别为∠ABD =18°,∠ACD =14°.求电子警察安装在悬臂灯杆上的高度AD 的长.(参考数据:sin14°≈0.242,cos14°≈0.97,tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)25.如图,抛物线P :21(2)3y a x =+-与抛物线Q :221()12y x t =-+在同一平面直角坐标系中(其中a ,t 均为常数,且t >0),已知点A (1,3)为抛物线P 上一点,过点A 作直线l ∥x 轴,与抛物线P 交于另一点B .(1)求a 的值及点B 的坐标;(2)当抛物线Q 经过点A 时①求抛物线Q 的解析式;②设直线l 与抛物线Q 的另一交点为C ,求AC AB的值.【参考答案】*** 一、选择题13.2014.a+315.随机16.17.22731556ax x axx x--+-+18.1 4三、解答题19.(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.【解析】【分析】(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同,列方程求解;(2)设购进B型台灯m盏,根据商场购进100盏台灯且规定B型台灯的进货数量不超过A型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润.【详解】解:(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据题意得,3000500040x x=+,解得:x=60,经检验:x=60是原方程的解,故x+40=100,答:每盏A型节能台灯的进价是60元,则B型节能台灯每盏进价为100元;(2)设购进B型节能台灯m盏,购进A型节能台灯(100﹣m)盏,依题意有m≤2(100﹣m ),解得m≤6623, 90﹣60=30(元),140﹣100=40(元),∵m 为整数,30<40,∴m =66,即A 型台灯购进34盏,B 型台灯购进66盏时获利最多,34×30+40×66=1020+2640=3660(元).此时利润为3660元.答:(1)每盏A 型节能台灯的进价是60元;(2)A 型台灯购进34盏,B 型台灯购进66盏时获利最多,利润为3660元.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.20.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进20筒甲种羽毛球.【解析】【分析】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50﹣m )筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.【详解】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,依题意,得:x-y=152x+3y=255⎧⎨⎩, 解得:x=60y=45⎧⎨⎩. 答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50﹣m )筒,依题意,得:60m+45(50﹣m )≤2550,解得:m≤20.答:最多可以购进20筒甲种羽毛球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(1)b=-1,sin PQH 5∠=;(2)2PH 1)55=-++,当t=-1时,PH 有最大值为;(3)P (-3,0).【解析】【分析】(1)令y=0,求出点A 的坐标,然后把点A 的坐标代入直线解析式,求出点B 的值,然后根据点A 和点C 的坐标,求出OA 和OC 的长度,根据勾股定理求出AC 的长度,根据PQ ∥OC ,可得∠PQH=∠OCA ,然后求出sin ∠PQH 的值;(2)求出点P 和点Q 的坐标,运用三角函数,求出PH 的函数关系式,运用求最大值的方法求解即可.(3)作BD ⊥PQ 交PQ 的延长线于点D ,由S △PQB =S △PQH ,得出BQ=QH ,利用三角函数求出QH 和BQ 的关系式,运用相等的关系求出t ,即可得出点P 的坐标.【详解】解:(1)令y=0得:211x x 3022--+=,化简x 2+x-6=0,解得x 1=-3,x 2=2, ∴A (2,0),∵A (2,0)在直线12y x b =+上, ∴1+b=0,解得b=-1,∴OC=1,OA=2,AC ∴=∵PQ ∥OC ,∴∠PQH=∠OCA ,sin PQH sin OCA∴∠=∠==, (2)2111P t,t t 3,Q t,t 1222⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭, 21PQ t t 42∴=--+,sin PQH 5∠=,)2221PH t t 4t 2t (t 1)25555⎛⎫∴=--+=++=-++ ⎪⎝⎭,∴当t=-1时,PH 有最大值为5, (3)如图,作BD ⊥PQ 交PQ 的延长线于点D ,设点P 的横坐标为t ,∵S △PQB =S △PQH ,∴BQ=QH ,在RT △PHQ 中,sin PQH∠=,QH :PH :PQ 1:2∴=21QH t t 42⎛⎫∴==--+ ⎪⎝⎭, 在RT △BDQ 中,∵∠BQD=∠PQH ,sin BQD sin PQH∴∠=∠= BDBQ ∴=BQ BD (t 4)22∴==+, BQ QH =,214)t t 422⎛⎫+=--+ ⎪⎝⎭, ∴t 2+7t+12=0,∴t 1=-3,t 2=-4(舍去),∴P (-3,0).【点睛】本题主要考查了二次函数与方程、几何知识的综合应用,涉及勾股定理,三角函数及方程,解题的关键是找准相等解的关系利用三角函数求解.22.11a +,2. 【解析】【分析】原始第一项先化简括号里面的,再利用除法法则变形,约分后利用同分母分式得到最简结果,将a 的值代入即可【详解】 解:21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++ =21(1)a a a a ++ =1+1a ,当a=2.【点睛】 此题考察分式的化简求值,关键在于约分23.(1)证明见解析(2)6【解析】【分析】(1)利用等腰三角形的性质和三角形内角和定理得到∠A+2∠ABC =180°,根据圆内接四边形的性质得∠A+∠P =180°,从而得到结论;(2)由于S △ABC 的面积不变,则当S △PBC 的面积最大时,四边形ABPC 面积的最大,而P 点到BC 的距离最大时,S △PBC 的面积最大,此时P 点为优弧BC 的中点,利用点A 为BC 的中点可判断此时AP 为⊙O 的直径,AP ⊥BC ,然后利用四边形的面积等于对角线乘积的一半计算四边形ABPC 面积的最大值.【详解】(1)证明:∵AB =AC ,∴∠ABC =∠ACB ,∴∠A+2∠ABC =180°,∵∠A+∠P =180°,∴∠P =2∠ABC ;(2)解:四边形ABPC 的面积=S △ABC +S △PBC ,∵S △ABC 的面积不变,∴当S △PBC 的面积最大时,四边形ABPC 面积的最大,而BC 不变,∴P 点到BC 的距离最大时,S △PBC 的面积最大,此时P 点为优弧BC 的中点,而点A 为BC 的中点,∴此时AP 为⊙O 的直径,AP ⊥BC ,∴四边形ABPC 面积的最大值=12×4×3=6. 【点睛】本题考查了考查了等腰三角形的性质和三角形内角和定理,也考查了圆内接四边形的性质.(2)把四边形分成两部分计算其面积并确定此时AP 为⊙O 的直径时面积最大是关键。
四川省旺苍县两乡镇初级中学2019-2020学年中考数学模拟调研测试题
![四川省旺苍县两乡镇初级中学2019-2020学年中考数学模拟调研测试题](https://img.taocdn.com/s3/m/08549f31bb68a98271fefae1.png)
四川省旺苍县两乡镇初级中学2019-2020学年中考数学模拟调研测试题一、选择题1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272- 3.如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②∠ABD+∠ECB=45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2)﹣CD 2.其中正确的是( )A.①③④B.②④C.①②③D.①②③④ 4.若反比例函数y =k x (k≠0)的图象经过点P(﹣1,3),则该函数的图象不经过的点是( ) A.(3,﹣1) B.(1,﹣3) C.(﹣1,3) D.(﹣1,﹣3)5.若点A (a ,b ),B (1a,c )都在反比例函数y =1x 的图象上,且﹣1<c <0,则一次函数y =(b ﹣c )x+ac 的大致图象是( )A .B .C .D .6.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( )A.542.110⨯B.54.2110⨯C.64.2110⨯D.74.2110⨯ 7.化简221121a a a a a a ++÷--+的结果是( ) A .1a a + B .1a a - C .1a a - D .11a - 8.如图,双曲线y =6x(x >0)经过线段AB 的中点M ,则△AOB 的面积为( )A .18B .24C .6D .129.如图,平行四边形ABCD 的对角线相交于点O ,且AD >AB ,过点O 作OE ⊥AC 交AD 于点E ,连接CE ,若平行四边形ABCD 的周长为20,则△CDE 的周长是( )A.10B.11C.12D.13 10.如图,是反比例函数在第一象限内的图像上的两点,且两点的横坐标分别是2和4,则的面积是( )A. B. C. D.11.已知点A (x 1,y 1)和B (x 2,y 2)都在正比例函数=(m ﹣4)x 的图象上,并且x 1<x 2,y 1>y 2,则m 的取值范围是( )A .m <4B .m >4C .m≤4D .m≥412.下列方程中,属于一元二次方程的是( )A .21130x x+-= B .ax 2+bx+c =0 C .x 2+5x =x 2﹣3D .x 2﹣3x+2=0 二、填空题13.点A (1,a )在函数3y x=的图象上,则点A 关于y 轴的对称点B 的坐标是____________。
四川省阿坝州汶川县2019-2020学年九年级上学期数学期末试卷
![四川省阿坝州汶川县2019-2020学年九年级上学期数学期末试卷](https://img.taocdn.com/s3/m/5bcafbfecfc789eb162dc89a.png)
四川省阿坝州汶川县2019-2020学年九年级上学期数学期末试卷一、单选题(共10题;共20分)1.下列方程是一元二次方程的是()A. B. C. D.2.在下列四个汽车标志图案中,是中心对称图形的是()A. B. C. D.3.一元二次方程的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根4.下列事件是不可能发生的是()A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上B. 随意掷两个均匀的骰子,朝上面的点数之和为1C. 今年冬天黑龙江会下雪D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域5.下列函数中,一定是二次函数的是()A. B. C. D.6.抛物线,下列说法正确的是()A. 开口向下,顶点坐标B. 开口向上,顶点坐标C. 开口向下,顶点坐标D. 开口向上,顶点坐标7.已知⊙O的半径为3cm,线段OA=5cm,则点A与⊙O的位置关系是( )A. A点在⊙O外B. A点在⊙O上C. A点在⊙O内D. 不能确定8.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A. 2500x2=3500B. 2500(1+x)2=3500C. 2500(1+x%)2=3500D. 2500(1+x)+2500(1+x)2=35009.抛物线y=﹣2x2经过平移得到y=﹣2(x+1)2﹣3,平移方法是()A. 向左平移1个单位,再向下平移3个单位B. 向左平移1个单位,再向上平移3个单位C. 向右平移1个单位,再向下平移3个单位D. 向右平移1个单位,再向上平移3个单位10.如图为二次函数的图象,在下列说法中:① ;②方程的根是③ ;④当时,y随x 的增大而增大;⑤ ;⑥ ,正确的说法有()A. B. C. D.二、填空题(共9题;共10分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是________.12.半径为6 cm的圆内接正四边形的边长是________cm..13.如图,为的直径,则________.14.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为________cm.15.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为________.16.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是________.17.关于x的一元二次方程kx2﹣ x+2=0有两个不相等的实数根,那么k的取值范围是________.18.如图,⊙O的半径于点C,连接并延长交⊙O于点E,连接.若,则的长为________ .19.如图,一段抛物线记为,它与x轴的交点为,顶点为;将绕点旋转180°得到,交x轴于点为,顶点为;将绕点旋转180°得到,交x轴于点为,顶点为;……,如此进行下去,直至到,顶点为,则顶点的坐标为________ .三、解答题(共9题;共70分)20.用配方法解一元二次方程21.已知关于x的方程(1)求证:方程有两个不相等的实数根.(2)若方程的一个根是求另一个根及k的值.22.如图,点A的坐标为,点B的坐标为.点C的坐标为.⑴请在直角坐标系中画出绕着点C逆时针旋转后的图形.⑵直接写出:点的坐标( ),⑶点的坐标( ).23.如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.24.自贡是“盐之都,龙之乡,灯之城”,文化底蕴深厚.为弘扬乡土特色文化,某校就同学们对“自贡历史文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图:(1)本次共调查________ 名学生,条形统计图中m= ________ ;(2)若该校共有学生1200名,则该校约有________ 名学生不了解“自贡历史文化”;(3)调查结果中,该校九年级(2)班学生中了解程度为“很了解”的同学进行测试,发现其中共有四名同学相当优秀,它们是三名男生,一名女生,现准备从这四名同学中随机抽取两人去市里参加“自贡历史文化”知识竞赛,用树状图或列表法,求恰好抽取一男生一女生的概率.25.如图,在中,,的平分线交于,为上一点,,以为圆心,以的长为半径画圆.(1)求证:是⊙的切线;(2)求证:.26.如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽 1.5 米的门,能够建生态园的场地垂直于墙的一边长不超过6 米(围栏宽忽略不计).(1)每个生态园的面积为48 平方米,求每个生态园的边长;(2)每个生态园的面积________(填“能”或“不能”)达到108 平方米.(直接填答案)27.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?28.如图,抛物线经过点,请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接,求的长.(3)点F在抛物线的对称轴上运动,是否存在点F,使的面积为,如果存在,直接写出点F 的坐标;如果不存在,请说明理由.答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】D4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】A10.【答案】D二、填空题11.【答案】(1,﹣2)12.【答案】613.【答案】60°14.【答案】15.【答案】﹣201616.【答案】﹣3<x<117.【答案】且k≠018.【答案】19.【答案】(9.5,-0.25)三、解答题20.【答案】解:移项得x2﹣6x=7,配方得 x2﹣6x+9=7+9,即,∴-3=±4 ,∴,.21.【答案】(1)证明:=k2+8>0∴方程有两个不相等实数根(2)解:设另一根为x1,由根与系数的关系:∴,k=122.【答案】解:⑴如图⑵A’(-4.2).⑶B’(-1.3).23.【答案】(1)解:∵点E是△ABC的内心,∠BAC=70°,∴∠CAD= ∠BAC= ×70°=35°,∵,∴∠CBD=∠CAD=35°;(2)证明:∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.24.【答案】(1)60;18(2)240(3)解:列表如下(也可以选择“树状图”,注意是“不放回”)第女男男男一位第二位女(男,女)(男,女)(男,女)男(女,男)(男,男)(男,男)男(女,男)(男,男)(男,男)男(女,男)(男,男)(男,男)由上表可知:共有12种可能,其“一男一女”的可能性有6种.∴P (一男一女)=25.【答案】(1)证明:过点作于;∵,以为圆心,以的长为半径画圆,∴AB为圆D的切线又∵,且AD平分∠BAC,且DF⊥AC,是⊙的切线.(2)证明:由,DB是半径得AB的是⊙O的切线,又由(1)可知是⊙的切线∵,∴即.26.【答案】(1)解:设每个生态园垂直于墙的边长为x米,根据题意得:整理,得:,解得:、(不合题意,舍去),当时,,.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米.(2)不能27.【答案】(1)解:由题意,得,化简,得.(2)解:由题意,得,.(3)解:.∵,∴抛物线开口向下.当时,w有最大值.又当时,w随x的增大而增大,∴当元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.28.【答案】(1)解:∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)解:y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵对称轴与 x 轴交于点E ,∴ DE=4,OE=1 ,∵ B(﹣1,0),∴ BO=1,∴ BE=2,在 Rt BED 中,根据勾股定理得: BD= =2(3)解:抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)∴BC=3-(-1)=4∵的面积为,∴BC·=4解得:=2或-2∴点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)。
四川省旺苍县两乡镇初级中学2020届数学中考模拟试卷
![四川省旺苍县两乡镇初级中学2020届数学中考模拟试卷](https://img.taocdn.com/s3/m/47888c1bb4daa58da0114ae5.png)
四川省旺苍县两乡镇初级中学2020届数学中考模拟试卷一、选择题1.已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x+3的值为( ) A .3 B .﹣3C .1D .0 2.如图,已知△ABC 的三个顶点均在正方形网格的格点上,则tanA 的值为( )A .12BCD 3.如图,二次函数y=ax 2-bx 的图象开口向上,且经过第二象限的点A.若点A 的横坐标为-1,则一次函数y=(a+b)x+b 的图象大致是( )A. B. C. D.4.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A.25°B.75°C.65°D.55°5.下列结果不正确的是( )A .()23533-=B .22233333++=C .426333-÷=D .2019201833-能被2整除6.如图,⊙O ,四边形ABCD 为⊙O 的内接矩形,, E 为⊙O 上的一个动点,连结DE ,作DF ⊥DE 交射线EA 于F ,则DF 的最大值为( )7.反比例函数m y x =的图像在第二、四象限内,则点(,1)m -在( ) A.第一象限B.第二象限C.第三象限D.第四象限 8.反比例函数3m y x -=,当x >0时,y 随x 的增大而减小,那么m 的取值范围是( ) A .m <3 B .m >3 C .m <﹣3 D .m >﹣39.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是( )A .13B .29C .23D .4910.下列运算正确的是:( )A .(a ﹣b )2=a 2﹣b 2B .a 10÷a 2=a 5C .(2a 2b 3)3=8a 6b 9D .2a 2•3a 3=6a 6 11.如图,反比例函数m y x=的图象与一次函数y =kx ﹣b 的图象交于点P ,Q ,已点P 的坐标为(4,1),点Q 的纵坐标为﹣2,根据图象信息可得关于x 的方程m x =kx ﹣b 的解为( )A .﹣2,﹣2B .﹣2,4C .﹣2,1D .4,1 12.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =2,CE =6,H 是AF 的中点,那么CH 的长是( )A.2.5 B C D.二、填空题13.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为_____.14.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=_______.15.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是_____.16_____.17.从分别标有数-3,-2,-1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是_________.18.京张高铁是2022年北京冬奥会的重要交通保障设施.京张高铁设计时速350公里,建成后,乘高铁从北京到张家口的时间将缩短至1小时.如图,京张高铁起自北京北站,途经昌平、八达岭长城、怀来等站,终点站为河北张家口南,全长174公里.如果按此设计时速运行,设每站(不计起始站和终点站)停靠的平均时间是x分钟,那么依题意,可列方程为_______.三、解答题19.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cosA=45,BE=1,求AD的长.20.我市“木兰溪左岸绿道”工程已全部建成并投入使用,10公里的河堤便道铺满了彩色的透水沥青,堤岸旁的各类花草争奇斗艳,与木兰溪河滩上的特色花草相映成趣,吸引着众多市民在此休闲锻炼、散步观光.某小区随机调查了部分居民在一周内前往“木兰溪左岸绿道”锻炼的次数,并制成如图不完整的统计图表:居民前往“木兰溪左岸绿道”锻炼的次数统计表(1)a = ,b = .(2)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(3)若该小区共有2000名居民,根据调查结果,估计该小区居民在一周内前往木兰溪左岸绿道”锻炼“4次及以上”的人数.21.解方程:1=1++1x x x. 22.某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x . (1)第二批衬衫进价为 元,购进的数量为 件.(都用含x 的代数式表示,不需化简)(2)求x 的值.23.为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较大的工程如图是某段河道坡路的横截面,从点A 到点B ,从点B 到点C 是两段不同坡度的坡路,CM 是一段水平路段,CM 与水平地面AN 的距离为12米.已知山坡路AB 的路面长10米,坡角BAN =15°,山坡路BC 与水平面的夹角为30°,为了降低坡度,方便通行,决定降低坡路BC的坡度,得到新的山坡AD ,降低后BD 与CM 相交于点D ,点D ,A ,B 在同一条直线上,即∠DAN =15°.为确定施工点D 的位置,求整个山坡路AD 的长和CD 的长度(sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin30°=0.50,cos30°≈0.87,tan30°≈0.58结果精确到0.1米)24.解不等式组:273(1)423133x x x x -<-⎧⎪⎨+<-⎪⎩,并将解集表示在数轴上. 25.先化简,再求值:2422x x x +--,其中x ﹣2. 【参考答案】***一、选择题13.(﹣2,﹣4)14.1 15.众数1617.3 718.17481 60350x⨯+=三、解答题19.(1)略;(2)325.【解析】【分析】(1)连接AC,OC,如图,先证明OC∥AF,再根据切线的性质得OC⊥EF,从而得到AF⊥EF;(2)先利用OC∥AF得到∠COE=∠DAB,在Rt△OCE中,设OC=r,利用余弦的定义得到415rr=+,解得r=4,连接BD,如图,根据圆周角定理得到∠ADB=90°,然后根据余弦的定义可计算出AD的长.【详解】解:(1)连接AC,OC,如图,∵CD=BC,∴CD BC=,∴∠1=∠2,∵OA=OC,∴∠2=∠OCA,∴∠1=∠OCA,∴OC∥AF,∵EF为切线,∴OC⊥EF,∴AF⊥EF;(2)∵OC∥AF,∴∠COE=∠DAB,在Rt△OCE中,设OC=r,∵cos∠COE=cos∠DAB=45OCOE=,即415rr=+,解得r=4,连接BD,如图,∵AB为直径,∴∠ADB=90°,在Rt△ADB中,cos∠DAB=45 ADAB=,∴AD=45×8=325.【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和解直角三角形.20.(1) 17、20;(2) 72°;(3) 120人【解析】【分析】(1)根据1次的人数以及所占的百分比求出参与调查的人数,用总人数减去其余的人数可求出a 的值,用3次的人数除以总人数即可求得b 的值;(2)用360度乘以3次所占的比例即可得;(3)用2000乘以”锻炼“4次及以上”所占的比例即可得.【详解】(1)∵被调查的总人数为13÷26%=50人,∴a =50﹣(7+13+10+3)=17,b%=1050×100%=20%,即b =20, 故答案为:17、20;(2)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;(3)估计一周内前往木兰溪左岸绿道”锻炼“4次及以上”的人数2000×350=120人. 【点睛】本题考查了扇形统计图,统计表,用样本估计总体,准确识图表是解题的关键.21.12x =- 【解析】【分析】先两边同乘()1x x +,再整理,最后检验答案是否合理.【详解】解:两边同乘()1x x +,得2(1)1x x x x =+++. 整理得21x =- 解得12x =-. 经检验,12x =-是原方程的解. 【点睛】本题考查解分式方程,解题的关键是掌握解去分母.22.(1)100(1+x),200(1+2.5x).(2)20%.【解析】【分析】(1)根据增长率的定义以及数量的增长率是进价增长率的2.5倍即可得到结果;(2)根据利润等于第一次售罄的利润+(第二次-50件所得利润)+清仓销售的50件的利润,列出方程并求解即可.【详解】解:(1)第二批衬衫进价为100(1+x)元,购进的数量为200(1+2.5x)件,.(2)根据题意,得200×(150-100)+[150-100(1+x)][200(1+2.5x)-50]+50[120-100(1+x)]=17500.化简,得50x2-5x-1=0.解这个方程,得x1=15,x2=110(不合题意,舍去).所以x的值是20%.【点睛】本题主要考查了一元二次方程与销售问题,根据题意找到等量关系并列出方程是解题关键,注意要舍去不合题意的解.23.修整后山坡路AD的长约为46.2米,CD的长约为18.8米.【解析】【分析】过B作BE⊥AN于E,过D作DF⊥AN于F,过C作CG⊥AN于G,过B作BH⊥CG于H,根据矩形的性质得到BE=GH,EG=BH,CD=GF,CG=DF,求得CH=DF-GH,解直角三角形即可得到结论.【详解】过B作BE⊥AN于E,过D作DF⊥AN于F,过C作CG⊥AN于G,过B作BH⊥CG于H,则四边形CGFD和四边形BEGH是矩形,∴BE=GH,EG=BH,CD=GF,CG=DF,∴CH=DF﹣GH,由题意得,DF=12,AB=10,在Rt△ABE中,BE=AB•sin15°=10×0.26=2.6,在Rt△ADF中,DF=AB•sin15°,AD=12÷0.26=46.2,∴CH=DF﹣BE=9.4,在Rt△CBH中,CH=BC•sin30°,BC=CH÷0.5=18.8,∵CD∥AN,∴∠CDB=∠BAN=15°,∵∠CBH=30°,∴∠DBC=15°,∴∠CDB=∠CBD,∴CD=CB=18.8(米),答:修整后山坡路AD的长约为46.2米,CD的长约为18.8米.【点睛】本题考查了作图-应用与设计作图,解直角三角形的应用,正确的作出辅助线是解题的关键.24.﹣4<x<﹣1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x﹣7<3(x﹣1),得:x>﹣4,解不等式43x+3<1﹣23x,得:x<﹣1,则不等式组的解集为﹣4<x<﹣1,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.【解析】【分析】先把分式化简,再把数代入求值.【详解】原式=24 22xx x---=24 2xx --=(2)(2)2x xx+--=﹣(x+2),当x2时,原式=22)-+=.【点睛】此题考查分式的加法,关键是寻找最简公分母,也要注意符号的处理.。
2024年四川省旺苍县两乡镇初级中学中考数学全真模拟试题
![2024年四川省旺苍县两乡镇初级中学中考数学全真模拟试题](https://img.taocdn.com/s3/m/e95813083d1ec5da50e2524de518964bcf84d2e1.png)
2024年四川省旺苍县两乡镇初级中学中考数学全真模拟试题一、单选题1.如图,在平面直角坐标系中,P是反比例函数kyx=的图像上一点,过点P作PQ x⊥轴于点Q,若OPQ△的面积为2,则k的值是()A.-2 B.2 C.-4 D.42.下列计算正确的是()A.2x﹣x=1 B.x2•x3=x6C.(m﹣n)2=m2﹣n2D.(﹣xy3)2=x2y63.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.4.()A.8-B.4-C.2-D.不存在5.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线6yx=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A .5B .6C .7D .86.设0<k <2,关于x 的一次函数y=(k-2)x+2,当1≤x≤2时,y 的最小值是( ) A .2k-2 B .k-1 C .k D .k+17.下列四个几何体的主视图是三角形的是( )A .B .C .D .8.如图,AB ∥CD ,直线EF 与AB 、CD 分别相交于E 、F ,AM ⊥EF 于点M ,若∠EAM=10°,那么∠CFE 等于( )A .80°B .85°C .100°D .170°9.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒10.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB=3∠ADB ,则( )A.DE=EB BC D.DE=OB二、填空题11.如图,AB为半圆的直径,且2AB=,半圆绕点B顺时针旋转40︒,点A旋转到A'的位置,则图中阴影部分的面积为(结果保留π).12.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是m2.13.如图,矩形OABC的两边落在坐标轴上,反比例函数y=kx的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=.14=.15.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是.16.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB∥CD,CD⊥BC于C,且AB、BC、CD 边长分别为2,4,3,则原直角三角形纸片的斜边长是.17.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过秒,甲乙两点第一次在同一边上.三、解答题18.为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?19.如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为a m的正方形,C区是边长为b m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.20.济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.21.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.22.(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.23.如图1,直线l:y=34x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=12x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F 在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG 的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.24.如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE 与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)。
2022年四川省旺苍县两乡镇初级中学九年级数学第一学期期末教学质量检测模拟试题含解析
![2022年四川省旺苍县两乡镇初级中学九年级数学第一学期期末教学质量检测模拟试题含解析](https://img.taocdn.com/s3/m/e89d2c0f0166f5335a8102d276a20029bd646337.png)
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.一次函数y =﹣3x ﹣2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .在y 轴上的截距为2C .与x 轴交于点(﹣2,0)D .函数图象不经过第一象限 2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼( )A .10000条B .2000条C .3000条D .4000条4.下列事件中,属于必然事件的是( )A .任意购买一张电影票,座位号是奇数B .明天晚上会看到太阳C .五个人分成四组,这四组中有一组必有2人D .三天内一定会下雨5.如图,在Rt △ABC 中,90ACB ∠=,CD AB ⊥,垂足为D ,若5AC =,2BC =,则cos ACD ∠的值为( )A 25B 5C .52D .236. 如图,点E 、F 分别为正方形ABCD 的边BC 、CD 上一点,AC 、BD 交于点O ,且∠EAF =45°,AE ,AF 分别交对角线BD 于点M ,N ,则有以下结论:①△AOM ∽△ADF ;②EF =BE +DF ;③∠AEB =∠AEF =∠ANM ;④S △AEF=2S △AMN ,以上结论中,正确的个数有( )个.A .1B .2C .3D .47.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD8.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.29.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D .10.若关于x 的一元二次方程2304kx x --=有实数根,则实数k 的取值范围是( ) A .0k = B .13k ≥- C .13k ≥-且0k ≠ D .13k >- 二、填空题(每小题3分,共24分)11.请写出一个开口向上,并且与y 轴交于点(0,-1)的抛物线的表达式:______12.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为13,那么盒子内白色兵乓球的个数为________. 13.如图,AB 是⊙O 的直径,AB =6,点C 在⊙O 上,∠CAB =30°,D 为BC 的中点,P 是直径AB 上一动点,则PC +PD的最小值为_____.14.如图,A B C 、、是⊙O 上的点,若100AOB ∠=,则ACB ∠=___________度.15.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有实数根,则k 的取值范围是_____.16.如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为______17.已知△ABC ,D 、E 分别在AC 、BC 边上,且DE ∥AB ,CD =2,DA =3,△CDE 面积是4,则△ABC 的面积是______18.若有一组数据为8、4、5、2、1,则这组数据的中位数为__________.三、解答题(共66分)19.(10分)已知:如图,反比例函数k y x=的图象与一次函数y x b =+的图象交于点(1,4)A 、点(4,)B n -.(1)求一次函数和反比例函数的解析式;(2)求OAB ∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.20.(6分)如图,己知抛物线2y x bx c =++的图象与x 轴的一个交点为()4,0B 另一个交点为A ,且与y 轴交于点()0,4C(1)求直线BC 与抛物线的解析式;(2)若点M 是抛物线在x 轴下方图象上的-一动点,过点M 作//MN y 轴交直线BC 于点N ,当MN 的值最大时,求BMN ∆的周长.21.(6分)已知抛物线y =ax 2+bx+c 经过点A(﹣2,0),B(3,0),与y 轴负半轴交于点C ,且OC =OB . (1)求抛物线的解析式;(2)在y 轴负半轴上存在一点D ,使∠CBD =∠ADC ,求点D 的坐标;(3)点D 关于直线BC 的对称点为D′,将抛物线y =ax 2+bx+c 向下平移h 个单位,与线段DD′只有一个交点,直接写出h 的取值范围.22.(8分)如图,在等边△ABC 中,把△ABC 沿直线MN 翻折,点A 落在线段BC 上的D 点位置(D 不与B 、C 重合),设∠AMN =α.(1)用含α的代数式表示∠MDB 和∠NDC ,并确定的α取值范围;(2)若α=45°,求BD :DC 的值;(3)求证:AM •CN =AN •BD .23.(8分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m ),另外三边利用学校现有总长36m 的铁栏围成,留出2米长门供学生进出.若围成的面积为2180m ,试求出自行车车棚的长和宽.24.(8分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.25.(10分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.26.(10分)为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中m、n的值;(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.参考答案一、选择题(每小题3分,共30分)1、D【解析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【详解】A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x23=-,即与x轴交于点(23-,0),即C项错误;D.函数图象经过第二三四象限,不经过第一象限,即D项正确.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.2、A【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可.【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2,∵弦AB CD ⊥,∴AE=BE=4,由勾股定理得出:()22242r r =+-,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.3、C【分析】根据题意求出鲤鱼与鲢鱼的比值,进而利用池塘中放养了鲤鱼2000条除以鲤鱼与鲢鱼的比值即可估计池塘中原来放养了鲢鱼的条数. 【详解】解:由题意可知鲤鱼与鲢鱼的比值为:20023003=, 所以池塘中原来放养了鲢鱼:2320002000300032÷=⨯=(条). 故选:C.【点睛】本题考查的是通过样本去估计总体,熟练掌握通过样本去估计总体的方法,只需将样本“成比例地放大”为总体即可. 4、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A 、任意购买一张电影票,座位号是奇数是随机事件;B 、明天晚上会看到太阳是不可能事件;C 、五个人分成四组,这四组中有一组必有2人是必然事件;D 、三天内一定会下雨是随机事件;故选:C .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 5、D【分析】在Rt △ABC 中,根据勾股定理可得3AB =,而∠B=∠ACD ,即可把求cos ACD ∠转化为求cos B ∠.【详解】在Rt △ABC 中,根据勾股定理可得:2222(5)23AB AC BC =+=+=∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD ,∴cos ACD ∠=2cos =3BC B AB ∠=. 故选D .【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6、D【解析】如图,把△ADF 绕点A 顺时针旋转90°得到△ABH ,由旋转的性质得,BH=DF ,AH=AF ,∠BAH=∠DAF ,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF ,所以∠ANM=∠AEB ,则可求得②正确; 根据三角形的外角的性质得到①正确;根据相似三角形的判定定理得到△OAM ∽△DAF ,故③正确;根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN 是等腰直角三角形,根据勾股定理得到AE =2AN ,再根据相似三角形的性质得到EF =2MN ,于是得到S △AEF =2S △AMN .故④正确.【详解】如图,把△ADF 绕点A 顺时针旋转90°得到△ABH由旋转的性质得,BH =DF ,AH =AF ,∠BAH =∠DAF∵∠EAF =45°∴∠EAH =∠BAH +∠BAE =∠DAF +∠BAE =90°﹣∠EAF =45°在△AEF 和△AEH 中45AH AF EAH EAF AE AE ⎧⎪∠∠︒⎨⎪⎩====∴△AEF ≌△AEH (SAS )∴EH =EF∴∠AEB =∠AEF∴BE +BH =BE +DF =EF ,故②正确∵∠ANM =∠ADB +∠DAN =45°+∠DAN , ∠AEB =90°﹣∠BAE =90°﹣(∠HAE ﹣∠BAH )=90°﹣(45°﹣∠BAH )=45°+∠BAH ∴∠ANM =∠AEB∴∠ANM =∠AEB =∠ANM ;故③正确,∵AC ⊥BD∴∠AOM =∠ADF =90°∵∠MAO =45°﹣∠NAO ,∠DAF =45°﹣∠NAO∴△OAM ∽△DAF故①正确连接NE ,∵∠MAN =∠MBE =45°,∠AMN =∠BME∴△AMN ∽△BME ∴AM MN BM ME= ∴AM BM MN ME = ∵∠AMB =∠EMN∴△AMB ∽△NME∵∠EAN =45°∴∠NAE =NEA =45°∴△AEN 是等腰直角三角形∴AE∵△AMN ∽△BME ,△AFE ∽△BME∴△AMN ∽△AFE∴MN AN EF AE ==∴EF =∴2212AMN AFE S MN S EF ∆∆=== ∴S △AFE =2S △AMN故④正确故选D .【点睛】此题考查相似三角形全等三角形的综合应用,熟练掌握相似三角形,全等三角形的判定定理是解决此类题的关键. 7、B【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直,则需添加条件:AC 、BD 互相平分故选:B8、C【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键. 9、B【详解】由PB+PC=BC 和PA+PC=BC 易得PA=PB ,根据线段垂直平分线定理的逆定理可得点P 在AB 的垂直平分线上,于是可判断D 选项正确.故选B .考点:作图—复杂作图10、C【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k 的不等式,解得即可,同时还应注意二次项系数不能为1.【详解】∵关于x 的一元二次方程2304kx x --=有实数根, ∴△=b 2-4ac ≥1,即:1+3k ≥1, 解得:13k ≥-,∵关于x 的一元二次方程kx 2-2x+1=1中k ≠1,故选:C .【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.二、填空题(每小题3分,共24分)11、y=x 2-1(答案不唯一).【解析】试题分析:抛物线开口向上,二次项系数大于0,然后写出即可. 抛物线的解析式为y=x 2﹣1. 考点:二次函数的性质.12、1【分析】先求出盒子内乒乓球的总个数,然后用总个数减去黄色兵乓球个数得到白色乒乓球的个数.【详解】解:盒子内乒乓球的总个数为2÷13=6(个),白色兵乓球的个数6−2=1(个),故答案为:1.【点睛】此题主要考查了概率公式,关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.13、32【分析】作出D关于AB的对称点D',则PC+PD的最小值就是CD'的长度.在△COD'中根据边角关系即可求解.【详解】作出D关于AB的对称点D',连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为BC的中点,∴∠BAD'12=∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'12=AB=3,∴CD'=32.故答案为:32.【点睛】本题考查了圆周角定理以及路程的和最小的问题,正确作出辅助线是解答本题的关键.14、130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=12∠AOB =50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.15、k≤5且k≠1.【解析】试题解析:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考点:根的判别式.16、3π【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=120°,进而求得∠AOC=120°,从而得到阴影面积为圆面积的13,再利用面积公式求解.【详解】如图,作OD⊥AB于点D,连接AO,BO,CO,∵OD=12 AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC =2120360r=3π.故答案为:3π.【点睛】本题考查了学生转化面积的能力,将不规则的面积转化为规则的面积是本题的解题关键.17、25【分析】根据DE∥AB得到△CDE∽△CAB,再由CD和DA的长度得到相似比,从而确定△ABC的面积. 【详解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴25 CD CDCA CD AD==+,又∵△CDE面积是4,∴2CDEABCS CDS CA⎛⎫= ⎪⎝⎭△△,即2 425ABCS⎛⎫= ⎪⎝⎭△,∴△ABC的面积为25.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的面积之比等于相似比的平方.18、4【分析】根据中位数的定义求解即可.【详解】解:将数据8、4、5、2、1按从小到大的顺序排列为:1、2、4、5、8,所以这组数据的中位数为4. 故答案为:4.【点睛】本题考查了中位数的定义,属于基本题型,解题的关键是熟知中位数的概念.三、解答题(共66分)19、(1)4yx=,y=x+3;(2)S△AOB=152; (3)x>1 ,12, -4 <a<0【分析】(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【详解】(1)把A点(1,4)分别代入反比例函数解析式kyx=,一次函数解析式y=kx+b,得,k=1×4,1+b=4,解得,k=4,b=3,所以反比例函数解析式是4yx=,一次函数解析式y=x+3,(2)如图当X=-4时,y=-1,∴B(-4,-1),当y=0时,x+3=0,x=-3,∴C(-3,0),∴S △AOB = S △AOC + S △BOC =11153431222⨯⨯+⨯⨯= 故答案为152(3)∵B (-4,-1),A (1,4),∴根据图象可知:当x >1或-4<x <0时,一次函数值大于反比例函数值.【点睛】本题考查了一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.20、(1)4y x =-+,254y x x =-+;(2)442+【分析】(1)直接用待定系数法求出直线和抛物线解析式;(2)先求出最大的MN ,再求出M ,N 坐标即可求出周长;【详解】解:(1)设直线BC 的解析式为y mx n =+,将(4,0)B ,(0,4)C 两点的坐标代入, 得,404m n n +=⎧⎨=⎩, ∴14m n =-⎧⎨=⎩ 所以直线BC 的解析式为4y x =-+;将(4,0)B ,(0,4)C 两点的坐标代入2y x bx c =++, 得,16404b c c ++=⎧⎨=⎩,∴54b c =-⎧⎨=⎩所以抛物线的解析式为254y x x =-+;(2)如图1,设(M x ,254)(14)x x x -+<<,则(,4)N x x -+, 222(4)(54)4(2)4MN x x x x x x =-+--+=-+=--+,∴当2x =时,MN 有最大值4; MN 取得最大值时,2x =,4242x ∴-+=-+=,即(2,2)N .25445242x x -+=-⨯+=-,即(2,2)M -,(4.0)B , 可得22BN =,22BM =,BMN ∴∆的周长42222442=++=+.【点睛】此题是二次函数综合题,主要考查了待定系数法,函数的极值,三角形的周长,三角形的面积,方程组的求解,解本题的关键是建立MN 的函数关系式.21、(1)y =12x 2﹣12x ﹣3;(2)D(0,﹣6);(3)3≤h≤1 【分析】(1)OC =OB ,则点C (0,﹣3),抛物线的表达式为:y =a (x+2)(x ﹣3)=a (x 2﹣x ﹣6),﹣6a =﹣3,解得:a =12,即可求解; (2)CH =HD =22m ,tan ∠ADC =23m +=tan ∠DBC =222322m HD BH m =+,解得:m =3或﹣4(舍去﹣4),即可求解;(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即可求解.【详解】解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=12,故抛物线的表达式为:y=12x 2﹣12x﹣3;(2)设CD=m,过点D作DH⊥BC交BC的延长线于点H,则CH=HD=22m,tan∠ADC=23m+=tan∠DBC=222322mHDBHm=+,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=12x2﹣12x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=12×9+32﹣h,解得:h=1,故3≤h≤1.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法求解析式、三角函数的定义及二次函数平移的特点.22、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(23;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM=x.解直角三角形用x表示BD,CD即可解决问题.(3)证明△BDM∽△CND,推出DMND=BDCN,推出DM•CN=DN•BD可得结论.【详解】(1)由翻折的性质可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD•cos30°,∴MA=MD,∴BC=AB=x,∴CD=BC﹣BD﹣x,∴BD:CD=2x:x﹣x.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴DMND=BDCN,∴DM•CN=DN•BD,∵DM=AM,ND=AN,∴AM•CN=AN•BD.【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.23、若围成的面积为2180m ,自行车车棚的长和宽分别为10米,18米.【分析】设自行车车棚的宽AB 为x 米,则长为(38-2x )米,根据矩形的面积公式,即可列方程求解即可. 【详解】解:现有总长36m 的铁栏围成,需留出2米长门∴设AB x =,则382BC x =-;根据题意列方程(382)180x x -=,解得110x =,29x =;当10x =,38218x -=(米),当9x =,38220x -=(米),而墙长19m ,不合题意舍去,答:若围成的面积为2180m ,自行车车棚的长和宽分别为10米,18米.【点睛】本题考查的是一元二次方程的应用,结合图形求解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.24、(1)详见解析;(2)①151.【分析】(1)要证明三角形△DPF 为等腰直角三角形,只要证明∠DFP =90°,∠DPF =∠PDF =45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP =90°,∠DPF =∠PDF =45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t 的值即可,注意点P 从A 出发到B 停止,t ≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t 的值.【详解】证明:(1)∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =45°,∵在⊙O 中,DF 所对的圆周角是∠DAF 和∠DPF ,∴∠DAF =∠DPF ,∴∠DPF =45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE PA AE=,∴42 21t=,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE PA AE=,∴41 22t=,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴DA DP PB PQ =, ∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP =224(2)t +=224t +,PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =222t +﹣a ,∵△AEP ∽△CED ,∴AP PE CD DE=, 即22424t a t a=+-, 解得,a =2242t t t++, ∴PQ =2242t t t++, ∴2242442242t t t t t+=-++,解得,t 1=﹣5﹣1(舍去),t 2=5﹣1,即t 的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.25、解:(1)P (抽到2)=12. (2)不公平,修改规则见解析 【详解】解:(1)P (抽到2)=1142= . (2)根据题意可列表2 23 6 2 22 22 23 262 22 22 23 263 32 32 33 36 6 62 62 63 66从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种,∴P (两位数不超过32)=105 168.∴游戏不公平.调整规则:法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平.法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数不超过32的得5分;能使游戏公平法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜.26、(1)120,0.5,18;(2)见解析;(3)估计该校最喜欢足球的人数为75【分析】(1)根据喜欢武术的有12人,所占的比例是0.1,即可求得总数,继而求得其他答案;(2)根据(1)的结果,即可补全统计图;(3)利用总人数3000乘以对应的比例,即可估计该校最喜欢足球的人数.【详解】(1)∵喜欢武术的有12人,所占的比例是0.1,∴样本容量为:120.1120÷=,∵喜欢球类的有60人,∴601200.5m=÷=,∵喜欢健美操所占的比例是0.15,∴1200.1518n=⨯=;故答案为:120,0.5,18;(2)如图所示:(3)学校喜欢足球的人数有:330000.57560⨯⨯=(人) .答:估计该校最喜欢足球的人数为75人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
四川省广元市旺苍县第一中学2024-2025九年级数学(人教版)上册期末考试试题(无答案)
![四川省广元市旺苍县第一中学2024-2025九年级数学(人教版)上册期末考试试题(无答案)](https://img.taocdn.com/s3/m/f274f590a0c7aa00b52acfc789eb172ded63993a.png)
九年级上学期数学期末试卷(满分:120分 考试时间:120分钟)姓名___________ 班级__________ 分数 _____________一、选择题(每小题3分,共24分)1、下列二次根式中,与35-是同类二次根式的是( )(A ) 23 (B )1030 (C ) 30 (D )300 2、已知关于x 的一元二次方程()21210m x x --+=有两个实数根,则m 的取值范围是( )(A )2>m (B )2 m (C )2≥m (D )2≤m3、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )4、如图,⊿ABC °则∠C 的大小为( )(A )、62° (B C )、56° (D )、28°5、随机掷一枚匀称的硬币两次,落地后至少有一次正面朝上的概率是 ( )(A )41 (B )21 (C )43 (D )1 6、三角形两边长分别是8和6,第三边长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( )A .24B .48C .24或D .7、化简132121++-的结果为( )A 、23-B 、23+C 、322+D 、223+8、已知x 、y ()210x y ++=,则()a x y -的值是( ) DA .1B .2C .0D .-1二、细心填一填(每小题3分,共24分)9、已知式子31+-x x 有意义,则x 的取值范围是 10、计算:()221-=11、若关于x 的一元二次方程()221410a x x a +++-=的一根是0,则a = 。
12、成语“水中捞月”用概率的观点理解属于不行能事务,请你仿照它写出一个必定事务 。
13、点P 关于原点对称的点Q 的坐标是(-1,3),则P 的坐标是14、已知圆锥的底面半径为9cm ,母线长为10cm ,则圆锥的全面积是 cm 215、如图,AC 是⊙O 的直径,∠ACB =60°,连结AB ,过A 、B两点分别作⊙O 的切线,两切线交于点P ,若已知⊙O 的半径为1,∠ABP =∠BAP=∠ACB,则△PAB 的周长为________;16、圆和圆有不同的位置关系.与下图不同的圆和圆的位置关系是_____.(只填一种,指明左、中、右哪个图)三、解答题17、(4分)计算:)681(2)2124(+-- 18、(8分,每题4分)用适当的方法解方程:(1)、240x x -=(2)、2450x x +-=19、(8分)甲、乙两队进行拔河竞赛,裁判员让两队队长用“石头、剪子、布”的手势方式选择场地位置.规则是:石头胜剪子,剪子胜布,布胜石头,手势相同再决输赢.请你说明裁判员的这种作法对甲、乙双方是否公允,为什么?(用树状图或列表法解答)20、(9分)图案设计:正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组图5成轴对称或中心对称图案.下面是三种不同设计方案中的一部分,请把图①、图②补成既是..轴对称图形,又是..中心对称图形,并画出..一条对称轴;把图③补成只是..中心对称图形,并把中心标.上.字母P .(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉.)21、(8分)已知关于x 的一元二次方程0432=-+x x ,设1x 、2x 是方程的两个根,不解方程求1x 2x +1x +2x 的值22、(13分)如图15,在Rt △ABC 中,∠B=90°,∠A 的平分线交BC 于D ,E 为AB 上一点,DE=DC ,以D 为圆心,以DB 的长为半径画圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年九上数学期末模拟试卷含答案学校 姓名 考试编号 一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在Rt △ABC 中,90C=∠,3AC=,4BC=,则sin A 的值为A .43B .45C .34D .352.如图,⊙O 是△ABC 的外接圆,∠A = 50°,则∠BOC 的度数为A .40°B .50°C .80°D .100°3.在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是红球..的概率是 A .16B.14C. 13 D. 124.⊙O 1和⊙O 2的半径分别为3cm 和5cm ,若O 1O 2= 8cm ,则⊙O 1和⊙O 2的位置关系是 A .外切 B. 相交 C. 内切 D. 内含5.若一个三角形三边之比为357,与它相似的三角形的最长边的长为21,则最短边的长为 A. 15 B. 10 C. 9 D. 36.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为 A .2(2)5y x =++ B .2(2)5y x =+- C .2(2)5y x =-+ D .2(2)5y x =--7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到圆桌后在地面上形成圆形的示意图. 已知桌面直径为1.2m ,桌面离地面1m. 若灯泡离地面3m ,则地面上阴影部分的面积为 A.0.36πm 2B.0.81πm 2C.2πm 2D.3.24πm 28.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作AC , 在扇形BAC 内作⊙O 与AB 、BC 、AC 都相切,则⊙O 的周长等于CBAA. 49πB. 23π C. 43π D. π二、填空题(共4道小题,每小题4分,共16分)9.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积为 .10.当x = 时,二次函数222y x x =+-有最小值.11.如图,在△ABC 中,∠ACB=∠ADC= 90°,若sinA=35,则cos ∠BCD的值为 .12.如图,已知正方形ABCD 的边长为8cm ,点E 、F 分别在边BC 、CD 上,∠EAF=45°. 当EF=8cm 时,△AEF 的面积是 cm 2; 当EF=7cm 时,△EFC 的面积是 cm 2.三、解答题(共6道小题,第13、14题各4分,第15 -18题各5分,共28分) 13.计算:︒-︒+︒60tan 45sin 230cos 2.14.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB 为1.7米,求这棵树的高度.15.已知二次函数2(+1)63y k x x =-+的图象与x 轴有交点,求k 的取值范围.16. 如图,△ABC 的顶点在格点上,且点A (-5,-1),点C (-1,-2).(1)以原点O 为旋转中心,将△ABC 绕点O 逆时针旋转90°得到△A B C '''. 请在图中画出△A B C ''',并写出点A 的对称点A '的坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C ''''''.DCBAFE D CB AABCDE17.如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回....甲、乙约定:只有..甲抽到的牌面数字比乙大时甲胜;否则乙胜. 请你用树状图或列表法说明甲、乙获胜的机会是否相同 .18. 二次函数22y x x m =-++的图象与x 轴的一个交点为A ()3,0,另一个交点为B ,与y 轴交于点C.(1)求m 的值及点B 、点C 的坐标; (2)直接写出当0y >时,x 的取值范围; (3)直接写出当12x -≤≤时,y 的取值范围.四、解答题(共4道小题,每小题5分,共20分)19. 如图,AB 为⊙O 的直径,直线DT 切⊙O 于T ,AD ⊥DT 于D ,交⊙O 于点C, AC=2,,求∠ABT 的度数.20. 如图,在Rt △ABC 中,∠CAB=90°,AD 是∠CAB 的平分线,tanB=21,求CDBD的值.21. 在矩形ABCD 中,点O 在对角线BD 上,以OD 为半径的⊙O 与AD 、BD 分别交于点E 、F ,且∠ABE =∠DBC. (1)求证:BE 与⊙O 相切; (2)若13sin ABE ∠=,CD =2,求⊙O 的半径.22. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且PA=3 ,PB=4,PC=5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角ABCD图1 图2 图3 图4形,从而将问题解决.PCBAABC PP 'D PACBABC DPFE请你回答:图1中∠APB 的度数等于 . 参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD 内有一点P ,且PA=PB=1,APB 的度数等于 ,正方形的边长为 ;(2)如图4,在正六边形ABCDEF 内有一点P ,且PA=2,PB=1,APB 的度数等于 ,正六边形的边长为 .五、解答题(共3道小题,第23题7分,第24题8分,第25题9分,共24分)23. 如图,小明在一次高尔夫球训练中,从山坡下P 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD 为12米时,球移动的水平距离PD 为9米 .已知山坡PA 与水平方向PC 的夹角为30o,AC ⊥PC 于点C , P 、A两点相距. (1)求水平距离PC 的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P 点直接打入球洞A .24.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB—BD做匀速运动,动点Q从点D同时出发,沿着线路DC—CB—BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s. 经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF与问题(2)中的△AMN相似,试求a的值.25. 如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为C(- 4),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在y轴上确定一点M,使MA+MC的值最小,求出点M的坐标;(3)在x轴下方的抛物线上,是否存在点N,使得以N、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点N的坐标;如果不存在,请说明理由.C2019-2020学年九上数学期末模拟试卷含答案第Ⅰ卷 (选择题 32分)一、选择题(共8个小题,每小题4分,共32分)在下列每小题给出的四个选项中,只有一个是符合题目要求的............. 1.已知⊙O 1和⊙O 2的半径分别为5和2,圆心距为3,则两圆的位置关系是A .内切B .外切C .相交D .内含2.在Rt △ABC 中,∠C =90°,若BC =2,AB =,则tanA 的值为A .12B .2 CD3. 有5张正面分别标有数字 -2,-1,0,l ,2的卡片,它们除数字 不同外,其余全部相同.从中任抽一张,那么抽到负数的概率是 A .45 B .35 C .25 D .154. 如图,点A ,B ,C 在⊙O 上,若∠AOB=70°,则∠ACB 的度数为 A .35° B .40° C .50° D .70° 5.下列图形中,是中心对称图形但不是轴对称图形的是6.如图,为了估算河的宽度,小明采用的办法是:在河的对 岸选取一点A ,在近岸取点D ,B ,使得A ,D ,B 在一条 直线上,且与河的边沿垂直,测得BD=10m ,然后又在垂 直AB 的直线上取点C ,并量得BC=30 m .如果DE=20 m , 则河宽AD 为 A .20m B .203m C .10 m D .30 m 7.二次函数2y ax bx c =++的部分图象如图所示,则下列结论中正确的是A .a >0B .不等式20ax bx c ++>的解集是﹣1<x <5C .0a b c -+>D .当x >2时,y 随x 的增大而增大A .B .D .(第2题)(第4题)(第6题)EACD B8.在平面直角坐标系中,以原点O 为圆心的圆过点A (0,,直线34y kx k =-+ 与⊙O 交于B ,C 两点,则弦BC 的长的最小值为 A .5 B. C. D.第Ⅱ卷 (填空题、解答题 88分)二、填空题 (共4个小题,每题4分,共16分)图中阴影部分的面积为 .13. 计算:011(2014)()2sin302-++︒14. 如图,△ABC 中,点D 在边AC 上,满足ABD C ∠=∠, (1)求证:△ABD ∽△ACB ; (2)若 AB=4,AD=2,求CD 的长.15. 已知:二次函数2y x bx c =++的图像过点A (2,5),C (0,﹣3). (1)求此二次函数的解析式;(2)求出该抛物线与x 轴的交点坐标; (3)直接写出当31x -≤≤时,y 的取值范围.(第7题)(第8题)ADC(第14题)C C 2C 1A 3A 2A O16. 画图:在平面直角坐标系中,ΔOAB如图所示,且点A (-3,4),B (0,3). (1)画出ΔOAB 绕点O 顺时针旋转90°后得到的ΔOA B '';(2)写出点A ,B 的对称点A ',B '(3)求点A17.已知关于x 的一元二次方程0222=-++k x x 有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.18. 站在教学楼上的A 处 测得旗杆低端C 的俯角为30°, 测得旗杆顶端D 的仰角为45°,如果旗杆与教学楼的 水平距离BC 为6m ,那么旗杆CD 的高度是多少? (结果保留根号)19. 已知直线l 与⊙O ,AB 是⊙O 的直径,AD ⊥l 于点D.(1)如图①,当直线l 与⊙O 相切于点C 时,求证:AC 平分∠DAB ; (2)如图②,当直线l 与⊙O 相交于点E ,F 时,求证:∠DAE=∠BAF.四、解答题(本题共15分,每小题5分)新 课 标 第 一 20. 如图,在Rt △ABC 中,∠C=90°,AB 的垂直平分线与AC ,AB 的交点分别为D ,E . (1)若AD=15,4cos 5BDC ∠=, 求AC 的长和tan A 的值;(第20题)BACED图①图②(第18题)(2)设BDC α∠=,计算tan2α的值.(用sin α和cos α的式子表示)21. 中踏销售某种商品,每件进价为10元,在销售过程中发现,平均每天的销售量y (件)与销售价x (元/件)之间的关系可近似的看做一次函数:260y x =-+; (1)求中踏平均每天销售这种商品的利润w (元)与销售价x 之间的函数关系式; (2)当这种商品的销售价为多少元时,可以获得最大利润?最大利润是多少?22. 如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,交⊙O 于点P ,点B 是⊙O 上一点,连接BP 并延长,交直线l 于点C ,使得 AB=AC.(1)求证:AB 是⊙O 的切线; (2)若PC=,OA=5,求⊙O 的半径和线段PB 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 在平面直角坐标系中,抛物线22133222m y x mx m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (4,n )在这条抛物线上. (1)求B 点的坐标;(2)将此抛物线的图象向上平移72个单位,求平移后的图象的解析式; (3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 请你结合这个新的图象回答:当直线12y x b =+与此图象有两个公共点时,b 的 取值范围.24. 如图①,已知点O 为菱形ABCD 的对称中心,∠A=60°,将等边△OEF 的顶点放在点O 处,OE ,OF 分别交AB ,BC 于点M ,N. (1)求证:OM=ON ;(2)写出线段BM ,BN 与AB 之间的数量关系,并进行证明;(3)将图①中的△OEF 绕O 点顺时针旋转至图②所示的位置,请写出线段BM ,BN与AB 之间的数量关系,并进行证明.CA25. 四边形ABCD 中,E 是边AB 上一点(不与点A ,B 重合),连接ED ,EC ,则将四 边形ABCD 分成三个三角形.若其中有两个三角形相似,则把E 叫做四边形ABCD 的边AB 上的相似点;若这三个三角形都相似,则把E 叫做四边形ABCD 的边AB 上 的黄金相似点.(1)如图①,∠A=∠B=∠DEC=60°,试判断点E 是否为四边形ABCD 的边AB 上的相似点?并说明理由;(2)如图②,在(1)的条件下,若E 是AB 的中点,①判断点E 是否为四边形ABCD 的边AB 上的黄金相似点?并说明理由; ②若AD ·BC=18,求AB 的长;(3)在矩形ABCD 中,AB=10,BC=3,且A ,B ,C ,D 四点均在正方形格(格中每个小正方形的边长为1)的格点上,试在图③中画出矩形ABCD 的边AB 上 的一个黄金相似点E .初 三 数 学一、选择题(共8个小题,每小题4分,共32分) CBEA D图②D AEBC图①图③BADC----------------5分------------------4分 ----------------------2分--------------------------4分 -------------------------3分-------4分 -----------1分---------3分 --------------------------5分----------------------2分 ----------------------1分------------5分13.解:011(2014)()2sin302-+︒= 2123221⨯-++ =322+14.(1)证明:∵ABD C ∠=∠,∠A=∠A ∴△ABD ∽△ACB (2)∵△ABD ∽△ACB ∴A B A CA D A B=∴AB 2=AD ·AC ∵AB=4,AD=2 ∴AC=8 ∴CD=615.(1) ∵2y x bx c =++的图像过点A (2,5),C (0,﹣3)∴5423bc c =++⎧⎨-=⎩∴b=2∴二次函数的解析式 223y x x =+- (2)令y=0,则2230x x +-= ∴(3)(1)0x x +-= ∴123,1x x =-=∴抛物线与x 轴的交点坐标为(-3,0),(1,0) (3)当x=-3或x=1时,y=0; 当x=-1时,y=-4∴-4≤y ≤0 16.(1)如图,ΔOA B ''即为所求;(2)A '坐标(4,3),B '坐标(3,0); (3)求点A 在旋转过程中所走过的路径长是弧A A '的长. 由题意可知:OA=5∵ΔO A B 绕点O 顺时针旋转90°后得到的Δ∴∠AO A '为旋转角,即∠AO A '=90°∴弧A A '的长为:ADC(第14题)yxO 1-3-2-1-3-2-11---------5分----------------------1分 ----------------------2分 ---------1分 --------------------3分---------2分---------3分--------4分 ---------5分--------------------5分---------2分 ---------1分90551801802n r πππ∙==17.解:(1)∵0222=-++k x x 有两个不相等的实数根∴2242424120Δac (k )k b -=--=-+>= ∴k<3(2)∵若k 为正整数,∴k 的值是1,2当k=1时,则有0122=-+x x ,△=8,方程的根不是整数,不合题意,舍 当k=2时,则有022=+x x ,则有2,021-==x x ∴k 的值是218. 由题意可知:∠EAC=30°,∠DAE=45°,BC=AE=6 在Rt △AED 中,∵∠DEA=90°,∠DAE=45° ∴AE=DE=6在Rt △AEC 中,∵∠AEC=90°,∠CAE=30°∴AC CE 21=设CE=x ,则AC=2x 由勾股定理得,364∴∴22222=-=-x x AE CE AC∴3212==x∴CD=DE+CE=326+19. (1)证明:连接OC在⊙O 中,∵OA=OC ∴∠1=∠3∵直线l 与⊙O 相切于点C ∴OC ⊥l ∵AD ⊥l ∴OC ∥AD ∴∠3=∠2 ∴∠1=∠ 221---------3分---------4分---------5分∴AC 平分∠DAB (2)证明:连接BF ∵AB 是⊙O 的直径 ∴∠AFB=90° ∴∠2+∠ABF=90°∵AD ⊥l ∴∠ADE=90°∴∠1+∠AED=90° ∵AEFB 内接于圆 ∴∠AED=∠ABF∴∠1=∠2 即:∠DAE=∠BAF 20.解:(1)∵ DE 垂直平分AB ,∴ 15BD AD ==. ………………………………1分在Rt △ACD 中,90C ∠=︒,AD=15,4cos 5BDC ∠=,∴ 4cos 15125CD AD BDC =⋅∠=⨯=. 3sin1595BC AD BDC =⋅∠=⨯=.∴ 27AC CD AD =+=. ……………………………2分 在Rt △ABC 中,90C ∠=︒, ∴ 91tan 273BC A AC ===. …………………………3分 (2)在Rt △ACD 中,90C ∠=︒,∴ cos CD AD BDC =⋅∠.sin BC AD BDC =⋅∠.∴ cos AC CD AD AD BDC =+=⋅∠. ……………………………4分 在Rt △ABC 中,90C ∠=︒, ∴ sin sin tan cos 1cos BC AD BDC BDCA AC AD AD BDC BDC∠∠===+∠+∠. ……………5分21. (1)由题意,得:w = (x -10)y ………………………………2分=(x -10)(260x -+) 2280600x x =-+-………………………………3分202bx a=-=时,200=最大y …………………………………………5分 答:当销售单价定为20元时,每月可获得最大利润,最大利润是200元.22. 解:(1)连接OB 。