机械毕业设计411槽轮机构CAD-CAM说明书

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概述
第一节槽轮机构概述
一、槽轮机构简介
间歇转位机构能将连续旋转运动转化为周期停转运动,如送料运动、转位运动等,广泛应用于电子机械、制药设备、纺织机械、制灯设备等行业中,是自动化生产设备中普遍采用的机构之一,槽轮机构则是较常用的间歇转位机构之一,常用于实现分度转位和间歇步进运动。

槽轮机构,又叫马尔他机构(Malta Mechanism)或日内瓦机构(Geneva Mechanism)。

主要由具有径向槽的槽轮、装有拔销的拨盘和机架组成。

拨盘一般为主动件,作等速连续转动,带动槽轮作间歇转动。

槽轮机构有平面槽轮机构和空间槽轮机构两类,平面槽轮机构的型式又可分为内啮合和外啮合两种,分别如图1-1和图1-2所示。

图1-3所示的则为空间槽轮机构的一种型式。

图1-1外槽轮机构图1-2内槽轮机构图1-3空间槽轮机构
在图1-1中的外槽轮机构中,主动件拔盘以角速度w1匀速转动,当拔盘上的圆销转到图1-1所示的A位置时,拨盘上锁止弧S1的起使边到达中心连线O1O2位置,槽轮开始转动。

当圆销转到A1时,拔销退出轮槽,拔盘继续转动,槽轮却停止转动,我们称此时的槽轮被锁住,槽轮上的内凹锁止弧S2和拨盘上的外凸锁止弧S1啮合在一起。

这样,主动拨盘连续转动就转换成槽轮的间歇转动。

为避免槽轮在起动和停歇时发生刚性冲击,拔销开始进入和离开轮槽时,轮槽的中心线应和圆销中心A的运动圆周相切,即拔销转到图1-1所示位置时,O1A⊥O2A。

内槽轮机构的机构原理和工作过程与外槽轮机构基本相同。

但外槽轮与拨盘转向相反,内槽轮与拨盘转向相同。

槽轮机构具有如下一些优点:(1)结构简单,工作可靠,效率较高;(2)在进入和脱离啮合时运动较平稳,能准确控制转动的角度;(3)转位迅速,从动件能在较短的时间内转过较大的角度;(4)槽轮转位时间与静止时间之比为定值。

但槽轮机构也存在如下一些缺点:(1)槽轮的转角大小不能调节;(2)槽轮转动的始、末位置加速度变化较大,从而产生冲击:(3)在工作盘定位精度要求较高时,利用锁紧弧面往往满足不了要求,而需另加定位装置;槽轮机构智能CAD系统的研究(4)槽轮的制造与装配精度要求较高。

由于这些原因,槽轮机构一般应用在转速不高的装置中。

二、槽轮机构的应用和研究现状
槽轮机构结构简单、工作可靠、从动件的运动能够较准确地控制等优点,在工业生产中广泛地应用于较少工位的间歇转位机构和步进机构中。

但传统的槽轮机构存在有以下两个缺点:(1)动力特性差。

槽轮在进入啮合和退出啮合瞬间,拨销的向心加速度使槽轮角加速度发生突变,从而出现柔性冲击;在槽轮转动过程中加速度变化的瞬间,由于间隙的存在,出现横越间隙的冲击;转动过程中最大角加速度也较大。

(2)分度数与动停比有确定的关系,动停比无选择余地。

由于槽轮机构的角速度曲线连续,因此,只要制造和装配精度能够保证,一般来说,基本不存在刚性冲击。

对槽轮机构的研究主要集中在机构的改进方面,以槽轮机构为基本机构(除机架和原动件外还具有零个或一个杆组的机构称为基本机构),在此基础上串联槽轮机构或其它基本机构以得到连续的角加速度曲线,从而避免柔性冲击,改善机构的动力性能。

多年来,提出了一些槽轮机构的改进方案,如两级串联式槽轮机构、行星轮驱动的槽轮机构、完整齿轮和非完整齿轮驱动的槽轮机构、椭圆齿轮驱动的槽轮机构、连杆机构驱动的槽轮机构等组合式槽轮机构。

其中行星轮驱动的槽轮机构结构简单,对动力特性有相当的改进效果,也扩大了动停比的选择范围。

但对这种机构的运动学分析和参数分析还有待深入,该机构的潜力也未得到充分的发掘与认识。

为适应间歇运动高速化的要求,出现了各种分度凸轮机构。

但是这类机构尚有两个缺点:(1)它们是高副机构,较易磨损; (2)制造技术复杂。

机构分析和设计的传统方法是对机构进行运动学和动力学分析,在可行的方案中选择一种能够使机构工作过程中受到的冲击最小而又能完全满足实际应用要求的方案。

在当今世界科学技术迅猛发展的现阶段,计算机技术已渗透到各个学科领域。

就机械学科而言,传统的机械设计方法己无法满足实际应用对机械设备的要求。

现代机械设计方法学就应运而生。

现代机械设计方法的一个最显著的特征就是将计算机技术应用于实际机械设计过程中,从而大大缩短设计周期,在一定程度上使机械设计更合理,也更能满足实际应用的要求。

计算机辅助设计技术是伴随着计算机技术的广泛应用而发展起来的技术领域。

通过引入数值计算方法、优化设计方法、有限元方法、专家系统及人工智能技术,模拟人脑思维过程,进行机构受力分析、方案优化、参数设计、材料选择和公差设计等一系列机械设计步骤,最终生成满足特定用途的较合理的工程图纸。

从而可以缩短产品的设计周期,大大降低产品设计成本。

随着现代科技的不断发展,计算机应用技术范围的不断扩大,将传统的机械设计方法和现代机械设计方法结合起来应用于槽轮机构的研究,是其应用与发展的主要趋势。

第二节机械 C AD 技术概述
一、机械CAD技术简述
计算机辅助设计〔CAD)技术是近三十年来逐步发展起来的一项新兴技术,它利用计算机高速运算和精确的特点,协助工程技术人员完成设计计算工作,利用工程数据库存储大量数据和绘图仪精确地绘图。

CAD系统通常由硬件系统和软件系统两大部分组成,其基本结构如图1-4所示:
图1-4 CAD系统的基本结构
CAD软件系统主要实现交互图形输入功能,几何造型功能,几何特性计算功能,有限元分析功能,优化分析功能及统一的信息管理功能等。

从CAD系统的任务和计算机正常运行的角度出发,CAD系统软件一般分为三类:系统软件,支撑软件和应用软件。

它们的关系可分为三个层次,其中系统软件处于底层,它是由计算机的操作系统的内核和以内核为基础的一些公用程序组成的,它是与计算机硬件直接联系而且供用户使用,起到扩充计算机功能和合理调度计算机硬件资源作用的软件;支撑软件是CAD系统中的基础软件,它以系统软件为基础,用来完成CAD作业过程中的特定任务,用于机电产品的CAD系统,应具有下列几种支撑软件:交互式图形处理软件、几何造型软件、有限元分析软件、防真软件等;应用软件是针对某特定应用领域或某特定产品而设计的程序,又叫专用软件,一般地说,这类软件由用户根据产品设计的需要,在系统软件和支撑软件的基础上作二次开发的软件,它包括产品的方案设计、总体设计、各子系统设计及零部件设计与制造用的五个层次的软件,另外还有一个与产品密切相关的数据和图形库。

二、机械CAD技术的研究现状和发展方向
CAD技术标志着机器的智能化和脑力劳动的自动化,因此各国政府在制定新技术发展规划时都对CAD技术及计算机集成制造系统(CIMS)予以极大的重视,并加强对它们的研究工作。

当前,机械CAD技术中的几个最重要的研究领域和研究内容是:基于特征的产品信息建模技术、CAD的智能化技术、CAD的参数化技术。

CAD技术及其应用水平已经成为衡量一个国家的科技发展水平和工业水平的重要标志之一。

1.基于特征的产品信息建模技术
传统的几何造型技术一直是机械CAD中的主要研究领域,该技术中比较成的有线框造型、曲面造型和实体造型。

虽然这三种几何造型技术提供了物理对象在数学上的精确描述,并在图形显示、物性计算等方面得到了很好的应用,但它们所建立的模型只产生层次较低的几何信息,如点、线、面和基本体素,而没有高层次的信息,如尺寸、公差、材料特性及装配要求,因此在这种纯几何造型数据库的基础上难以实现零件分类编码的自动生成,不能满足生产各阶段自动化的要求,更难以实现CAD/CAPP/CAM的集成以及产品的并行设计。

进入八十年代中期,国际上开始研究基于特征的设计,而建立基于特征的产品信息模型则是行之有效的方法。

特征是一个高层次的设计概念,内部包含了设计人员的设计意图及与后继工作有关的各种信息。

对于具体的机械产品而言,特征是一组与产品描述相关的信息集合,产品特征信息模型包括管理特征模型、形状特征模型和技术特征模型。

而形状特征模型又包括几何结构模型、精度特征模型、材料特征模型和装配特征模型。

产品的形状特征建模是产品特征信息建模的主要内容,也是产品定义的核心内容,它是产生其它信息的基础。

基于特征的产品信息建模需要考虑利用特征可以设计复杂程度的产品模型,要研究基于特征设计系统提供给用户设计产品的三种手段之间的相互关系。

这三种手
段是:形状特征库、用户自定义特征、形状特征的组合与修改。

其中形状特征库的建立是形状特征建模技术中比较重要也是较难处理的问题,如何选择合适规模的形状特征库是一个需深入研究的课题。

由于三种手段各有其优缺点,要
充分发挥特征造型的作用,需要在三者之间进行综合平衡,深入研究这三种手段的建
立过程,正确处理好三者之间的关系,是今后主要的研究方向。

2. CAD的智能化技术
机械产品设计不但涉及到一系列的计算公式、众多的设计标准和规范以及制图技术,而且还要用到许多非数值的经验性知识,如开始的概念设计和产品的初步设计则要求设计专家凭借知识和经验来思考、推理和判断;而设计过程是一个从设计、评价、再设计直到产生最优设计结果的反复过程,这就更需要设计专家具有一定的知识和经验,也促进了专家系统和CAD的结合。

概念设计(即方案设计)是整个设计过程中最重要的一个阶段,这一阶段是设计创造性最为集中的部分,这一部分与问题的表达和理解的正确与否,所提方案的优劣以及评价和决策的适当与否等有关,它决定了最终设计的特色、水平和效益。

智能化是机械 CAD中极具有前途的研究领域。

目前,机械CAD的智能化正朝向专家系统、数值计算、数据库系统和图形系统的集成程序设计环境方向发展。

3. CAD的参数化技术
参数化技术是指设计对象的结构形状比较定型,可以用一组参数来约定尺寸的关系。

参数与设计对象的控制尺寸有显然的对应,设计结果的修改受到尺寸驱动,所以也称为参数化尺寸驱动,参数化设计技术以其强有力的草图设计、尺寸驱动修改图形的功能,成为初始设计、产品建模及修改系列化设计、多方案比较和动态设计的有效手段。

近几年参数化技术己有不少种方法,如变动几何法、几何推理法及参数化操作法等。

变动几何法将几何约束转变为一系列以特征点为变元的非线性方程组,通过数值法解非线性方程组确定出几何细节,该方法必须用户输入充分且一致的几何约束才能求出约束方程的解,对不一致的约束模型则以进行有效的判别与处理,也难以有效地将局部变动限制在局部范围内求解:几何推理法是建立在专家系统的基础上,采用谓词表示几何约束,通过推理机导出几何细节,这种方法可以检查约束模型的有效性,并具有局部修改功能,但存在着推理速度慢、系统庞大等问题;参数化操作法采用参数化操作表示与处理几何约束,并通过与参数化操作对应的几何计算程序逐步确定出精确几何模型,此法简单、实用,但难以表示与处理复杂的几何约束。

技术发展很快,一旦工程设计能以参数化方式进行,设计人员就可以不再关心设计的具体过程,从而集中主要精力去创意,同时计算机与具体设计的信息交换也变得更加简化,电脑得以在更高层次上模拟人脑工作。

广义参数化是对事物的本质性认识,而通常人们所说的参数化技术实际上是一种约束模型,这种模型包括图形的几何约束和拓扑关系约束。

实现这些约束可通过解约束方程组或通过几何推理,当前大多数参数化设计系统并没有很好地解决这一问题,对复杂的图形便无法正确完成尺寸驱动。

欲解决该问题,宜进一步从两个方面来研究。

可以把设计对象分解为一些简单实体,这些实体具有三种基本信息,即形状信息、定位信息和属性信息,而所有这些基本信息都可由数学定义的变量表示,赋予这些变量一定的工程意义或工艺意义,即形成设计参数,通过改变这些参数,便得到不同的设计结果;也可以考虑把面向对象的思想与参数化技术中的约束模型的建立及推理求解结合起来,克服一般尺寸驱动系统的不足,从而能够准确和完整地描述复杂图形的几何信息,快速完成推理求解。

机械 CAD技术已经向智能化、参数化及基于特征的产品信息建模方向发展,而且这几个研究领域和研究内容之间的界限已不再分明,而是相互融合、相互促进、协调发展。

CAD技术作为多学科高度集合的一门新技术,推动了工业设计中脑力劳动的技术革命,CAD/CAM的一体
化则能够更有效地控制、管理复杂的现代化生产作业,提高产品的竞争能力,使生产技术得到巨大发展。

第三节智能CAD 概述
由于传统的CAD系统存在一些缺陷,如计算机不能识别在设计中的变化、不能处理模糊知识或不充分描述的设计问题、缺乏宏观知识结构分析等,使用户在使用系统时,需具有较高的专业知识和较丰富的实践经验,为此人们提出了智能CAD系统问题。

智能CAD就是把人工智能的思想、方法和技术引入传统的CAD系统中,分析归纳设计知识,模拟人脑推理分析,提出设计方案,从而提高设计水平,缩短周期,降低成本。

以知识和知识工程为基础的专家系统的出现给CAD研究带来了新的启发,并且取得了显著的成绩。

CAD专家系统具有一定的智能能力,能提出和选择设计方法策略,使计算机能支持设计过程的各个阶段,它是一个能对一些重要问题提供具有专家水平的解。

第二章槽轮机构的设计与分析
第一节槽轮机构的工作原理
一槽轮机构的工作原理
槽轮机构,又叫马尔他机构或日内瓦机构,由具有径向槽的槽轮1和具有拨销2的拨杆3组成,其工作原理如图2-1所示。

图2-1 槽轮机构工作原理简图
当拨杆转过一定的角度,拨动槽轮转过一个分度角,由图(a)所示的位置转到图(b)
所示的位置时,拨销退出轮槽,此后,拨杆空转,直至拨销进入槽轮的下一个槽内,才又重复上述的循环。

这样,拨杆(主动件)的等速(或变速)连续(或周期)运动,就转换为槽轮(从动件)时转时停的间歇运动。

槽轮机构常采用锁紧弧定位,即利用拨杆上的外凸圆弧一锁紧弧A与槽轮上的内凹圆弧一定位弧B的接触锁住槽轮。

图(a)所示为拨销开始进入轮槽时的位置关系,这时外凸圆弧面的端点F点离开凹面中点,槽轮开始转动。

图(b)所示为拨销刚要离开轮槽时的位置关系,这时外凸圆弧面的另一端点E刚好转到内凹圆弧面的中点,拨杆继续转动,E点越过凹面中点,槽轮被锁住。

图(c)为拨销退出轮槽以后的情况,这时,外凸圆弧面与内凹圆弧面密切接触,槽轮被锁住而不能向任何方向转动.由上述工作过程的要求,拨杆上的外凸圆弧缺口应对称于拨杆轴线。

二.外槽轮机构角速度和角加速度的分析
假设槽轮机构在工作的某一状态时的工作简图如图2-2的(a)所示,其对应的状态矢量图如2-2的(b)所示,0,为槽轮中心,飞为拔盘中心,E'为槽轮开始进入运动时的圆销中心的位置,E为槽轮在运动中的任一位置。

设槽轮槽数为Z>槽轮的角速度为m1,角加速度为a,,拔盘的转速为。

在图2-2 (b)中,角(p, 0, (p1, 01满足:
图2-2槽轮机构工作简图以及矢量分析图
其中:φ+φ1=∏ /Z ,θ1=Wt, θ=∏ /2 一∏/Z-Wto
设O1O2:长度为L3,O1E长度为L1,O2E长度为L2.
令“λ= L2/ L3 (2-2)
所以有关系式
φ1=∏ /2 - arctg L2 sin(θ)/ L3 - L2cos(θ) (2-3)
(2-2) 式与(2-3)相结合,得到对于不同的Z值的槽轮的角速度和角加速度同时间的关系图,
分别如图2-3的(a), (b)所示:
图2-3槽轮的角速度曲线图(a)和角加速度曲线图(b)
三.内槽轮机构的角速度和角加速度规律
如图1-2所示,同外槽轮机构类似的推导,由槽轮、拔盘和中心距之间的几何关系,可得到内槽轮机构的角位置、角速度与角加速度公式分别为:
φ=arctgλsinθ/(1+λcosθ)
W2=[ W1λ(cosθ+ λ)]/(1+λ2+2λcosθ)
ξ2=[ W21(λ2-1) sinθ]/ (1+λ2+2λcosθ)2
式中φ一槽轮转过的角度
θ为转盘转过的角度
λ=R 1/ C - sin (∏ /Z)
C一槽轮的中心距
W1转盘的角速度
W2槽轮的角速度
W3槽轮的角加速度
θ角的变化区间为:-a ≤θ≤a,当拔销中心处于O1O2的延长线位置时,θ=00
当θ角与W1转向一致时为正,反之θ角为负。

由上式可知,W2和ξ2的变化取决于槽数z。

图(2-4)所示为内槽轮机构不同槽数z时的ξ
变化曲线。

图中纵横坐标的含义与图〔2-3)相同。

2
图2一4 不同槽数时内槽轮机构的角加速度曲线图
由上式知,内槽轮机构的最大角速度出现在θ=00位置;
由上式知,内槽轮机构的最大角加速度出现在拨销进入与脱离轮槽的瞬间。

四.主要几何尺寸的设计
图 2-5为槽轮机构主要尺寸关系图。

图中O1为拔盘中心,O2为槽轮中心,L1为拨
销的轨迹半径;L2为槽轮半径;L3为中心距,h为槽轮槽深,r b为拨销半径,δ为间隙。

设拔盘轴的直径为d.
图2-5 槽轮机构主要几何尺寸关系图
为避免槽轮在起动和停歇时发生刚性冲击,圆销开始进入和离开轮槽时,轮槽的中心线应和圆销中心的运动圆周相切,从而决定了槽轮机构主要尺寸之间的关系,即有: λ= L1/L3 =sin∏ /Z
= L2/L3 =cos∏ /Z
λ
1
由图2-5可得下列关系式:
L1= L3 sinφ0 = L3 sin∏ /Z
L2= L3 cosφ0 = L3 cos∏ /Z
H1 = L1 + L2 - L3
H = H1 +r b+δ
r<2(L3 - L2)= 2L3(1- cos∏ /Z)
一般δ的取值范围为3-6mm, 当槽轮槽数z较大时,上述比值较小,故为获得一定的d而又不致使玛过分增大,一般将拨盘做成悬臂式。

五.本设计的主要几何尺寸的设计
本设计以槽数4 、销轮和槽轮中心距33 mm、销轴半径2 mm、铣刀半径2mm 为例,设计槽槽轮机构,由上述关系式,可知:
λ= L1/L3 =sin∏ /Z=0.707
= L2/L3 =cos∏ /Z=0.707
λ
1
由图2-5可得下列关系式:
L1= L3 sinφ0 = L3 sin∏ /Z=23.33mm
L2= L3 cosφ0 = L3 cos∏ /Z=23.33mm
H1 = L1 + L2 - L3 =13.66 mm
H = H1 +r b+δ=13.66+2+3=18.66 mm
r<2(L3 - L2)= 2L3(1- cos∏ /Z)=19.34
如下图所示:
第三章数控加工技术概述
一. 数控加工技术的发展
数控加工的发展趋势是高速和精密,另一个发展趋势是完整加工,即在一台机床上完成复杂零件的全部加工工序。

数控加工中的程序编制也随着数控机床的更新而改变。

50年代,MIT设计了一种专门用于机械零件数控加工程序编制的语言,称为APT(Automatically Programmed Tool)。

其后,APT几经发展,形成了诸如APTII、APTIII(立体切削用)、APT(算法改进,增加多坐标曲面加工编程功能)、APTAC(Advanced contouring)(增加切削数据库管理系统)和APT/SS (Sculptured Surface)(增加雕塑曲面加工编程功能)等先进版。

采用APT语言编制数控程序具有程序简练,走刀控制灵活等优点,使数控加工编程从面向机床指令的“汇编语言”级,上升到面向几何元素.APT仍有许多不便之处:采用语言定义零件几何形状,难以描述复杂的几何形状,缺乏几何直观性;缺少对零件形状、刀具运动轨迹的直观图形显示和刀具轨迹的验证手段;难以和CAD数据库和CAPP系统有效连接;不容易作到高度的自动化,集成化。

针对APT语言的缺点,1978年,法国达索飞机公司开始开发集三维设计、分析、NC加工一体化的系统,称为CATIA。

随后很快出现了像EUCLID,UGII,INTERGRAPH,Master C A M, Pro/Engineering及NPU/GNCP等系统,这些系统都有效的解决了几何造型、零件几何形状的显示,交互设计、修改及刀具轨迹生成,走刀过程的仿真显示、验证等问题,推动了CAD和CAM向一体化方向发展。

到了80年代,在CAD/CAM 一体化概念的基础上,逐步形成了计算机集成制造系统(CIMS)及并行工程(CE)的概念。

目前,为了适应CIMS及CE发展的需要,数控编程系统正向集成化,网络化和智能化方向发展。

二. 数控加工工艺的特点
数控加工工艺具有以下特点:
(1) 数控机床加工精度高。

一般只需一次加工即能达到加工部位的精度,而不需分粗加工、精加工。

(2) 在数控机床上工件一次装夹,可以进行多个部位的加工,有时甚至可完成工件的全部加工内容。

(3) 由于刀具库或刀架上装有几把甚至更多的备用刀具,因此,在数控机床上加工工件时刀具的配置、安装与使用不需要中断加工过程,使加工过程连续。

(4) 根据数控机床加工时工件装夹特点与刀具配置、使用的特点区别于普通机床加工时的情况,工件的各部位的数控加工顺序可能与普通、机床上加工工件的顺序也有很大的区别。

此外根据数控机床高速、高效、高精度、高自动化等特点,数控加工还具有以下工艺特点:
1) 切削量用比普通机床大。

2) 工序相对集中。

3) 较多地使用自动换刀(ATC)。

4) 首件需试切削。

5) 工艺内容更具体更详细,工艺要求更严密更精确。

高效率、高精度加工是数控机床加工最主要特点之一。

利用数控机床加工,其产品加工的质量一致性好,加工精度和效率均比普通机床高出很多,尤其是在轮廓不规则、复杂
空间曲面、多工艺复合化加工和高精度要求的产品加工时,其优点是传统机床所无法比拟的。

数控加工另一个特点是产品装夹定位灵活,同一产品零件可能有多种加工方案。

然而正是其灵活性和高精度要求对其高效应用带来了的局限性,如存在数控程序的编制、刀具工装夹具的准备周期长等不利因素。

数控工艺的合理性与高质量数控程序的快速编制是限制数控加工的瓶颈问题之一。

数控加工的成本相对较高也是制约其广泛应用的一个因素。

数控加工对技术人员的水平要求相当高,数控工艺和程序的质量是保证产品加工质量合格最主要和最关键的因素。

数控加工时,产品的质量完全靠数控工艺和数控程序来保证。

产品加工的具体细节在进行工艺设计和程序编制时必须全面考虑,只有设计正确才能保证产品加工的质量要求。

在数控加工朝高速、超高速和复合化加工方向发展的趋势下,对技术人员就提出了更高的要求。

三. 数控机床与普通机床相比具有的优越性
普通机床加工时,其加工成本相对较低,工序较长,且工步中很多具体细节由技术工人来完成,对技术工人的水平要求相对较高。

数控机床加工工艺相比较普通机床加工工艺的优越性有以下几点:
(1) 数控加工工艺的“内容十分具体、工艺设计工作相当严密”。

数控机床加工工艺与普通机床加工工艺相比较,由于采用数控机床加工具有加工工序少,所需专用工装数量少等特点,克服了普通传动工艺方法的弱点,一般说来,数控加工的工序内容要比普通机床加工的工序内容复杂。

从编程来看,加工程序的编制要比普通机床编制工艺规程复杂。

(2) 数控加工的工艺“复合性”。

采用数控加工后,工件在一次装夹下能完成镗、铣、铰、攻丝等多种加工,因此,数控加工工艺具有复合性特点,也可以说数控加工工艺的工序把传统工艺中的工序“集成”了,这使得零件加工所需的专用夹具数量大为减少,零件装夹次数及周转时间也大大减少了,从而使零件的加工精度和生产效率有了较大的提高。

数控加工工艺设计是对工件进行数控加工的前期工艺准备工作,无论是手工编程还是自动编程,这项工作必须在程序编制工作以前完成。

为了优化数控程序设计、提高编程效率、合理使用数控机床,我们有必要对数控加工工艺设计等技术问题加以分析、研究,以做好数控机床加工前的技术准备工作。

数控加工取代传统加工占据生产制造的主导地位已成为一种趋势,但由于历史的原因,传统的加工设备与先进的数控机床并存,是目前乃至今后很长一段时期内大多数制造企业的设备现状。

如何从工艺的角度根据各企业的设备现状、产品生产规模、零件结构形式与加工精度要求等方面来合理地进行产品工艺方案设计,充分发挥企业现有数控设备与传统设备的加工效率,使企业设备资源与人力资源得到充分利用,需要从多个方面来探讨。

数控工艺与普通工艺结合的好坏直接影响到数控机床与普通机床加工效率的发挥,进而影响到生产计划任务的完成。

提高产品机械加工工艺与数控程序的编制质量,是早日实现制造业产品的高精度、高效率、高质量加工必需解决的问题之一。

因此,寻求传统加工工艺与数控加工工艺的合理衔接途径与措施,对于提高企业的经济效益是非常有意义的。

数控工艺与普通工艺结合的途径和措施,具体可从以下几个方面来实施:
(1) 产品的设计状态与生产批量。

(2) 粗精加工与加工精度的结合。

(3) 精密设备与一般设备的结合。

(4) 加工工种之间的结合。

(5) 技术交流和技术创新相结合。

相关文档
最新文档