南京市金陵中学2020届高三数学检测卷(10)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S←1 For i from 1 to 4 S←S+i End For Print S
(第11题)
金陵中学2020届高三数学检测卷(10)
数学Ⅰ
一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......
上. 1.已知集合A ={x | |x |≤1,x ∈Z },B ={x |0≤x ≤2},则A ∩B = ▲ .
2.若(a +b i)(3-4i)=25(a ,b ∈R ,i 为虚数单位),则a 2+b 2的值为 ▲ .
3.在某频率分布直方图中,从左往右有10个小矩形,若第一个 小矩形的面积等于其余9个小矩形的面积和的15,且第一组数 据的频数为25,则样本容量为 ▲ .
4.如图伪代码的输出结果为 ▲ .
5.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则
黑白两球均不在1号盒子的概率为 ▲ .
6.已知函数f (x )=a sin x +b ,x ∈[0,7π6
],的值域为[2,5],则ab 的值是 ▲ . 7.在平面直角坐标系xOy 中,双曲线
x 2-y 24
=1的一条渐近线与准线的交点到另一条渐近线的距离为 ▲ .
8.已知函数f (x )=⎩⎨⎧ log 2(x +1),x >3, 2x -3+1,x ≤3满足f (a )=3,则a = ▲ . 9.在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,
三棱锥P -ABC 的体积为V 2,则V 1V 2
= ▲ . 10.设点P 是△ABC 所在平面上的一点,点D 是BC 的中点,且
BC →+2BA →=3BP →,设PD →=λAB →+μAC →,则λ+μ= ▲ .
11.将函数y =3sin(π4
x )的图象向左平移3个单位,得函数 y =3sin(π4
x +φ)(|φ|<π)的图象(如图),点M ,N 分别是函 数f (x )图象上y 轴两侧相邻的最高点和最低点,设∠MON =θ,
则tan(φ-θ)的值为 ▲ .
12.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,直线1:y =x +a ,过直线l 上点P 作圆
O 的切线PA ,PB ,切点分别为A 、B ,若存在点P 使得PA →+PB →=32PO →,则实数a 的取
值范围是_____
13.已知函数f (x )=|x +1x |-|x -1x
|,关于x 的方程f 2(x )+a |f (x )|+b =0(a ,b ∈R )恰有6个不同实数解,则a 的取值范围是 .
14.已知f (x )=⎩⎨⎧-x 2+ax ,x ≤12ax -5,x >1
, 若∃x 1,x 2∈R ,x 1≠qx 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 .
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........
作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos A =34,C =2A . (1)求cos B 的值;
(2)若ac =24,求△ABC 的周长.
16.(本小题满分14分)
如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,
∠BAA 1=60°,E ,F 分别是BC ,A 1C 1的中点.
(1)证明:EF ∥平面AA 1B 1B ;
(2)证明:AB ⊥A 1C .
17.(本小题满分14分)
某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值.经过市场调查,产品的增加值y 万元与技术改造投入的x
万元之间满足:①y 与(a -x )和x 2的乘积成正比;②x ∈(0,2am 2m +1
],其中m 是常数.若x =a 2
时,y =a 3. (1)求产品增加值y 关于x 的表达式;
(2)求产品增加值y 的最大值及相应的x 的值.
18.(本小题满分16分)
如图,在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,
椭圆C :x 24
+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴 的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的
另一交点为Q ,其中D (−65
,0).设直线AB ,AC 的斜率分别为k 1,k 2. (1)求k 1k 2的值;
(2)记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ值;若不存在,说明理由;
(3)求证:直线AC 必过点Q .
19.(本小题满分16分)
已知正项数列{a n }的前三项分别为1,3,5,S n 为数列的前n 项和,满足:
nS 2n +1-(n +1)S 2n =(n +1)(3n 3+An 2+Bn )(A ,B ∈R ,n ∈N *).
(1)求A ,B 的值;
(2)求数列{S 2
n n }的通项公式;(参考公式:12+22+…+n 2=16
n (n +1)(2n +1)) (3)若数列{b n }满足(n +1)a n =b 12+b 222+…+b n 2
n (n ∈N +),求数列{b n }的通项公式. 20.(本小题满分16分)
设a 为实数,已知函数f (x )=axe x ,g (x )=x +ln x .
(1)当a <0时,求函数f (x )的单调区间;
(2)设b 为实数,若不等式f (x )≥2x 2+bx 对任意的a ≥1及任意的x >0恒成立,求b 的取值范围;
(3)若函数h (x )=f (x )+g (x )(x >0,x ∈R )有两个相异的零点,求a 的取值范围.
15.(1) cos C =18. s in A =74,sin C =378,所以cos B =916.
(2) a =4,c =6.b =5.
16.证明:(1)取AB 的中点O ,连接OE ,OA 1,
(2)连接OC ,
17.(1)设y =f (x )=k (a -x )x 2,
因为当x =a 2
时,y =a 3,所以k =8, ·························································· 2分 所以f (x )=8(a -x )x 2,x ∈(0,2am 2m +1
]. ······················································· 4分 (2)因为f ′(x )=-24x 2+16ax ,令f ′(x )=0,则x =0(舍),x =2a 3
. 因为a 2≤2am 2m +1,所以m ≥12
. ··································································· 6分 ①当2am 2m +1≥2a 3
,即m ≥1时, 当x ∈(0,2a 3)时,f ′(x )>0,所以f (x )在(0,2a 3
)上是增函数, 当x ∈(2a 3,2am 2m +1)时,f ′(x )<0,所以f (x )在(2a 3,2am 2m +1
)上是减函数, 所以y max =f (2a 3)=3227
a 3; ········································································· 9分 ②当a 2≥2am 2m +1<2a 3,即12
≤m <1时, 当x ∈(0,2am 2m +1)时,f ′(x )>0,所以f (x )在(0,2am 2m +1
)上是增函数, 所以y max =f (2am 2m +1)=32m 2(2m +1)3
a 3, ·························································· 12分 综上,当m ≥1时,投入2a 3万元,最大增加值3227
a 3. 当12≤m <1时,投入2am 2m +1万元,最大增加值32m 2(2m +1)3
a 3. ··························· 14分 18.(1)设B (x 0,y 0),则C (-x 0,-y 0),x 2
04
+y 02=1, 所以k 1k 2=y 0x 0-2•y 0x 0+2=y 20x 20-4=1-14x 20x 20-2
=−14; ·············································· 2分 (2)联立⎩⎨⎧ y =k 1(x -2) x 2+y 2=4
得(1+k 21)x 2−4k 21x +4(k 21−1)=0, 解得x P =2(k 21-1)1+k 21,y P =k 1(x P −2)=-4k 11+k 21
, ··················································· 4分 联立⎩⎨⎧ y =k 1(x -2) x 2+4y 2=4
得(1+4k 21)x 2−16k 21x +4(4k 21−1)=0, 解得x B =2(4k 21-1)1+4k 21,y B =k 1(x B −2)=-4k 11+4k 21
, ·············································· 6分
所以k BC =y B x B =-2k 14k 21-1,k PQ =y P x P +65=-4k 1
1+k 212(k 21-1)1+k 21
+65=-5k 14k 21-1, ···························· 8分 所以k PQ =52
k BC , 故存在常数λ=52,使得k PQ =52
k B C . ························································· 10分 (3)证明:当直线PQ 与x 轴垂直时,Q (−65,−85
), 则k AQ =-85-65
-2=12=k 2,所以直线AC 必过点Q . ······································ 12分 当直线PQ 与x 轴不垂直时,直线PQ 方程为:y =-5k 14k 21-1
(x +65), 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1(x +65) x 2+y 2=4

解得x Q =-2(16k 21-1)16k 21+1,y Q =16k 116k 21+1
, ····················································· 14分 所以k AQ =16k 1
16k 21+1-2(16k 21-1)16k 21+1
-2=−14k 1=k 2, 故直线AC 必过点Q . ·········································································· 16分
19.(1)∵正项数列{a n }的前三项分别为1,3,5,S n 为数列的前n 项和,
满足:nS 2n +1-(n +1)S 2n =(n +1)(3n 3+An 2+Bn )(A ,B ∈R ,n ∈N *).
分别令n =1,2,可得:S 22-2S 21=2(3+A +B ),2S 23-3S 22=3(24+4A +2B ),
又S 1=a 1=1,a 2=3,a 3=5,S 2=4,S 3=9.
∴42-2×1=2(3+A +B ),2×92-3×42=3(24+4A +2B ),
化为:⎩⎨⎧ A +B =4 2A +B =7
,解得A =3,B =1. ······················································· 4分 (2)由(1)可得:nS 2n +1-(n +1)S 2n =(n +1)(3n 3+3n 2+n )
化为:S 2n +1n +1-S 2n n
=3n 2+3n +1. ∴当n ≥2时,S 2n n =(S 2n n −S 2n -1n -1)+(S 2n -1n -1−S 2n -2n -2
)+…+(S 222−S 211)+S 21 =3[(n -1)2+(n -2)2+…+12]+3(1+2+…+n -1)+n
=3×(n -1)n (2n -1)6+3×n (n -1)2
+n =n 3. ··········································· 8分 又S 211=1符合上式,所以S 2n n
=n 3.······························································· 9分
(3)由(2)可得:S 2n n
=n 3,S n >0,∴S n =n 2. n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. ··········································· 11分
∵数列{b n }满足(n +1)a n =b 12+b 222+…+b n 2n (n ∈N +), 即(n +1)(2n -1)=b 12+b 222+…+b n 2n
(n ∈N +), ··············································· 12分 ∴n =1时,2=b 12
,解得b 1=4. ····························································· 14分 当n ≥2时,n (2n -3)=b 12+b 2
22+…+b n -12
n -1, 可得:b n 2n =4n -1,即b n =(4n -1)•2n . ∴b n =⎩⎨⎧4,n =1,(4n -1)•2n ,n ≥2.
····································································· 16分 20.(1)当a <0时,因为f ′(x )=a (x +1)e x ,当x <-1时,f ′(x )>0;
当x >-1时,f ′(x )<0.所以函数f (x )单调减区间为(-∞,-1),单调增区间为(-1,+∞). ······························································································· 2分
(2)由f (x )≥2x 2+bx ,得axe x ≥2x 2+bx ,由于x >0,
所以ae x ≥2x +b 对任意的a ≥1及任意的x >0恒成立. ································· 3分 由于e x >0,所以ae x ≥e x ,所以e x -2x ≥b 对任意的x >0恒成立.··················· 5分 设φ(x )=e x -2x ,x >0,则φ′(x )=e x -2,
所以函数φ(x )在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,
所以φ(x )min =φ(ln2)=2-2ln2,
所以b ≤2-2ln2. ··················································································· 8分
(3)由h (x )=axe x +x +ln x ,得h ′(x )=a (x +1)e x
+1+1x =(x +1)(axe x +1)x ,其中x >0. ①若a ≥0时,则h ′(x )>0,所以函数h (x )在(0,+∞)上单调递增,所以函数h (x )至多有一个零点,不合题意; ········································································ 9分。

相关文档
最新文档