中考数学知识点过关培优训练∶锐角三角函数附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学知识点过关培优训练∶锐角三角函数附答案解析
一、锐角三角函数
1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.
(1)求观察哨所A 与走私船所在的位置C 的距离;
(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)
(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)
【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】
(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;
(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】
(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC V 中,sin AC B AB =
,所以3sin 3725155
AC AB ︒
=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.
(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4
sin 15125
CM AC CAM =⋅∠=⨯
=,3
cos 1595
AM AC CAM =⋅∠=⨯=.
在Rt ADM △中,tan MD
DAM AM
∠=,
所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =
+=+==-=,.
设缉私艇的速度为v海里/小时,则有24917
16
=,解得617
v=.
经检验,617
v=是原方程的解.
答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.
【点睛】
此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.
(1)求证:四边形是菱形;
(2)若,,,求的值.
【答案】(1)证明见解析
(2)
【解析】
试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形
(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP
试题解析:(1)∵AE平分∠BAD BF平分∠ABC
∴∠BAE=∠EAF ∠ABF=∠EBF
∵AD//BC
∴∠EAF=∠AEB ∠AFB=∠EBF
∴∠BAE=∠AEB ∠AFB=∠ABF
∴AB=BE AB=AF
∴AF=AB=BE
∵AD//BC
∴ABEF为平行四边形
又AB=BE
∴ABEF为菱形
(2)作PH⊥AD于H
由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5
∴tan∠ADP=
考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数
3.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).
【答案】32.4米.
【解析】
试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.
试题解析:如图,过点B作BE⊥CD于点E,
根据题意,∠DBE=45°,∠CBE=30°.
∵AB⊥AC,CD⊥AC,
∴四边形ABEC为矩形,
∴CE=AB=12m,
在Rt△CBE中,cot∠CBE=BE CE
,
∴33在Rt△BDE中,由∠DBE=45°,
得DE=BE=123.
∴CD=CE+DE=12(3+1)≈32.4.
答:楼房CD的高度约为32.4m.
考点:解直角三角形的应用——仰角俯角问题.
4.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
【答案】(1)证明见解析;(2
15
-+
;(3
758
+
【解析】
试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;
(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;
(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.
试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,
设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,
∴AB BC BD CD =
,即11
1x x +=, 整理得:x 2+x-1=0,
解得:x 1=15
-+,x 2=15--(负值,舍去),
则x=
15
-+; (3)过B 作BE ⊥AC ,交AC 于点E ,
∵BD=CD ,
∴E 为CD 中点,即DE=CE=
15
4
-+, 在Rt △ABE 中,cosA=cos36°=15
1514151AE AB -++
+==-++ 在Rt △BCE 中,cosC=cos72°=15
15414
EC BC -+-+==
, 则cos36°-cos72°=51+=
15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.
5.如图13,矩形的对角线,相交于点,关于的对称图形为.
(1)求证:四边形是菱形;
(2)连接,若,.
①求的值;
②若点为线段上一动点(不与点重合),连接,一动点从点出发,以
的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.
【答案】(1)详见解析;(2)①②和走完全程所需时间为
【解析】
试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;
②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.
试题解析:解:(1)证明:四边形是矩形.
与交于点O,且关于对称
四边形是菱形.
(2)①连接,直线分别交于点,交于点
关于的对称图形为
在矩形中,为的中点,且O为AC的中点
为的中位线
同理可得:为的中点,
②过点P作交于点
由运动到所需的时间为3s
由①可得,
点O以的速度从P到A所需的时间等于以从M运动到A
即:
由O运动到P所需的时间就是OP+MA和最小.
如下图,当P运动到,即时,所用时间最短.
在中,设
解得:
和走完全程所需时间为
考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置
6.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在
一条直线上),求塔AB 的高度.(结果精确到0.01米)
参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142≈.
【答案】塔高AB 约为32.99米. 【解析】 【分析】
过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论. 【详解】
解:过点D 作DH ⊥AB ,垂足为点H .
由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°, ∠ADH = 32°.
设AB = x ,则 AH = x – 3.
在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451AB
AEB EB
∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15. 在Rt △AHD 中,由 ∠AHD = 90°,得 tan AH
ADH HD
∠=. 即得 3
tan3215
x x -︒=+. 解得 15tan323
32.991tan32x ⋅︒+=
≈-︒
.
∴ 塔高AB 约为32.99米. 【点睛】
本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
7.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规
划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)
【答案】该停车库限高约为2.2米.
【解析】
【分析】
据题意得出
3
tan
3
B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可
得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】
解:由题意得,
3 tan B=
∵MN∥AD,
∴∠A=∠B,
∴tan A3,
∵DE⊥AD,
∴在Rt△ADE中,tan A=DE
AD
,
∵DE=3,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE3
在Rt△CEF中,设EF=x,CF3x(x>0),CE=2.5,
代入得(
52
)2=x 2+3x 2, 解得x =1.25,
∴CF =3x ≈2.2,
∴该停车库限高约为2.2米. 【点睛】
本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.
8.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:△PAC ∽△PDF ;
(2)若AB =5,¼¼AP BP
=,求PD 的长.
【答案】(1)证明见解析;(2310
【解析】 【分析】
(1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶AD
AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;
(2)连接OP ,由¶¶AP
BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =
BC
AC
,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP
GE ED =,然后根据勾股定理即可得到结果. 【详解】
(1)证明:连接AD ,
∵AB ⊥CD ,AB 是⊙O 的直径, ∴¶¶AD
AC =, ∴∠ACD =∠B =∠ADC ,
∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;
(2)连接OP,则OA=OB=OP=15 22 AB=,
∵¶¶
AP BP
=,
∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,
∴∠ACB=90°,
∵AC=2BC,
∴tan∠CAB=tan∠DCB=BC
AC
,
∴
1
2 CE BE
AE CE
==,
∴AE=4BE,
∵AE+BE=AB=5,
∴AE=4,BE=1,CE=2,
∴OE=OB﹣BE=2.5﹣1=1.5,
∵∠OPG=∠PDC,∠OGP=∠DGE,
∴△OPG∽△EDG,∴OG OP GE ED
=,
∴
2.5
2 OE GE OP
GE CE
-
==,
∴GE=2
3,OG=
5
6
,
∴PG
5 6 =,
GD
2
3 =,
∴PD=PG+GD
【点睛】
本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得
△OPG∽△EDG是解题的关键.
9.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.
(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);
(2)如图②,当点E落在边AC上时,求证:BD=1
2 EC;
(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.
【答案】(1)90;(2)详见解析;(3)
633 tan EAC
-
∠=
【解析】
【分析】
(1)利用三角形的外角的性质即可解决问题;
(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,
由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,
由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=
6-33
.
11
【详解】
(1)如图1中,
∵∠EDC=∠B+∠BED,∠B=∠BED=45°,
∴∠EDC=90°,
故答案为90;
(2)如图2中,作PA⊥AB交BC于P,连接PE.
∵∠DAE=∠BAP=90°,
∴∠BAD=∠PAE,
∵∠B=45°,
∴∠B=∠APB=45°,
∴AB=AP,
∵AD=AE,
∴△BAD≌△PAE(SAS),
∴BD=PE,∠APE=∠B=45°,
∴∠EPD=∠EPC=90°,
∵∠C=30°,
∴EC=2PE=2BD;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.
设PH =x ,在Rt △EPH 中,∵∠EPH =90°,∠EHP =60°, ∴EP 3,EH =2PH =2x ,
∴FH =31,CF 3FH =33 ∵△BAD ≌△PAE , ∴BD =EP 3,AE =AD , 在Rt △ABG 中,∵AB =2 ∴AG =GB =2,
在Rt △AGC 中,AC =2AG =4, ∵AE 2=AD 2=AF 2+EF 2,
∴22+(23)231)2+(4﹣3﹣32, 整理得:9x 2﹣12x =0, 解得x =
4
3
(舍弃)或0 ∴PH =0,此时E ,P ,H 共点, ∴AF =3 ∴tan ∠EAF =
EF AF 331
+=23 根据对称性可知当点E 在AC 的上方时,同法可得tan ∠EAC 6-33
. 【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
10.如图,已知二次函数2
12
y x bx c =
++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P . (1)求这个二次函数解析式;
(2)设D 为x 轴上一点,满足∠DPC =∠BAC ,求点D 的坐标;
(3)作直线AP ,在抛物线的对称轴上是否存在一点M ,在直线AP 上是否存在点N ,使AM +MN 的值最小?若存在,求出M 、N 的坐标:若不存在,请说明理由.
【答案】(1)点C坐标为(3,0),点P(1,-2);(2)点P(7,0);(3)点N(-
7 5,
14
5
).
【解析】【分析】
(1)将点A、
B坐标代入二次函数表达式,即可求解;
(2)利用S△ABC= 1
2
×AC×BH=
1
2
×BC×y A,求出sinα=
22
2105
BH
AB
==,则tanα=
1
2
,在
△PMD中,tanα= MD
PM
=
1
2
22
x
=
+
,即可求解;
(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.
【详解】
(1)将点A、B坐标代入二次函数表达式得:
9
633
2
1
2
b
b c
⎧
=-+
⎪⎪
⎨
⎪=--+
⎪⎩
,解得:
1
3
2
b
c
=-
⎧
⎪
⎨
=-
⎪⎩
,
故:抛物线的表达式为:y=1
2
x2-x-
3
2
,
令y=0,则x=-1或3,令x=0,则y=-3
2
,
故点C坐标为(3,0),点P(1,-2);
(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,
由题意得:AB=210,AC=62,BC=4,PC=22,
S△ABC=1
2
×AC×BH=
1
2
×BC×y A,
解得:BH=22,
sinα=BH
AB
=
22
210
=
5
,则tanα=
1
2
,
由题意得:GC=2=PG,故∠PCB=45°,
延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,
在△PMD中,tanα=MD
PM
=
22
x+
=
1
2
,
解得:x=22,则CD=2x=4,
故点P(7,0);
(3)作点A关于对称轴的对称点A′(5,6),
过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,
直线AP表达式中的k值为:8
4-
=-2,则直线A′N表达式中的k值为
1
2
,
设直线A′N的表达式为:y=1
2
x+b,
将点A′坐标代入上式并求解得:b=7
2
,
故直线A′N的表达式为:y=1
2
x+
7
2
…①,
当x=1时,y=4,
故点M(1,4),
同理直线AP的表达式为:y=-2x…②,
联立①②两个方程并求解得:x=-7
5
,
故点N(-7
5
,
14
5
).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.
11.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .
(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )
【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm . 【解析】 【分析】
(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .
(2)用扇形面积公式即可求得. 【详解】
(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE
ODE DO
∠=, ∴15
0.39
OD ≈
, ∴()384614245cm OA OD AD =-≈-≈.
., 答:半径OA 的长约为24.5cm . (2)∵67ODE ∠=︒, ∴157BOC ∠=︒, ∴2
360
BOC
n r S π=
扇形 2
157 3.1424.52360
⨯⨯≈
()2822cm ≈.
答:扇形BOC 的面积约为2822cm . 【点睛】
此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.
12.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;
(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)
(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.
【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =4
3
.理由见解析. 【解析】 【分析】
(1)根据三角形判定方法进行证明即可.
(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.
(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】
(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,
ADG ABE DAG BAE AD AB ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下:
作FH ⊥MN 于H ,如图1所示:
则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,
∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,
EHF ABE FEH BAE AE EF ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.
(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:
由已知可得∠EAG =∠BAD =∠AEF =90°,
结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴
EH FH FH
AB BE CH
==; 在Rt △FEH 中,tan ∠FCN =
84
63
FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43
. 【点睛】
本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.
13.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =
1
2
∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =3
5
,AK =10,求CN 的长.
【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(320
1013
【解析】 试题分析:
(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;
(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=1
2
∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,
由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=3
5
AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=
4
3
CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=
3AH
HK
=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=
43PN AP
=,可设PN=12b ,AP=9b ,由
tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513
,由此即可在Rt △CPN 中由勾股定理解出CN 的长.
试题解析:
(1)如图1,连接OG .
∵EF 切⊙O 于G ,
∴OG ⊥EF ,
∴∠AGO+∠AGE=90°,
∵CD ⊥AB 于H ,
∴∠AHD=90°,
∴∠OAG=∠AKH=90°,
∵OA=OG ,
∴∠AGO=∠OAG ,
∴∠AGE=∠AKH ,
∵∠EKG=∠AKH ,
∴∠EKG=∠AGE ,
∴KE=GE .
(2)设∠FGB=α,
∵AB 是直径,
∴∠AGB=90°,
∴∠AGE =∠EKG=90°﹣α,
∴∠E=180°﹣∠AGE ﹣∠EKG=2α,
∵∠FGB=
12
∠ACH , ∴∠ACH=2α,
∴∠ACH=∠E ,
∴CA ∥FE . (3)作NP ⊥AC 于P .
∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=
35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43
CH AH =, ∵CA ∥FE ,
∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,
∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AH
HK =3,AK=2210
AH HK a
+=,
∵AK=10,
∴1010
a=,
∴a=1.AC=5,
∵∠BHD=∠AGB=90°,
∴∠BHD+∠AGB=180°,
在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,
∵∠AKH+∠HKG=180°,
∴∠AKH=∠ABG,
∵∠ACN=∠ABG,
∴∠AKH=∠ACN,
∴tan∠AKH=tan∠ACN=3,
∵NP⊥AC于P,
∴∠APN=∠CPN=90°,
在Rt△APN中,tan∠CAH=
4
3
PN
AP
=,设PN=12b,则AP=9b,
在Rt△CPN中,tan∠ACN=PN
CP
=3,
∴CP=4b,
∴AC=AP+CP=13b,∵AC=5,
∴13b=5,
∴b=5
13
,
∴CN=22
PN CP
+=410b⋅=20
10 13
.
14.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.
(1)求抛物线表达式;
(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,
①求点P坐标;
②过此二点的直线交y轴于F, 此直线上一动点G,当
GB+
2
GF
2
最小时,求点G坐标.
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值
【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313
【解析】
【分析】
(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式
为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2
×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为
2
GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;
(3)先用面积法求出sin∠213
tan∠ACB=
2
3
,在Rt△ABE中,求得圆的直径,
因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MB
BN
=
2
3
,所以BN=
3
2
MB,当MB为
直径时,BN的长度最大.
【详解】
(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),
∴
14
12554
a b
a b
-++
⎧
⎨
-++
⎩
=
,
=
解得
1
6
a
b
⎧
⎨
-
⎩
=
,
=
∴抛物线表达式为y=x²﹣6x+4.
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,
设直线BC的解析式为y=kx+m,
∵B(5,-1),C(0,4),
∴
15
4
k m
m
-+
⎧
⎨
⎩
=
=
,解得
1
4
k
m
=
,
=
-
⎧
⎨
⎩
∴直线BC的解析式为:y=-x+4,
设点P(t,t2-6t+4),R(t,-t+4),
∵▱CBPQ的面积为30,
∴S△PBC=1
2
×(−t+4−t2+6t−4)×5=15,
解得t=2或t=3,
当t=2时,y=-4
当t=3时,y=-5,
∴点P坐标为(2,-4)或(3,-5);
②当点P为(2,-4)时,
∵直线BC解析式为:y=-x+4, QP∥BC,
设直线QP的解析式为:y=-x+n,
将点P代入,得-4=-2+n,n=-2,
∴直线QP的解析式为:y=-x-2,
∴F(0,-2),∠GOR=45°,
∴2GF=GB+GR
当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,
同理可得点G的坐标为(0,-2),
(3) )∵A(1,-1),B(5,-1)C(0,4),
∴26,2,
∵S△ABC=1
2AC×BCsin∠ACB=
1
2
AB×5,
∴sin∠213tan∠ACB=2
3
,
∵AE为直径,AB=4,∴∠ABE=90°,
∵sin∠AEB=sin∠ACB=213
13=
4
AE
,
∴AE=213,
∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,
∴tanN=MB
BN =
2
3
,
∴BN=3
2
MB,
当MB为直径时,BN的长度最大,为313.
【点睛】
题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.
15.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.
(1)求AE的长及sin∠BEC的值;
(2)求△CDE的面积.
【答案】(1)2,sin∠BEC=3
5
;(2)
75
4
【解析】
【分析】
(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,
CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;
(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得
S△CDE=S△AED=
2
4
AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求
出y,继而可求得答案.
【详解】
(1)如图,作CF⊥BE于F点,
由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,
又∵点C是OB中点,
∴OC=BC=6,CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,
在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,
解得:x=52,
故可得sin∠BEC=
3
5
CF
CE
,AE=52;
(2)如图,过点E作EM⊥OA于点M,
则S△CDE=S△AED=1
2
AD•EM=
1
2
AD×AEsin∠EAM=
1
2
AD•AE×sin45°=
2
4
AD×AE,
设AD=y,则CD=y,OD=12-y,
在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,
解得:y=15
2
,即AD=
15
2
,
故S△CDE=S△AED=
4AD×AE=
75
4
.
【点睛】
本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.。