新安县三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新安县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.
其中正确结论的序号是( ) A .①③ B .①④
C .②③
D .②④
2. 已知复数z 满足(3+4i )z=25,则=( )
A .3﹣4i
B .3+4i
C .﹣3﹣4i
D .﹣3+4i 3. 数列中,若
,,则这个数列的第10项( ) A .19 B .21
C .
D .
4. “方程
+=1表示椭圆”是“﹣3<m <5”的( )条件.
A .必要不充分
B .充要
C .充分不必要
D .不充分不必要
5. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
A .2sin 2cos 2αα-+
B .sin 3αα-+
C. 3sin 1αα+ D .2sin cos 1αα-+ 6. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;
③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m .
其中正确命题的个数是( ) A .1 B .2
C .3
D .4
7. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( )
A .4
B .5
C .7
D .8
8. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若
,则该椭圆的离心率为( )
A .
B .
C .
D .
9. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不
等式组所确定的平面区域在x 2+y 2
=4内的面积为( )
A .
B .
C .π
D .2π
10.已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( )
A .[1,+∞)
B .[0.2}
C .[1,2]
D .(﹣∞,2]
11.已知抛物线C :2
4y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )
A .2)
B .2
C .1:
D (1+
12.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则
实数a 的取值范围是( )
A .
B .
C .
D .
二、填空题
13.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)
14.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .
15.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .
16.设S n是数列{a n}的前n项和,且a1=﹣1,=S n.则数列{a n}的通项公式a n=.
17.不等式的解集为.
的体积为2
18.已知正四棱锥O ABCD
则该正四棱锥的外接球的半径为_________
三、解答题
19.已知正项等差{a n},lga1,lga2,lga4成等差数列,又b n=
(1)求证{b n}为等比数列.
(2)若{b n}前3项的和等于,求{a n}的首项a1和公差d.
20.已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,
(1)证明:函数f(x)在[﹣1,1]上是增函数;
(2)解不等式;
(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m的取值范围.21.函数。
定义数列如下:是过两点的直线
与轴交点的横坐标。
(1)证明:;
(2)求数列的通项公式。
22.在数列{a n}中,a1=1,a n+1=1﹣,b n=,其中n∈N*.
(1)求证:数列{b n}为等差数列;
(2)设c n=b n+1•(),数列{c n}的前n项和为T n,求T n;
(3)证明:1+++…+≤2﹣1(n∈N*)
23.(本小题满分12分)已知函数2
()(21)ln f x x a x a x =-++(a R ∈).
(I )若1
2
a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.
24.已知函数f (x )=sin2x+(1﹣2sin 2
x ).
(Ⅰ)求f (x )的单调减区间;
(Ⅱ)当x ∈[﹣,
]时,求f (x )的值域.
新安县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),
∵a<b<c,且f(a)=f(b)=f(c)=0.
∴a<1<b<3<c,
设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,
∵f(x)=x3﹣6x2+9x﹣abc,
∴a+b+c=6,ab+ac+bc=9,
∴b+c=6﹣a,
∴bc=9﹣a(6﹣a)<,
∴a2﹣4a<0,
∴0<a<4,
∴0<a<1<b<3<c,
∴f(0)<0,f(1)>0,f(3)<0,
∴f(0)f(1)<0,f(0)f(3)>0.
故选:C.
2.【答案】B
解析:∵(3+4i)z=25,z===3﹣4i.
∴=3+4i.
故选:B.
3.【答案】C
【解析】
因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C
答案:C
4. 【答案】C
【解析】解:若方程
+=1表示椭圆,则满足,即,
即﹣3<m <5且m ≠1,此时﹣3<m <5成立,即充分性成立,
当m=1时,满足﹣3<m <5,但此时方程+
=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要
性不成立.
故“方程+
=1表示椭圆”是“﹣3<m <5”的充分不必要条件.
故选:C .
【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.
5. 【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积()
ααcos 22cos 2-112
2
1-=+=S ;利用三角形知识得出四个等
腰三角形面积ααsin 2sin 112
1
42=⨯⨯⨯⨯=S ;
故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
形面积公式ααsin 2
1
sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-112
2+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到
答案.
6. 【答案】 B
【解析】解:∵①若m ∥l ,m ⊥α,
则由直线与平面垂直的判定定理,得l ⊥α,故①正确; ②若m ∥l ,m ∥α,则l ∥α或l ⊂α,故②错误; ③如图,在正方体ABCD ﹣A 1B 1C 1D 1中, 平面ABB 1A 1∩平面ABCD=AB , 平面ABB 1A 1∩平面BCC 1B 1=BB 1, 平面ABCD ∩平面BCC 1B 1=BC ,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,
得n∥m,同理n∥l,故m∥l,故命题④正确.
故选:B.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
7.【答案】D
【解析】解:将椭圆的方程转化为标准形式为,
显然m﹣2>10﹣m,即m>6,
,解得m=8
故选D
【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.
8.【答案】B
【解析】解:设△AF1F2的内切圆半径为r,则
S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,
∵,
∴|AF1|r=2×|F1F2|r﹣|AF2|r,
整理,得|AF
|+|AF2|=2|F1F2|.∴a=2,
1
∴椭圆的离心率e===.
故选:B.
9. 【答案】 B
【解析】解:因为函数f (x )的图象过原点,所以f (0)=0,即b=2.
则f (x )=
x 3﹣x 2+ax ,
函数的导数f ′(x )=x 2
﹣2x+a ,
因为原点处的切线斜率是﹣3, 即f ′(0)=﹣3, 所以f ′(0)=a=﹣3, 故a=﹣3,b=2,
所以不等式组为
则不等式组
确定的平面区域在圆x 2+y 2
=4内的面积,
如图阴影部分表示,
所以圆内的阴影部分扇形即为所求.
∵k OB =﹣
,k OA =
,
∴tan ∠BOA==1,
∴∠BOA=,
∴扇形的圆心角为
,扇形的面积是圆的面积的八分之一,
∴圆x 2+y 2
=4在区域D 内的面积为
×4×π=
,
故选:B
【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键.
10.【答案】C
【解析】解:f (x )=x 2﹣2x+3=(x ﹣1)2
+2,对称轴为x=1.
所以当x=1时,函数的最小值为2.
当x=0时,f(0)=3.
由f(x)=3得x2﹣2x+3=3,即x2﹣2x=0,解得x=0或x=2.
∴要使函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a≤2.
故选C.
【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.
11.【答案】D
【解析】
考点:1、抛物线的定义;2、抛物线的简单性质.
【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.
12.【答案】A
【解析】解:取a=﹣时,f(x)=﹣x|x|+x,
∵f(x+a)<f(x),
∴(x﹣)|x﹣|+1>x|x|,
(1)x<0时,解得﹣<x<0;
(2)0≤x≤时,解得0;
(3)x>时,解得,
综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;
取a=1时,f(x)=x|x|+x,
∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,
(1)x<﹣1时,解得x>0,矛盾;
(2)﹣1≤x≤0,解得x<0,矛盾;
(3)x>0时,解得x<﹣1,矛盾;
综上,a=1,A=∅,不合题意,排除C,
故选A.
【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.
二、填空题
13.【答案】(0,2)
【解析】解:令x=0,得y=a0+1=2
∴函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)
故答案为:(0,2).
【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点
14.【答案】2:1.
【解析】解:设圆锥、圆柱的母线为l,底面半径为r,
所以圆锥的侧面积为:=πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1
故答案为:2:1
15.【答案】3+.
【解析】解:本小题考查归纳推理和等差数列求和公式.
前n﹣1行共有正整数1+2+…+(n﹣1)个,
即个,
因此第n行第3个数是全体正整数中第3+个,
即为3+.
故答案为:3+.
16.【答案】.
【解析】解:S n是数列{a n}的前n项和,且a1=﹣1,=S n,∴S n+1﹣S n=S n+1S n,
∴=﹣1,=﹣1,
∴{}是首项为﹣1,公差为﹣1的等差数列,
∴=﹣1+(n﹣1)×(﹣1)=﹣n.
∴S n=﹣,
n=1时,a1=S1=﹣1,
n≥2时,a n=S n﹣S n﹣1=﹣+=.
∴a n=.
故答案为:.
17.【答案】 (0,1] .
【解析】解:不等式,即
,求得0<x ≤1,
故答案为:(0,1].
【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.
18.【答案】
118
【解析】因为正四棱锥O ABCD -的体积为2,所以锥高为2,设外接球的半径为R ,依轴
截面的图形可知:22211(2)(
28
R R R =-+∴= 三、解答题
19.【答案】
【解析】(1)证明:设{a n }中首项为a 1,公差为d . ∵lga 1,lga 2,lga 4成等差数列,∴2lga 2=lga 1+lga 4,
∴a 22
=a 1a 4.
即(a 1+d )2
=a 1(a 1+3d ),∴d=0或d=a 1.
当d=0时,a n =a 1,b n ==,∴
=1,∴{b n }为等比数列;
当d=a 1时,a n =na 1,b n =
=
,∴
=,∴{b n }为等比数列.
综上可知{b n }为等比数列.
(2)解:当d=0时,S 3==
,所以a 1=
;
当d=a 1时,S 3=
=
,故a 1=3=d .
【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆.
20.【答案】
【解析】解:(1)证明:任取x 1、x 2∈[﹣1,1],且x 1<x 2, 则f (x 1)﹣f (x 2)=f (x 1)+f (﹣x 2)
∵>0,
即>0,
∵x1﹣x2<0,
∴f(x1)﹣f(x2)<0.
则f(x)是[﹣1,1]上的增函数;
(2)由于f(x)是[﹣1,1]上的增函数,
不等式即为
﹣1≤x+<≤1,
解得﹣≤x<﹣1,
即解集为[﹣,﹣1);
(3)要使f(x)≤m2﹣2am+1对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,
只须f(x)max≤m2﹣2am+1,即1≤m2﹣2am+1对任意的a∈[﹣1,1]恒成立,
亦即m2﹣2am≥0对任意的a∈[﹣1,1]恒成立.令g(a)=﹣2ma+m2,
只须,
解得m≤﹣2或m≥2或m=0,即为所求.
21.【答案】
【解析】(1)为,故点在函数的图像上,故由所给出的两点
,可知,直线斜率一定存在。
故有
直线的直线方程为,令,可求得
所以
下面用数学归纳法证明
当时,,满足
假设时,成立,则当时,
22.【答案】
【解析】(1)证明:b n+1﹣b n=﹣=﹣=1,又b1=1.∴数列{b n}为
等差数列,首项为1,公差为1.
(2)解:由(1)可得:b n=n.
c n=b n+1•()=(n+1).
∴数列{c n}的前n项和为T n=+3×++…+(n+1).
=+3×+…+n+(n+1),
∴T n=+++…+﹣(n+1)=+﹣(n+1),
可得T n=﹣.
(3)证明:1+++…+≤2﹣1(n∈N*)即为:1+++…+≤﹣1.
∵=<=2(k=2,3,…).
∴1+++…+≤1+2[(﹣1)+()+…+(﹣)]=1+2=2﹣1.
∴1+++…+≤2﹣1(n∈N*).
23.【答案】
【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.
请24.【答案】
【解析】解:(Ⅰ)f(x)=sin2x+(1﹣2sin2
x)=sin2x+cos2x
=2(sin2x+cos2x)=2sin(2x+),
由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),
故f(x)的单调减区间为:[kπ+,kπ+](k∈Z);
(Ⅱ)当x∈[﹣,]时,(2x+)∈[0,],2sin(2x+)∈[0,2],
所以,f(x)的值域为[0,2].。