灵宝市第二中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灵宝市第二中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .11
a b
< C .22a b > D .33a b >
2. 双曲线:的渐近线方程和离心率分别是( )
A .
B .
C .
D .
3. 已知AC ⊥BC ,AC=BC ,D 满足=t +(1﹣t )
,若∠ACD=60°,则t 的值为( )
A .
B .

C .
﹣1
D .
4. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4
B .5
C .6
D .9
5. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是( )
A .
B .1﹣
C .
D .1﹣
6. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1 B .2 C .3 D .4 7. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15
B .30
C .31
D .64
8. 下列式子表示正确的是( )
A 、{}00,2,3⊆
B 、{}{}22,3∈
C 、{}1,2φ∈
D 、{}0φ⊆
9. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3
的系数为( )
A .4320
B .﹣4320
C .20
D .﹣20
10.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别

,则下列判断正确的是( )
A .<,乙比甲成绩稳定
B .<,甲比乙成绩稳定
C .>,甲比乙成绩稳定
D .>,乙比甲成绩稳定
11.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )
A .1:2:3
B .2:3:4
C .3:2:4
D .3:1:2
12.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:
乙校:
则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,9
二、填空题
13.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .
15.设集合A={﹣3,0,1},B={t2﹣t+1}.若A∪B=A,则t=.
16.已知函数f(x)=x3﹣ax2+3x在x∈[1,+∞)上是增函数,求实数a的取值范围.
17.计算:×5﹣1=.
18.已知i是虚数单位,且满足i2=﹣1,a∈R,复数z=(a﹣2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)
三、解答题
19.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.
(1)若以AB为直径的圆经过原点O,求直线l的方程;
(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.
20.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059
(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.
21.已知函数f(x)=sinx﹣2sin2
(1)求f(x)的最小正周期;
(2)求f(x)在区间[0,]上的最小值.
22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X 1 2 3 4
Y 51 48 45 42
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
23.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:
70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;
(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.
2.072 2.706
3.841 5.024
(参考公式:,其中n=a+b+c+d)
24.已知f()=﹣x﹣1.
(1)求f(x);
(2)求f(x)在区间[2,6]上的最大值和最小值.
灵宝市第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】
考点:不等式的恒等变换.
2.【答案】D
【解析】解:双曲线:的a=1,b=2,c==
∴双曲线的渐近线方程为y=±x=±2x;离心率e==
故选D
3.【答案】A
【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;
若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;
根据题意,∠ACD=60°,∠DCF=30°;
∴;
即;
解得.
故选:A.
【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.
4.【答案】B
【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;
②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;
③x=2时,y=0,1,2,∴x﹣y=2,1,0;
∴B={0,﹣1,﹣2,1,2},共5个元素.
故选:B.
5.【答案】B
【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型
公式可得该点取自阴影部分的概率是;
故选:B.
【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.
6.【答案】A
【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,
作函数y=|x2+3x﹣3|与y=a的图象如下,

结合图象可知,
m的可能值有2,3,4;
故选A.
7.【答案】A
【解析】解:∵等差数列{a n},
∴a6+a8=a4+a10,即16=1+a10,
∴a10=15,
故选:A.
8.【答案】D
【解析】
试题分析:空集是任意集合的子集。

故选D。

考点:1.元素与集合的关系;2.集合与集合的关系。

9.【答案】B
解析:解:487=(49﹣1)7=﹣+…+﹣1,
∵487被7除的余数为a(0≤a<7),
∴a=6,
∴展开式的通项为T r+1=,
令6﹣3r=﹣3,可得r=3,

展开式中x ﹣3
的系数为
=﹣4320,
故选:B .. 10.【答案】A
【解析】解:由茎叶图可知
=(77+76+88+90+94)=,
=(75+86+88+88+93)==86,则


乙的成绩主要集中在88附近,乙比甲成绩稳定,
故选:A
【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.
11.【答案】D 【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,
则球的体积V 球=
圆柱的体积V 圆柱=2πR 3
圆锥的体积V 圆锥=
故圆柱、圆锥、球的体积的比为2πR 3
:: =3:1:2
故选D
【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.
12.【答案】B
【解析】 1从甲校抽取110× 1 200
1 200+1 000
=60人,
从乙校抽取110× 1 000
1 200+1 000
=50人,故x =10,y =7.
二、填空题
13.【答案】1
231n --
【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 14.【答案】25 【




点:分层抽样方法.
15.【答案】 0或1 .
【解析】解:由A ∪B=A 知B ⊆A ,∴t 2﹣t+1=﹣3①t 2
﹣t+4=0,①无解
或t 2﹣t+1=0②,②无解
或t 2
﹣t+1=1,t 2
﹣t=0,解得 t=0或t=1.
故答案为0或1.
【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.
16.【答案】 (﹣∞,3] .
【解析】解:f ′(x )=3x 2
﹣2ax+3, ∵f (x )在[1,+∞)上是增函数,
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2﹣2ax+3≥0在[1,+∞)上恒成立.
则必有≤1且f′(1)=﹣2a+6≥0,
∴a≤3;
实数a的取值范围是(﹣∞,3].
17.【答案】9.
【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,
∴×5﹣1=9,
故答案为:9.
18.【答案】充分不必要
【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,
∴在复平面内对应的点M的坐标是(a+2,a﹣2),
若点在第四象限则a+2>0,a﹣2<0,
∴﹣2<a<2,
∴“a=1”是“点M在第四象限”的充分不必要条件,
故答案为:充分不必要.
【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.
三、解答题
19.【答案】
【解析】解:(1)设直线AB的方程为y=kx+2(k≠0),
设A(x1,y1),B(x2,y2),
由,得k2x2+(4k﹣4)x+4=0,
则由△=(4k﹣4)2﹣16k2=﹣32k+16>0,得k<,
=,,
所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,
因为以AB为直径的圆经过原点O,
所以∠AOB=90°,
即,
所以,
解得k=﹣,
即所求直线l的方程为y=﹣.
(2)设线段AB的中点坐标为(x0,y0),
则由(1)得,,
所以线段AB的中垂线方程为,
令y=0,得==,
又由(1)知k<,且k≠0,得或,
所以,
所以=,
所以△POQ面积的取值范围为(2,+∞).
【点评】本题考查直线l的方程的求法和求△POQ面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
20.【答案】
【解析】解:(1)设抽取x人,则,解得x=2,
即年龄在20:39岁之间应抽取2人.
(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,
随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),
(a,b),(a,c),(b,c),共10种,
年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,
则对应的概率P=.
【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.
21.【答案】
【解析】解:(1)∵f(x)=sinx﹣2sin2
=sinx﹣2×
=sinx+cosx﹣
=2sin(x+)﹣
∴f(x)的最小正周期T==2π;
(2)∵x∈[0,],
∴x+∈[,π],
∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],
∴可解得f(x)在区间[0,]上的最小值为:﹣.
【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.
22.【答案】
【解析】
【专题】概率与统计.
【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;
(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.
【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株
数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概
率为=;
(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列
∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)
∴只需求出P(X=k)(k=1,2,3,4)即可
记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3
由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==
∴所求的分布列为
Y 51 48 45 42
P
数学期望为E(Y)=51×+48×+45×+42×=46
【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.23.【答案】
【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X~B(3,),
P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,
∴E(X)=3×=2.
(Ⅱ)假设生二胎与年龄无关,
K2==≈3.030>2.706,
所以有90%以上的把握认为“生二胎与年龄有关”.
24.【答案】
【解析】解:(1)令t=,则x=,
∴f(t)=,
∴f(x)=(x≠1)…
(2)任取x1,x2∈[2,6],且x1<x2,
f(x1)﹣f(x2)=﹣=,
∵2≤x1<x2≤6,∴(x1﹣1)(x2﹣1)>0,2(x2﹣x1)>0,∴f(x1)﹣f(x2)>0,
∴f(x)在[2,6]上单调递减,…
∴当x=2时,f(x)max=2,当x=6时,f(x)min=…。

相关文档
最新文档