高一数学集合与函数概念.
高一数学必修一知识点总结

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a∉A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
② 语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∉R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B⊆ A①任何一个集合是它本身的子集。
高一数学知识点集 合与函数概念

高一数学知识点集合与函数概念高一数学知识点:集合与函数概念在高一数学的学习中,集合与函数概念是非常重要的基础知识。
理解和掌握这些概念,对于后续数学知识的学习和应用有着至关重要的作用。
接下来,让我们一起深入探讨一下这两个重要的数学知识点。
一、集合(一)集合的定义集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。
这些对象称为集合的元素。
比如说,一个班级里的所有学生可以组成一个集合,这个集合中的元素就是每个学生。
(二)集合的表示方法1、列举法把集合中的元素一一列举出来,写在大括号内。
例如,由元素 1,2,3 组成的集合,可以表示为{1,2,3}。
2、描述法用确定的条件表示某些对象是否属于这个集合。
比如,所有小于 5的正整数组成的集合,可以表示为{x | x 是小于 5 的正整数}。
(三)集合间的关系1、子集如果集合 A 的所有元素都是集合 B 的元素,那么称集合 A 是集合B 的子集,记作 A ⊆ B。
例如,集合 A ={1,2},集合 B ={1,2,3},则 A 是 B 的子集。
2、真子集如果集合 A 是集合 B 的子集,且 B 中至少有一个元素不属于 A,那么称集合 A 是集合 B 的真子集,记作 A ⊂ B。
比如,集合 A ={1,2},集合 B ={1,2,3},A 是 B 的真子集。
(四)集合的运算1、交集由属于集合 A 且属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A ∩ B。
例如,集合 A ={1,2,3},集合 B ={2,3,4},则A ∩ B ={2,3}。
2、并集由属于集合 A 或属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的并集,记作 A ∪ B。
比如,集合 A ={1,2,3},集合 B ={2,3,4},则 A ∪ B ={1,2,3,4}。
3、补集设 U 是一个全集,A 是 U 的一个子集,由 U 中所有不属于 A 的元素组成的集合,称为集合 A 在 U 中的补集,记作∁UA。
高一数学必修一第一章知识点总结及练习

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即x ∈B }. x ∈B}).C S A=},|{A x S x x ∉∈且韦恩 图 示AB图1AB图2性质 A A=A A Φ=Φ A B=B AA B ⊆AA B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高一数学知识点:集合与函数概念

高一数学知识点:集合与函数概念一、集合的概念集合是数学中最基本的概念之一。
它是由确定的对象所组成的整体,这些对象被称为集合的元素。
集合可以用不同的方法来表示和描述,最常用的表示方法是列举法和描述法。
1.1 列举法集合的列举法是通过列举集合中的元素来表示集合的方法。
例如,集合A可以通过列举其中的元素来表示:A = {1, 2, 3, 4, 5}。
这意味着集合A包含了元素1、2、3、4和5。
1.2 描述法集合的描述法是通过描述元素所满足的条件来表示集合的方法。
例如,集合B可以通过描述其中的元素来表示:B = {x | x 是正整数,且 x < 10}。
这意味着集合B包含了所有小于10的正整数。
二、集合的运算集合之间可以进行多种运算,常见的有交集、并集、补集和差集。
2.1 交集交集是指两个集合中都包含的元素组成的集合。
用符号∩表示。
例如,设A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。
2.2 并集并集是指两个集合中所有元素组成的集合。
用符号∪表示。
例如,设A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。
2.3 补集补集是指某个全集中减去一个集合的元素所得到的集合。
用符号’表示。
例如,设全集U = {1, 2, 3, 4, 5},集合A = {1, 2, 3},则A’ = {4, 5}。
2.4 差集差集是指一个集合减去另一个集合的元素所得到的集合。
用符号-表示。
例如,设集合A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。
三、函数的概念函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用f(x)的形式表示,其中x是定义域中的元素,f(x)是对应的值域中的元素。
函数的定义包括定义域、值域和对应关系三个要素。
3.1 定义域定义域是指函数中所有可能的输入值构成的集合。
高一数学知识内容

高一数学知识内容必修一第一章集合与函数概念1、集合的含义与表示2、集合间的基本关系3、集合的基本运算4、函数及其表示:1)函数的概念2)函数的表示法5、函数的基本性质:1)单调性与最大(小)值2)奇偶性第二章基本初等函数1、指数函数:1)指数与指数幂2)指数函数及性质2、对数函数:1)对数与对数运算2)对数函数及其性质3、幂函数第三章函数的应用1、函数与方程2、函数模型及其应用必修二第一章空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积和体积第二章点、直线平面之间的位置关系1、空间点、直线平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质第三章直线与方程1、直线的倾斜角与斜率2、直线的方程3、直线的交点坐标与距离公式第四章圆的方程1、元的方程2、直线、圆的位置关系3、空间直角坐标系必修四第一章三角函数1、任意角和弧度制2、任意角的三角函数3、三角函数的诱导公式4、三角函数的图像与性质5、函数的图像6、三角函数模型的简单应用第二章平面向量1、平面向量的概念2、平面向量的线性运算3、平面向量的基本定理及坐标表示4、平面向量的数量积5、平面向量应用举例第三章三角恒等变换1、两角和与差的正弦、余弦和正切公式2、简单的三角恒等变换必修五第一章解三角形1、正弦定理和余弦定理2、应用举例第二章数列1、数列的概念与简单表示法2、等差数列3、等差数列的前n项和4、等比数列5、等比数列的前n项和第三章不等式1、不等关系与不等式2、一元二次不等式及其解法3、二元一次不等式(组)与简单的线性4、基本不等式:2ba ab +≤。
精选-高一数学下学期集合与函数概念-word文档

高一数学下学期集合与函数概念一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性;3.元素的无序性 .第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A 的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
高一数学集合及函数知识点

高一数学集合及函数知识点高一数学集合及函数学问点一.学问归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素留意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件2)集合的表示〔方法〕:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}留意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,把握有关的术语和符号,特殊要留意以下的符号:(1)与、?的区分;(2)与的区分;(3)与的区分。
4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n1个非空子集,2n2个非空真子集。
二.例题讲解:【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满意关系A)M=NPB)MN=PC)MNPD)NPM分析一:从推断元素的共性与区分入手。
高中数学必修知识点集合与函数概念

高中数学必修知识点集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是a M,或者a M,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图(1)A AA BA中的任一元(2) A子集(或(3)若A B且BC,则素都属于BB A) AC(4)若A B且BA,则AB真子A B AB,且B (1)A(A为非空子集)(2)若A B且BC,则AC(或中至少有一元集B A)素不属于AA中的任一元集合A B素都属于B,(1)A BB中的任一元(2)B A相等素都属于A(7)已知集合A有n(n1)个元素,则它有2n个子集,它有集,它有2n1个非空子集,它有2n2非空真子集.【1.1.3】集合的基本运算A(B)或B AB AA(B)2n1个真子(8)交集、并集、补集名记意义性质示意图称号(1)A A A交AB {x|xA,且(2)A(3)A AB集xB} BAA B B并集补集(1)A A AAB{x|xA,或(2)A AxB}(3)AA BB AA B B{x|xU,且xA}痧(A B) ( A) (?B)1 A(eU A)e U A UU U痧(A B) ( A) (?B)2AUU U(e U A)U【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x|a(a0){x|a x a}|x|a(a0)x|x a或x a}把ax b看成一个整体,化成|ax b|c,|ax b|c(c0)|x|a,|x|a(a0)型不等式来求解(2)一元二次不等式的解法判别式000 b24ac二次函数y ax2bx c(a0)O 的图象一元二次方程b b2 4ac2 x1,22ax1x2bax bxc 0(a 0)无实根2a(其中x1 x2)的根ax2 bxc 0(a 0)或xx2}{x|x b}{x|xx1 R 的解集2aax2 bxc 0(a 0){x|x1 x x2}的解集〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须a b,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤ytanx中,xk(kZ).2⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y)0,则在a(y)0时,由于x,y为实数,故必须有b2(y)4a(y)c(y)0,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作f:A B.②给定一个集合A到集合B的映射,且a A,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的定义图象判定方法性质如果对于属于定义 域I 内某个区间上 的任意两个自变量的值x 、x,当x<x2121...y y=f(X)f(x 2)时, 都 有f(x 1)<f(x 2),那么f(x 1).........o1x 2xx(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图就说 f(x) 在这个 区间上是增函数....函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量yy=f(X)的值x 、x ,当x<1 2 1..f(x 1)x 2时,都有f(x 2).象上升为 增) (4)利用复合函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个f(x 1)>f(xox 1x 2x区间图2),那么.........就说f(x)象下降为减)在这个(4)利用复合区间上是减函数....函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数yf[g(x)],令ug(x),若yf(u)为增,u g(x)为增,则y f[g(x)]为增;若yf(u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u)为增,u g(x)为减,则y f[g(x)]为减;若y f(u)为减,u g(x)为增,则y f[g(x)]为减.(2)打“√”函数f(x)x a(a0)的图象与性质yxf(x)分别在(,a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.(3)最大(小)值定义o x①一般地,设函数y f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x I,都有f(x)M;(2)存在x0I,使得f(x0)M.那么,我们称M是函数f(x)的最大值,记作f max(x)M.②一般地,设函数y f(x)的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有f(x)m;(2)存在x0I,使得f(x0)m.那么,我们称m是函数f(x)的最小值,记作f max(x)m.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义图象判定方法性质如果对于函数(1)利用定义f(x)定义域内任意(要先判断定一个x,都有f(-..义域是否关于x)=-f(x),那么函........原点对称)数f(x)叫做奇函..(2)利用图象数..(图象关于原函数的点对称)奇偶性如果对于函数(1)利用定义f(x)定义域内任意(要先判断定一个x,都有f(-..义域是否关于x)=f(x),那么函数.......原点对称)f(x)叫做偶函数....(2)利用图象(图象关于y轴对称)②若函数f(x)为奇函数,且在x0处有定义,则f(0)0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函 数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换y f(x) yf(x)h0,左移h 个单位h0,右移|h|个单位 k0,上移k 个单位k0,下移|k|个单位y f(x h) yf(x)k②伸缩变换y f(x) yf(x)0 1,伸1,缩 0A1,缩A1,伸y f( x)yAf(x)③对称变换y f(x) yf(x)x轴原点y f(x) y f(x)y轴yf( x)yf(x)y f(x)直线yxyf 1(x)yf(x)去掉y 轴左边图象yf(|x|)保留y轴右边图象,并作其关于y轴对称图象y f(x)保留x轴上方图象y |f(x)| 将x轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高一数学集合、函数知识点总结、相应试题及答案

高一数学第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:1)元素的确定性如:世界上最高的山2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集例题:1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高一数学知识点集合与函数概念

高一数学知识点集合与函数概念高一数学知识点:集合与函数概念在高一数学的学习中,集合与函数概念是非常重要的基础知识。
它们不仅是后续数学学习的基石,也在实际生活和其他学科中有着广泛的应用。
接下来,让我们一起深入了解一下这两个重要的知识点。
一、集合集合是现代数学中的一个基本概念。
我们可以把具有某种特定性质的事物看作一个整体,这个整体就是一个集合。
比如,一个班级里所有的同学可以组成一个集合,一堆水果也可以组成一个集合。
集合通常用大写字母表示,比如 A、B、C 等。
集合中的元素则用小写字母表示,比如 a、b、c 等。
如果一个元素 x 属于集合 A,我们记作 x∈A;如果不属于,就记作 x∉A。
集合的表示方法有很多种,常见的有列举法、描述法和图示法。
列举法就是将集合中的元素一一列举出来,用花括号括起来。
比如,集合 A ={1, 2, 3, 4, 5}。
描述法是用集合中元素所具有的共同特征来描述集合。
比如,集合B ={x | x 是大于 5 的整数}。
图示法包括维恩图(Venn Diagram),它可以直观地展示集合之间的关系。
集合之间有一些重要的关系,比如子集、真子集和相等。
如果集合 A 中的所有元素都在集合 B 中,那么集合 A 就是集合 B 的子集,记作 A⊆B。
如果 A 是 B 的子集,且 B 中至少有一个元素不在 A 中,那么 A 就是 B 的真子集,记作 A⊂B。
如果集合 A 和集合 B 中的元素完全相同,那么 A 和 B 相等,记作 A = B。
集合的运算也是集合这部分的重要内容,包括交集、并集和补集。
两个集合 A 和 B 的交集,记作A∩B,是由既属于 A 又属于 B 的所有元素组成的集合。
两个集合 A 和 B 的并集,记作 A∪B,是由属于 A 或者属于 B 的所有元素组成的集合。
而补集呢,设 U 是一个全集,A 是 U 的子集,那么由 U 中不属于A 的所有元素组成的集合,叫做集合 A 在 U 中的补集,记作∁UA。
高一数学知识点:集合与函数概念

高一数学知识点:集合与函数概念引言在高一数学学习中,集合与函数是非常重要的概念。
集合是数学中最基本的概念之一,它可以用来描述一组元素的集合。
函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
本文将介绍集合与函数的基本概念和一些重要的性质。
集合的概念和表示方法集合的定义集合是指具有某种特定性质的事物的总体。
集合中的元素是指具有该特定性质的事物。
集合中的元素可以是数字、字母、符号等等,以及其他更复杂的对象。
集合的表示方法集合可以通过列举法和描述法来表示。
- 列举法:列举法是指将集合的所有元素一一列举出来。
用花括号 {} 表示集合,元素之间用逗号分隔。
例如,集合A = {1, 2, 3} 表示集合A包含元素1、2、3。
- 描述法:描述法是指通过描述集合元素的共同特征来表示集合。
用大括号 {} 表示集合,之后用竖线 | 和描述集合元素的条件。
例如,集合B = {x | x 是正整数,且 x < 5} 表示集合B包含所有小于5的正整数。
集合的运算并集集合A和集合B的并集,表示为A ∪ B,是指包含A和B中所有元素的集合。
即,如果x是集合A或集合B的元素,那么x是集合A∪B的元素。
交集集合A和集合B的交集,表示为A ∩ B,是指同时属于集合A和集合B的元素组成的集合。
即,如果x是集合A和集合B的元素,那么x是集合A∩B的元素。
差集集合A和集合B的差集,表示为 A - B,是指属于集合A但不属于集合B的元素组成的集合。
即,如果x是集合A的元素但不是集合B的元素,那么x是集合A-B的元素。
互斥事件如果集合A和集合B的交集为空集,即A ∩ B = ∅,则A和B称为互斥事件。
函数的概念和性质函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用字母f、g等来表示。
自变量和因变量在函数中,自变量是指输入的变量,因变量是指随着自变量变化而变化的变量。
高一数学必修一知识点总结

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
高一数学必修一知识点总结(集合与函数概念)

高一数学必修一知识点总结(集合与函数概念)对第一章的内容进行了总结,其中包含了集合的有关概念、集合间的基本关系、集合的运算等一些重要的知识点!一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}4、集合的分类:1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
高一数学知识点总结:集合与函数概念

高一数学知识点总结:集合与函数概念
高一数学知识点总结:集合与函数概念
【】考点内容有什么变化?复习需要注意什么?查字典数学网高中频道小编整理了高一数学知识点总结:集合与函数概念,希望为大家提供服务。
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队
员},B={1,2,3,4,5}
总结:集合与函数概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合与函数概念.
第一集合与函数概念
一标要求:
本将集合作为一种语言学习,使学生感受用集合表示数学内容时的简洁
性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力
函数是高中数学的核心概念,本把函数作为描述客观世界变化规律的重要数学模型学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识
1 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号
2 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举
法或描述法)描述不同的具体问题,感受集合语言的意义和作用
3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力
4、能在具体情境中,了解全集与空集的含义
、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力
6 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集
7 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用
8 学会用集合与对应的语言刻画函数,理解函数符号=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法
9 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象
10 通过具体实例,了解简单的分段函数,并能简单应用
11 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形
12 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法
13 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事和重要人物,了解生活中的函数实例
二编写意图与教学建议
1 教材不涉及集合论理论,只将集合作为一种语言学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算
教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概
念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学
2 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
3 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中
4 在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的在教学中,一定要循序渐进,从繁到难,逐步渗透这方面的训练
教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,教师要准确把握这方面的要求,防止拨高教学
6 函数的表示是本的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解
抽象的函数概念在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法
7 教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性
8 教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用
9 为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生实际,合理地取舍
三教学内容及时安排建议
本教学时间约13时。
11 集合4时
12 函数及其表示4时
13 函数的性质3时
实习作业1时
复习1时
§111集合的含义与表示
一教学目标:
l知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性互异性无序性;
(4)会用集合语言表示有关数学对象;
()培养学生抽象概括的能力
2 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义
(2)让学生归纳整理本节所学知识
3 情感态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性
二教学重点难点
重点:集合的含义与表示方法
难点:表示法的恰当选择
三学法与教学用具
1 学法:学生通过阅读教材,自主学习思考交流讨论和概括,从而更好地完成本节的教学目标
2 教学用具:投影仪
四教学思路
(一)创设情景,揭示题
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?
引导学生回忆举例和互相交流与此同时,教师对学生的活动给予评价
2接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂所要学习的内容
(二)研探新知
1.教师利用多媒体设备向学生投影出下面9个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
()湖南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程的所有实数根;
(8)不等式的所有解;
(9)洞口一中2007年9月入学的高一学生的全体
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义
一般地,指定的某些对象的全体称为集合(简称为集)集合中的每个
对象叫作这个集合的元素
4教师指出:集合常用大写字母A,B,,D,…表示,元素常用小写字母…表示
(三)质疑答辩,排难解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难使学生明确集合元素的三大特性,即:确定性互异性和无序性只要构成两个集合的元素是一样的,我们就称这两个集合相等
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流
让学生充分发表自己的建解
3 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由教师对学生的学习活动给予及时的评价
4教师提出问题,让学生思考
(1)如果用A表示高—(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于
如果是集合A的元素,就说属于集合A,记作
如果不是集合A的元素,就说不属于集合A,记作
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国日本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题
教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号并让学生完成习题11A组第1题
6教师引导学生阅读教材中的相关内容,并思考讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,,7,9};
(2)用例举法表示集合
(3)试选择适当的方法表示下列集合:教材第6页练习第2题
(五)归纳整理,整体认识
在师生互动中,让学生了解或体会下例问题:
1.本节我们学习过哪些知识内容?
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
(六)承上启下,留下悬念
1.后书面作业:第13页习题11A组第4题
2 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。