2020-2021中考数学知识点过关培优训练∶圆与相似附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学知识点过关培优训练∶圆与相似附答案
一、相似
1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a,b的值;
(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.
【答案】(1)解:由题意得:,解得:a= ,b=
(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),
∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,
∴△ABC为直角三角形,且∠ACB=90°.
∵AE=2t,AF= t,∴ .
又∵∠EAF=∠CAB,
∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,
∴△AEF沿EF翻折后,点A落在x轴上点D处;
由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.
假设△DCF为直角三角形,当点F在线段AC上时:
ⅰ)若C为直角顶点,则点D与点B重合,如图2,
∴AE= AB= t= ÷2= ;
ⅱ)若D为直角顶点,如图3.
∵∠CDF=90°,∴∠ODC+∠EDF=90°.
∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,
∴∠ODC=∠OBC,∴BC=DC.
∵OC⊥BD,
∴OD=OB=1,
∴AD=3,
∴AE= ,
∴t= ;
当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.
综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .
②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;
ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,
过点G作GH⊥BE于H,
设GH=m,则BH= ,DH=2m,∴DB= .
∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),
∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;
ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.
∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),
∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.
综上所述:.
【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。
(2)①由x=0及y=0时,求出点A、B、C三点的坐标,以及线段OA、OB、OC的长,利用勾股定理的逆定理证明△ABC是直角三角形,用含t的代数式表示出线段AD、AE、AF (即DF)的长,则根据AE、EF、OA、OC的长以及公共角∠OAC能判定△AEF、△AOC相似,可证得△AEF也是一个直角三角形,及∠AEF是直角;若△DCF是直角三角形,可分成三种情况讨论:
i)点C为直角顶点,由于△ABC恰好是直角三角形,且以点C为直角顶点,所以此时点B、D重合,由此得到AD的长,进而求出t的值;
ii)点D为直角顶点,此时∠CDB与∠CBD恰好是等角的余角,由此可证得OB=OD,再得到AD的长后可求出t的值;
iii)、点F为直角顶点,当点F在线段AC上时,∠DFC是锐角,而点F在射线AC的延长线上时,∠DFC又是钝角,所以这种情况不符合题意.
②此题需要分三种情况讨论:
i)当点E在点A与线段AB中点之间时,即当0<t≤,两个三角形的重叠部分是整个△DEF;
ii)当点E在线段AB中点与点O之间时,即<t≤2时,重叠部分是个不规则四边形,根据S=S△DEF﹣S△DBG可求解。
iii)当点E在线段OB上时,即2<t≤时,重叠部分是个小直角三角形,根据三角形的面积公式,即可求解。
2.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;
(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);
(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.
求证:①E、F是线段BD的勾股分割点;
②△AMN的面积是△AEF面积的两倍.
【答案】(1)解:(1)①当MN为最大线段时,
∵点M,N是线段AB的勾股分割点,
∴BM= = = ,
②当BN为最大线段时,
∵点M,N是线段AB的勾股分割点,
∴BN= = =5,
综上,BN= 或5;
(2)解:作法:①在AB上截取CE=CA;
②作AE的垂直平分线,并截取CF=CA;
③连接BF,并作BF的垂直平分线,交AB于D;
点D即为所求;如图2所示.
(3)解:①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,
∴∠EAH=∠EAF=45°,
∵EA=EA,AH=AF,
∴△EAH≌△EAF,
∴EF=HE,
∵∠ABH=∠ADF=45°=∠ABD,
∴∠HBE=90°,
在Rt△BHE中,HE2=BH2+BE2,
∵BH=DF,EF=HE,
∵EF2=BE2+DF2,
∴E、F是线段BD的勾股分割点.
②证明:如图4中,连接FM,EN.
∵四边形ABCD是正方形,
∴∠ADC=90°,∠BDC=∠ADB=45°,
∵∠MAN=45°,
∴∠EAN=∠EDN,∵∠AFE=∠FDN,
∴△AFE∽△DFN,
∴∠AEF=∠DNF,,
∴,∵∠AFD=∠EFN,
∴△AFD∽△EFN,
∴∠DAF=∠FEN,
∵∠DAF+∠DNF=90°,
∴∠AEF+∠FEN=90°,
∴∠AEN=90°
∴△AEN是等腰直角三角形,
同理△AFM是等腰直角三角形;
∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
∴AM= AF,AN= AE,
∵S△AMN= AM•AN•sin45°,
S△AEF= AE•AF•sin45°,
∴ =2,
∴S△AMN=2S△AEF.
【解析】【分析】(1)此题分两种情况:①当MN为最大线段时,②当BN为最大线段时,根据线段的勾股分割点的定义,利用勾股定理分别得出BM的长;
(2)利用尺规作图,将线段AC,CD,DB转化到同一个直角三角形中,①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;这样的作图可以保证直角的出现,及AC 是一条直角边,③连接BF,并作BF的垂直平分线,交AB于D;这样的作图意图利用垂直平分线上的点到线段两个端点的距离相等,即BD=DF,从而实现将三条线段转化到同一
直角三角形的目的;
(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.根据正方形的性质及旋转的性质得出∠EAH=∠EAF=45°,AH=AF,利用SAS判断出△EAH≌△EAF,根据全等三角形对应边相等得出EF=HE,根据正方形的每条对角线平分一组对角,及旋转的性质得出∠ABH=∠ADF=45°=∠ABD,故∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,根据等量代换得出结论;②证明:如图4中,连接FM,EN.根据正方形的性质及对顶角相等判断出△AFE∽△DFN,根据相似三角形对应角相等,对应边成比例得出∠AEF=∠DNF, AF∶DF =EF∶FN ,根据比例的性质进而得出AF∶EF =DF∶FN,再判断出△AFD∽△EFN,根据相似三角形对应角相等得出∠DAF=∠FEN,根据直角三角形两锐角互余,及等量代换由∠DAF+∠DNF=90°,得出∠AEF+∠FEN=90°,即∠AEN=90°,从而判断出△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;根据等腰直角三角形的边之间的关系AM= AF,AN= AE,从而分别表示出S△AMN与S△AEF,求出它们的比值即可得出答案。
3.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).
(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.
(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.
【答案】(1)
(2)解:如图1,过点P作PH⊥BC于点H,
∴∠PHB=∠PHQ=90°,
∵∠C=90°,AD∥BC,
∴∠CDP=90°,
∴四边形PHCD是矩形,
∴PH=CD=3,HC=PD=2t,
∵CQ=t,BC=4,
∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,
∴BQ2= ,BP2= ,PQ2= ,
由BQ2=BP2可得:,解得:无解;
由BQ2=PQ2可得:,解得:;
由BP2= PQ2可得:,解得:或,
∵当时,BQ=4-4=0,不符合题意,
∴综上所述,或;
(3)
(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,
则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,
∵AD∥BC,DM∥PQ,
∴四边形PQMD是平行四边形,
∴QM=PD=2t,
∵QC=t,
∴CM=QM-QC=t,
∵∠BCD=∠MCD=90°,
∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,
∵BM2=(BC+CM)2=(4+t)2,
∴由BM2=BD2+DM2可得:,解得:,
∴当时,∠BDM=90°,
即当时,PQ⊥BD.
【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,∴S△PBQ= BQ×3= ;
( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,
∴∠PMC=∠C=90°,
∵AD∥BC,
∴∠D=90°,△OAP∽△OBQ,
∴四边形PMCD是矩形,,
∴PM=CD=3,CM=PD=2t,
∵AD=6,BC=4,CQ=t,
∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,
∴,解得:,
∴MQ= ,
又∵PM=3,∠PMQ=90°,
∴tan∠BPQ= ;
【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。
(2)以B、P、Q三点为顶点的三角形是等腰三角形,可以分PQ=BQ、BP=BQ、PB=PQ三种情况,在Rt△PMQ中根据勾股定理,就得到一个关于t的方程,就可以求出t。
(3)根据相似三角形对应边比例可列式求出t,从而根据正切的定义求出值;
(4)首先假设存在,然后根据相似三角形对应边成比例求证。
4.在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B (1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;
【答案】(1)解:由抛物线过点A(-3,0),B(1,0),
则
解得
∴二次函数的关系解析式
(2)解:连接PO,作PM⊥x轴于M,PN⊥y轴于N.
设点P坐标为(m,n),则.
PM = ,,AO=3.
当时,=2.
∴OC=2.
=
==.∵=-1<0,∴当时,函数有最大值.
此时=.
∴存在点,使△ACP的面积最大.
(3)解:存在点Q,坐标为:,.
分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出
【解析】【分析】(1)由题意知抛物线过点A(-3,0),B(1,0),所以用待定系数法即可求解;
(2)因为三角形ACP是任意三角形,所以可做辅助线,连接PO,作PM⊥x轴于M,PN⊥y轴于N.则三角形ACP的面积=三角形APM的面积+矩形PMON的面积-三角形AOC 的面积-三角形PCN的面积。
于是可设点P的横坐标为m,则纵坐标可用含m的代数式表
示出来,即M(m,−−m + 2),
则三角形ACP的面积可用含m的代数式表示,整理可得是一个二次函数,利用二次函数的性质即可求解;
(3)根据对应顶点的不同分三种情况(△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC)讨论即可求解。
5.如图,在一间黑屋子里用一盏白炽灯照一个球.
(1)球在地面上的影子是什么形状?
(2)当把白炽灯向上平移时,影子的大小会怎样变化?
(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?
【答案】(1)解:球在地面上的影子的形状是圆.
(2)解:当把白炽灯向上平移时,影子会变小.
(3)解:由已知可作轴截面,如图所示:
依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,
在Rt△OAE中,
∴OA= = = (m),
∵∠AOH=∠EOA,∠AHO=∠EAO=90°,
∴△OAH∽△OEA,
∴,
∴OH= == (m),
又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,
∴△OAE∽△AHE,
∴ = ,
∴AH= ==2625 (m).
依题可得:△AHO∽△CFO,
∴ AHCF=OHOF ,
∴CF= AH⋅OFOH = 2625×32425=64 (m),
∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).
答:球在地面上影子的面积是0.375π m2.
【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.
(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.
(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.
6.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交与点C.
(1)求抛物线的函数表达式;
(2)若点D是y轴上的点,且以B、C、D为顶点的三角形与△ABC相似,求点D的坐标; (3)如图2,CE//x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H 且与y轴平行的直线与BC、CE分别相交于点F,G,试探求当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积.
【答案】(1)解:把A(-1,0),B(5,0)代入y=ax2+bx-5可得
,解得
二次函数的解析式为y=x2-4x-5.
(2)解:如图1,令x=0,则y=−5,
∴C(0,−5),
∴OC=OB,
∴∠OBC=∠OCB=45°,
∴AB=6,BC=5 ,
要使以B,C,D为顶点的三角形与△ABC相似,则有或,
当时,
CD=AB=6,
∴D(0,1),
当时,
∴,
∴CD= ,
∴D(0, ),
即:D的坐标为(0,1)或(0, );
(3)解:设H(t,t2-4t-5)
∥x轴,,
又因为点E在抛物线上,即,解得(舍去)
∴BC所在直线解析式为y=x-5,
∴则,
而CE是定值,
∴当HF的值最大时,四边形CHEF有最大面积。
当时,HF取得最大值,四边形CHEF的最大面积为
,
此时H( , )
【解析】【分析】(1)根据待定系数法直接确定出抛物线解析式;(2)分两种情况,利用相似三角形的比例式即可求出点D的坐标;(3)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出最大值;
7.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.
(1)求平移后抛物线的解析式并直接写出阴影部分的面积;
(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:
① 为何值时为等腰三角形;
② 为何值时线段PN的长度最小,最小长度是多少.
【答案】(1)解:设平移后抛物线的解析式,
将点A(8,,0)代入,得 = ,
所以顶点B(4,3),
所以S阴影=OC•CB=12
(2)解:设直线AB解析式为y=mx+n,将A(8,0)、B(4,3)分别代入得
,解得:,
所以直线AB的解析式为,作NQ垂直于x轴于点Q,
①当MN=AN时, N点的横坐标为,纵坐标为,
由三角形NQM和三角形MOP相似可知 ,得,解得(舍去).
当AM=AN时,AN= ,由三角形ANQ和三角形APO相似可知,
,MQ=,
由三角形NQM和三角形MOP相似可知得:,
解得:
t=12(舍去);
当MN=MA时,故是钝角,显然不成立,
故;
②由MN所在直线方程为y= ,与直线AB的解析式y=﹣x+6联立,
得点N的横坐标为X N= ,即t2﹣x N t+36﹣x N=0,
由判别式△=x2N﹣4(36﹣)≥0,得x N≥6或x N≤﹣14,
又因为0<x N<8,
所以x N的最小值为6,此时t=3,
当t=3时,N的坐标为(6,""),此时PN取最小值为
【解析】【分析】(1)平移前后的两个二次函数的a的值相等,平移后的图像经过点原
点,因此设函数解析式为:,将点A的坐标代入就可求出b的值,再
求出顶点B的坐标,利用割补法可得出阴影部分的面积=以OC,BC为边的矩形的面积。
(2)利用待定系数法先求出直线AB的函数解析式,作NQ垂直于x轴于点Q,再分情况讨论:当MN=AN时,就可表示出点N的坐标,利用相似三角形的性质,得出对应边成比例,建立关于t的方程,求出t的值;当AM=AN时再由△ANQ和△APO相似,△NQM 和△MOP相似,得出对应边成比例,分别求出t的值,然后根据当MN=MA时,∠MNA = ∠ MAN < 45 °故∠ AMN 是钝角,可得出符合题意的t的值;②将直线MN和直线AB联立方程组,可得出点N的横坐标,结合根的判别式可求出x N≥6或x N≤﹣14,然后由0<x N <8,就可求得结果。
8.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.(2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=________°
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.
【答案】(1)证明:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,
∴AC2=AB•AD,
∴,
∵∠DAB为“可分角”,
∴∠CAD=∠BAC,
∴△DAC∽△CAB
(2)120
(3)解:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,
∴AC2=AB•AD,∠DAC=∠CAB,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠ACB=90°,
∴AB=,
∴AD= .
故答案为 .
【解析】【解答】(2)解:如图所示:
∵AC平分∠DAB,
∴∠1=∠2,
∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠4,
∵∠DCB=∠DAB,
∴∠DCB=∠3+∠4=2∠1,
∵∠1+∠D+∠3=∠1+∠4+∠3=180°,
∴∠1+2∠1=180°,
解得:∠1=60°,
∴∠DAB=120°;
故答案为:120;
【分析】(1)根据“可分四边形”的定义,可得AC2=AB•AD,从而可得,根据对应边成比例且夹角相等可证△DAC∽△CAB ;
(2)根据对应边成比例且夹角相等可证△ADC∽△ACB,可得∠D=∠4,由∠DCB=∠3+∠4=2∠1,根据三角形内角和可得∠1+∠D+∠3=∠1+∠4+∠3=∠1+2∠1=180°,求出∠1=60°,从而求出∠DAB的度数;
(3)先证△ADC∽△ACB,可得∠D=∠ACB=90°,利用勾股定理求出AB=,由AC2=AB•AD,即可求出AD的长.
二、圆的综合
9.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).
(1)当G(4,8)时,则∠FGE= °
(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.
要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).
【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.
【解析】
试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.
(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.
试题解析:(1)连接FE,
∵E(8,0),F(0 , 6),G(4,8),
∴根据勾股定理,得FG=,EG=,FE=10.
∵,即.
∴△FEG是直角三角形,且∠FGE=90 °.
(2)作图如下:
P(7,7),PH是分割线.
考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.10.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中
点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.
(1)求证:AE⊥DE;
(2)若∠BAF=60°,AF=4,求CE的长.
【答案】(1)证明见解析;(2)
【解析】
试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;
(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据
AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.
试题解析:(1)证明:连接OC,
∵OC=OA,
∴∠BAC=∠OCA,
∵
∴∠BAC=∠EAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵DE切⊙O于点C,
∴OC⊥DE,
∴AE⊥DE;
(2)解:∵AB是⊙O的直径,
∴△ABC是直角三角形,
∵∠CBA=60°,
∴∠BAC=∠EAC=30°,
∵△AEC为直角三角形,AE=3,
∴AC=2,
连接OF ,
∵OF=OA ,∠OAF=∠BAC+∠EAC=60°, ∴△OAF 为等边三角形, ∴AF=OA=AB , 在Rt △ACB 中,AC=2,tan ∠CBA=
,
∴BC=2, ∴AB=4, ∴AF=2.
考点:切线的性质.
11.如图,在ABC ∆中,90,BAC ∠=︒ 2,
AB AC ==
AD BC ⊥,垂足为D ,过
,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .
(1)求证:ADE ∆≌CDF ∆;
(2)当BC 与⊙O 相切时,求⊙O 的面积.
【答案】(1)见解析;(2)2
4
π.
【解析】
分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;
(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC 2可得AD =1,利用圆的面积公式可得答案.
详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.
又∵AD ⊥BC ,AB =AC ,∴∠1=
1
2
∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD .
又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°. 又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.
∵123C AD CD ∠=∠⎧⎪
=⎨⎪∠=∠⎩
,∴△ADE ≌△CDF (ASA ).
(2)当BC与⊙O相切时,AD是直径.在Rt△ADC中,∠C=45°,AC=2,
∴sin∠C=AD
AC ,∴AD=AC sin∠C=1,∴⊙O的半径为
1
2
,∴⊙O的面积为
2
4
.
点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.
12.如图,AB,BC分别是⊙O的直径和弦,点D为»BC上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O 于点M,连接MD,ME.
求证:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
分析:(1)连接OC,根据等边对等角和切线的性质,证明∠BFG=∠OCH=90°即可;(2)连接BE,根据垂径定理和圆内接四边形的性质,得出∠HMD=∠BME,再根据三角形的外角的性质证明∠HMD=∠DEB=∠EMB即可.
详解:证明:(1)连接OC,
∵HC=HG,
∴∠HCG=∠HGC;
∵HC切⊙O于C点,
∴∠OCB+∠HCG=90°;
∵OB=OC,
∴∠OCB=∠OBC,
∵∠HGC=∠BGF,
∴∠OBC+∠BGF=90°,
∴∠BFG=90°,即DE⊥AB;
(2)连接BE,
由(1)知DE⊥AB,
∵AB是⊙O的直径,
∴,
∴∠BED=∠BME;
∵四边形BMDE内接于⊙O,
∴∠HMD=∠BED,
∴∠HMD=∠BME;
∵∠BME是△HEM的外角,
∴∠BME=∠MHE+∠MEH,
∴∠HMD=∠MHE+∠MEH.
点睛:此题综合性较强,主要考查了切线的性质、三角形的内角和外角的性质、等腰三角形的性质、内接四边形的性质.
13.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空:
①当AD=时,四边形OADC是正方形;
②当AD=时,四边形OECB是菱形.
【答案】(1)见解析;(2)①1;②3.
【解析】
试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;
(2)①依据正方形的四条边都相等可知AD=OA;
②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.
试题解析:解:∵AM⊥AB,
∴∠OAD=90°.
∵OA=OC,OD=OD,AD=DC,
∴△OAD≌△OCD,
∴∠OCD=∠OAD=90°.
∴OC⊥CD,
∴CD是⊙O的切线.
(2)①∵当四边形OADC是正方形,
∴AO=AD=1.
故答案为:1.
②∵四边形OECB是菱形,
∴OE=CE.
又∵OC=OE,
∴OC=OE=CE.
∴∠CEO=60°.
∵CE∥AB,
∴∠AOD=60°.
在Rt△OAD中,∠AOD=60°,AO=1,
∴AD=.
故答案为:.
点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.
14.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.
(1)如图1,求证:∠ABF=∠ABC;
(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90°时,求证:CH=1
2
DA;
(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.
【答案】(1)见解析;(2)见解析;(3)21 5
.
【解析】【分析】
()1由BD 为O e 的直径,得到D ABD 90∠∠+=o ,根据切线的性质得到FBA ABD 90∠∠+=o ,根据等腰三角形的性质得到C ABC ∠∠=,等量代换即可得到结论;
()2如图2,连接OC ,根据平行线的判定和性质得到ACO COH ∠∠=,根据等腰三角形的性质得到OBC OCB ∠∠=,ABC CBO ACB OCB ∠∠∠∠+=+,根据相似三角形的性质即可得到结论;
()3根据相似三角形的性质得到AB BD 2OH OC
==,根据勾股定理得到22AD BD AB 16=-=,根据全等三角形的性质得到BF BE =,AF AE =,根据射影
定理得到2
12AF 916
==,根据相交弦定理即可得到结论. 【详解】
()1BD Q 为O e 的直径,
90BAD ∴∠=o ,
90D ABD ∴∠+∠=o ,
FB Q 是O e 的切线,
90FBD ∴∠=o ,
90FBA ABD ∴∠+∠=o ,
FBA D ∴∠=∠,
AB AC =Q ,
C ABC ∴∠=∠,
C D ∠=∠Q ,
ABF ABC ∴∠=∠;
()2如图2,连接OC ,
90OHC HCA ∠=∠=o Q ,
//AC OH ∴,
ACO COH ∴∠=∠,
OB OC =Q ,
OBC OCB ∴∠=∠,
ABC CBO ACB OCB ∴∠+∠=∠+∠,
即ABD ACO ∠=∠,
ABC COH ∴∠=∠,
90H BAD ∠=∠=o Q ,
ABD ∴V ∽HOC V ,
2AD BD CH OC
∴==, 12
CH DA ∴=; ()3由()2知,ABC V ∽HOC V ,
2AB BD OH OC
∴
==, 6OH =Q ,O e 的半径为10, 212AB OH ∴==,20BD =,
16AD ∴==,
在ABF V 与ABE V 中,
90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩
o , ABF ∴V ≌ABE V ,
BF BE ∴=,AF AE =,
90FBD BAD ∠=∠=o Q ,
2AB AF AD ∴=⋅,
2
12916
AF ∴==, 9AE AF ∴==,
7DE ∴=
,15BE ==,
AD Q ,BC 交于E ,
AE DE BE CE ∴⋅=⋅,
9721155
AE DE CE BE ⋅⨯∴===. 【点睛】
本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.
15.如图,在直角坐标系中,⊙M 经过原点O(0,0),点
,0)与点B(0
),点
D 在劣弧»OA
上,连结BD 交x 轴于点C ,且∠COD =∠CBO. (1)求⊙M 的半径;
(2)求证:BD 平分∠ABO ;
(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.
【答案】(1)M 的半径r =2;(2)证明见解析;(3)点E 的坐标为(26,2). 【解析】 试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.
试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴e M 的半径r=12
AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO
(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2
在Rt △AOB 中,3OA OB
=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=263=∴点E 的坐标为(26,2)
考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.
16.如图1,⊙O 的直径AB =12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC =30°,过点P 作PD ⊥OP 交⊙O 于点D .
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=1
2
AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
【答案】(1)26;(2)①证明见解析;②33﹣3.
【解析】
试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;
(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.
试题解析:(1)如图2,连接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直径AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OB•tan30°=6×=2,
在Rt△POD中,
PD===;
(2)①如图3,连接OD,交CB于点F,连接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切线;
②由①知,OD⊥BC,
∴CF=FB=OB•cos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.
考点:圆的综合题。