高中数学80个易错点易错题总结
[高一数学易错点]高一数学易错题
![[高一数学易错点]高一数学易错题](https://img.taocdn.com/s3/m/d871bcafd0f34693daef5ef7ba0d4a7302766cf5.png)
[高一数学易错点]高一数学易错题高一数学易错点(一)易错点1 遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.易错点2 忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.易错点3 混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.易错点4 充分条件、必要条件颠倒致误对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A 的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.易错点5 “或”“且”“非”理解不准致误命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解.易错点6 函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.易错点7 判断函数的奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数.易错点8 函数零点定理使用不当致误如果函数y=f(某)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(某)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(某)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.易错点9 导数的几何意义不明致误函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”.易错点10 导数与极值关系不清致误f′(某0)=0只是可导函数f(某)在某0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(某)在某0两侧异号.另外,已知极值点求参数时要进行检验.高一数学易错点(二)易错点1 三角函数的单调性判断致误对于函数y=Ain(ω某+φ)的单调性,当ω>0时,由于内层函数u=ω某+φ是单调递增的,所以该函数的单调性和y=in某的单调性相同,故可完全按照函数y=in某的单调区间解决;但当ω<0时,内层函数u=ω某+φ是单调递减的,此时该函数的单调性和函数y=in某的单调性相反,就不能再按照函数y=in某的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断.易错点2 图像变换方向把握不准致误函数y=Ain(ω某+φ)(其中A>0,ω>0,某∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短(当0易错点3 忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.易错点4 向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况.易错点5 an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.易错点6 对等差、等比数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N某)是等差数列.易错点7 数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题.数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一.在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.易错点8 错位相减求和时项数处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和.基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.易错点9 不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误.易错点10 忽视基本不等式应用条件致误利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件.对形如y=a某+b某(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意a某,b某的符号,必要时要进行分类讨论,另外要注意自变量某的取值范围,在此范围内等号能否取到.高一数学易错点(三)易错点1 解含参数的不等式时分类讨论不当致误解形如a某2+b某+c>0的不等式时,首先要考虑对某2的系数进行分类讨论.当a=0时,这个不等式是一次不等式,解的时候还要对b,c进一步分类讨论;当a≠0且Δ>0时,不等式可化为a(某-某1)(某-某2)>0,其中某1,某2(某10,则不等式的解集是(-∞,某1)∪(某2,+∞),如果a<0,则不等式的解集是(某1,某2).易错点2 不等式恒成立问题处理不当致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意某∈[a,b]都有f(某)≤g(某)成立,即f(某)-g(某)≤0的恒成立问题,但对存在某∈[a,b],使f(某)≤g(某)成立,则为存在性问题,即f(某)min≤g(某)ma某,应特别注意两函数中的最大值与最小值的关系.易错点3 忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽.易错点4 面积、体积的计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法.(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.易错点5 随意推广平面几何中的结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.易错点6 对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.易错点7 空间点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致.易错点8 忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1某+B1y+C1=0与l2:A2某+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1某+B1y+C1=0与l2:A2某+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论.易错点9 忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.易错点10 忽视圆锥曲线定义中的条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支. 看了<高一数学易错点>的人还看了:1.高一数学必修一易错点2.高一数学期末考易错知识点总结3.高一数学知识点总结4.高一数学不等式知识点总结5.高一上数学知识点总结。
高中数学易错题整理

高中数学错题集1、“直线ax+y +1=0和直线4x+ay -2=0”平行的充要条件为”a = “.22、.已知函数f(x)是R 上的减函数,A(0,-2),B(-3,2)是其图像上的两点,那么不等式|f(x -2)|>2的解集为 .请将错误的一个改正为 .3、已知正数x,y 满足x+ty =1,其中t 是给定的正实数,若1/x +1/y 的最小值为16,则实数t 的值为 .4、已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 .34、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。
(5,7).5、已知正数x,y 满足4x-y=xy 则,x-y 的做小值为 .6、偶函数f(x)在[0,+∞]上是增函数,若f(ax+1)>f(x-3)在[1,2]上恒成立,则实数的取值范围为 .(a>1ora<-3)7、若数列{a n }的通项公式⋅⋅2n-2n-1n 22a =5()-4()55,数列{a n }的最大项为第x 项,最小项为第y 项,则x+y=_______________. 12. 38、已知a ,b 是两个互相垂直的单位向量, 且1=⋅=⋅b c a c 2=,则对0>t a t ++的最小值是 。
9、定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 10.154函数f(x)=sin(ωx+π/3)(ω>0)在[0,2]上恰有一个最大值和最小值,则ω的取值范围是 .10.设D 、P 为△ABC 内的两点,且满足,51),(41+=+=则ABCAPDS S ∆∆= .0.1 11、设D 为ABC ∆的边AB 上的点,P 为ABC ∆内一点,且满足52,43+==,则=∆∆ABCAPD S S .10312、若函数2()x f x x a =+(0a >)在[)1,+∞上的最大值为3,则a 的值为113、 已知函数M,最小值为m,则mM的值为 ___________。
(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。
75个高中数学粗心点

75个高中数学粗心点1. 忘记将x标出来,试图直接解出方程,导致无法得到正确答案。
2. 在计算中,忽略了符号的变化,导致得出错误的结果。
3. 对于复杂的计算题,没有列出步骤或者没有规范地记录计算,导致错算或者错漏。
4. 在几何问题中,没有严格地描述图形和定义,导致难以解决问题。
5. 忽视了“数据有误”的情况,直接按照给定数据进行计算,导致得出错误答案。
6. 在公式运用中,没有把握好精度,导致答案偏差过大。
7. 在试图运用公式解决问题时,没有先明确问题的内涵、外延,导致公式无法适用。
8. 对于一些特例,没有注意到其特殊的性质,导致运用公式时无法得到正确的答案。
9. 在解决题目时,没有把握题目的方向,导致花费大量时间解决了本来简单的问题。
10. 在做计算答题题目时,没有掌握好单位换算、精度要求等,导致答案偏差过大,得分偏低。
11. 对于不同性质和范围的数据,没有选择合适的计算方法,导致最终结果错误。
12. 在考虑问题时,没有选取合适的变量或者没有选择合适的变量来描述问题,导致解题困难。
13. 没有注意到一些式子的特殊性质,如对称性、周期性等,导致没能运用它们解题。
14. 运用不严格的证明方法,导致无法得到正确的答案。
15. 未能正确区分问题中不同概念的定义,导致对问题的认识误差较大。
16. 没有采用推理或证明的方法检验一些结论或答案,导致结论或答案存在错误。
17. 没有清楚地表示自己的思路和解题方法,导致无法查错或找出解题错误。
18. 使用符号和术语不清晰,导致降低别人理解自己的思路和传达自己的思想的能力。
19. 未能考虑题目的逻辑结构和内在关系,导致解决问题时失去方向。
20. 在应用自己的思维方式和理解能力之前,没有仔细思考题目的信息和限制条件。
21. 将一些含混的词汇或问题理解成具体的数学方法,从而造成整个问题的偏差。
22. 运用不符合实际逻辑的方法,在解决问题时失去关键的细节和条件,导致答案偏差过大。
高考数学66个易混易错点汇总

一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法。
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。
这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
高中数学易错题库

第一章 空间向量与立体几何易错点一:空间向量的加减运算1.已知正方体ABCD-A 1B 1C 1D 1中,AC 1的中点为O ,则下列命题中正确的是( ) A .OA OD +与11OB OC +是一对相等向量 B .OB OC -与11OA OD -是一对相反向量 C .1OA OA -与1OC OC -是一对相等向量D .OA OB OC OD +++与1111OA OB OC OD +++是一对相反向量2.已知在正方体1111ABCD A B C D -中,P ,M 为空间任意两点,如果1111764PM PB BA AA A D =++-,那么点M 必( ) A .在平面1BAD 内 B .在平面1BA D 内 C .在平面11BA D 内D .在平面11AB C 内3.已知平行六面体ABCD-A'B'C'D',则下列四式中:①AB CB AC -=;②''''AC AB B C CC =++;③''AA CC =;④'''AB BB BC C C AC +++=. 其中正确的是_____.易错点二:空间向量的数量积1.平行六面体(底面为平行四边形的四棱柱)1111ABCD A B C D -所有棱长都为1,且1160,45,A AD A AB DAB ︒∠=∠=∠=︒则1BD =( ) A .31-B .21-C .32-D .32-2.在空间直角坐标系O xyz -中,(0,0,0),(22,0,0),(0,22,0)O E F ,B 为EF 的中点,C 为空间一点且满足||||3CO CB ==,若1cos ,6EF BC <>=,,则OC OF ⋅=( ) A .9B .7C .5D .33.设a b c ,,是单位向量,且0⋅=a b ,则()()a cbc -⋅-的最小值为__________. 易错点三:用空间基底表示向量1.在三棱柱111A B C ABC -中,D 是四边形11BB C C 的中心,且1,,AA a AB b AC c ===,则1A D =( )A .111222a b c ++B .111222a b c -+C .111222a b c +-D .111222a b c -++2.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( )A .1122a b c -+B .a b c +-C .a b c -+D .1122a b c -+-3.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.易错点四:空间向量的坐标运算1.已知点A(3,3,-5),B(2,-3,1),C 为线段AB 上一点,且23AC AB = ,则点C 的坐标为( ) A . 715(,,)222-B . 3(,3,2)8-C . 7(,1,1)3--D . 573(,,)222-2.已知()1,1,2P -,()23,1,0P 、()30,1,3P ,则向量12PP 与13PP 的夹角是( )A .30B .45C .60D .903.如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,B 1C 1的中点,若以{}1,,AB AD AA 为基底,则向量AE 的坐标为___,向量AF 的坐标为___,向量1AC 的坐标为___.易错点五:空间向量运算的坐标表示1.在空间直角坐标系中,已知()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -,则直线AD 与BC 的位置关系是( ) A .平行B .垂直C .相交但不垂直D .无法判定2.已知A(1,2,3),B(2,1,2),C(1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA ·DB 取最小值时,点D 的坐标为A .444,,333⎛⎫ ⎪⎝⎭B .848,,333⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .884,,333⎛⎫ ⎪⎝⎭3.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(1x -,y ,-3),且BP ⊥平面ABC ,则实数x y +=________. 易错点六:空间位置关系的向量证明1.已知正方体1111ABCD A B C D -,E 是棱BC 的中点,则在棱1CC 上存在点F ,使得( ) A .1//AF D E B .1AF D E ⊥ C .//AF 平面11C D ED .AF ⊥平面11C D E2.在正方体ABCD-A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M=AN=23a,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交B .平行C .垂直D .不能确定3.若直线l 1的方向向量为1u =(1,3,2),直线l 2上有两点A(1,0,1),B(2,-1,2),则两直线的位置关系是_____. 易错点七:异面直线夹角的向量求法1.如图所示,在三棱锥P –ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .3010-B .305-C .305D .30102.如图所示,在正方体1111ABCD A B C D -中,若E 为11D C 的中点,则11AC →与DE →所成角的余弦值为( )A .1010B .13C .24D .553.在三棱锥O ABC -中,已知OA 、OB 、OC 两两垂直且相等,点P 、Q 分别是线段BC 和OA 上的动点,且满足12BP BC ≤,12AQ AO ≥,则PQ 和OB 所成角的余弦的取值范围是___________.易错点八:线面角的向量求法A .6πB .3π C .2π D .56π2.在棱长为1的正方体1111ABCD A B C D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25 C .35D .453.在正四棱锥S -ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 的夹角是________.易错点九:面面角的向量求法1.如图,在空间直角坐标系D xyz -中,四棱柱1111ABCD A B C D -为长方体,12AA AB AD ==,点E ,F 分别为11C D ,1A B 的中点,则二面角11B A B E --的余弦值为( )A .33-B .32-C .33D .322.如图,在空间直角坐标系Dxyz 中,四棱柱1111ABCD A B C D -为长方体, 12AA AB AD ==,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( )A .33-B .32-C .33D .323.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.第二章 直线和圆的方程易错点一:两条直线平行和垂直的判定1.若过点A (2,-2),B (5,6)的直线与过点P (2m ,1),Q (-1,-m )的直线平行,则m 的值为( ) A .-1B .-513C .2D .122.若直线a ,b 的斜率分别为方程2410x x --=的两个根,则a 与b 的位置关系为( ) A .互相平行B .互相重合C .互相垂直D .无法确定3.经过点A (1,2)和点B (-3,2)的直线l 1与经过点C (4,5)和点D (a ,-7)的直线l 2垂直,则a =________. 易错点二:直线的方程1.在x 轴和y 轴上的截距分别为4-和5的直线方程是( ) A .154x y +=- B .145x y +=- C .145x y +=- D .154x y +=- 2.直线()2(2)232m x m m y m ++--=在x 轴上的截距为3,则实数m 的值为( )A .65B .6-C .65-D .63.过点P (1,2)且在两坐标轴上截距的和为0的直线方程为____________________. 易错点三:两条直线的交点坐标1.直线x -2y +3=0与2x -y +3=0的交点坐标为( ) A .(-1,1) B .(1,-1) C .(1,1)D .(-1,-1)2.两条直线1l :x =2和2l :32120x y +-=的交点坐标是 A .(2,3)B .(2,3)-C .(3,2)-D .(3,2)-3.已知直线1:l 3250x y +-=与直线2:l 4110x ay +-=,且12l l ⊥,则直线1l 与直线2l 的交点坐标是______. 易错点四:两点间的距离公式1.点()2,5P -为平面直角坐标系内一点,线段PM 的中点是()1,0,那么点M 到原点O 的距离为( ) A .41B .41C .39D .392.光线从点(3,5)A -射到x 轴上,经x 轴反射后经过点(2,10)B ,则光线从A 到B 的距离为 A .52B .25C .510D .1053.已知点()2,1A ,点()5,1B -,则AB =________. 易错点五:圆的方程1.以()3,1A -,()2,2B -为直径的圆的方程是 A .2280x y x y +---= B .2290x y x y +---= C .2280x y x y +++-=D .2290x y x y +++-=2.圆224630x y x y ++--=的标准方程为( ) A .22(2)(3)16x y -+-= B .22(2)(3)16x y -++= C .22(2)(3)16x y ++-=D .22(2)(3)16x y +++=3.圆心为直线20x y -+=与直线280x y +-=的交点,且过原点的圆的标准方程是________. 易错点六:直线与圆的位置关系 1.直线y=x+1与圆x 2+y 2=1的位置关系为 A .相切B .相交但直线不过圆心C .直线过圆心D .相离2.已知过点P(2,2) 的直线与圆22(1)5x y -+=相切, 且与直线10ax y -+=垂直, 则a =( ) A .12-B .1C .2D .123.直线()0kx y k k R --=∈与圆222x y +=交点的个数为______. 易错点七:圆与圆的位置关系1.圆M :x 2+y 2+4x =0与圆N :(x +6)2+(y ﹣3)2=9的位置关系是( ) A .内切B .相交C .外切D .相离2.已知圆C 1:x 2+y 2+2x ﹣4y +4=0,圆C 2:x 2+y 2﹣4x +4y ﹣1=0,则圆C 1与圆C 2( ) A .相交B .外切C .内切D .外离3.已知圆221:1C x y +=,圆222:2210C x y x y +--+=,则圆1C 与圆2C 的位置关系为______.第三章 圆锥曲线的方程易错点一:利用椭圆定义求方程1.椭圆的焦点坐标为(﹣5,0)和(5,0),椭圆上一点与两焦点的距离和是26,则椭圆的方程为( ) A .22+169144x y =1 B .2144x +2169y =1C .2169x +225y =1D .2144x +225y =12.已知ABC 的两个顶点分别为(4,0),(4,0),A B ABC -的周长为18,则点C 的轨迹方程为( )A .221(0)259x y y +=≠B .221(0)259y x y +=≠C .221(0)169x y y +=≠D .221(0)169y x y +=≠3.已知圆221:(2)36F x y ++=,定点2(20)F ,,A 是圆1F 上的一动点,线段2F A 的垂直平分线交半径1F A 于P 点,则P 点的轨迹C 的方程是_____________. 易错点二:求椭圆的焦点1.若直线l :2x +by +3=0过椭圆C :10x 2+y 2=10的一个焦点,则b 等于( ) A .1B .±1C .-1D .±22.已知12,F F 分别为椭圆221169x y+=的左,右焦点,A 为上顶点,则12AF F △的面积为( )A .6B .15C .67D .373.设椭圆221129x y +=的短轴端点为1B 、2B ,1F 为椭圆的一个焦点,则112B F B ∠=________.易错点三:求椭圆的长轴、短轴1.已知椭圆9x 2+4y 2=36,则其长轴长为( ) A .2B .4C .6D .92.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( ) A .2B .4C .12D .143.已知椭圆()2222:111x y C a a a +=>-的左,右焦点分别为1F ,2F ,点()0,6A ,椭圆C 短轴的一个端点恰为12AF F △的重心,则椭圆C 的长轴长为________. 易错点四:求椭圆的离心率或离心率的取值范围1.在Rt ABC 中,1AB AC ==,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A .32-B .21-C .31-D .63-2.曲率半径可用来描述曲线上某点处的弯曲变化程度,曲率半径越大则曲线在该点处的弯曲程度越小.已知椭圆C :22221x y a b+=(0a b >>)上点()00,P x y 处的曲率半径公式为3222220044x y R a b a b ⎛⎫=+ ⎪⎝⎭.若椭圆C 上所有点相应的曲率半径的最大值是最小值的8倍,则椭圆C 的离心率为( )A .12B .22C .32D .1443.已知椭圆M :2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,若椭圆M 与坐标轴分别交于A ,B ,C ,D 四点,且从F 1,F 2,A ,B ,C ,D 这六点中,可以找到三点构成一个直角三角形,则椭圆M 的离心率的可能取值为__. ①512-;②312-;③32;④22. 易错点五:根据离心率求椭圆的标准方程 1.焦点在y 轴上的椭圆mx 2+y 2=1的离心率为32,则m 的值为( ) A .1 B .2 C .3D .42.阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积公式,设椭圆的长半轴长、短半轴长分别为,a b ,则椭圆的面积公式为S ab π=.若椭圆C 的离心率为32,面积为8π,则椭圆的C 的标准方程为( ) A .221164x y +=或221164y x +=B .2211612x y +=或2211612y x += C .221124x y +=或221124y x +=D .221169x y +=或221916x y +=3.已知焦点在x 轴上的椭圆2215x y m +=的离心率105e =,则m 的值为______.易错点六:利用定义解决双曲线中焦点三角形问题1.已知O 为坐标原点,设12,F F 分别是双曲线221x y -=的左、右焦点,点P 为双曲线左支上任一点,自点1F 作12F PF ∠的平分线的垂线,垂足为H ,则||OH = A .1B .2C .4D .122.已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF 的面积为 A .13B .1 2C .2 3D .323.已知F 1,F 2分别为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于________.易错点七:根据方程表示双曲线求参数的范围1.若方程22191x y k k +=--表示焦点在y 轴上的双曲线,则k 的取值范围为( )A .9k >B .1k <C .19k <<D .(1,5)(5,9)k ∈⋃2.已知方程2211-2x y m m +=+表示双曲线,则m 的取值范围是( )A .(-1,+∞)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .(-1,2)3.已知双曲线的一个焦点到其一条渐近线的距离为,则实数的值是_______.易错点八:根据a,b,c 求双曲线的标准方程1.过双曲线2222:1x y C a b-=的右顶点作x 轴的垂线与C 的一条渐近线相交于点A ,若以C 的右焦点为圆心,以2为半径的圆经过A 、O 两点(O 为坐标原点),则双曲线C 的方程为( ) A .2213x y -=B .2213y x -=C .22122x y -=D .22126x y -=2.已知双曲线的渐近线方程为y=±2x,焦点坐标为(-6,0),(6,0),则双曲线方程为( ) A .22x y 28-=1B .22x y 82-=1C .22x y 24-=1D .22x y 42-=13.已知双曲线中心在原点,一个焦点为1(5,0)F -,点P 在双曲线上,且线段1PF 的中点坐标为(0,2),则此双曲线的方程是________________. 易错点九:求双曲线的焦点坐标1.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( ) A .77y x =±B .7y x =±C .55y x =±D .5y x =±2.过双曲线221169x y -=的一个焦点F 作弦AB ,则11||||AF BF +的值等于( ) A .92B .89C .49D .293.若双曲线22154x y -=的左焦点在抛物线22y px =的准线上,则p 的值为________.易错点十:根据焦点或准线写出抛物线的标准方程1.已知抛物线22(0)y px p =>的准线与圆22(3)16x y -+=相切,则p 的值为 A .12B .1C .2D .42.以坐标轴为对称轴,焦点在直线34120x y --=上的抛物线的标准方程为( ) A .216x y =或212y x = B .216y x =或212x y = C .216y x =或212x y =-D .216x y =或212y x =-3.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为____.第四章 数列易错点一:判断或写出数列中的项 13,5,7,3,11,,21,n +51 ) A .第12项B .第13项C .第14项D .第25项2.已知数列{}n a 的通项公式为21nn a =+,则257是这个数列的( )A .第6项B .第7项C .第8项D .第9项3.已知数列210,4,…()231n -…,则8是该数列的第________项 易错点二:判断等差数列1.若{}n a 是等差数列,则下列数列中也成等差数列的是 A .{}2n aB .1n a ⎧⎫⎨⎬⎩⎭C .{}3n aD .{}n a2.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是( ) A .31n -B .32n +C .32n -D .31n +3.给出下列命题,正确命题的是( )(多选题) A .数列6,4,2,0是公差为2的等差数列; B .数列1,23a a a a ---,,是公差为1-的等差数列;C .等差数列的通项公式一定能写成n a kn b =+的形式(k ,b 为常数);D .数列{}()21n n N*+∈是等差数列.易错点三:等差数列通项公式的基本两计算1.在等差数列{a n }中,a 3=2,d =6.5,则a 7=( ) A .22B .24C .26D .282.已知数列{}n a 是等差数列,若35715a a a ++=,8212a a -=,则10a 等于( ) A .10B .12C .15D .183.三数成等差数列,首末两数之积比中间项的平方小16,则公差为__________. 易错点四:利用等差数列的性质计算1.在等差数列{a n }中,a 3+a 4+a 5=6,则a 1+a 7=( ) A .2B .3C .4D .52.在等差数列{}n a 中,2510a a +=,3614a a +=,则58a a +=( ) A .12B .22C .24D .343.在等差数列{}n a 中,194a a +=,那么238a a a ++⋅⋅⋅+等于______. 易错点五:等差数列前n 项和的基本量计算1.已知等差数列{}n a 的前5项和为25,且11a =,则7a =( ) A .10B .11C .12D .132.已知n S 为等差数列{}n a 的前n 项和,若254a a +=,7S =21,则7a 的值为 A .6B .7C .8D .93.设n S 是等差数列{}n a 的前n 项和,若63511a a =,则115SS =__________. 易错点六:等比数列通项公式的基本量计算1.已知等比数列{}n a 的前n 项和为n S ,公比为2,若415S =,则6a 的值为( ) A .16B .32C .48D .642.已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1a =( ) A .2-B .1-C .1D .23.设正项等比数列{}n a 的公比为q ,前n 项和为n S ,若423S S =,则q =_______________. 易错点七:求等比数列前n 项和1.已知数列{}n a 的通项公式212n n n a -=,则数列{}n a 的前5项和5S 等于( )A .3132B .2516C .12932D .211322.等比数列{}n a 的前n 项和为n S ,且14a ,22a ,3a 成等差数列.若11a =,则3S =( ) A .15B .7C .8D .163.对于数列{}n a ,若点()()n n a n ∈*N ,都在函数()2x f x =的图象上,则数列{}n a 的前4项和4S =___________.第五章 一元函数的导数及其应用易错点一:平均变化率1.设函数2()1f x x =-,当自变量x 由1变到1.1时,函数的平均变化率是( ) A .2.1B .0.21C .1.21D .0.1212.函数1y x=在1x =到3x =之间的平均变化率为( ) A .23B .23-C .13-D .133.函数()ln f x x =在区间[]1,e 上的平均变化率为_________. 易错点二:瞬时变化率的概率及辨析1.如果一个物体的运动方程为()()30s t t t =>,其中s 的单位是千米,t 的单位是小时,那么物体在4小时末的瞬时速度是( ) A .12千米/小时B .24千米/小时C .48千米/小时D .64千米/小时2.已知某物体的运动方程是39t s t =+,则当3t s =时的瞬时速度是A .2/m sB .3/m sC .4/m sD .5/m s3.质点M 按规律()()21s t t =-做直线运动(位移单位:m ,时间单位:s ),则质点M 在3t s=时的瞬时速度为______(单位:/m s ). 易错点三:导数定义中极限的简单计算 1.已知函数()sin f x a x =-,且0()()lim 2x f x f xππ∆→+∆-=∆,则实数a 的值为( )A .2πB .2π-C .2D .2-2.已知(1)1f '=,0(13)(1)lim x f x f x∆→+∆-∆等于( )A .1B .1-C .3D .133.已知()03f x '=,则()()0002limx x x f x f x∆→+∆-=∆______.易错点四:求曲线切线的斜率(倾斜角)1.已知函数()32f x x x =-,则()f x 在点()()1,1f 处的切线的倾斜角为 ( )A .34π B .3π C .4πD .6π2.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( )A .4πB .3π C .34π D .23π 3.已知函数()321313f x x x x =---+,则在曲线()y f x =的所有切线中,斜率的最大值为______.易错点五:基本初等函数的导数公式 1.若函数()31f x x =--,则()f x '=( ) A .0B .3x -C .3D .3-2.函数()3ln 2x f x =+的导数为( ) A .3ln 3xB .13ln 32x+C .132x+D .3x3.若()()23,f x x g x x ==,则满足()1()f x g x ''+=的x 值为________.易错点六:导数的运算1.已知函数2()2x f x x x xe =+-,则(0)f '=( ) A .1B .0C .1-D .22.下列导数运算正确的是( ) A .()122x x x -'=⋅ B .(sin cos 1)cos2x x x +=' C .1(lg )x x'=D .()12x x --'=3.已知函数2()x f x x e =,'()f x 为()f x 的导函数,则(1)f '的值为___________. 易错点七:用导数判断或证明已知函数的单调性 1.函数f (x )=2x -sin x 在(-∞,+∞)上是( ) A .增函数 B .减函数 C .先增后减D .不确定2.已知()'f x 是定义在R 上的函数()f x 的导函数,且满足()()0xf x f x '+>对任意的x ∈R 都成立,则下列选项中一定正确的是( )A .(2)(1)2f f >B .(1)(2)2f f > C .(2)(1)2f f <D .(1)(2)2f f < 3.已知定义在()0,∞+上的函数()f x 的导函数为'()f x ,且满足'()()f x x f x ⋅<,()30f =,则()0f x x>的解集为_________. 易错点八:求已知函数的极值1.函数y =x +1x(-2<x <0)的极大值为( )A .-2B .2C .-52D .不存在2.函数f (x )=1-x +x 2的极小值为( ) A .1 B .34C .14D .123.已知函数()ln f x x x =,则()y f x =的极小值为______. 易错点九:由导数求函数的最值1.函数f (x )=x 2-4x +1在[1,5]上的最大值和最小值分别是( ) A .f (1),f (2) B .f (2),f (5) C .f (1),f (5)D .f (5),f (2)2.关于函数3()f x x x =+,下列说法正确的是( ) A .没有最小值,有最大值 B .有最小值,没有最大值 C .有最小值,有最大值D .没有最小值,也没有最大值3.已知函数2 ()2ln f x x x =-,则() f x 在[1,]e 上的最大值是__________.第六章 计数原理易错点1:分步标准不清致错典例 甲、乙、丙、丁4名同学争夺数学、物理、化学3门学科知识竞赛的冠军,且每门学科只有1名冠军产生,则不同的冠军获得情况共有__64__种.易错点2:忽视排列数公式的隐含条件致误典例 解不等式A x8<6A x -28.由排列数公式得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0,解之得7<x <12.∵x ∈N *,∴x =8,9,10,11.易错点3:重复计数与遗漏计数致误典例 6个人站成前、中、后三排,每排2人,则不同的排法有__720__种.易错点4:混淆“排列”与“组合”的概念致错典例 某单位需派人同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法共有__2_520__种(用数字作答).易错点5:计数时重复或遗漏致错典例 将4个不同的小球放入编号为1,2,3,4的4个盒子中,则恰好有1个空盒子的放法有__144__种(用数字作答).易错点6:混淆项的系数与二项式系数典例 设(x -2)n (n ∈N *)的展开式中第二项与第四项的系数之比为1∶2,求含x 2的项.易错点7:错用二项式系数的性质致误典例 (1+2x )20的展开式中,x 的奇次项系数的和与x 的偶次项系数的和之比为__(320-1)∶(320+1)__.第七章 随机变量及其分布列易错点1:误认为条件概率P (B |A )与积事件的概率P (AB )相同典例 袋中装有大小相同的6个黄色的乒乓球,4个白色的乒乓球,每次抽取一球,取后不放回,连取两次,求在第一次取到白球的条件下第二次取到黄球的概率.易错点2:概率计算公式理解不清而致误典例(多选题)若0<P(A)<1,0<P(B)<1,则下列式子中成立的为__BCD__.A.P(A|B)=P(AB) P(A)B.P(AB)=P(A)P(B|A)C.P(B)=P(A)P(B|A)+P(A)P(B|A)D.P(A|B)=P(B)P(A|B)P(A)P(B|A)+P(A)P(B|A)易错点3:离散型随机变量的可能取值搞错致误典例小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复得奖)用X表示小王所获奖品的价值,写出X的所有可能取值.易错点4:对离散型随机变量均值的性质理解不清致误典例若X是一个离散型随机变量,则E(E(X)-X)=(A)A.0 B.1C.2E(X) D.不确定易错点5:要准确理解随机变量取值的含义典例某人有5把钥匙,其中只有一把能打开某一扇门,今任取一把试开,不能打开者除去,求打开此门所需试开次数X的均值和方差.易错点6:审题不清致误典例9粒种子分别种在3个坑内,每坑放3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,求需要补种坑数的分布列.易错点7:对超几何分布的概念理解不透致错典例 盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,若取出的是次品不再放回,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数X 的分布列.易错点8:对正态曲线的性质理解不准确致错典例 设ξ~N (1,4),那么P (5<ξ<7)=__0.021_5__.第八章 成对数据的统计分析易错点1:概念不清致误典例 (2021·陕西西安高三月考)在一组成对样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( D )A .-1B .0C .12D .1易错点2:生搬硬套求回归直线方程的步骤致错.典例 在一次抽样调查中测得样本的5个样本点数值如下表:x 0.25 0.5 1 2 4 y1612521试建立y 与x 之间的经验回归方程.易错点3:没有准确掌握公式中参数的含义致误典例 有甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计后,得到如下的列联表班级与成绩列联表试问能有多大把握认为“成绩与班级有关系”?。
高考数学108个易错点总结

⾼考数学108个易错点总结⼀定别忘了带圆规,直尺,按照顺序答,不要倒着答1.集合题看好给的范围,看清代表元素是什么!看清属于什么集合,是数集还是点集,是x还是y2.集合注意是∩还是∪,是集合数还是⼦集数,注意限制条件。
看清x是否属于N,或者属于Z,看清是N还是N*。
⼦集问题注意空集则3.看清是命题的否定还是否命题,命题的否定只否结论,存在任意互换4.A并B都假才假,A交B⼀假则假,前推后充分性,后推前必要性,⼩范围推导⼤范围5.复数:看清是复数还是共轭复数,虚部不带i6.7.复数:弄清实部和虚部(,虚部不带i);看清求共轭复数(共轭复数是虚部为相反数)还是复数,注意z|z|-z8.对于复数的选择题要再三确认所求应为(1)原复数还是共轭(2)是否是实或虚部(3)表示模⻓,模⻓是数字9.函数的定义域优先,注意ln后括号中整体⼤于零10.指数函数注意值域,对数函数注意定义域11.导数算题之前⼀定要先写定义域12.导数在部分问题所求的解,是问题的充分不必要条件,要把所得答案带回原始证明必要性(端点效应)13.函数上下平移后对称中⼼的纵坐标也变14.使导函数为零的点不⼀定是极值点,求参后代回检验,求极值要证左右单调性15.导数讨论时不要忘记未知数等于边界的情况,不要⼤于⼩于讨论完就不管了16.单调函数和值域取值时是否可以反超17.导数使⽤切线放缩证明问题时,需要先证明灵魂不等式的成⽴18.利⽤导数求切线⽅程要注意“在某点处”还是“过某点”19.画导数图像时考虑原函数的范围20.求单调区间时结果应包含整个定义域,单调区间不能并21.考虑导数构造前后函数的奇偶性22.使⽤零点存在性定理是要先判断是否单调23.画图像注意考虑极限思想,渐近线,图像注意是否穿过x轴24.导数⼤题的第⼀问偶尔会出现考虑不周的情况,⼤题有时书写较乱也是扣分点之⼀25.(⽂科)求三棱锥体积,⾼要证明,证出⾼后要写⼀步XX即为三棱锥的⾼26.正(⻓)⽅体体对⻆线是2R27.异⾯直线所成⻆范围(0,π/2)28.三视图别把四棱锥看成三棱锥29.⽴体⼏何题⼲问是否存在~,使得~,要留空写存在或者不存在30.⽴体⼏何中注意平移直线找到平⾏⾯,注意特殊图形的特点(如菱形对⻆线垂直等)31.⽴体证明⾯⾯平⾏要先证明同⼀⾯上两条相交直线各⾃平⾏另⼀个⾯,线⾯垂直先证线与⾯内两相交直线垂直31.⽴体⼩题中注意补体思想32.球的体积⾯积公式不要弄混33.线⾯平⾏的证明要注意写出所证直线不在平⾯内。
高中数学常见的错误归纳

高中数学36个常见易犯的错误,只供同学们参考。
1.在应用条件A∪B=B,A∩B=A 时,易忽略A是空集Φ的情况。
2.求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域。
3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。
4.解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。
5.用判别式法求最值(或值域)时,需要就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。
6.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。
尤其是直线与圆锥曲线相交时更易忽略。
7.用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。
8.用换元法解题时,易忽略换元前后的等价性。
9.两个向量平行与与两条直线平行易混, 两个向量平行(也称向量共线)包含两个向量重合, 两条直线平行不包含两条直线重合。
10.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间。
11.用等比数列求和公式求和时,易忽略公比q=1的情况。
12.已知Sn求an 时, 易忽略n=1的情况。
13.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。
14. 求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y轴平行的情况。
15.用到角公式时,易将直线L1、L2的斜率k1、k2的顺序弄颠倒;使用到角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。
16.在做应用题时, 运算后的单位要弄准,不要忘了“答”及变量的取值范围;在填写填空题中的应用题的答案时, 不要忘了单位。