上海师大数理学院《861高等代数》配套考研真题
(NEW)上海师范大学数理学院861高等代数历年考研真题汇编(含部分答案)
![(NEW)上海师范大学数理学院861高等代数历年考研真题汇编(含部分答案)](https://img.taocdn.com/s3/m/203169d18762caaedc33d414.png)
2003年上海师范大学444高等代数考研真题(含答 案)
2002年上海师范大学438高等代数考研真题(含答 案)
2001年上海师范大学432高等代数考研真题
第2部分 其他院校高等代数最新真题
2016年华南理工大学864高等代数考研真题
2016年湘潭大学832高等代数考研真题
2016年中山大学868高等代数考研真题
第2部分 其他院校高等代数最新真题 2016年华南理工大学864高等代数考研真题 2016年湘潭大学832高等代数考研真题 2016年中山大学868高等代数考研真题
第1部分 上海师范大学高等代数考研真题
2007年上海师范大学高等代数考研真题
2005年上海师范大学461高等代数考研真题(含答 案)
目 录
第1部分 上海师范大学高等代数考研真题 2007年上海师范大学高等代数考研真题 2005年上海师范大学461高等代数考研真题(含答案) 2004年上海师范大学448高等代数考研真题(含答案) 2003年上海师范大学444高等代数考研真题(含答案) 2002年上海师范大学438高等代数考研真题(含答案) 2001年上海师范大学432高等代数考研真题
2021-2022年部分高校高等代数考研真题
![2021-2022年部分高校高等代数考研真题](https://img.taocdn.com/s3/m/b35ea20f7275a417866fb84ae45c3b3567ecdddb.png)
A
=
1 0 2
−1 1 3
−1 0 1
2 0 −1
1 −2 −2 −1
求 A 的包含 ε1 的最小的不变子空间.
3 1 −1 3. 求 A = −1 3 1 的若尔当标准形及有理标准形.
022
二、证明题.
1. 已知向量组 α1, α2, · · · , αr 线性无关, 且可由向量组 β1, β2, · · · , βs 线性表 出, 证明: 存在某个向量 βj (1 ≤ j ≤ s), 使得向量组 βj, α2, · · · , αr 线性无关.
1 2
1 1
c −2 0
112
(1) 若 A 有特征值 4, 1, −2 , 求 a, b, c. (2) 设 α = (1, k, 1)T 是 B−1 的一个特征向量, 求 k .
五、(15 分) 设 A, B 都是 n 阶实对称矩阵, 且 A 正定, 证明: AB 的特征值 都是实数.
六、(15 分) 设 σ 是 n 维线性空间 V 上的一个线性变换, 证明: σ 的秩 +σ 的零度 = n.
1
北京交通大学 2022 年高等代数考研真题
北京交通大学 2022 年高等代数考研真题
一、填空题 (每题 3 分)
1. 2n 级排列 13 · · · (2n − 1)(2n)(2n − 2) · · · 42 的逆序数为
.
2. 设 4 阶方阵 A, B 的伴随矩阵为 A∗, B∗, 且它们的秩为 r(A) = 3, r(B) =
1
2x1 3x1
+ 3x2 + 5x2
+ (a + 2)x3 + 4x4 = b + 3 + x3 + (a + 8)x4 = 5
上海大学高等代数历年考研真题
![上海大学高等代数历年考研真题](https://img.taocdn.com/s3/m/3163ddd97f1922791688e87c.png)
2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅ (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和.(三) B A ,分别为m n ⨯和m n ⨯矩阵, n I 表示n n ⨯单位矩阵.证明: m n ⨯阶矩阵n A I X B ⎛⎫=⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A ,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)V A V A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r A a A a A a ⋅⋅⋅是2()A V 的一组基. (六) 设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f gg ==试证:(1)f 与g 有相同的值域⇔,fg g g f f ==. (2)f 与g 有相同的核⇔,fg f g f g ==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X =的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x x x =++--为标准形(四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()A A a A A =,求证'm A A a E =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n nAA-≠=求证:存在a V ∈,使2211,,,,n n n a A a A a A a Aa Aa Aa a ---++++ 为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a A a a ≠<⇔A 的所有特征值都小于0. (七)设A a B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'10a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A 为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a a ax a aA B aa x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭. (二)设A 是n 阶可逆方阵,0A A B A ⎛⎫=⎪⎝⎭. (1)计算kB (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2BC C E =+,求C .(三)设(1)(1)(1)(1)p p p n p pp n p p A p n p p p n pppp--------=--------,A 是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i a a a + ,若1211210r i i rika k a k a ++++= ,则121,r k k k +或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B A B tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V a a V A a a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A E a A E a A E a +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a aA a a x a aaax=(A 为n 阶矩阵),2AA B AA ⎛⎫= ⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若A B E A =- (1)求证:1A =±,(2)若200120232B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求A . (四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121n n a a a a -=++ 121n n a a a a β-=+++ ,求A X β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为ka -(k 为正整数)(六)设A 为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GA G E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =.(1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X =的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A .(2)求正交变换X P Y =,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥ (十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,A a a B a V βββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ij A a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑ ,其中i j A 为ij a 的代数余子式.(2)如果ij a 都是整数(1,2)i n = ,则a 整除A . (二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =. (1)求行列式'E A A λ-.(2)求'0A A X =的解(X 是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E A B =-.(1)求证:21A B+=.(2)若100110231B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B =. (2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a A a a a λ≥. (六) 设123,,λλλ为3阶方阵A 的特征值,且()()()111,011,01分别为其对应的特征向量,求nA .(七) V 是n 维欧氏空间, σ是n 维空间V 上的线性变换,如果1231,,n a a a a - 是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证: (1)()()2r A r B == (2)题型与钱吉林书习题类示。
全国名校高等代数考研真题汇编(含部分答案)
![全国名校高等代数考研真题汇编(含部分答案)](https://img.taocdn.com/s3/m/ef999e0cd1f34693dbef3e18.png)
考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足
,
.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题
有
证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题
上海师范大学2016-2020年研究生入学考试高等代数试题选讲(讲稿+视频链接)
![上海师范大学2016-2020年研究生入学考试高等代数试题选讲(讲稿+视频链接)](https://img.taocdn.com/s3/m/033d9adb6037ee06eff9aef8941ea76e58fa4a01.png)
上海师范大学2016-2020年研究生入学考试高等代数试题选讲(讲稿+视频链接)上海师范大学 2016-2020 年研究生入学考试高等代数试题选讲(讲稿+视频链接)主讲人:王乐炀视频链接(B 站):https:///video/BV15M4y1g74X讲稿截图:上师大数理学院简介上海师范大学数理学院下设数学系和物理系,涉及数学、物理学、天文学三个一级学科。
其中数学学科和物理学科建立于1954年,是当时上海最早设立数学学科和物理学科的高校之一。
1956年正式成立数学系和物理系,开始招收本科生,培养了中国科学院院士褚君浩教授、上海市首届教育功臣唐盛昌校长、国家杰出青年基金获得者王斌教授等一批杰出人才。
改革开放后,学科获得了长足的发展,1984年开始招收硕士研究生,2000年开始招收博士研究生,培养的研究生多次获上海市研究生优秀成果(学位论文)和全国优秀博士论文提名奖。
目前,学院设有数学博士后流动站、数学一级学科博士点、物理一级学科硕士点、天体物理二级学科硕士点、数学和物理学科教学硕士学位点、统计学专业硕士点,数学与应用数学、信息与计算科学、数理统计、物理学四个本科专业,在校本科生1178人,在校硕士和博士研究生617人(其中博士:49人)。
学院历来重视师资队伍建设。
现有教职167人,有专任教师144人,其中:教授52人(二级教授8人),副教授57人,具有博士学位教师140人,百千万国家人才工程1人,国家杰出青年基金获得者3人,国家优秀青年基金获得者1人,教育部新世纪优秀人才支持计划4人,博士生导师20多人。
是上海师范大学师资力量最雄厚的学院之一。
近年来,学院青年教师在连续三届上海市“青椒”教学比赛中获得好成绩,获得一等奖2名,二等奖1名,由于青年教师在教学比赛中成绩出色,2018年学院获得了“上海市工人先锋号”。
学院围绕人才培养,打造了各类学科平台,现有上海市重点实验室1个、上海市国际合作联合研究中心1个、上海高校E-研究院1个、上海市教委重点实验室1个、上海市高峰学科1个、上海市重点学科1个、校级重点学科和重点实验室6个,主办了《Journal of Applied Analysis and Computations》和《上海中学数学》两本学术期刊,为高层次人才培养奠定了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海师大数理学院《861高等代数》配套考研真题一、上海师范大学高等代数考研真题
二、线性空间
一、选择题
1.下面哪一种变换是线性变换().[西北工业大学研]
A.B. C.
【答案】C查看答案
【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是惟一的.
2.在n维向量空间取出两个向量组,它们的秩().[西北工业大学研]
A.必相等B.可能相等亦可能不相等C.不相等
【答案】B查看答案
【解析】比如在中选三个向量组
(I):0
(Ⅱ)
(Ⅲ).
若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.
二、填空题
1.若
则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]
【答案】2;4.查看答案
【解析】在复数域上令;则是线性无关的.
则
此即证可由线性表出.
在实数域上,令
若,其中,则
此即在R上线性关.
可由线性表出,所以在实数域R上,有
三、分析计算题
1.设V是复数域上n维线性空间,V1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]
解:取的一组基,再取的一组基则
=秩
2.设U是由生成的的子空间,W是由生成的的子空间,求
(1)U+W:
(2)L∩W的维数与基底.[同济大学研]
解:(1)令
可得.所以
由于为的一个极大线性无关组,因此又可得
且,故为U+W的一组基.
(2)令
因为秩=3.所以齐次方程组①的基础解系由一个向量组成:
再令,则
故ζ为U∩W的一组基.
3.设A是数域K上的一个m×n,矩阵,B是一个m维非零列向量.令
(1)证明:W关于K n的运算构成K n的一个子空间;
(2)设线性方程组AX=B的增广矩阵的秩为r.证明W的维数dimW=n-r +1:
(3)对于非齐次线性方程组
求W的一个基.[华东师范大学研]
证明:(1)显然W≠,又
因为存在t1,t2使Aα=t1B,Aβ=t2B.所以
即kα+lβ∈W,此说明W是K n的子空间.
(2)对线性方程组(A,B)X n+1=0,由题设,其解空间V的维数为(n+1)-r(A,B)=n-r+1.
任取α∈W,存在t∈K,使
所以是线性方程组(A,B)X n+1=0的解.
这样,存在W到V的映射,显然,这是W形到V的一个双射.又α1,α2∈W,k∈K,存在t1,t2∈K,使Aα1=t1B,Aα2=t2B,则
所以
且
可见W与V同构,从而有dim W=dim V=n-r+1.
(3)由(2)W与如下齐次线性方程组解空间同构.
该方程组的一个基础解系为:
其在σ之下原像
即为W的一组基.
4.设V 1,V2均为有限维线性空间V的子空间,且,则和空间与另一个重合.[上海交通大学研]
证明:因为
所以
由题设
所以
即
当时,由得
此时
当时
因为,所以,此时
5.设V是数域K上n维线性空间,V1,…,Vs是V的s个真子空间,证明:(1)存在,使得
(2)存在V中一组基,使[北京大学研]
证明:(1)因V 1,…,Vs是V的真子空间,由上例,存在
(2)令,同样有且显然,线性无关.令,则存在,且线性无关,如此继续下去,可得线性无关向量组(构成V的基),且有
6.设V是定义域为实数集R的所有实值函数组成的集合,对于f,g∈V,a∈R,分别用下列式子定义f+g与af:
则V成为实数域上的一个线性空间.
设f0(x)=1,f1(x)=cosx,,f2(x)=cos2x,f3(x)=cos3x,
(1)判断f0,f1,f2,f3是否线性相关,写出理由;
(2)用<f,g>表示f,g生成的线性子空间,判断<f0,f1>+<f2,f3>是否为直和,写出理由.[北京大学研]
解:(1)令k0f0+k1f1+k2f2+k3f3=0,分别取x=0,
得
解之得k0=k1=k2=k2=0,说明f0,f1,f2,f3线性无关.
(2)因为<f,g>=L(f,g),所以
从而
又,故L(f0,f1,f2,f3)是<f0,f1>与<f2,f3>的直和.。