二进制,八进制,十六进制转换

合集下载

二进制与八进制十六进制的相互转化方法

二进制与八进制十六进制的相互转化方法

二进制与八进制十六进制的相互转化方法二进制、八进制和十六进制是计算机领域常用的数字表示方法。

在计算机编程、数据存储和通信等领域,经常需要进行二进制、八进制和十六进制之间的转化。

这篇文章将详细介绍二进制与八进制、十六进制的相互转化方法。

1.二进制转八进制二进制转八进制的方法是将二进制数每三位分成一组,从最低位开始,然后将每组对应的八进制数写下来就可以了。

1-101-011-0将每组对应的八进制数写下来,即转换完成:1522.八进制转二进制八进制转二进制的方法是将每一位的八进制数转换成对应的三位二进制数,从最高位开始逐个转换。

例如,要将八进制数347转换成二进制:3-4-71.二进制转十六进制二进制转十六进制的方法是将二进制数每四位分成一组,从最低位开始,然后将每组对应的十六进制数写下来就可以了。

1-1010-0110将每组对应的十六进制数写下来,即转换完成:1A62.十六进制转二进制十六进制转二进制的方法是将每一位的十六进制数转换成对应的四位二进制数,从最高位开始逐个转换。

例如,要将十六进制数1A6转换成二进制:1-A-61.八进制转十六进制八进制转十六进制的方法是将八进制数先转换成二进制,然后再将二进制数每四位分成一组,从最低位开始,然后将每组对应的十六进制数写下来就可以了。

例如,要将八进制数347转换成十六进制:3-4-7再将二进制数每四位分组:0111-0011-1001最后将每组对应的十六进制数写下来,即转换完成:7392.十六进制转八进制十六进制转八进制的方法是将十六进制数先转换成二进制,然后将二进制数每三位分成一组,从最低位开始,然后将每组对应的八进制数写下来就可以了。

例如,要将十六进制数1A6转换成八进制:1-A-6将每位转换成对应的四位二进制数:0001-1010-0110。

再将二进制数每三位分组:0-001-101-001-100。

总结:由于二进制与八进制、十六进制的数制规律,相互转换方法相对简单。

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法在计算机科学和数字电路中,二进制、八进制和十六进制是常用的数制系统。

转换这些数制系统之间的方法相对简单,下面将详细介绍如何进行二进制、八进制和十六进制之间的转换。

一、二进制转换方法:二进制是一种由0和1组成的数制系统。

在二进制数中,每一位的权值都是2的幂次方。

例如,二进制数1101可以转换为十进制数131.二进制转换为八进制的方法:(1)将二进制数从右向左进行分组,每三个二进制位一组。

(2)在每个组之前添加一个0,以保持组数的整数倍。

(3)将每组的二进制数转换为十进制数。

(4)将每个十进制数转换为相应的八进制数。

(5)将转换结果合并起来,得到最终的八进制数。

11001010110010103122.二进制转换为十六进制的方法:(1)将二进制数从右向左进行分组,每四个二进制位一组。

(2)在每个组之前添加一个0,以保持组数的整数倍。

(3)将每组的二进制数转换为十进制数。

(4)将每个十进制数转换为相应的十六进制数。

(5)将转换结果合并起来,得到最终的十六进制数。

110110101010001101101011B5二、八进制转换方法:1.八进制转换为二进制的方法:(1)将八进制数的每一位转换为3位的二进制数。

(2)将转换结果合并起来,得到最终的二进制数。

例子:将八进制数63转换为二进制数。

631100112.八进制转换为十六进制的方法:(1)将八进制数的每一位转换为4位的二进制数。

(2)将转换结果合并起来,得到最终的二进制数。

(3)将二进制数转换为十六进制数。

例子:将八进制数736转换为十六进制数。

73611101111073E所以,八进制数736等于十六进制数73E。

三、十六进制转换方法:1.十六进制转换为二进制的方法:(1)将十六进制数的每一位转换为4位的二进制数。

(2)将转换结果合并起来,得到最终的二进制数。

例子:将十六进制数C7转换为二进制数。

C7110001112.十六进制转换为八进制的方法:(1)将十六进制数的每一位转换为四位的二进制数。

二进制八进制十进制十六进制之间的转换算法

二进制八进制十进制十六进制之间的转换算法

二进制八进制十进制十六进制之间的转换算法二进制、八进制、十进制和十六进制是计算机中常用的数字系统。

它们之间的转换可以通过一些简单的算法实现。

下面我将分别介绍二进制到八进制、十进制和十六进制的转换算法,八进制到二进制、十进制和十六进制的转换算法,十进制到二进制、八进制和十六进制的转换算法,以及十六进制到二进制、八进制和十进制的转换算法。

1.二进制转八进制、十进制和十六进制的转换算法:-二进制转八进制:首先将二进制数按照从右向左每三位分组,不足三位的在左边补零,然后将每组转换为对应的八进制数即可。

(1)将二进制数按照从右向左每三位分组得到001011,不足三位的在左边补零;-二进制转十进制:二进制数的每一位乘以2的幂,然后将结果求和即可。

-二进制转十六进制:首先将二进制数按照从右向左每四位分组,不足四位的在左边补零,然后将每组转换为对应的十六进制数即可。

(1)将二进制数按照从右向左每四位分组得到00010110,不足四位的在左边补零;2.八进制转二进制、十进制和十六进制的转换算法:-八进制转二进制:将八进制数的每一位转换为对应的三位二进制数即可。

例如,将八进制数13转换为二进制数:-八进制转十进制:将八进制数的每一位乘以8的幂,然后将结果求和即可。

例如,将八进制数13转换为十进制数:1×8^1+3×8^0=11,所以13的十进制表示为11-八进制转十六进制:首先将八进制数转换为二进制数,然后将二进制数按照从右向左每四位分组,不足四位的在左边补零,最后将每组转换为对应的十六进制数即可。

例如,将八进制数13转换为十六进制数:(2)将二进制数按照从右向左每四位分组得到00000101,不足四位的在左边补零;(3)将每组转换为对应的十六进制数得到05,所以13的十六进制表示为053.十进制转二进制、八进制和十六进制的转换算法:-十进制转二进制:将十进制数不断除以2,直到商为0,将每一步的余数从最后一步开始依次排列即可。

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧在计算机科学和编程中,经常需要进行二进制、八进制和十六进制数
之间的转换。

这些转换的技巧可以帮助我们在不同进制之间快速转换数值。

下面是一些常用的技巧和方法:
一、二进制与八进制之间的转换:
二、二进制与十六进制之间的转换:
三、八进制与十六进制之间的转换:
1.从八进制到十六进制:先将八进制数转换为二进制数,然后将二进
制数转换为对应的十六进制数。

2.从十六进制到八进制:先将十六进制数转换为二进制数,然后将二
进制数转换为对应的八进制数。

上述方法是最基本也最直接的转换方法。

除了这些方法外,还有一些
进一步简化转换的技巧:
这些简化方法在转换大量数值时可以极大地提高转换速度和准确性。

总结起来,对于二进制、八进制和十六进制之间的转换,我们可以采
用分组的方式,将数值从一个进制转换到另一个进制。

同时,可以应用数
字与对应进制数的直接对应关系,将多位二进制数直接转换为对应的八进
制或十六进制数,以提高转换的速度和效率。

再者,熟悉几个特殊的数值
对应关系,也可以帮助在不同进制之间快速转换。

二进制_八进制_十进制_十六 进制之间的相互转换

二进制_八进制_十进制_十六    进制之间的相互转换

二进制,八进制,十进制,十六进制之间的相互转换和相关概念二进制:计算机只认识0或1,也就是高电平和低电平.所以所有的数据格式最终会转化为2进制形式,计算机硬件才能识别。

二进制逢二进一,八进制逢八进一,十进制逢十进一,十六进制逢十六进一。

下边是各进制之间的转换公式.二进制转十进制0110 0100(2) 换算成十进制第0位 0 * 2^0 = 0第1位 0 * 2^1 = 0第2位 1 * 2^2 = 4第3位 0 * 2^3 = 0第4位 0 * 2^4 = 0第5位 1 * 2^5 = 32第6位 1 * 2^6 = 64第7位 0 * 2^7 = 0 +---------------------------100二进制转八进制可采用8421法1010011(2)首先每三位分割即: 001,010,011不足三位采用0补位.然后采用8421法: 001=1010=2011=3所以转换成8进制是123二进制转十六进制1101011010100(2)首先每四位分割即: 0001,1010,1101,0100不足四位采用0补位.然后采用8421法: 0001:11010:A1101:D0100:4所以转换成十六进制是1AD4十六进制当数字超过9后将采用A代替10,B代替11,C代替12,D代替13,E 代替14,F代替15;下边是十进制的各种转换:十进制转二进制6(10)10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

商余数6/2 3 03/2 1 11/2 0 1最后把余数从下向上排列写出110即是转换后的二进制.十进制转换八进制10进制数转换成八进制数,这是一个连续除8的过程:把要转换的数,除以8,得到商和余数,将商继续除以8,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

120(10)商余数120/8 15 015/8 1 71/8 0 1最后把余数从下向上排列写出170即是转换后的八进制.十进制转换十六进制10进制数转换成十六进制数,这是一个连续除16的过程:把要转换的数,除以16,得到商和余数,将商继续除以16,直到商为0。

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法二进制、八进制和十六进制是计算机领域中常用的进制表示方式,它们在计算机内部的数据储存和处理中起着重要的作用。

本文将介绍二进制、八进制和十六进制之间的相互转换方法。

一、二进制转八进制二进制是以2为基数的数字系统,只包含0和1两个数字。

而八进制是以8为基数的数字系统,包含0至7共8个数字。

将二进制数转换为八进制数的方法如下:1. 将二进制数从右往左每三位一组进行分组,如果最左边的组不足三位,则在左边补0,直到凑齐三位。

例如,11101分组后为011 101。

2. 将每个分组转换为对应的八进制数。

对照八进制数的权值表,将每个分组转换为对应的八进制数。

例如,011转换为3,101转换为5。

3. 将得到的八进制数按照从左到右的顺序排列,即为最终的八进制数。

例如,011 101转换为35。

二、八进制转二进制将八进制数转换为二进制数的方法与二进制转八进制相反,具体步骤如下:1. 将八进制数的每一位转换为对应的三位二进制数。

对照八进制数的权值表,将每一位转换为对应的三位二进制数。

例如,八进制数35转换为011 101。

2. 去掉左边多余的0,即为最终的二进制数。

例如,011 101去掉左边的0后为11101。

三、二进制转十六进制十六进制是以16为基数的数字系统,包含0至9的十个数字和A 至F的六个字母。

将二进制数转换为十六进制数的方法如下:1. 将二进制数从右往左每四位一组进行分组,如果最左边的组不足四位,则在左边补0,直到凑齐四位。

例如,1101101分组后为0011 01101。

2. 将每个分组转换为对应的十六进制数。

对照十六进制数的权值表,将每个分组转换为对应的十六进制数。

例如,0011转换为3,01101转换为D。

3. 将得到的十六进制数按照从左到右的顺序排列,即为最终的十六进制数。

例如,0011 01101转换为3D。

四、十六进制转二进制将十六进制数转换为二进制数的方法与二进制转十六进制相反,具体步骤如下:1. 将十六进制数的每一位转换为对应的四位二进制数。

二进制、八进制、十六进制之间的转换

二进制、八进制、十六进制之间的转换

3. 二进制、八进制、十六进制之间的转换(1)二进制转换成八进制欲将含有小数位的二进制数转换成八进制数,首先将小数点向右移3k位,使二进制数转换为二进制整数,然后直接利用计算器将二进制整数转换成八进制数,再将八进制数的小数点向左移K位即可。

(2)二进制转换成十六进制欲将含有小数位的二进制数转换成十六进制数,首先将小数点向右移4k位使二进制数转换为二进制整数,利用计算器中将二进制整数转换成十六进制数,再将所得的十六进制数的小数点向左移K位即可。

(3)八进制数转换成二进制数欲将含有小数位的八进制数转换成二进制数,先将小数点向右移k位使之先转换成八进制整数,然后然后利用计算器将八进制整数转换成二进制数,再将二进制数的小数点向左移3K位即可。

(4)十六进制数转换成二进制数对含有小数位的十六进制数转换成二进制数,先将小数点向右移k位使十六进制数转换为十六进制整数,然后利用计算器将十六进制整数转换成二进制数,再将二进制数的小数点向左移4K位即可。

【例9】将(1101110011.011100)2分别转换成八进制数和十六进制数利用计算器转换过程如下:(1101110011.011100)2→(1101110011011100)2→(156334)8→(1563.34)8(1101110011.01110)2→ (110111001101110000)2→(37370)16→(373.70)16【例10】将下列八进制数和十六制分别(356.27)8转换成二进制数。

(356.27)8 (356.27)16利用计算器转换过程如下:(356.27)8 →(35627)8 →(11101110010111)2→(11101110.010111)2(356.27)16→(35627)16→(110101011000100111)2→(1101010110.00100111)2。

二进制、八进制、十六进制转换(整理版)

二进制、八进制、十六进制转换(整理版)

二进制、八进制、十六进制相互转换
B→H 16进制就有16个数,0~15,用二进制表示15的方法就是1111,故16进制用2进制可以表现成0000~1111,也就是每四个为一位。

例:1、( 1 1 1 1 0 1)B=(3D)H 0 0 1 1| 1 1 0 1
2+1=3 8+4+1=13=D
2、(0001 0110.0101 1011)B=(16.5B)H
H→B 二进制每四位所表示的数的最大值对应16进制的15,即16进制每一位上最大值,故将16进制上每一位分别对应二进制上四位进行转换,即得所求:例:(2AF5)H=(0010101011110101)B 5 F A 2
0101 1111 1010 0010
B→O 以小数点为界分别向左右3数字为一组进行分组,每组分别转化成二进制数,最后合并在一起,并把首0去掉(尾0不可以去)。

例:(1101001)B=(151)O 001 101 001
1 5 1
O→B 八进制数一位一位地取出,然后把一位换算成 3位(0-000 1-001 2-010 3-011 4-100 5-101 6-110 7-111)依次排列就可以了。

例:(0371)O =(011 111 001)B 3 7 1
011 111 001
总结:B→H(O),把一个二制数以小数点为界分别向左右每4(或3)个数字为一组进行分组,每组分别转化成16或8进制数,最后合并在一起;H(O)→B,把一个16或8进制数以小数点为界分别向左右,每个数字分别转化成二进制数,最后合并在一起。

二进制八进制十进制十六进制之间的转换算法

二进制八进制十进制十六进制之间的转换算法

二进制八进制十进制十六进制之间的转换算法二进制、八进制、十进制和十六进制都是常见的数字系统。

在计算机科学和电子工程中,经常需要进行不同进制之间的转换。

以下是二进制、八进制、十进制和十六进制之间的转换算法。

1.二进制转换为八进制、十进制和十六进制:-二进制转十进制:将二进制数从右往左,每一位乘以2的幂次方,幂次方从0开始递增。

将各位的乘积相加得到十进制数。

例如,将二进制数1101转换为十进制数:(1x2^3)+(1x2^2)+(0x2^1)+(1x2^0)=132.八进制转换为二进制、十进制和十六进制:-八进制转十进制:将八进制数从右往左,每一位乘以8的幂次方,幂次方从0开始递增。

将各位的乘积相加得到十进制数。

例如,将八进制数137转换为十进制数:(1x8^2)+(3x8^1)+(7x8^0)=95-八进制转十六进制:先将八进制数转换为二进制数,然后将二进制数按照从右往左的顺序每四位一组,转换成对应的十六进制数。

如果二进制数位数不是四的倍数,则在左边补0。

然后将十六进制数按照从左到右的顺序排列。

例如,将八进制数362转换为十六进制数:(011)(110)(010),即1D23.十进制转换为二进制、八进制和十六进制:-十进制转八进制:将十进制数除以8,将余数从右往左排列,直到商为0。

例如,将十进制数125转换为八进制数:175-十进制转十六进制:将十进制数除以16,将余数从右往左排列,直到商为0。

对于10以上的余数,分别用A、B、C、D、E、F表示,分别对应10、11、12、13、14、15、例如,将十进制数255转换为十六进制数:FF。

4.十六进制转换为二进制、八进制和十进制:-十六进制转二进制:将十六进制数中的每一位转换为对应的四位二进制数。

例如,将十六进制数3F转换为二进制数:(0011)(1111)。

-十六进制转八进制:先将十六进制数转换为二进制数,然后将二进制数按照从右往左的顺序每三位一组,转换成对应的八进制数。

2进制,8进制,16进制之间快速转换的技巧

2进制,8进制,16进制之间快速转换的技巧

2进制,8进制,16进制之间快速转换的技巧一)、数制计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。

一般计数都采用进位计数,其特点是:(1)逢N进一,N是每种进位计数制表示一位数所需要的符号数目为基数。

(2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。

在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和18 4 2 1二)、数制转换不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。

也就是说,若转换前两数相等,转换后仍必须相等。

有四进制十进制:有10个基数:0 ~~ 9 ,逢十进一二进制:有2 个基数:0 ~~ 1 ,逢二进一八进制:有8个基数:0 ~~ 7 ,逢八进一十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一1、数的进位记数法N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p02、十进制数与P进制数之间的转换①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。

例如,将(30)10转换成二进制数。

将(30)10转换成二进制数2| 30 ….0 ----最右位2 15 (1)2 7 (1)2 3 (1)1 ….1 ----最左位∴ (30)10=(11110)2将(30)10转换成八、十六进制数8| 30 ……6 ------最右位3 ------最左位∴ (30)10 =(36)816| 30 …14(E)----最右位1 ----最左位∴(30)10 =(1E)163、将P进制数转换为十进制数把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。

十六进制、八进制、二进制之间的相互专换方法

十六进制、八进制、二进制之间的相互专换方法

十六进制、八进制、二进制之间的相互专换方法一、十六进制举例说明10进制的32表示成16进制就是:2016进制的32表示成10进制就是:3×16^1+2×16^0=50编程中,我们常用的还是10进制.毕竟C/C++是高级语言。

比如:int a = 100,b = 99;不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。

但二进制数太长了。

比如int 类型占用4个字节,32位。

比如100,用int类型的二进制数表达将是:0000 0000 0000 0000 0110 0100面对这么长的数进行思考或操作,没有人会喜欢。

因此,C,C++ 没有提供在代码直接写二进制数的方法。

用16进制或8进制可以解决这个问题。

因为,进制越大,数的表达长度也就越短。

不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?2、8、16,分别是2的1次方,3次方,4次方。

这一点使得三种进制之间可以非常直接地互相转换。

8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。

在下面的关于进制转换的课程中,你可以发现这一点。

二、转换二进制转换十进制二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:101100100,转换为10进制为:356用横式计算0 X2^0 + 0X 2^1 + 1X 2^2 + 0X2^3 + 0X2^4 + 1 X2^5 + 1 X2^6 + 0 X 2^7 + 1X 2^8 = 3560乘以多少都是0,所以我们也可以直接跳过值为0的位:1X 2^2 + 1 X2^5 + 1X 2^6 + 1X 2^8 = 3564 + 32 + 64 + 256 =356八进制转换十进制八进制就是逢8进1。

八进制数采用0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……所以,设有一个八进制数:1507,转换为十进制为:839,具体方法如下:可以用横式直接计算:7 * 8^0 + 0 * 8^1 + 5 * 8^2 + 1 * 8^3 = 839也可以用竖式表示第0位7 * 8^0 = 7第1位0 * 8^1 = 0第2位 5 * 8^2 = 320第3位 1 * 8^3 = 512十六进制转换十进制16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这六个字母来分别表示10,11,12,13,14,15。

二进制,十六进制,八进制的换算

二进制,十六进制,八进制的换算

二进制,十六进制,八进制的换算0,16,2进制的互相转换所谓16进制,就是由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F共16个数字组成。

逢16进一位,下面就讲讲在没有任何工具的情况下如何将一10进制转化为16进制:1000除以16得62余8,那么最低位为8,再将62除以16得3余14,那么倒数第2为E(14对于16进制来说是E),3比16小了,所以不用继续除了,总的就是3E8,为1000的16进制数。

想要将16进制的数转化为10进制,只需将上面的步骤反过来做就可以了。

不用我多说吧!2进制仅由0、1两个数字组成,逢1进一。

要将一10进制化为2进制,介绍一个简单的方法,先将10进制的数化为16进制,再化为2进制,举个例子:515对应16进制为203H,将203转为2进制则为0010(2)0000(0)0011(3),一个位数对2进制来说是4个字符。

0H就是0000、1H就是0001、......、0EH就是1110、OFH为1111,大家可自己推一下。

总之大家一定要熟练掌握各个进制的互相转化,尤其是100以内10--16和16--10的互相转化要记住。

16-10H、32-20H、48-30H、64-40H、80-50H、96-60H、100-64H,255-FFH,65535-FF FFH,1677万-FF FF FFH,前为10进制,后有H的为16进制,这些能记住,以后修改就方便许多了。

二进制二进制是逢2进位的进位制,0、1是基本算符。

现代的电子计算机技术全部采用的是二进制,因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。

二进制四则运算规则加法0+0=0,0+1=1+0=1,1+1=10减法0-0=0,1-0=1,1-1=0,0-1=-1乘法0×0=0,0×1=1×0=0,1×1=1除法0÷1=0,1÷1=1一、什么是二进制在现实生活和记数器中,如果表示数的"器件"只有两种状态,如电灯的"亮"与"灭",开关的"开"与"关"。

把二进制数与八进制数、十六进制数相互转换的方法

把二进制数与八进制数、十六进制数相互转换的方法

二进制数、八进制数、十六进制数对应表
把二进制数转换为八进制数、十六进制数的方法:●从低位起(即右边起)每3位划分为一个区间;
●利用对应表将它转换为八进制数;
●当位数不够时用0来补充
例如:
二进制
数 1 0 1 0 0 1 1 1 0 0 0 0 1 1
0 1 0 1 0 0 1 1 1 0 0 0 0 1 1
八进制
数 2 4 7 0 3
●从低位起(即右边起)每4位划分为一个区间;
●利用对应表将它转换为十六进制数;
●当位数不够时用0来补充
例如:
二进制数 1 0 1 0 0 1 1 1 0 0 0 0 1 1
0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1
十六进制
数 2 9 C 3
把八进制数、十六进制数转换为二进制数的方法:
●把八进制数的1位相当于二进制数的3位;
●利用对应表将它转换为二进制数
例如:
八进制
数 4 0 1 7 3
二进制
数 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1
●把十六进制数的1位相当于二进制数的4位;
●利用对应表将它转换为二进制数
例如:
十六进制
数 F 9 A 7 3
二进制数 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1。

二进制、八进制、十进制、十六进制之间转换(含小数部分)

二进制、八进制、十进制、十六进制之间转换(含小数部分)

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

十进制、二进制、八进制,十六进制之间相互转换方法详解

十进制、二进制、八进制,十六进制之间相互转换方法详解

十进制、二进制、八进制,十六进制之间相互转换方
法详解
1.十进制想要转换为n进制:
整数部分不停地除以n,直到商为0即可,记录下每次的余数,从最后一个余数开始排列即可。

小数部分不停地乘以n,每次乘完后把个位数的数字记录后再变为0,再进行下一次乘法运算,直到小数部分为0即可,记录下每次乘法结束后个位数的数字为多少,从第一个数字开始排列即可。

2.n进制转换为十进制:
n进制上的每一个数字乘以位权再把它们全部加起来。

(如果不懂位权是啥的,请看:所谓位权,是指一个数值的每一位上的数字的权值的大小。

例如十进制数4567从低位到高位的位权分别为10^0、10^1、10^2、10^3。

因为:4567=4x10^3+5x10^2+6x10^1+7x10^0),
3.二进制转换为八进制:
从右至左,每3个为一组,不足的补0,通过转换为十进制的方法把它们转换为数字,再依次写下了即可。

4.八进制转换为二进制:
每一个数转化为3位的二进制数即可,不足的补0,再按顺序排列即可。

5.二进制转换为16进制:
从右至左,每4个为一组,不足的补0,通过转换为十进制的
方法把它们转换为数字,需注意的是十六进制中10-15为A-F,再依次写下了即可。

6.十六进制转换为二进制:
每一个数转化为4位的二进制数即可,不足的补0,再按顺序排列即可。

7.八进制转换为十六进制:
先转换为二进制,再转换为十六进制即可。

8。

十六进制转换为八进制:
先转换为二进制,再转换为八进制即可。

计算机各进制换算

计算机各进制换算

计算机各进制换算计算机中常用的进制包括十进制、二进制、八进制和十六进制。

换算不同进制之间的方法是很基础和重要的,下面我们来看一下如何进行这些进制之间的转换。

1.十进制转二进制:十进制数可以被2整除或除2取余数的方式转为二进制数。

具体步骤如下:-将十进制数除以2,得到的商再除以2,如此类推,直到商为0。

将得到的余数从下往上排列,就得到了对应的二进制数。

例如,十进制数10转为二进制数:10÷2=5,余数为0,5÷2=2,余数为1,2÷2=1,余数为0,1÷2=0,余数为1、所以10的二进制表示为1010。

2.二进制转十进制:二进制数可以通过加权求和的方式转为十进制数。

具体步骤如下:-从二进制数的最右边(低位)开始,依次对每一位乘以2的n次方(n为该位的索引)。

-将得到的结果相加,即可得到对应的十进制数。

例如,二进制数1010转为十进制数:1x2^3+0x2^2+1x2^1+0x2^0=8+0+2+0=10。

3.十进制转八进制:十进制数可以被8整除或除8取余数的方式转为八进制数。

具体步骤如下:-将十进制数除以8,得到的商再除以8,如此类推,直到商为0。

将得到的余数从下往上排列,就得到了对应的八进制数。

例如,十进制数25转为八进制数:25÷8=3,余数为1,3÷8=0,余数为3、所以25的八进制表示为314.八进制转十进制:八进制数可以通过加权求和的方式转为十进制数。

具体步骤与二进制转十进制相同,只是将每一位乘以8的n次方(n为该位的索引)。

例如,八进制数31转为十进制数:3x8^1+1x8^0=24+1=255.十进制转十六进制:十进制数可以被16整除或除16取余数的方式转为十六进制数。

-将十进制数除以16,得到的商再除以16,如此类推,直到商为0。

将得到的余数从下往上排列,用A表示10、B表示11、C表示12、D表示13、E表示14、F表示15,就得到了对应的十六进制数。

进制转换:二进制、八进制、十六进制、十进制之间的转换

进制转换:二进制、八进制、十六进制、十进制之间的转换

将二进制、八进制、十六进制转换为十进制二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。

所谓“权”,也即“位权”。

假设当前数字是 N 进制,那么:•对于整数部分,从右往左看,第 i 位的位权等于N i-1•对于小数部分,恰好相反,要从左往右看,第 j 位的位权为N-j。

更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是 1,那么它所表示的数值大小就是该位的位权。

1) 整数部分例如,将八进制数字53627 转换成十进制:从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为84=4096 ……第n位的位权就为 8n-1。

将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

注意,这里我们需要以十进制形式来表示位权。

再如,将十六进制数字 9FA8C 转换成十进制:从右往左看,第1位的位权为 160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为164=65536 ……第n位的位权就为 16n-1。

将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

将二进制数字转换成十进制也是类似的道理:从右往左看,第1位的位权为 20=1,第2位的位权为 21=2,第3位的位权为 22=4,第4位的位权为 23=8,第5位的位权为 24=16 ……第n位的位权就为 2n-1。

将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

2) 小数部分例如,将八进制数字 423.5176 转换成十进制:小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 ……第m位的位权就为 8-m。

再如,将二进制数字 1010.1101 转换成十进制:小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为2-4=1/16 ……第m位的位权就为 2-m。

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法二进制、八进制和十六进制都是非常常见的计数系统。

在计算机科学和工程领域,这些进制系统经常被用来表示和处理数字、数据和信息。

在本文中,我们将详细讨论二进制、八进制和十六进制之间的转换方法。

一、二进制(Binary)二进制是一种基于2的计数系统。

它只使用两个数字0和1来表示数字和数据。

二进制数是由一系列0和1组成的,其中每个位数都代表2的幂次。

1.二进制转十进制:要将二进制数转换为十进制数,可以使用乘以2的幂次然后相加的方法。

例如,考虑二进制数1010.要将其转换为十进制数,我们需要将每个位数与2的幂次相乘,然后将结果相加。

```1*(2^3)+0*(2^2)+1*(2^1)+0*(2^0)=8+0+2+0=10```因此,二进制数1010转换为十进制数为10。

2.二进制转八进制:要将二进制数转换为八进制数,可以将二进制数从右到左每3位划分为一组,然后将每组转换为对应的八进制数。

110=6110=6```3.二进制转十六进制:要将二进制数转换为十六进制数,可以将二进制数从右到左每4位划分为一组,然后将每组转换为对应的十六进制数。

```1011=B```二、八进制(Octal)八进制是一种基于8的计数系统。

它使用0-7这8个数字来表示数字和数据。

每个八进制位数代表3个二进制位数。

1.八进制转十进制:要将八进制数转换为十进制数,可以使用乘以8的幂次然后相加的方法。

例如,考虑八进制数56.要将其转换为十进制数,我们需要将每个位数与8的幂次相乘,然后将结果相加。

```5*(8^1)+6*(8^0)=40+6=46因此,八进制数56转换为十进制数为462.八进制转二进制:要将八进制数转换为二进制数,可以将每个八进制位数转换为对应的3位二进制数。

例如,考虑八进制数63.将每个八进制位数转换为对应的3位二进制数。

```6=1103=011```3.八进制转十六进制:要将八进制数转换为十六进制数,可以先将八进制数转换为二进制数,然后将二进制数转换为十六进制数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制、八进制、十六进制6.1 为什么需要八进制和十六进制? (1)6.2 二、八、十六进制数转换到十进制数 (2)6.2.1 二进制数转换为十进制数 (2)6.2.2 八进制数转换为十进制数 (2)6.2.3 八进制数的表达方法 (3)6.2.4 八进制数在转义符中的使用 (4)6.2.5 十六进制数转换成十进制数 (4)6.2.6 十六进制数的表达方法 (5)6.2.7 十六进制数在转义符中的使用 (5)6.3 十进制数转换到二、八、十六进制数 (6)6.3.1 10进制数转换为2进制数 (6)6.3.2 10进制数转换为8、16进制数 (7)6.4 二、十六进制数互相转换 (8)6.5 原码、反码、补码 (10)6.6 通过调试查看变量的值 (11)6.7 本章小结 (14)6.1 为什么需要八进制和十六进制?编程中,我们常用的还是10进制……必竟C/C++是高级语言。

比如:int a = 100,b = 99;不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。

但,二进制数太长了。

比如int 类型占用4个字节,32位。

比如100,用int类型的二进制数表达将是:0000 0000 0000 0000 0110 0100面对这么长的数进行思考或操作,没有人会喜欢。

因此,C,C++ 没有提供在代码直接写二进制数的方法。

用16进制或8进制可以解决这个问题。

因为,进制越大,数的表达长度也就越短。

不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?2、8、16,分别是2的1次方,3次方,4次方。

这一点使得三种进制之间可以非常直接地互相转换。

8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。

在下面的关于进制转换的课程中,你可以发现这一点。

6.2 二、八、十六进制数转换到十进制数6.2.1 二进制数转换为十进制数二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为:下面是竖式:0110 0100 换算成十进制第0位 0 * 20 = 0第1位 0 * 21 = 0第2位 1 * 22 = 4第3位 0 * 23 = 0第4位 0 * 24 = 0第5位 1 * 25 = 32第6位 1 * 26 = 64第7位 0 * 27 = 0 +---------------------------100用横式计算为:0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 1000乘以多少都是0,所以我们也可以直接跳过值为0的位:1 * 22 + 1 * 23 + 1 * 25 + 1 * 26 = 1006.2.2 八进制数转换为十进制数八进制就是逢8进1。

八进制数采用 0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……所以,设有一个八进制数:1507,转换为十进制为:用竖式表示:1507换算成十进制。

第0位 7 * 80 = 7第1位 0 * 81 = 0第2位 5 * 82 = 320第3位 1 * 83 = 512 +--------------------------839同样,我们也可以用横式直接计算:7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839结果是,八进制数 1507 转换成十进制数为 8396.2.3 八进制数的表达方法C,C++语言中,如何表达一个八进制数呢?如果这个数是 876,我们可以断定它不是八进制数,因为八进制数中不可能出7以上的阿拉伯数字。

但如果这个数是123、是567,或12345670,那么它是八进制数还是10进制数,都有可能。

所以,C,C++规定,一个数如果要指明它采用八进制,必须在它前面加上一个0,如:123是十进制,但0123则表示采用八进制。

这就是八进制数在C、C++中的表达方法。

由于C和C++都没有提供二进制数的表达方法,所以,这里所学的八进制是我们学习的,CtC++语言的数值表达的第二种进制法。

现在,对于同样一个数,比如是100,我们在代码中可以用平常的10进制表达,例如在变量初始化时:int a = 100;我们也可以这样写:int a = 0144; //0144是八进制的100;一个10进制数如何转成8进制,我们后面会学到。

千万记住,用八进制表达时,你不能少了最前的那个0。

否则计算机会通通当成10进制。

不过,有一个地方使用八进制数时,却不能使用加0,那就是我们前面学的用于表达字符的“转义符”表达法。

6.2.4 八进制数在转义符中的使用我们学过用一个转义符'\'加上一个特殊字母来表示某个字符的方法,如:'\n'表示换行(line),而'\t'表示Tab字符,'\''则表示单引号。

今天我们又学习了一种使用转义符的方法:转义符'\'后面接一个八进制数,用于表示ASCII码等于该值的字符。

比如,查一下第5章中的ASCII码表,我们找到问号字符(?)的ASCII值是63,那么我们可以把它转换为八进值:77,然后用 '\77'来表示'?'。

由于是八进制,所以本应写成'\077',但因为C,C++规定不允许使用斜杠加10进制数来表示字符,所以这里的0可以不写。

事实上我们很少在实际编程中非要用转义符加八进制数来表示一个字符,所以,6.2.4小节的内容,大家仅仅了解就行。

6.2.5 十六进制数转换成十进制数2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。

字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?用竖式计算:2AF5换算成10进制:第0位: 5 * 160 = 5第1位: F * 161 = 240第2位: A * 162 = 2560第3位: 2 * 163 = 8192 +-------------------------------------10997直接计算就是:5 * 160 + F * 161 + A * 162 +2 * 163 = 10997(别忘了,在上面的计算中,A表示10,而F表示15)现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

假设有人问你,十进数 1234 为什么是一千二百三十四?你尽可以给他这么一个算式:1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 1006.2.6 十六进制数的表达方法如果不使用特殊的书写形式,16进制数也会和10进制相混。

随便一个数:9876,就看不出它是16进制或10进制。

C,C++规定,16进制数必须以 0x开头。

比如 0x1表示一个16进制数。

而1则表示一个十进制。

另外如:0xff,0xFF,0X102A,等等。

其中的x也也不区分大小写。

(注意:0x中的0是数字0,而不是字母O)以下是一些用法示例:int a = 0x100F;int b = 0x70 + a;至此,我们学完了所有进制:10进制,8进制,16进制数的表达方式。

最后一点很重要,C/C++中,10进制数有正负之分,比如12表示正12,而-12表示负12,;但8进制和16进制只能用达无符号的正整数,如果你在代码中里:-078,或者写:-0xF2,C,C++并不把它当成一个负数。

6.2.7 十六进制数在转义符中的使用转义符也可以接一个16进制数来表示一个字符。

如在6.2.4小节中说的 '?' 字符,可以有以下表达方式:'?' //直接输入字符'\77' //用八进制,此时可以省略开头的0'\0x3F' //用十六进制同样,这一小节只用于了解。

除了空字符用八进制数 '\0' 表示以外,我们很少用后两种方法表示一个字符。

6.3 十进制数转换到二、八、十六进制数6.3.1 10进制数转换为2进制数给你一个十进制,比如:6,如果将它转换成二进制数呢?10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

听起来有些糊涂?我们结合例子来说明。

比如要转换6为二进制数。

“把要转换的数,除以2,得到商和余数”。

那么:要转换的数是6, 6 ÷ 2,得到商是3,余数是0。

(不要告诉我你不会计算6÷3!)“将商继续除以2,直到商为0……”现在商是3,还不是0,所以继续除以2。

那就: 3 ÷ 2, 得到商是1,余数是1。

“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。

那就: 1 ÷ 2, 得到商是0,余数是1(拿笔纸算一下,1÷2是不是商0余1!)“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。

我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成二进制,结果是110。

把上面的一段改成用表格来表示,则为:(在计算机中,÷用 / 来表示)如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除:(图:1)请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。

说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。

6.3.2 10进制数转换为8、16进制数非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。

来看一个例子,如何将十进制数120转换成八进制数。

用表格表示:120转换为8进制,结果为:170。

相关文档
最新文档