高二数学算法初步单元测试题及答案
(典型题)高中数学必修三第二章《算法初步》测试题(含答案解析)
一、选择题1.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6 2.执行如图所示的程序框图输出的结果是()A.8B.6C.5D.3a b k分别为1,2,3,则输出的M ( ) 3.执行右面的程序框图,若输入的,,A.203B.72C.165D.1584.执行如图所示的程序框图,则输出的a=()A.-9 B.60 C.71 D.815.执行如图所示的程序框图,若输出S的值为511,则判断框内可填入的条件是()A .4i ≤B .5i ≤C .5i <D .6i ≤6.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A .261B .425C .179D .5447.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x 值为0,则输出的x 值为( )A.5740B.13380C.5732D.5893208.若执行如图所示的程序框图,输出S的值为511,则输入n的值是()A.7B.6C.5D.4 9.执行如下图的程序框图,如果输入的N的值是7,那么输出的p的值是()A.3 B.15 C.105 D.94510.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为10,14,则输出的a =( )A .6B .4C .2D .011.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为()A .5k <?B .5k ≥?C .6k <?D .6k ≥?12.执行如图所示程序框图,当输入的x 为2019时,输出的y (= )A .28B .10C.4D.2二、填空题13.下图所示的算法流程图中,输出的S表达式为__________.14.已知某程序框图如图所示,则该程序运行后输出S的值为__________.15.执行如图所示的程序框图,输出的值为__________.16.如图是一个算法流程图,则输出的S的值为______.17.阅读如图所示的程序框图,运行相应的程序,则输出n的值为___________18.下图程序运行结果是________.19.执行下图所示的程序框图,若输入,则输出的值为_____________.20.执行如图所示的程序框图,输出的T ______.三、解答题21.如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB△的面积为y,求y与x之间的函数关系式,并画出程序框图.22.有关专家建议预测,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2015年的价格是10 000元,试分析其算法并用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.23.写出一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积.24.设计程序求π的近似值可以用公式:2222π1116123=+++…+21n ,用此公式求2π6,即逐项进行累加,直到21n <0.000 01为止(该项不累加),然后求出π的近似值. 25.古希腊杰出的数学家丢番图的墓碑上有这样一首诗:这是一座古墓,里面安葬着丢番图.请你告诉我,丢番图的寿数几何?他的童年占去了一生的六分之一,接着十二分之一是少年时期,又过了七分之一的时光,他找到了自己的终身伴侣.五年之后,婚姻之神赐给他一个儿子,可是儿子不济,只活到父亲寿数的一半,就匆匆离去.这对父亲是一个沉重的打击,整整四年,为失去爱子而悲伤,终于告别了数学,离开了人世.试用循环结构,写出算法分析和算法程序. 26.已知函数2()32,(3)(5)f x x x f f =--+-求的值,设计一个算法并画出算法的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B.考点:1、程序框图;2、循环结构.2.A解析:A【分析】根据程序框图循环结构运算,依次代入求解即可.【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y ===第二次循环3,2,3z x y ===第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =.所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.3.D解析:D【详解】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n =+====;又由23≤成立,则循环,即28382,,,33323M a b n =+====;又由33≤成立,则循环,即3315815,,,428838M a b n =+====;又由43≤不成立,则出循环,输出158M =. 考点:算法的循环结构4.C解析:C【分析】根据程序框图,模拟运算即可求解.【详解】第一次执行程序后,1a =-,i=2;第二次执行程序后,9a =-,i=3;第三次执行程序后,a=71,i=4>3,跳出循环,输出a=71.故选:C【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.5.B【分析】模拟运行程序1i =,满足条件,1013S =+⨯,2i =,满足条件,进入循环体,反复操作,直到输出511S =,核对满足的条件即可. 【详解】 1i =,满足条件,1013S =+⨯; 2i =,满足条件,111335S =+⨯⨯; 3i =,满足条件,111133557S =++⨯⨯⨯; 4i =,满足条件,111113355779S =+++⨯⨯⨯⨯; 5i =,满足条件,11111115(1)1335577991121111S =++++=-=⨯⨯⨯⨯⨯; 6i =,不满足条件,输出511S =. 故选:B.【点睛】 本题考查了对程序框图的理解与应用,由程序运行结果,补充条件,数列求和的裂项相消法,属于中档题.6.B解析:B【分析】根据循环结构的条件,依次运算求解,即得解.【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===;满足0105<⨯,故:7,4,4x y n ===;满足4107<⨯,故:11,36,6x y n ===;满足361011<⨯,故:17,144,8x y n ===;满足1441017<⨯,故:25,400,10x y n ===;此时:4001025>⨯,满足输出条件:输出425x y +=故选:B【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 7.C【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210x x 、1i i =+”,然后进行运算并结合条件“4i ”得出结果。
(易错题)高中数学必修三第二章《算法初步》测试题(含答案解析)
一、选择题1.执行如图所示的程序框图,如果输入n=3,输出的S=( )A .67B .37C .89D .492.阅读算法框图,如果输出的函数值在区间[]1,8上,则输入的实数x 的取值范围是( )A .[)0,2B .[]2,7C .[]2,4D .[]0,73.数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为6,3,则输出的n=()A.2 B.3 C.4 D.5 4.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭5.执行如图所示的程序框图,如果输入x=5,y=1,则输出的结果是()A .261B .425C .179D .5446.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n7.某程序框图如图所示,则该程序运行后输出的值是( )A.3-B.3-C.3D.38.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.28 B.56 C.84 D.1209.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是()A .102i >B .102i ≤C .100i >D .100i ≤10.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .111.执行如图所示的程序框图,输出的结果为( )A.201921-22-D.2020 21-B.201922-C.202012.执行如图所示的程序框图,输出的S值为()A.1 B.-1 C.0 D.-2二、填空题13.运行如图所示的程序框图,则输出的S的值为________.14.如图是某算法流程图,则程序运行后输出S的值为____.15.根据如图所示算法流程图,则输出S的值是__.t=,则输出的n=_______________.16.执行下面的程序框图,如果输入的0.0217.根据如图所示的算法流程图,可知输出的结果S为______.18.阅读如图所示的流程图,运行相应的程序,则输出n的值为______.19.执行如图所示的程序框图,若输出的结果是5,则判断框内的取值范围是________________.20.如图,如图所示程序框图输出的结果是________.三、解答题21.编写一个程序,要求输入两个正数a和b的值,输出a b和b a的值,并画出程序框图. 22.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.23.已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.24.画出求方程lg x+x-3=0在区间(2,3)内的近似解(精确到0.01)的程序框图.25.某批发部出售袜子,当购买少于300双时,每双批发价为2.5元;不少于300双时,每双批发价为2.2元.试分别画出程序框图和用程序语言编写计算批发金额.26.试画出求2222++++的值的算法的程序框图.1299100【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】试题分析:由题意得,输出的为数列的前三项和,而,∴,故选B.考点:1程序框图;2.裂项相消法求数列的和. 【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题,解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规律,若循环次数较少可以全部列出.2.D解析:D 【详解】 解答: 根据题意,得 当x ∈(−2,2)时,f (x )=2x , 1⩽2x ⩽8,∴0⩽x ⩽3;故02x ≤< 当x ∉(−2,2)时,f (x )=x +1, ∴1⩽x +1⩽8, ∴0⩽x ⩽7,∴x 的取值范围是[2,7]. 故选:D点睛:本题考查的实质问题是分段函数,当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.B解析:B 【分析】模拟程序运行,观察变量值的变化,判断循环条件得出结论. 【详解】程序运行中变量值变化如下:6,3a b ==,1n =,9,6a b ==,不满足a b ≤;2n =,13.5a =,12b =,不满足a b ≤;3n =,20.25a =,24b =,满足a b ≤,输出故选:B .【点睛】本题考查程序框图,考查循环结构.解题方法是模拟程序运行,观察变量值的变化,判断循环条件得出结论.4.B解析:B【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可.【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环; 以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭. 故选:B .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.5.B解析:B【分析】根据循环结构的条件,依次运算求解,即得解.【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===;满足0105<⨯,故:7,4,4x y n ===;满足4107<⨯,故:11,36,6x y n ===;满足361011<⨯,故:17,144,8x y n ===;满足1441017<⨯,故:25,400,10x y n ===;此时:4001025>⨯,满足输出条件:输出425x y +=故选:B【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 6.A解析:A因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】 由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.7.D解析:D【分析】该框图的功能是计算:234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++,再根据正弦函数的周期性以及特殊角的三角函数值计算可得答案.【详解】 该框图的功能是计算:234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++.因为7132017sin sin sin sin3333ππππ=====28142012sin sin sin sin 3333ππππ=====, 39152013sinsin sin sin 03333ππππ=====,410162014sinsin sin sin 3333ππππ=====,511172015sin sin sin sin33332ππππ=====-,612182016sinsin sin sin 03333ππππ=====, 所以234562017sin sin sin sin sin sin sin 3333333πππππππ+++++++3373363360336(336()336022222=⨯+⨯+⨯+⨯-+⨯-+⨯=. 故选:D【点睛】 本题考查了程序框图的循环结构,考查了三角函数的周期性以及特殊角的三角函数值,理解程序框图的功能是解题关键,属于基础题.8.C解析:C【分析】由已知中的程序可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序运行过程,分析循环中各变量值的变化情况,即可求解.【详解】模拟程序的运行,可得:0,0,0i n S ===执行循环体,1,1,1i n S ===;不满足判断条件7i ≥,执行循环体,2,3,4i n S ===;不满足判断条件7i ≥,执行循环体,3,6,10i n S ===;不满足判断条件7i ≥,执行循环体,4,10,20i n S ===;不满足判断条件7i ≥,执行循环体,5,15,35i n S ===;不满足判断条件7i ≥,执行循环体,6,21,56i n S ===;不满足判断条件7i ≥,执行循环体,7,28,84i n S ===;满足判断条件7i ≥,退出循环,输出S 的值为84.故选C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中模拟程序运行的过程,通过逐次计算和找出计算的规律是解答的关键,着重考查了推理与计算能力,属于基础题.9.B解析:B【解析】【分析】根据题目所求表达式1111246102+++⋅⋅⋅+中最后一个数字1102,确定填写的语句. 【详解】由于题目所求是1111246102+++⋅⋅⋅+,最后一个数字为1102,即当102i =时,判断是,继续循环,2104i i =+=,判断否,退出程序输出S 的值,由此可知应填102i ≤.故选B.【点睛】本小题主要考查填写程序框图循环条件,属于基础题. 10.C解析:C【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值.【详解】第一次进入循环,因为56除以18的余数为2,所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0,所以0r =,2m =,0n =,判断r 等于0,跳出循环,输出m 的值为2.故选C.【点睛】 本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.故选C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 12.B解析:B【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==,此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S =-=-=+=; 此时不满足5i >,执行循环:112,14S i i S =-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题. 二、填空题13.1011【分析】根据程序框图可得是对偶数求和是对奇数求和再根据循环条件可分别得出奇数偶数的个数从而得出答案【详解】依题意故故答案为:1011【点睛】本题考查算法与程序框图考查循环结构考查直观想象推理解析:1011【分析】根据程序框图可得T 是对偶数求和,N 是对奇数求和,再根据循环条件可分别得出奇数、偶数的个数,从而得出答案.【详解】依题意,024*********T =++++++,135720192021N =++++++, 故()()()13254202120201011S N T =-=+-+-++-=.故答案为:1011【点睛】 本题考查算法与程序框图,考查循环结构,考查直观想象、推理论证的核心素养,属于中档题.14.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次 解析:41【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案.【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=;第二次循环,2n =,不满足判断框的条件,54213S =+⨯=;第三次循环,3n =,不满足判断框的条件,134325S =+⨯=;第四次循环,4n =,不满足判断框的条件,254441S =+⨯=;第五次循环,5n =,满足判断框的条件,输出41S =,故答案为41.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题. 15.9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得S =0n =1满足条件n <6执行循环体S =1n =3满足条解析:9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得S =0,n =1满足条件n <6,执行循环体,S =1,n =3满足条件n <6,执行循环体,S =4,n =5满足条件n <6,执行循环体,S =9,n =7此时,不满足条件n <6,退出循环,输出S 的值为9.故答案为:9.【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.16.【解析】分析:由已知中的程序框图可知该程序的功能是利用循环结构计算并输出变量的值模拟程序运行过程分析循环变量值的变化规律即可求解答案详解:执行如图所示的程序框图:第一次循环:满足条件;第二次循环:满解析:【解析】分析:由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n的值,模拟程序运行过程,分析循环变量值的变化规律,即可求解答案.详解:执行如图所示的程序框图:第一次循环:11,,124S m n===,满足条件;第二次循环:11,,248S m n===,满足条件;第三次循环:11,,3816S m n===,满足条件;第四次循环:11,,41632S m n===,满足条件;第五次循环:11,,53264S m n===,满足条件;第六次循环:11,,664128S m n===,不满足条件,推出循环,此时输出6n=;点睛:本题主要考查了循环结构的程序框图的运行与结果出的输出问题,解题是应模拟程序框图的运行过程,以便得出正确的计算结果,同时注意判断框的条件是解答的关键,着重考查了推理与运算能力.17.【解析】执行循环为点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循环终止条件更要通过循环规律明确流程图研究的解析:3 4【解析】执行循环为1111111131122334223344 S=++=-+-+-=⨯⨯⨯点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.4【解析】不成立;不成立;不成立;成立输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是解析:4【解析】()1,0,0111,2n S S S===+-⨯=-≥不成立;()22,1121,2n S S==-+-⨯=≥不成立;()33,1132,2n S S ==+-⨯=-≥ 不成立;()44,2142,2n S S ==-+-⨯=≥ 成立,输出4n = ,故答案为4 .【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 19.【详解】试题分析:若输出的结果是5那么说明循环运行了4次因此判断框内的取值范围是考点:程序框图 解析:【详解】试题分析:若输出的结果是5,那么说明循环运行了4次,.因此判断框内的取值范围是.考点:程序框图. 20.105【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第三次循环满足条件 解析:105【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的T 的值.【详解】输入T 1,I 1,==第一次循环T 1,I 3==,不满足条件;第二次循环T 3,I 5==,不满足条件;第三次循环T 15,I 7==,不满足条件;第三次循环T 105,I 9==,满足条件,输出105T =.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.三、解答题21.见解析;【解析】试题分析: 先利用INPUT语句输入两个正数a和b的值,再分别赋值a b和b a的值,最后输出a b和b a的值试题程序和程序框图分别如下:22.见解析;【解析】试题分析: 先利用INPUT语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:23.(1)-4;(2)1009;(3)答案见解析.【解析】试题分析:(1)利用所给的程序框图运行程序可得当x=9时,y=-4,则t的值为-4.(2)结合程序的算法和循环结构的特点可知共输出(x,y)的组数为1009;(3)将所给的程序框图翻译为算法语句,利用循环语句设计相应的程序即可,注意循环语句应设计为DO语句的形式.试题(1)由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x,y)的组数为201821 009.(3)程序框图的程序语句如下:x=1y=0n=1DOPRINT(x,y)n=n+2x=3*xy=y-2LOOP UNTIL n>2 017END点睛:程序框图的条件结构和循环结构分别对应算法语句的条件语句和循环语句,两种语句的阅读理解是复习重点.输入、输出和赋值语句是任何一个算法必不可少的语句,一个语句可以输出多个表达式.在赋值语句中,一定要注意其格式的要求,如“=”的右侧必须是表达式,左侧必须是变量;一个语句只能给一个变量赋值;变量的值始终等于最近一次赋给它的值,先前的值将被替换.24.见解析【解析】试题分析:根据据二分法求方程近似解的步骤设计程序框图,注意循环变量.试题程序框图如下图所示.25.见解析【解析】试题分析:在两个不同的条件下批发金额公式不同,只需编写一个条件语句即可实现.试题程序框图如下图所示.程序如下:i=input(“批发双数i=”);if i<300T=2.5* i;elseT=2.2* i;endprint(%io(2),T);26.见解析【解析】试题分析:这是一个累加求和问题,共100项相加,故循环变量的初值可设为1,终值可设为100,步长为1,进而得到相应的程序.试题由题意,所求程序框图如下:。
高二数学算法初步单元测试题及答案
江苏省南通中学高二(上)数学单元测试08。
9。
25算法初步(题目)一 填空题1.描述算法的方法通常有:(1)自然语言;(2) ▲ ;(3)伪代码. 2.已知流程图符号,写出对应名称.(1) ▲ ;(2) ▲ ;(3) ▲ .3.下列给出的几个式子中,正确的赋值语句是(填序号) ▲①3←A ; ②M ← —M ; ③B ←A ←2 ; ④x+y ←04. 用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f 当4.0=x 时的值时,至多需要做乘法和加法的次数分别是 ▲ _和 ▲ 5.简单随机抽样,系统抽样的共同特点是 ▲ 。
6.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,,7999)中抽取一个容量为50的样本,已知最后一个入样编号是7900,则最前面2个入样编号是 ▲ 7.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n= ▲ . 8.11.下面是一个算法的伪代码.如果输出的y 的值是20,则输入的x 的值是 ▲ . 2或6二 填空题9下面伪代码运行后的输出的结果是(1) ▲ (2) ▲ (3) ▲Read x If x≤5 Then y←10x Else y←+5End If Print y10.( 1) 下面这段伪代码的功能是 ▲ 。
(2) 下列算法输出的结果是(写式子) ▲(3)下图为一个求20个数的平均数的程序,在横线上应填充的语句为 ▲ 。
11(1)在如图所示的流程图中,输出的结果是 ▲ . (2) 右边的流程图最后输出的n 的值是 ▲ .(3)下列流程图中,语句1(语句1与i 无关)将被执行的次数为 ▲ . (4)右图给出的是计算1111246100++++的值的一个流程图,其中判断 框内应填入的条件是 ▲ 。
第9(1)第9(2)题第9(3)题第10(1)题第10(2)题第10(3)题第11(2)题第11(4)题第11(1)题第11(3)题江苏省南通中学高二(上)数学单元测试08。
高中数学算法初步综合检测考试试题含答案解析A
算法初步本章达标测评(总分:150分;时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对算法的描述正确的一项是( )A.算法只能用自然语言来描述B.算法只能用图形语言来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.563.下面一段程序执行后的结果是( )A.6B.4C.8D.104.算式1 010(2)+10(2)的值是( )A.1 011(2)B.1 100(2)C.1 101(2)D.1 000(2)5.执行如图所示的程序框图,当输入的值为3时,输出的结果是( )A.3B.8C.12D.206.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A.T=T·(i+1)B.T=T·iC.T=T·1i+1D.T=T·1i7.已知7 163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根据上述一系列等式,可确定7 163和209的最大公约数是( )A.57B.3C.19D.348.已知44(k)=36,则把67(k)转化成十进制数为( )A.8B.55C.56D.629.执行如图所示的程序框图,若输出的k=5,则输入的整数p的最大值为( )A.7B.15C.31D.6310.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,其中v4的值为( )A.-57B.124C.-845D.22011.某程序框图如图所示,若该程序运行后输出的值是9,则( )5A.a=4B.a=5C.a=6D.a=712.执行如图所示的程序框图,则输出的n的值是( )A.29B.31C.61D.63二、填空题(本大题共4小题,每小题4分,共16分,把正确答案填在题中横线上)13.输入8,则下列程序运行后输出的结果是.化成十进制数,结果为,再将该结果化成七进制数,结14.将二进制数110 101(2)果为.15.执行如图所示的程序框图,则输出结果S= .16.阅读下面程序,当输入x的值为3时,输出y的值为.(其中e为自然对数的底数)三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.18.(12分)输入10个数,找出其中最大的数并输出,画出程序框图,并写出程序.19.(12分)如图所示,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动(不与A、B重合).设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,画出程序框图,写出程序.20.(12分)把区间[0,1]10等分,求函数y=√2x+1+|x-2|在各分点(包括区间端点)的函数值,写出程序.21.(12分)设计一个程序求11×4+13×6+15×8+…+199×102的值.22.(14分)“角谷猜想”是由日本学者角谷静夫首先提出的,所以称为“角谷猜想”.猜想的内容是:对于任意一个大于1的整数n,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,然后将得到的结果再进行以上处理,则最后结果总是1.试设计一个算法的程序框图,对任意输入的整数n(n≥2)进行检验,要求输出每一步的结果,直到结果为1时结束.附加题1.(2015河北石家庄一模,★★☆)执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S 为( )A.2B.2√2C.4D.62.(2015山西四校联考三,★★☆)执行如图的程序框图,则输出S 的值为( )D.-1 A.2 016 B.2 C.12一、选择题1.C 算法可以用自然语言、图形语言和程序语言来描述;同一个问题可以有不同的算法,但算法的结果相同.2.D 第一次循环,S=0+11×2=12,k=2;第二次循环,S=12+12×3=23,k=3;第三次循环,S=23+13×4=34,k=4;第四次循环,S=34+14×5=45,k=5;第五次循环,S=45+15×6=56,此时k=5不满足判断框内的条件,跳出循环,输出S=56,选D.3.A 由程序知a=2,2×2=4,4+2=6,故最后输出a 的值为6,故选A.4.B 1 010(2)+10(2)=(1×23+0×22+1×21+0×20)+(1×21+0×20)=12=1 100(2).5.B 3<5,执行y=x 2-1,所以输出结果为8.故选B.6.C 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得选项C 正确. 7.C 由辗转相除法的思想可得结果. 8.B 由题意得,36=4×k 1+4×k 0,所以k=8. 则67(k)=67(8)=6×81+7×80=55.9.B 由程序框图可知:①S=0,k=1;②S=1,k=2;③S=3,k=3;④S=7,k=4;⑤S=15,k=5,输出k,此时S=15≥p,则p 的最大值为15,故选B. 10.D由已知,得a 0=12,a 1=35,a 2=-8,a 3=79,a 4=6,a 5=5,a 6=3,所以v 0=3,v 1=3×(-4)+5=-7,v 2=(-7)×(-4)+6=34,v 3=34×(-4)+79=-57,v 4=(-57)×(-4)-8=220.11.A 此程序框图的作用是计算S=1+11×2+12×3+…+1a (a+1)的值,由已知得S=95,即S=1+1-12+12-13+…+1a -1a+1=2-1a+1=95,解得a=4.12.D 开始:p=5,n=1;p=9,n=3;p=15,n=7;p=23,n=15;p=31,n=31;p=31,n=63,此时log 3163>1,结束循环,输出n=63. 二、填空题 13.答案 0.7解析 这是一个用条件语句编写的程序,由于输入的数据为8,8<-4不成立,所以c=0.2+0.1×(8-3)=0.7. 14.答案 53;104(7)解析 110 101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104.(7)15.答案 1 007解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2 013+2 014)=1 007,故输出的S的值为1 007.16.答案 1.5解析当输入x=3时,由于3>e,故执行y=0.5x,即y=0.5×3=1.5.三、解答题17.解析(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:18.解析程序框图如图.程序:19.解析 函数关系式为 y={2x (0<x ≤4),8(4<x ≤8),2(12-x )(8<x <12).程序框图如图所示:程序:20.解析把区间[0,1]10等分,故步长为0.1,∴用“x=x+0.1”表达,y=√2x+1+|x-2|,用“y=SQR(2*x+1)+ABS(x-2)”表达,循环控制条件x≤1.程序如下:21.解析程序:22.解析程序框图如图:附加题1.B 由程序框图可知,S=1,i=1;S=1,i=2;S=√2,i=3;S=2,i=4;S=2√2,i=5,此时跳出循环,输出S=2√2.故选B.2.B 循环前S=2,k=0,第一次循环,得S=11-2=-1,k=1;第二次循环,得S=11-(-1)=12,k=2;第三次循环,得S=11-12=2,k=3;……,由此可知S 的值的变化周期为3,又2 016=672×3,所以输出S 的值为2,故选B.。
(典型题)高中数学必修三第二章《算法初步》测试卷(有答案解析)
一、选择题1.该程序中k的值是()A.9 B.10 C.11 D.12 2.执行右面的程序框图,若输入的,,a b k分别为1,2,3,则输出的M ( )A.203B.72C.165D.1583.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A .25B .18C .11D .34.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A .2B .3C .4D .55.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261 B.425 C.179 D.5446.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x=,则一开始输入的x的值为( )A.34B.78C.1516D.31327.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n项和的程序框图.执行该程序框图,输入10m=,则输出的S=()A.100 B.140 C.190 D.250 8.执行如图所示的程序框图,则输出的k的值为()A.3 B.4 C.5 D.6 9.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为()A.6 B.720 C.120 D.5040 10.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入()A .7SB .21SC .28SD .36S 11.执行如下图的程序框图,那么输出S 的值是( )A .2B .1C .12D .-112.执行如图所示程序框图,当输入的x 为2019时,输出的y ( )A .28B .10C .4D .2二、填空题13.执行如图所示的伪代码,则输出的S 的值是_______.14.阅读如图所示的程序框图,若121log 3a =,2logb e =,ln 2c =,则输出的结果是________.15.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_____.16.执行如下图所示的程序框图,则输出的结果n __________.17.执行如图所示的程序框图,输出S 的值为___________.18.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________.19.将二进制数110 101(2)转为七进制数,结果为________.20.执行如图所示的程序框图,若输入,则输出的值为__________________.三、解答题21.已知数列{}n a 的递推公式111n n n a a a --=+,且11a =,请画出求其前10项的流程图. 22.已知底面半径为r ,高为h 的圆柱和一正方体的体积相等,试设计一个程序分别求圆柱的表面积和正方体的表面积,并画出程序框图(π=3. 14).23.读下列程序,写出此程序表示的函数,并求当输出的6y =时,输入的x 的值.24.程序框图如图,运行此程序,试求输出的b 的值.25.设计程序求π的近似值可以用公式:2222π1116123=+++…+21n ,用此公式求2π6,即逐项进行累加,直到21n <0.000 01为止(该项不累加),然后求出π的近似值. 26.任意输入三个赋值变量a ,b ,c ,编写计算2235a b c -+的值的程序.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】本题只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).【详解】3,2,8,814x k y ===<,第一次循环,4,10,1014k y ==<;第二次循环,6,12,1214k y ==<;第三次循环,8,14,1414k y ===;第四次循环,10,16,1614k y ==>,退出循环,输出10k =,故选:B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.2.D解析:D【详解】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n =+====;又由23≤成立,则循环,即28382,,,33323M a b n =+====;又由33≤成立,则循环,即3315815,,,428838M a b n =+====;又由43≤不成立,则出循环,输出158M =. 考点:算法的循环结构3.C【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.4.C解析:C 【分析】按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求. 【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f xx ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=,此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=,此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=,此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=,此时1.4375 1.3750.06250.1-=<,符合精确度要求. 退出循环,输出n 的值为4. 故选:C. 【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的5.B解析:B 【分析】根据循环结构的条件,依次运算求解,即得解. 【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===; 满足0105<⨯,故:7,4,4x y n ===; 满足4107<⨯,故:11,36,6x y n ===; 满足361011<⨯,故:17,144,8x y n ===; 满足1441017<⨯,故:25,400,10x y n ===; 此时:4001025>⨯,满足输出条件:输出425x y += 故选:B 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题.6.B解析:B 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案. 【详解】本题由于已知输出时x 的值,因此可以逆向求解: 输出0x =,此时4i =; 上一步:1210,2x x -==,此时3i =; 上一步:1321,24x x -==,此时2i =; 上一步:3721,48x x -==,此时1i =; 故选:B . 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.7.C解析:C 【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果. 【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行;第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行,第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行,第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行,第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行,第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行,第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行,第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行,第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行,第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =.故选:C 【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题. 8.C解析:C 【分析】根据框图模拟程序运算即可. 【详解】第一次执行程序,2111S =⨯-=,25S >-,继续循环,第二次执行程序,2k =,2121S =⨯-=-,25S >-,继续循环, 第三次执行程序,3k =,2(1)35S =⨯--=-,25S >-,继续循环, 第四次执行程序,4k =,2(5)414S =⨯--=-,25S >-,继续循环,第五次执行程序,5k =,2(14)532S =⨯--=-,25S <-,跳出循环,输出5k =,结束.故选C. 【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.9.B【解析】 【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案. 【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==; 第2次循环:满足判断条件,2,3S i ==; 第3次循环:满足判断条件,6,4S i ==; 第4次循环:满足判断条件,24,5S i ==; 第5次循环:满足判断条件,120,6S i ==; 第6次循环:满足判断条件,720,7S i ==; 不满足判断条件,终止循环,输出720S =,故选B. 【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.10.C解析:C 【分析】根据程序框图列出所有的循环步骤,最后一次循环中的S 满足条件,以及倒数第二次循环中S 不满足条件来选择四个选项中的判断条件. 【详解】第一次循环:1S =,不满足条件,2i =; 第二次循环:3S =,不满足条件,3i =; 第三次循环:6S =,不满足条件,4i =; 第四次循环:10S =,不满足条件,5i =; 第五次循环:15S =,不满足条件,6i =; 第六次循环:21S =,不满足条件,7i =; 第七次循环:28S =,满足条件,输出的值为7. 所以判断框中的条件可填写“28S ”. 故选C . 【点睛】本题考查程序框图中判断条件的选择,这种类型的问题一般要列举出所有的循环步骤,利用最后一次和倒数第二次循环中变量满足与不满足来筛选判断条件,考查逻辑推理能力,属于中等题.11.A解析:A 【解析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12;k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2, K=2019时,结束循环,输出s 的值为2. 故选:A . 【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.12.C解析:C 【分析】x 的变化遵循以2-为公差递减的等差数列的变化规律,到0x <时结束,得到1x =-,然后代入解析式,输出结果. 【详解】0x ≥时,每次赋值均为2x -x 可看作是以2019为首项,2-为公差的等差数列{}n x()()20191220212n x n n ⇒=+-⨯-=-当0x <时输出,所以0n x <,即202120n -< 20212n ⇒>即:10100x >,10110x < 10112021210111x ⇒=-⨯=-1314y ∴=+=本题正确选项:C 【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.二、填空题13.110【分析】分析程序中各变量各语句的作用再根据顺序可知:该程序的作用是累加并输出的值利用等差数列的求和公式计算即可得解【详解】分析程序中各变量各语句的作用根据顺序可知:该程序的作用是累加并输出满足解析:110 【分析】分析程序中各变量、各语句的作用,再根据顺序,可知:该程序的作用是累加并输出24620S =++++的值,利用等差数列的求和公式计算即可得解.【详解】分析程序中各变量、各语句的作用,根据顺序,可知: 该程序的作用是累加并输出满足条件24620S =++++的值,由于10(220)246201102S +=++++==, 故输出的S 的值为:110, 故答案是:110. 【点睛】该题考查的用伪代码表示的循环结构的程序的相关计算,考查学生的运算求解能力,属于简单题目.14.【分析】首先分析程序框图的作用是输出三个数中的最大值从而比较三个数的大小求得结果【详解】根据题中所给的程序框图可以判断出其作用是输出三者中的最大出那个数因为而所以其最大值是故答案是:【点睛】该题考查 解析:a【分析】首先分析程序框图的作用是输出三个数中的最大值,从而比较三个数的大小,求得结果. 【详解】根据题中所给的程序框图,可以判断出其作用是输出三者中的最大出那个数, 因为12221log log 3log 13a eb ==>=>,而ln 21c =<, 所以其最大值是a , 故答案是:a . 【点睛】该题考查的是有关程序框图的输出结果的求解问题,属于简单题目.15.8【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要考查了程解析:8 【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解. 【详解】当2i =时,满足循环条件,2,4,2s i k ===,当4i =时,满足循环条件,4,6,3s i k === , 当6i =时,满足循环条件,8,8,4s i k ===; 当8i =时,不满足循环条件,跳出循环,输出8s =. 故填8. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.16.9【解析】模拟程序的运行可得第一次执行循环不满足则返回继续循环;不满足则返回继续循环;不满足则返回继续循环;当时则最小值为此时故答案为点睛:识别运行程序框图和完善程序框图的思路:(1)要明确程序框图解析:9 【解析】模拟程序的运行,可得0S =,1n =,第一次执行循环,20log 21S =+=,12n n =+=,不满足3S >,则返回继续循环;231log 2S =+,13n n =+=,不满足3S >,则返回继续循环;22341log log 11223S =++=+=,14n n =+=,不满足3S >,则返回继续循环;⋅⋅⋅当n k =时,222234111log log log 1log 232k k S k ++=+++⋅⋅⋅+=+,1n k =+则211log 32k S +=+>,8k ≥,k 最小值为8,此时19n k =+=.故答案为9.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构; (2)要识别、运行程序框图,理解框图所解决的实际问题; (3)按照题目的要求完成解答并验证.17.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48 【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立 第2次运行,2,2,224,4i S S i ===⨯=<成立 第3次运行,3,4,3412,4i S S i ===⨯=<成立 第3次运行,4,12,41248,4i S S i ===⨯=<不成立, 故输出S 的值为4818.【解析】依据用秦九韶算法的算理可得:将代入可得其函数值为故应填答案点睛:解答本题的关键是准确理解秦九韶算法的算法原理和算法步骤先算出再算然后算出进而后算出最后算出 解析:1559【解析】依据用秦九韶算法的算理可得:()()()()()f x x 357911x x x x =+-+-+,将x 4=代入可得其函数值为1559,故应填答案1559。
数学北师大版高中必修3《算法初步》单元测试题及解析
《算法初步》单元测试题及解析一、选择题1.如果执行下面的程序框图,那么输出的S等于( )A.2 450 B.2 500 C.2 550 D.2 652答案 C解析本程序框图含有循环结构.第1次循环为k=1+1=2 1≤50 S=0+2×1,第2次循环为k=2+1=3 2≤50 S=2+2×2,……第50次循环为k=51 50≤50 S=2+4+…+100=2 550.2.判断下列输入、输出语句正确的是( )(1)输入语句INPUT a;b;c.(2)输入语句INPUT x=3.(3)输出语句PRINT B=4.(4)输出语句PRINT 20,3*2.A. (1)、(2)B.(2)、(3) C.(3)、(4) D.(4)答案D解析(1)错.变量之间应用逗号“,”隔开;(2)错.INPUT语句中只能是变量,而不能是表达式;(3)错.PRINT语句中不能再用赋值号“=”;(4)对.PRINT语句可以输出常量,表达式的值.3.若“x=3*5”与“x=x+1”是某一个程序中先后相邻的两个语句,那么下列说法正确的是()①x=3*5的意思是x=3×5=15,此式与数学中的算术式是一样的;②“x=3*5”是将数值15赋给x;③“x=3*5”可以写成“3*5=x”;④“x=x+1”在执行时赋值号右边x的值是15,执行后左边x的值是16.A.①③B.②④C.①④D.①②③④答案B解析赋值语句有固定的格式,与数学中算术式是不一样的,故①是错误,③也是错误的,根据赋值语句的功用知②④是正确的,故选择B.4.算式1 010(2)+10(2)的值是( )A.1 011(2)B.1 100(2)C.1 101(2)D.1 000(2)答案B解析逢二进一.1 010(2)+10(2)=1 100(2).5.程序:INPUT xIF9<x BND x<100 THENa=x\10b=x MOD 10x=10]上述程序如果输入的值是51,则运行结果是( )A.51 B.15 C.105 D.501答案 B解析∵x=51,∴9<x<100,∴a=51\10=5,b=51 MOD 10=1.∴10*b+a=10×1+5=15.即输出结果为15.6.如图所示,程序的输出结果为S=132,则判断框中应填( )A.i≥10? B.i≥11? C.i≤11? D.i≥12?答案 B解析对于选项可以逐个验证,当判断框中填写i≥10?时,输出结果为S=1 320;当判断框中填写i≥11?时,输出结果为S=132;当判断框中填写i≤11?时,输出结果为S=1;当判断框中填写i≥12?时,输出结果为S=12.二、填空题7.将十进制数100转换成二进制数所得结果为______________.答案 1 100 100(2)解析以2作为除数相应得出的除法算式为:所以,100=1 100 100(2)8.下边程序运行后,输出的值为________. S =1i =1WHILE i<=5S =S*i i =i +1WENDPRINT SEND答案 120解析 i =1时,S =1;i =2,S =2;i =3时,S =6;i =4时,S =6×4=24,i =5时,S =24×5=120;i =6时不满足i <=5,执行“PRINT S”,所以S =120.9.用辗转相除法求333与24的最大公约数时的循环次数为________.答案 3次解析 333=13×24+21,24=21+3,21=7×3,共操作3次.三、解答题10.画出求12-22+32-42+…+992-1002的值的程序框图.解11.已知函数y =⎩⎪⎨⎪⎧ 2x 2-1 (x >0)2x +1 (x =0)-2x 2+4 (x <0),试编写程序,输入x 的值后输出y 的值.解 程序为: INPUT x IF x>0 THENy=2*x ^2-1 ELSE IF x=0 THEN y=2*x+1 ELSEy=-2*x ^2+4 END IF END IF PRINT y END 能力提升12.用秦九韶算法求多项式f(x)=x 6+2x 5+3x 4+4x 3+5x 2+6x 当x =2时的值.解 f(x)=x 6+2x 5+3x 4+4x 3+5x 2+6x=(((((x +2)x +3)x +4)x +5)x +6)x.所以有v 0=1,v 1=1×2+2=4,v 2=4×2+3=11,v 3=11×2+4=26,v 4=26×2+5=57,v 5=57×2+6=120,v 6=120×2=240.故当x =2时,多项式f(x)=x 6+2x 5+3x 4+4x 3+5x 2+6x 的值为240.13.某电信部门规定,拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元;如果通话时间超过3分钟,则超过部分按每分钟0.1元收取通话费(通话不足1分钟时按1分钟计).试设计一个计算通话费用的算法,画出程序框图,并编写程序. 解 我们用C(单位:元)表示通话费,t(单位:分钟)表示通话时间,则依题意有 C =错误!算法步骤如下:。
(典型题)高中数学必修三第二章《算法初步》测试(包含答案解析)
一、选择题1.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6 2.执行如图所示的程序框图输出的结果是()A.8B.6C.5D.3 n 时,执行如图所示的程序框图,则输出的S值为()3.当4A .9B .15C .31D .634.在如图所示的程序框图中,若函数12log (),?0()2,?0x x x f x x -<⎧⎪=⎨⎪≥⎩,则输出的结果是( )A .16B .8C .162D .825.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A.2 B.3 C.4 D.5⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的6.如图给出的是计算1232018是()A .2018i <B .2018i =C .2018i ≤D .2018i >7.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A .261B .425C .179D .5448.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n9.若执行如图所示的程序框图,输出S的值为511,则输入n的值是()A.7B.6C.5D.410.执行如图所示的程序框图,若输入的,a b的值分别为1,2,则输出的S是()A.70 B.29 C.12 D.511.执行如图所示的程序框图,输出的S值为()A.1 B.-1 C.0 D.-2 12.若执行如图所示的程序框图,则输出S的值为( )A.10072015B.10082017C.10092019D.10102021二、填空题13.运行如图所示的程序框图,则输出的S的值为________.14.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.15.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.16.执行如图所示的程序框图,输出S 的值为___________.17.阅读如图所示的流程图,运行相应的程序,则输出n的值为______.18.根据如图所示的伪代码,可知输出的结果S为________.19.执行如图所示的程序框图,输出的T ______.20.如图所示的程序框图输出的值是 .三、解答题+++的一个算法,按照逐一相加的程序进行:21.以下给出了求1234第一步:计算12+,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10.⨯⨯⨯⨯的一个算法.请设计一个求1234522.读下列程序:(1)根据程序,画出对应的程序框图;(2)写出该程序表示的函数,并求出当输出的4y =时,输入的x 的值.23.给出某班45名同学的数学测试成绩,60分及以上为及格,要求统计及格人数,及格同学的平均分,全班同学的平均分,画出程序框图,并写出程序语句.24.分别标有1,2,3,4,5,6六个号码的小球,有一个最重,写出挑出最重球的算法,并画出程序框图.25.试编写程序确定S=1+4+7+10+…中至少加到第几项时S ≥300. 26.利用海伦公式编写一个计算三边长为,,a b c 的三角形面积的程序. [海伦公式为:1()()();()2S p p a p b p c a b c =---=++].【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B. 考点:1、程序框图;2、循环结构.2.A解析:A根据程序框图循环结构运算,依次代入求解即可.【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y ===第二次循环3,2,3z x y ===第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =.所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.3.C解析:C【解析】由程序框图可知,1,3,2,7,3,15k s k s k s ======,4,31,54k s k ===>,退出循环,输出s 的值为31,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.A解析:A【解析】模拟执行程序框图,可得160a =-≤,执行循环体,12log 1640b ==-<,12log 420a ==-<,不满足条件4a >,执行循环体,12log 210b ==-<,12log 10a ==,不满足条件4a >,执行循环体,0210b ==>,1220a ==>,不满足条件4a >,执行循环体,2240b ==>,4216a ==,满足条件4a >,退出循环,输出a 的值为16.选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5.C解析:C按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求.【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f x x ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=, 此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=, 此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=, 此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=, 此时1.4375 1.3750.06250.1-=<,符合精确度要求.退出循环,输出n 的值为4.故选:C.【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的方法.6.D解析:D【分析】可先结合输出结果预判,满足某一条件时,输出结果s ,综合判断D 正确【详解】由输出结果判断,显然是经过多次运算的结果,运算中i 是不断递加的,满足某一条件时,输出结果,排除A ,C ;接下来计算:设001,1s i ==,不满足判断条件,100101,12s s i i i =⋅==+=;不满足判断条件,2112112,13s s i i i =⋅=⨯=+=;不满足判断条件,32232123,14s s i i i =⋅=⨯⨯=+=;直到201820172017201820171232018,12019s s i i i =⋅=⨯⨯⨯=+=,此时满足判断条件,说明20192018>,故判断语句为:2018i >故选:D本题考查由输出值辨别判断语句,属于中档题7.B解析:B【分析】根据循环结构的条件,依次运算求解,即得解.【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===;满足0105<⨯,故:7,4,4x y n ===;满足4107<⨯,故:11,36,6x y n ===;满足361011<⨯,故:17,144,8x y n ===;满足1441017<⨯,故:25,400,10x y n ===;此时:4001025>⨯,满足输出条件:输出425x y +=故选:B【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 8.A解析:A【分析】因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】 由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.9.C解析:C【分析】将所有的算法循环步骤列举出来,得出5i =不满足条件,6i =满足条件,可得出n 的取值范围,从而可得出正确的选项.【详解】110133S =+=⨯,112i =+=; 2i n =>不满足,执行第二次循环,1123355S =+=⨯,213i =+=; 3i n =>不满足,执行第三次循环,2135577S =+=⨯,314i =+=; 4i n =>不满足,执行第四次循环,3147799S =+=⨯,415i =+=; 5i n =>不满足,执行第五次循环,415991111S =+=⨯,516i =+=; 6i n =>满足,跳出循环体,输出S 的值为511,所以,n 的取值范围是56n ≤<. 因此,输入的n 的值为5,故选C.【点睛】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.10.B解析:B【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果.【详解】解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <; 第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <, 故输出29S =.故选B.【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.11.B解析:B【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==,此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S =-=-=+=; 此时不满足5i >,执行循环:112,14S i i S =-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题. 12.C解析:C【解析】【分析】 首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果.【详解】 由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯, 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭, 111113355720172019S ∴=++++⨯⨯⨯⨯ 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-= ⎪⎝⎭. 本题选择C 选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.二、填空题13.1011【分析】根据程序框图可得是对偶数求和是对奇数求和再根据循环条件可分别得出奇数偶数的个数从而得出答案【详解】依题意故故答案为:1011【点睛】本题考查算法与程序框图考查循环结构考查直观想象推理解析:1011【分析】根据程序框图可得T 是对偶数求和,N 是对奇数求和,再根据循环条件可分别得出奇数、偶数的个数,从而得出答案.【详解】依题意,024*********T =++++++,135720192021N =++++++, 故()()()13254202120201011S N T =-=+-+-++-=.故答案为:1011【点睛】 本题考查算法与程序框图,考查循环结构,考查直观想象、推理论证的核心素养,属于中档题.14.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程序框图的 解析:78【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果.【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =,执行循环体,()243187x x x =--=-,43i =>,输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程 解析:20【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a3i =,12a =不满足条件n 整除以a4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.16.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4817.4【解析】不成立;不成立;不成立;成立输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是解析:4【解析】()1,0,0111,2n S S S ===+-⨯=-≥ 不成立; ()22,1121,2n S S ==-+-⨯=≥ 不成立;()33,1132,2n S S ==+-⨯=-≥ 不成立;()44,2142,2n S S ==-+-⨯=≥ 成立,输出4n = ,故答案为4 .【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.18.7【解析】第一次循环:;第二次循环:;第三次循环:;结束循环输出考点:循环结构流程图解析:7【解析】第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图19.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =20.144【分析】直接利用循环结构计算循环各个变量的数值当满足判断框的条件推出循环输出结果【详解】判断前第1次判断循环;第2次判断循环第3次判断循环;第4次判断循环;第5次判断循环;第6次判断循环;第7 解析:144【分析】直接利用循环结构,计算循环各个变量的数值,当10k =满足判断框的条件,推出循环,输出结果.【详解】判断前,2c =,第1次判断循环,1,2,2,3a b k c ====;第2次判断循环,2,3,3,5a b k c ====第3次判断循环,3,5,4,8a b k c ====;第4次判断循环,5,8,5,13a b k c ====;第5次判断循环,8,13,6,21a b k c ====;第6次判断循环,13,21,7,34a b k c ====;第7次判断循环,21,34,8,55a b k c ====;第8次判断循环,34,55,9,89a b k c ====;第9次判断循环,55,89,10,144a b k c ====;第10次判断不满足判断框条件,退出循环,输出144c =,故答案为144.【点睛】本题考查循环结构的应用,注意每一步循环的变量的数值,计算准确是解题的关键.三、解答题21.见解析【分析】利用类比的思想,把示例中的加变为乘,按照逐一相乘的方法,一直乘到5即可.【详解】第一步:计算1乘2,得到2;第二步:将第一步中的运算结果2乘以3,得到6;第三步:将第二步中的运算结果6乘以4,得到24;第四步:将第三步中的运算结果24乘积5,得到120.【点睛】本题考查算法的设计和类比思想的应用;同时让学生体会算法在解决数学问题中的作用;属于中档题.22.(1)程序框图见解析;(2)2,02,0x x y x x ⎧<=⎨≥⎩,2x =±. 【分析】(1)根据程序语句可知该程序是条件结构框图,并根据程序语句作出相应的程序框图; (2)根据程序语句得出当x 取不同范围内的值时,函数的解析式也不同,然后可根据程序框图结合x 的不同取值范围,得出函数的解析式,然后分0x <和0x ≥解方程4y =,从而可解出输入的x 的值.【详解】(1)对应的程序框图如图所示:(2)该程序表示的函数是2,02,0x x y x x ⎧<=⎨≥⎩. 当0x <时,由24y x ==得2x =-;当0x ≥时,由24y x ==得2x =.出当输出的4y =时,输入的x 的值是2x =±.【点睛】本题考查条件程序框图的应用,同时考查了根据程序框图计算输入值,解题时要对x 的取值范围分段来讨论,考查分析问题和解决问题的能力,属于中等题.23.程序图见解析.【解析】【分析】因为只统计及格人数,所以设计一个条件语句,对于求和设计一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 最后对应改成基本语句.【详解】用M表示及格人数,S表示及格同学的总分。
(典型题)高中数学必修三第二章《算法初步》测试题(答案解析)
一、选择题1.若执行如图所示的程序框图,输出S的值为()A.2log23 B.log27 C.3 D.22.该程序中k的值是()A.9 B.10 C.11 D.123.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.34.执行如图所示的程序框图,输出的S值为()A.511 B.512 C.1022 D.1024 5.执行如下图的程序框图,如果输入的N的值是7,那么输出的p的值是()A.3 B.15 C.105 D.9456.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是()A.n≥999B.n≤999 C.n<999 D.n>9997.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为10,14,则输出的a=()A.6 B.4 C.2 D.08.某程序框图如图所示,若运行该程序后输出S=()A.53B.74C.95D.1169.下列赋值语句正确的是 ()A.S=S+i2B.A=-A C.x=2x+1 D.P=10.执行如图所示的程序框图,若输入的6n=,则输出S=A.514B.13C.2756D.31011.执行如图的程序框图,则输出x的值是 ()A.2018B.2019C.12D.212.执行如下图的程序框图,那么输出S的值是( )A.2 B.1 C.12D.-1二、填空题13.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.14.下图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若要使输入的x 值与输出的y值满足关系式y=-2x+4,则这样的x值___个.15.运行如图所示的程序框图,则输出的所有y值之和为___________.16.如图所示的程序框图,输出的S的值为()A.12B.2 C.1-D.12-17.如图所示的伪代码,最后输出的S值为__________.18.执行如图所示的程序框图,输出的S值为__________.19.执行如图所示的程序框图,输出S的值为___________.20.执行如图所示的流程图,则输出的的值为___________.三、解答题21.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.22.设计算法求111112233499100++++⨯⨯⨯⨯的值,要求画出程序框图,并用基本的算法语句编写程序.23.图C1-6所示的程序框图表示了一个什么样的算法?试用当型循环写出它的算法并画出相应的程序框图.24.给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),请在图中判断框内①处和执行框中的②处填上合适的语句,使之能完成该题算法功能.25.一队士兵来到一条有鳄鱼的深河的左岸,只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸,并将这个算法用程序框图表示.26.画出求的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】由题意,可得程序的功能是求S =log 23×log 34×log 45×log 56×log 67×log 78的值,原式=×××××==3.故选C.2.B解析:B【分析】本题只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).【详解】3,2,8,814x k y ===<,第一次循环,4,10,1014k y ==<;第二次循环,6,12,1214k y ==<;第三次循环,8,14,1414k y ===;第四次循环,10,16,1614k y ==>,退出循环,输出10k =,故选:B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3.C解析:C【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案.【详解】模拟执行程序框图,可得:1,1,1a b n ===,第1次循环,可得3,1,3,2S a b n ====;第2次循环,可得5,3,5,3S a b n ====;第3次循环,可得11,5,11,4S a b n ====,满足判断条件,输出11S =.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题. 4.C解析:C【分析】直接根据程序框图计算得到答案.【详解】 根据程序框图知:92391012222 (2222102212)S -=++++==-=-. 故选:C.【点睛】 本题考查了程序框图,意在考查学生的计算能力和理解能力,确定程序框图表示的意义是解题的关键.5.C解析:C【分析】由已知中的程序框图,得到该程序的功能是利用循环结构计算并输出变量p 的值,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案.【详解】模拟程序的运行,可得:7,1,1N k p ===,满足条件7k <,执行循环体,3,3k p ==;满足条件7k <,执行循环体,5,15k p ==;满足条件7k <,执行循环体,7,105k p ==;此时,不满足条件7k <,推出循环,输出p 的值为105,故选C .【点睛】本题主要考查了程序框图的应用问题,解答中应模拟程序框图的运行过程,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容.【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <. 故选C.【点睛】lg lg lg(1)1n n n n =-++,通过将除法变为减法,达到简便运算的目的. 7.C解析:C【分析】由程序框图,先判断,后执行,直到求出符合题意的a .【详解】由题意,可知10a =,14b =,满足a b ,不满足a b >,则14104b =-=, 满足a b ,满足a b >,则1046a =-=, 满足a b ,满足a b >,则642a =-=, 满足a b ,不满足a b >,则422b =-=, 不满足a b ,输出2a =. 故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题. 8.D解析:D【分析】 通过分析可知程序框图的功能为计算211n S n +=+,根据最终输出时n 的值,可知最终赋值S 时5n =,代入可求得结果.【详解】根据程序框图可知其功能为计算:()111111111211111112231223111n S n n n n n n +=+++⋅⋅⋅+=+-+-+⋅⋅⋅+-=+-=⨯⨯++++初始值为1n =,当6n =时,输出S可知最终赋值S 时5n = 25111516S ⨯+∴==+ 本题正确选项:D【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时n 的取值. 9.B解析:B【解析】在程序语句中乘方要用“^”表示,所以A 项不正确;乘号“*”不能省略,所以C 项不正确;DSQR(x)表示,所以D 项不正确;B 选项是将变量A 的相反数赋给变量A ,则B项正确.选B.10.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力. 11.D解析:D【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解.【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==; 满足条件2019y <,执行循环体,1,4x y =-= ;…观察规律可知,x 的取值周期为3,由于20196733⨯=,可得:满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2.故选D .【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.12.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果.【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12; k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2,K=2019时,结束循环,输出s 的值为2.故选:A .【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.二、填空题13.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【解析:3【解析】【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可.【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去);当3x <时,210y x ==,解得5x = ,舍去,综上,x 的值为3,故答案为3 .【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.14.2【分析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值并输出【详解】该题考查的是有关程序框图的问题在解题的过程中注意对框图进行分析明确框图的作用根据题意 解析:2【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,并输出.【详解】该题考查的是有关程序框图的问题,在解题的过程中,注意对框图进行分析,明确框图的作用,根据题意,建立相应的等量关系式,求得结果. 根据题意,可知该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,依题意得2224x x x ≤⎧⎨=-+⎩或252424x x x <≤⎧⎨-=-+⎩或5124x x x>⎧⎪⎨=-+⎪⎩,解得1x =-±x 的值有两个,故答案是:2.【点睛】该题考查的是有关程序框图的问题,在解题的过程中,注意分析框图的作用,之后建立相应的等量关系式,求得结果,从而得到满足条件的x 的个数.15.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值 解析:10【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到所有输出的y 的值,然后求和即可.【详解】输入2n =-,第一次循环,8,1y n ==-;第二次循环,3,0y n ==;第三次循环,0,1y n ==;第四次循环,1,2y n =-=;退出循环,可得所有y 值之和为830110++-=,故答案为10.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.16.A 【解析】【分析】模拟执行程序框图依次写出每次循环得到的k 的值当k=2012时不满足条件退出循环输出的值为【详解】模拟执行程序框图可得满足条件满足条件满足条件满足条件由此可见S 的周期为3故当k=20解析:A【解析】【分析】模拟执行程序框图,依次写出每次循环得到的k ,S 的值,当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 【详解】模拟执行程序框图,可得2,1S k ==满足条件2011k ≤,1,22S k ==, 满足条件2011k ≤,1,3S k =-=, 满足条件2011k ≤,2,4S k ==,满足条件2011k ≤,1,52S k ,== 由此可见S 的周期为3,20113670...1,÷= 故当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 故选A.【点睛】本题主要考查了循环结构的程序框图,属于基础题.17.21【解析】分析:先根据伪代码执行循环直到I<8不成立结束循环输出S 详解:执行循环得结束循环输出点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪解析:21【解析】分析:先根据伪代码执行循环,直到I<8不成立,结束循环输出S.详解:执行循环得3,23+3=95,25+3=137,27+3=179,29+3=21;8I S I S I S I S I ==⨯==⨯==⨯==⨯>;;;结束循环,输出21S =.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.37【解析】根据图得到:n=18S=19n=12S=31n=6S=37n=0判断得到n>0不成立此时退出循环输出结果37故答案为:37解析:37【解析】根据图得到:n=18,S=19,n=12S=31,n=6,S=37,n=0,判断得到n>0不成立,此时退出循环,输出结果37.故答案为:37.19.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4820.【解析】试题分析:由程序框图第一次循环时第二次循环时第三次循环时第四次循环时退出循环输出考点:程序框图解析:4【解析】试题分析:由程序框图,第一次循环时,1,1k S ==,第二次循环时,22,112k S ==+=,第三次循环时,23,226k S ==+=,第四次循环时,24,63156k S ==+=>,退出循环,输出4k =.考点:程序框图.三、解答题21.见解析;【解析】试题分析: 先利用INPUT语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:22.见解析【解析】【分析】根据已知条件,程序的功能可以利用循环结构来解答。
高中数学第九章 算法初步、统计、统计案例单元评估检测
单元评估检测第九章算法初步、统计、统计案例(90分钟120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·宿州模拟)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6B.8C.10D.12【解析】选B.设样本容量为N,则N×=6,所以N=14,所以高二年级所抽人数为14×=8.2.(2015·赣州模拟)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.平均数B.标准差C.众数D.中位数【解析】选B.由A组数据为42,43,46,52,42,50,B组数据为37,38,41,47,37,45.可知平均数、众数、中位数都发生了变化,比原来A组数据对应量都减小了5,但标准差不发生变化,故选B.3.在如图所示的计算1+3+5+…+2 015的程序框图中,判断框内应填入( )A.i≤1 008B.i≤2 013C.i<2 015D.i≤2 015【解析】选D.由程序框图知,S=1+3+5+…+2 015,i初始值为1,每次增加2,S中加上的最后一项为2 015,故判断框中的条件应为i≤2 015.4.(2015·景德镇模拟)在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{a n}.已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为( )A.100B.120C.150D.200【解析】选A.设公差为d,则a1+d=2a1,所以a1=d,所以d+2d+3d+4d+5d=1,所以d=,所以面积最大的一组的频率等于×5=.所以小长方形面积最大的一组的频数为300×=100.5.(2015·淮北模拟)为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为( )A.13B.19C.20D.51【解析】选C.抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C.6.(2015·太原模拟)已知x,y的取值如表所示:x 0 1 3 4y 0.9 1.9 3.2 4.4从散点图分析,y与x线性相关,且y=0.8x+a,则a= ( )A.0.8B.1C.1.2D.1.5【解析】选B.==2,==2.6,又因为回归直线y=0.8x+a过样本点中心(2,2.6),所以2.6=0.8×2+a,解得a=1.7.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机调查了24名笔试者的成绩,如下表所示:分数段[60,65) [65,70) [70,75) [75,80) [80,85) [85,90) 人数 2 3 4 9 5 1据此估计允许参加面试的分数线大约是( )A.75B.80C.85D.90【解析】选B.由题可知,在24名笔试者中应选出6人参加面试,由表可得面试分数线大约为80.8.样本(x 1,x2,…,x m)的平均数为,样本(y1,y2,…,y n)的平均数为(≠).若样本(x 1,x2,…,x m,y1,y2,…,y n)的平均数=α+(1-α),其中0<α≤,则m,n的大小关系为( )A.m<nB.m≤nC.m>nD.m≥n【解析】选B.由题意可得=,=,===+,则0<α=≤,解得m≤n.9.(2015·南昌模拟)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好40 20 60不爱好20 30 50总计60 50 110计算可得χ2=≈7.8.附表:P(χ2≥k) 0.050 0.010k 3.841 6.635参照附表,得到的正确结论是( )A.有99%的把握认为“爱好该项运动与性别有关”B.有99%的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【解析】选A.根据独立性检验的定义,由χ2≈7.8>6.635可知我们有99%的把握认为“爱好该项运动与性别有关”,故选A.10.执行如图所示的程序框图,则输出S的值为( )A.3B.-6C.10D.-15【解析】选D.程序运行过程为:i=1,S=0→S=0-12=-1,i=2→S=-1+22,i=3,由于判断条件i<6,所以当i=5时,执行最后一次后输出S的值,所以S=-1+22-32+42-52=-15.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2015·萍乡模拟)将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是.【解析】依据系统抽样方法的定义得知,将这60名学生依次按编号每12人作为一组,即01~12,13~24,…,49~60,当第一组抽得的号码是04时,剩下的四个号码依次是16,28,40,52(即其余每一小组所抽出来的号码都是相应的组中的第四个号码).答案:16,28,40,5212.如图所示,程序框图(算法框图)的输出结果是 .【解析】由T=T+k可知T是一个累加变量,题目实质为求1+2+3+…+k的和,其和为.令≤105,得k≤14.故当k=15时,T=1+2+3+…+15=120>105,此时输出k=15.答案:1513.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元) 4 5 6 7 8 9销量y(件) 90 84 83 80 75 68由表中数据,求得线性回归方程为y=-4x+a.若在这些样本点中任取一点,则它在回归直线左下方的概率为.【解析】==,==80,因为回归直线过点,所以a=106,所以y=-4x+106,所以点(5,84),(9,68)在回归直线左下方,故所求概率P==. 答案:14.某单位为了制定节能减排的计划,随机统计了某4天的用电量y(单位:度)与当天气温x(单位:℃),并制作了对照表(如表所示).由表中数据,得线性回归方程y=-2x+a,当某天的气温为-5℃时,预测当天的用电量约为度.x 18 13 10 -1y 24 34 38 64【解析】气温的平均值=×(18+13+10-1)=10,用电量的平均值=×(24+34+38+64)=40,因为回归直线必经过点(,),将其代入线性回归方程得40=-2×10+a,解得a=60,故回归方程为y=-2x+60.当x=-5时,y=-2×(-5)+60=70.所以当某天的气温为-5℃时,预测当天的用电量约为70度.答案:7015.若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于.【解析】由循环结构知本题实质是求输入的4个数x1,x2,x3,x4的平均数x==,所以输出x=.答案:三、解答题(本大题共4小题,共45分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(10分)(2015·安康模拟)在某市今年的公务员考试成绩中随机抽取500名考生的笔试成绩,按成绩分组,得到频率分布表如下:组号分组频数频率第1组[160,165) 25 0.050第2组[165,170) 0.350第3组[170,175) 150第4组[175,180)第5组[180,185] 50 0.100合计500 1.000为了选拔出最优秀的公务员,政府决定在第3,4,5组中用分层抽样法抽取12名考生进行第二轮选拔,分别求第3,4,5组每组进入第二轮选拔的考生人数. 【解析】由题意可知,第2组的频数为500×0.350=175,所以第3,4,5组共有考生500-25-175=300(名),则第4组有100名考生,所以第3组抽取的人数为:×12=6,第4组抽取的人数为:×12=4,第5组抽取的人数为:×12=2.17.(10分)某个团购网站为了更好地满足消费者需求,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示.(1)分别求第三、四、五组的频率.(2)该网站在得分较高的第三、四、五组中用分层抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的两个产品均来自第三组的概率.【解析】(1)第三组的频率是0.150×2=0.3;第四组的频率是0.100×2=0.2;第五组的频率是0.050×2=0.1.(2)设“抽到的两个产品均来自第三组”为事件A,由题意可知,从第三、四、五组中分别抽取3个,2个,1个.不妨设第三组抽到的是A1,A2,A3;第四组抽到的是B1,B2;第五组抽到的是C1,所含基本事件总数为:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{ A3,B2},{A3,C1},{B1,B2},{B1,C1},{B2,C1},所以P(A)==.18.(12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲82 81 79 78 95 88 93 84乙92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据.(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【解析】(1)作出茎叶图如图:(2)派甲参赛比较合适,理由如下:=(70×2+80×4+90×2+8+9+1+2+4+8+3+5)=85,=(70×1+80×4+90×3+5+0+0+3+5+0+2+5)=85,=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2 +(95-85)2]=35.5,=[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2 +(95-85)2]=41,因为=,<,所以甲的成绩较稳定,派甲参赛比较合适.注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分,如:从统计的角度看,甲获得85分以上(含85分)的概率P1=,乙获得85分以上(含85分)的概率P2==.因为P2>P1,所以派乙参赛比较合适.19.(13分)(2015·渭南模拟)甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80) [80,90) [90,100) [100,110)频数 3 4 8 15分组[110,120) [120,130) [130,140) [140,150]频数15 x 3 2乙校:分组[70,80) [80,90) [90,100) [100,110)频数 1 2 8 9分组[110,120) [120,130) [130,140) [140,150]频数10 10 y 3(1)计算x,y的值.(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率.(3)由以上统计数据填写2×2列联表,并判断两所学校的数学成绩有差异吗?甲校乙校总计优秀非优秀总计【解析】(1)从甲校抽取110×=60(人),从乙校抽取110×=50(人),故x=10,y=7.(2)估计甲校数学成绩的优秀率为×100%=25%,乙校数学成绩的优秀率为×100%=40%.(3)表格填写如下,甲校乙校总计优秀15 20 35非优秀45 30 75总计60 50 110χ2=≈2.829>2.706,故有90%的把握认为两个学校的数学成绩有差异.【加固训练】1.某网站于2014年10月18日至24日,在全国范围内进行了持续一周的在线调查,随机抽取其中200名大中小学生的调查情况,就每天的睡眠时间分组整理如表所示:序号(i)每天睡眠时间(小时) 组中值(m i)频数频率(f i)1 [4,5) 4.5 8 0.042 [5,6) 5.5 52 0.263 [6,7) 6.5 60 0.304 [7,8) 7.5 56 0.285 [8,9) 8.5 20 0.106 [9,10) 9.5 4 0.02(1)估计每天睡眠时间小于8小时的学生所占的百分比约是多少?(2)该网站利用下边的算法框图,对样本数据作进一步统计分析,求输出的S的值,并说明S的统计意义.【解析】(1)由样本数据可知,每天睡眠时间小于8小时的频率是P=1-(0.10+0.02)=0.88.由此估计每天睡眠时间小于8小时的学生约占88%.(2)输入m1,f1的值后,由赋值语句S=S+m i·f i可知,流程图进入一个求和状态.设a i=m i·f i(i=1,2,…,6),数列{a i}的前i项和为T i,则T6=4.5×0.04+5.5×0.26+6.5×0.30+7.5×0.28+8.5×0.10+9.5×0.02=6.7. 故输出的S值为6.7.S的统计意义是指被调查者每天的平均睡眠时间估计为6.7小时.2.一次考试中,5名学生的数学、物理成绩如表所示:学生A1A2A3A4A5数学x(分) 89 91 93 95 97物理y(分) 87 89 89 92 93(1)要从5名学生中选2名参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率.(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据的线性回归方程y=bx+a.【解析】(1)从5名学生中任取2名学生的所有情况为(A4,A5),(A4,A1),(A4,A2), (A4,A3),(A5,A1),(A5,A2),(A5,A3),(A1,A2),(A1,A3),(A2,A3),共10种情况.其中至少有一人物理成绩高于90分的情况有:(A4,A5),(A4,A1),(A4,A2),(A4,A3),(A5,A1),(A5,A2),(A5,A3),共7种情况,故选中的学生中至少有一人的物理成绩高于90分的概率为P=.(2)散点图如图所示.可求得:==93,==90,(x i-)(y i-)=30,(x i-)2=(-4)2+(-2)2+02+22+42=40,b==0.75,a=-b=90-0.75×93=20.25,故所求的线性回归方程是y=0.75x+20.25.。
(易错题)高中数学必修三第二章《算法初步》测试卷(含答案解析)
一、选择题1.若执行如图所示的程序框图,则输出S 的值是( )A .63B .15C .31D .322.执行如图所示的程序框图,若输入的a ,b 的值分别为1,1,则输出的S 是( )A .25B .18C .11D .33.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A.2 B.3 C.4 D.5n ,则输入整数p的最大值是( ) 4.执行如图的程序框图,若输出的6A.15 B.16 C.31 D.32 5.某程序框图如图所示,则该程序运行后输出的值是()A.3-B.32-C.3D.326.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是()A.n≥999B.n≤999C.n<999 D.n>9997.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为10,14,则输出的a=()A.6 B.4 C.2 D.08.执行如图所示的程序框图,若输人的n值为2019,则S=A .B .C .D .9.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .110.某程序框图如图所示,若运行该程序后输出S =( )A .53B .74 C .95 D .11611.若执行如图所示的程序框图,则输出S 的值为( )A .9-B .16-C .25-D .36- 12.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为()A .5k <?B .5k ≥?C .6k <?D .6k ≥?二、填空题13.已知某程序框图如图所示,则该程序运行后输出S 的值为__________.14.一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.15.执行如图所示的程序框图,若输入的,a k 分别是89,2,则输出的数为__________.16.已知一个算法的程序框图如图所示,当输入的1x =-与1x =时,则输出的两个y 值的和为__________.17.如图,程序框图中,语句1被执行的次数为__________.18.101110(2)转化为十进制数是__________.19.一个算法的程序框图如图所示,则该算法运行后输出的结果为________.20.如果执行如图所示的程序框图,那么输出的值k= .三、解答题21.已知直线1:240l x y +-=,阅读如图所示的程序框图,若输入的x 的值为61+,输出的()f x 的值恰为直线2l 在x 轴上的截距,且12l l ⊥.(1)求直线1l 与2l 的交点坐标;(2)若直线3l 过直线1l 与2l 的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求3l 的方程.22.读下列程序:(1)根据程序,画出对应的程序框图;(2)写出该程序表示的函数,并求出当输出的4y =时,输入的x 的值.23.求两底面半径分别为2和4,高为5的圆台的表面积及体积.写出解决该问题的一个算法,并画出程序框图.24.有关专家建议预测,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2015年的价格是10 000元,试分析其算法并用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.25.输入x ,求函数y =32,22,2x x x -≥⎧⎨-<⎩的值的程序框图如图C1-7所示. (1)指出程序框图中的错误之处并写出正确的算法步骤.(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x 的值应为多少?②要使输出的值为正数,则输入的x 应满足什么条件?26.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式; (2)若输出的y 值为12,求点Q 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据程序框图模拟程序计算即可求解.【详解】模拟程序的运行,可得1S =,1i =;满足条件5i <,执行循环体,3S =,2i =; 满足条件5i <,执行循环体,7=S ,3i =; 满足条件5i <,执行循环体,15S =,4i =; 满足条件5i <,执行循环体,31S =,5i =; 此时,不满足条件5i <,退出循环,输出S 的值为31. 故选:C【点睛】本题主要考查了程序框图,循环结构,属于中档题. 2.C【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.3.C解析:C 【分析】按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求. 【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f xx ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=,此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=,此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=,此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=,此时1.4375 1.3750.06250.1-=<,符合精确度要求. 退出循环,输出n 的值为4. 故选:C. 【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的4.C解析:C 【分析】根据程序框图的循环结构,依次运行,算出输出值为6n =时S 的值,使得S p <不成立时p 的值即可. 【详解】根据程序框图可知,1,0n S == 则11021,2S n -=+==21123,3S n -=+== 31327,4S n -=+== 417215,5S n -=+== 5115231,6S n -=+==此时应输出6n =,需31p <不成立.因而整数p 的最大值为31 故选:C 【点睛】本题考查了程序框图的简单应用,根据输出结果确定判读框,属于中档题.5.D解析:D 【分析】 该框图的功能是计算:234562017sinsin sin sin sin sin sin3333333πππππππ+++++++,再根据正弦函数的周期性以及特殊角的三角函数值计算可得答案. 【详解】该框图的功能是计算:234562017sinsinsin sin sin sin sin3333333πππππππ+++++++.因为7132017sinsinsin sin 3333ππππ=====28142012sinsin sin sin3333ππππ=====, 39152013sinsin sin sin03333ππππ=====,410162014sinsin sin sin3333ππππ=====,511172015sinsin sin sin33332ππππ=====-, 612182016sinsin sin sin 03333ππππ=====, 所以234562017sin sinsin sin sin sin sin3333333πππππππ+++++++3373363360336(336()336022222=⨯+⨯+⨯+⨯-+⨯-+⨯=. 故选:D 【点睛】本题考查了程序框图的循环结构,考查了三角函数的周期性以及特殊角的三角函数值,理解程序框图的功能是解题关键,属于基础题.6.C解析:C 【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容. 【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <.故选C. 【点睛】lglg lg(1)1nn n n =-++,通过将除法变为减法,达到简便运算的目的. 7.C解析:C 【分析】由程序框图,先判断,后执行,直到求出符合题意的a . 【详解】由题意,可知10a =,14b =, 满足a b ,不满足a b >,则14104b =-=, 满足a b ,满足a b >,则1046a =-=, 满足a b ,满足a b >,则642a =-=, 满足a b ,不满足a b >,则422b =-=, 不满足a b ,输出2a =.故选C. 【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.8.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6 n 2019k 1 2 (2018)2019S…k<n 是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.9.C解析:C 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值. 【详解】第一次进入循环,因为56除以18的余数为2,所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0, 所以0r =,2m =,0n =,判断r 等于0, 跳出循环,输出m 的值为2.故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.D解析:D 【分析】通过分析可知程序框图的功能为计算211n S n +=+,根据最终输出时n 的值,可知最终赋值S 时5n =,代入可求得结果. 【详解】根据程序框图可知其功能为计算:()111111111211111112231223111n S n n n n n n +=+++⋅⋅⋅+=+-+-+⋅⋅⋅+-=+-=⨯⨯++++初始值为1n =,当6n =时,输出S 可知最终赋值S 时5n = 25111516S ⨯+∴==+ 本题正确选项:D 【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时n 的取值.11.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•; 第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7= 此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.二、填空题13.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si解析:12-【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】 执行程序框图,有 S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2 满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5 …观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-,故答案为12 -.【点睛】本题主要考查了程序框图和算法,其中判断S的取值规律是解题的关键,属于基本知识的考查.14.3【解析】【分析】执行该算法后输出y=令y=1求出对应x值即可【详解】执行如图所示的算法知该算法输出y=当x≥1时令y=x2﹣2x﹣2=1解得x =3或x=﹣1(不合题意舍去);当x<1时令y==1此解析:3【解析】【分析】执行该算法后输出y=222,11,11x x xxxx⎧--≥⎪⎨+<⎪-⎩,令y=1求出对应x值即可.【详解】执行如图所示的算法知,该算法输出y=222,11,11x x xxxx⎧--≥⎪⎨+<⎪-⎩当x≥1时,令y=x2﹣2x﹣2=1,解得x=3或x=﹣1(不合题意,舍去);当x<1时,令y=11xx+-=1,此方程无解;综上,则输入的实数x的值为3.故答案为3.【点睛】本题考查算法与应用问题,考查分段函数的应用问题,是基础题.15.1011001【解析】模拟程序框图的运行过程如下;输入a=89k=2q=89÷2=44…1;a=44k=2q=44÷2=22…0;a=22k=2q=22÷2=11…0;a=11k=2a=11÷2=5解析:1011001【解析】模拟程序框图的运行过程,如下;输入a=89,k=2,q=89÷2=44…1;a=44,k=2,q=44÷2=22…0;a=22,k=2,q=22÷2=11…0;a=11,k=2,a=11÷2=5…1;a=5,k=2,q=5÷2=2…1;a=2,k=2,q=2÷2=1…0;a=1,k=2,q=1÷20…1;则输出的数为1011001. 故答案为:1011001.16.【解析】时时输出的两个值的和为故答案为解析:54【解析】1x =-时,11124y --==,1x =时,()2log 111y =+=,15144∴+=,输出的两个y 值的和为54,故答案为54. 17.34【解析】循环次数=(循环终值-循环初值)/步长+1又循环的初值为退出循环时终值为步长为故循环次数次故答案为解析:34 【解析】循环次数=(循环终值-循环初值)/步长+1,又循环的初值为1,退出循环时终值为100,步长为3,故循环次数10011343-=+=次,故答案为34. 18.46【解析】试题分析:考点:进位制间的关系解析:46 【解析】试题分析:2345(2)101110121212021246=⨯+⨯+⨯+⨯+⨯=. 考点:进位制间的关系.19.1320【分析】由题意结合所给的流程图执行程序确定其输出值即可【详解】程序运行如下:首先初始化数据:第一次循环满足执行;第二次循环满足执行;第三次循环不满足跳出循环输出故答案为【点睛】识别运行程序框解析:1320 【分析】由题意结合所给的流程图执行程序,确定其输出值即可. 【详解】 程序运行如下:首先初始化数据:12,1i S ==,第一次循环,满足10i ≥,执行12,111S S i i i =⨯==-=; 第二次循环,满足10i ≥,执行132,110S S i i i =⨯==-=; 第三次循环,不满足10i ≥,跳出循环,输出1320S =. 故答案为1320. 【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.20.4【分析】模拟执行程序框图依次写出每次循环得到的S 的值当S=2059k=4时不满足条件S <100退出循环输出k 的值为4【详解】模拟执行程序框图可得k=0S=0满足条件S <100S=1k=1满足条件S解析:4 【分析】模拟执行程序框图,依次写出每次循环得到的S 的值,当S =2059,k =4时,不满足条件S <100,退出循环,输出k 的值为4. 【详解】模拟执行程序框图,可得 k =0 S =0满足条件S <100,S =1,k =1 满足条件S <100,S =3,k =2 满足条件S <100,S =11,k =3 满足条件S <100,S =2059,k =4不满足条件S <100,退出循环,输出k 的值为4. 故选B . 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.三、解答题21.(1)(2,1);(2)20x y -=或250x y +-= 【分析】(1)根据程序框图,可得输出的函数()f x ,由输入x 的值为1+可得直线2l 在x 轴上的截距.由12l l ⊥,可得直线2l 的斜率.根据点斜式可得直线2l 的方程,联立两直线方程,即可求得交点坐标.(2)讨论截距是否为0:当截距为0时,易得直线方程;当截距不为0时,根据在y 轴上的截距是在x 轴上的截距的2倍,设出直线方程,代入所过的点,即可求解. 【详解】(1)由程序框图,若输入x 的值为12+,由102+> 所以输出()221f x x x =-+代入可得21112232122f ⎛⎫⎛⎛⎫=-⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+++ 所以2l 在x 轴上的截距为32, ∵12l l ⊥, ∴121l l k k =-⋅ 所以22l k =∴直线2l 的方程为3022y x ⎛⎫-=-⎪⎝⎭,即23y x =-. 联立240230x y x y +-=⎧⎨--=⎩,解得21x y =⎧⎨=⎩. ∴直线1l 和2l 的交点坐标为(2,1). (2)当直线3l 经过原点时,可得方程为12y x =. 当直线3l 不经过原点时,设在x 轴上截距为0a ≠,则在y 轴上的截距为2a ,其方程为12x y a a +=,将交点坐标(2,1)代入可得2112a a +=,解得52a =, ∴方程为25x y +=.综上可得直线3l 方程为20x y -=或250x y +-=. 【点睛】本题考查了程序框图的简单应用,垂直直线的斜率关系,直线交点的求法,截距式方程的用法,注意讨论截距是否为0,属于中档题.22.(1)程序框图见解析;(2)2,02,0x x y x x ⎧<=⎨≥⎩,2x =±.【分析】(1)根据程序语句可知该程序是条件结构框图,并根据程序语句作出相应的程序框图; (2)根据程序语句得出当x 取不同范围内的值时,函数的解析式也不同,然后可根据程序框图结合x 的不同取值范围,得出函数的解析式,然后分0x <和0x ≥解方程4y =,从而可解出输入的x 的值. 【详解】(1)对应的程序框图如图所示:(2)该程序表示的函数是2,02,0x x y x x ⎧<=⎨≥⎩. 当0x <时,由24y x ==得2x =-;当0x ≥时,由24y x ==得2x =.出当输出的4y =时,输入的x 的值是2x =±.【点睛】本题考查条件程序框图的应用,同时考查了根据程序框图计算输入值,解题时要对x 的取值范围分段来讨论,考查分析问题和解决问题的能力,属于中等题.23.见试题解析.【解析】【分析】根据圆台的体积和表面积公式依次按顺序输入公式,写成顺序结构即可.【详解】算法步骤如下:第一步:12r =,24r =,5h =.第二步:计算()2221l r r h =-+第三步:计算211S r π=,222S r π=,()312S r r l π=+.第四步:计算123S S S S =++,()112213V S S S S h =. 第五步:输出S 和V .程序框图如下图所示.【点睛】(1)程序框图是流程图的一种,程序框图有一定的规范和标准,而日常生活中的流程图则相对自由一些,可以使用不同的色彩,也可以添加一些生动的图形元素.(2)画算法的程序框图,一般需要将自然语言描述的算法的每一个步骤分解为若干输入、输出、条件结构、循环结构等基本算法单元,然后根据各单元的逻辑关系,用流程线将这些基本单元连接起来.即基本单元是构成程序框图的基本要素,基本要素之间的关系由流程线建立.24.见解析【解析】【分析】用P(单位:元)表示钢琴的价格,根据指数函数的性质写出算法步骤,进而得到流程图.【详解】用P(单位:元)表示钢琴的价格,算法步骤如下:2016年 P=10 000×(1+3%)=10 300(元);2017年 P=10 300×(1+3%)=10 609(元);2018年 P=10 609×(1+3%)=10 927.27(元);2019年 P=10 927.27×(1+3%)=11 255.088 1(元).因此,价格的变化情况表为:年份20152016201720182019钢琴的10 00010 30010 60910 927.2711 255.088 1价格【点睛】本题考查苏菲的设计及流程图,属基础题.25.见解析【分析】⑴因为函数32? 22,? 2x x y x -≥⎧=⎨-<⎩,故程序框图中的错误之处在于当2x <时,程序框图没有求出y 的值,根据条件即可重新绘制解决该问题的程序框图⑵①要使输出的值为7,则327x -=,解出即可②要使输出的值为正数,则 2320?x x ≥⎧⎨->⎩,解出即可得到答案 【详解】(1)函数y =是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断 2x ≥是否成立.若是,则32y x =-;否则2y =-.第三步,输出y.(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则327x =-,故3x =,即输入的x 的值应为3. ②要使输出的值为正数,则 2320? x x ≥⎧⎨->⎩得 2x ≥.故当 2x ≥时,输出的值为正数.【点睛】本题主要考查的是程序框图和算法,理解程序图和算法才能找出错误并加以修改,属于基础题.26.(1)cos 2x y =,cos2x y =-. (2) 13(,22-. 【详解】分析:(1)利用三角函数的定义与性质求出两种情况下y 与x 的函数关系式,即可得结果;(2)0x π<≤时,1cos 22x =,得23x π=,此时点Q 的坐标为132⎛- ⎝⎭;当2x ππ<<时,1cos 22x -=,得43x π=,此时点Q 的坐标为13,2⎛- ⎝⎭. 详解:(1)当0x π<≤时,cos2x y =;当2x ππ<<时,cos cos 22x x y π⎛⎫=-=- ⎪⎝⎭; 综上可知,函数解析式为()(](),0,2,,22x cos x f x x cos x πππ⎧∈⎪⎪=⎨⎪-∈⎪⎩所以框图中①②处应填充的式子分别为cos2x y =,cos 2x y =-. (2)若输出的y 值为12,则 0x π<≤时,1cos 22x =,得23x π=,此时点Q 的坐标为132⎛- ⎝⎭; 当2x ππ<<时,1cos 22x -=,得43x π=,此时点Q 的坐标为13,22⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.。
人教版鄂旗二中高二数学必修三《算法初步》单元测试一.doc
人教版鄂旗二中高二数学必修三《算法初步》单元测试一一、选择题:1. 给出以下四个问题:①输入一个数X,输出它的相反数.②求面积为6的正方形的周长. ③输出三个数a,b,c 中的最大数.④求函数=的函数值.[兀+ 2,兀<0其屮不需要用条件语句来描述其算法的有()A. 1个B. 2个C. 3个D. 4个2. 程序框图符号'□”可用于( )A.输出沪10 A 牡值a=10 C.判断沪10 D.输入沪13. 条件语句的一般形式如右所示,其屮B 表示的是() A.条件B.条件语句C •满足条件吋执行的内容 D.(填写的语句可以是()A. ®i>l ®i=i-lC. ®i>=l ②i 二i+1讦 A thenB elseC end ify=6PRINT x+y=ll END上面程序运行时输出的结果是()A. x+y=l 1B. 11C. x+yD.出错信息 6. 图中程序运行后输出的结果为() (A ) 3 43 (B ) 43 3 (C ) -18 16 (D ) 16 -187. 图屮程序是计算2 + 3+4 + 5+6的值的程序。
在WHILE 后的①处和在s 二s+i Z 后的②处所就8.下列语句正确的是(B.①i>l ②i二i+1 D. ®i>=l ②i二i—l )A. x+3=y-2B.d=d+2C. 0=xD. x-y=59. (2008年海南高考)右面的程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中, 应该填入下面四个选项中的()A. c > xB. x > cC. c > bD. b > c10.如果下边程序执行后输出的结果是990,那么在程序中UNTIL后面的“条件”应为( ) A.i>10B.i<8C.i<=9D.i<911.右边程序运行后输出的的结果是()A.17B.19C.21D.2312.如右图所示的程序是用來(A•计算3X10的值B. i=lls=lDOs=s*ii=i-lLOOP UNTIL “条件”PRINT SEND (第10 题)i=lWHILE i<8i=i+2s=2*i+3WEND)PRINT s计算3°的值END(第11题)C.计算丁°的值D.计算1X2X3X-X10的值13.为了在运行程序之后得到输出16,键盘输入x应该是()INPUTxIF x<0 THENy=(x+l) (x+1)ELSEy=(x・l) (x-1)END IF S=11=1WHILE I<=10 S=3*S1=1+1 WEND PRINT S END(第12题)A.PRINT yEND3或-3 B. -5 D. 5 或-5二、填空题:(本大题共6小题,每小题4分,共24分)13.(如下方左图所示)程序框图能判断任意输入的正整数x是奇数或是偶数。
(易错题)高中数学必修三第二章《算法初步》检测卷(含答案解析)(1)
一、选择题1.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N=,则图中①②应分别填入()A.1Tk=,k N>B.1Tk=,k N≥C.TTk=,k N>D.TTk=,k N≥2.执行如图所示的程序框图,输出S的值为()A.1-B.0 C.1 D.23.执行如图所示的程序框图,若输入的a ,b 的值分别为1,1,则输出的S 是( )A .25B .18C .11D .34.如图所示的程序框图输出的结果是( )A .34B .55C .78D .895.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n6.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .17.某程序框图如图所示,若运行该程序后输出S =( )A .53B .74C .95D .1168.执行如图所示的程序框图,若输入的6n =,则输出S =A .514B .13C .2756D .3109.《数书九章》是我国宋代数学家秦九韶的著作,其中给出了求多项式的值的秦九韶算法,如图所示的程序框图给出了一个利用秦九韶算法求某多项式值的实例,若输入的13x =,输出的12181=y 则判断框“”中应填入的是( )A .2?k ≤B .3?k ≤C .4?k ≤D .5?≤k10.执行如图的程序框图,则输出x 的值是 ( )A .2018B .2019C .12D .211.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,2412.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .10102021二、填空题13.某程序框图如图所示,则该程序运行后输出的S 的值为________.14.执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.15.阅读如图所示的程序框图,若121log 3a =,2logb e =,ln 2c =,则输出的结果是________.16.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.17.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出的i =________.18.根据如图所示的程序框图,若输出的值为4,则输入的值为______________.19.执行如图所示的程序框图,输出的T ______.20.一个算法的程序框图如图所示,则该程序运行后输出的结果是.三、解答题21.如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB△的面积为y,求y与x之间的函数关系式,并画出程序框图.22.用二分法求方程5310x x-+=在(0,1)上的近似解,精确到0.001,写出算法,并画出流程图.23.已知辗转相除法的算法步骤如下:第一步:给定两个正整数m,n;第二步:计算m除以n所得的余数r;=,n r=;第三步:m nr=,则m,n的最大公约数等于m;否则,返回第二步.第四步:若0请根据上述算法画出程序框图.24.某林业部门为了保证植树造林的树苗质量,对甲、乙两家供应的树苗进行根部直径检测,现从两家供应的树苗中各随机抽取10株树苗检测,测得根部直径如下(单位:mm):甲27112110190922131523乙15202717211416182418(1)画出甲、乙两家抽取的10株树苗根部直径的茎叶图,并根据茎叶图对甲、乙两家树苗进行比较,写出两个统计结论;(2)设抽测的10株乙家树苗根部直径的平均值为x,将这10株树苗直径依次输入程序框图中,求输出的S的值,并说明其统计学的意义.25.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.26.某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销量达到40 000台?画出解决此问题的程序框图,并写出程序.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据题意计算结果直接判断即可解题. 【详解】 当①②分别是TT k=,k N >时, 首先初始化数据;10N =,1k =,0S =,1T =. 第一次循环,1TT k==,1S S T =+=,12k k =+=,此时不满足k N >;第二次循环,112T T k ==⨯,1112S S T =+=+⨯,13k k =+=,此时不满足k N >; 第三次循环,1123T T k ==⨯⨯,11112123S S T =+=++⨯⨯⨯,14k k =+=,此时不满足k N >; 一直循环下去,第十次循环,112310T T k ==⨯⨯⨯⨯, 11111212312310S S T =+=++++⨯⨯⨯⨯⨯⨯⨯,111k k =+=, 此时满足k N >,跳出循环. 故输出的11111212312310S =++++⨯⨯⨯⨯⨯⨯⨯.故选:C.【点睛】 本题考查根据计算补全程序框图,是基础题.2.C解析:C【分析】由函数()πsin 2x f x =,可求周期为4,()(1)(2)(3)40+++=f f f f ,由题意可知()(1)(2)(2021)=2021(1)1=+++==S f f f f f【详解】 由函数()πsin 2x f x =的周期为2π4π2T ==, ()π1sin 12f ==,()2π2sin 02f ==, ()3π3sin 12f ==-,()4π4sin 02f ==,()(1)(2)(3)40+++=f f f f ()(1)(2)(2021)=2021(1)1∴=+++==S f f f f f .故选:C【点睛】 本题考查了程序框图求和,正弦型三角函数的周期等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.3.C解析:C【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案.【详解】模拟执行程序框图,可得:1,1,1a b n ===,第1次循环,可得3,1,3,2S a b n ====;第2次循环,可得5,3,5,3S a b n ====;第3次循环,可得11,5,11,4S a b n ====,满足判断条件,输出11S =.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题. 4.B解析:B【分析】通过不断的循环赋值,得到临界值,即可得解.【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ======================== 不满足50z ≤,输出即可,故选:B.【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.5.A解析:A【分析】因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】 由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.6.C解析:C【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值.【详解】第一次进入循环,因为56除以18的余数为2,所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0,所以0r =,2m =,0n =,判断r 等于0,跳出循环,输出m 的值为2.故选C.【点睛】 本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.D解析:D【分析】 通过分析可知程序框图的功能为计算211n S n +=+,根据最终输出时n 的值,可知最终赋值S 时5n =,代入可求得结果.【详解】根据程序框图可知其功能为计算:()111111111211111112231223111n S n n n n n n +=+++⋅⋅⋅+=+-+-+⋅⋅⋅+-=+-=⨯⨯++++初始值为1n =,当6n =时,输出S可知最终赋值S 时5n = 25111516S ⨯+∴==+ 本题正确选项:D【点睛】 本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时n 的取值. 8.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力. 9.C解析:C【解析】【分析】模拟程序的运行过程,即可得出输出y 的值时判断框中应填入的是什么.【详解】模拟程序的运行过程如下, 输入114,1,11333x k y ===⨯+=, 41132,1339k y ==⨯+=, 131403,19327k y ==⨯+=, 4011214,127381k y ==⨯+=, 此时不满足循环条件,输出12181=y ; 则判断框中应填入的是4?k ≤. 故选:C .【点睛】本题考查了算法与程序框图的应用问题,理解框图的功能是解题的关键,是基础题. 10.D解析:D【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解.【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==; 满足条件2019y <,执行循环体,1,4x y =-= ;…观察规律可知,x 的取值周期为3,由于20196733⨯=,可得:满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2.故选D .【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.11.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的x ,n 的值,由题意判断退出循环的条件即可得解.【详解】模拟程序的运行,可得n =1,x =1不满足条件x >a ,执行循环体,x =1,n =2不满足条件x >a ,执行循环体,x =2,n =3不满足条件x >a ,执行循环体,x =6,n =4不满足条件x >a ,执行循环体,x =24,n =5此时,由题意应该满足条件x >a ,退出循环,输出n 的值为5.可得:6≤a <24.故选:A .【点睛】本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.12.C解析:C【解析】【分析】 首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果.【详解】 由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯, 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭, 111113355720172019S ∴=++++⨯⨯⨯⨯ 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-= ⎪⎝⎭. 本题选择C 选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.二、填空题13.【分析】根据程序框图依次计算运行结果发现输出的S 值周期变化利用终止运行的条件判断即可求解【详解】由程序框图得:;第一次运行第二次运行第三次运行故周期为4当程序运行了2019次故的值为故答案为【点睛】 解析:12【分析】根据程序框图,依次计算运行结果,发现输出的S 值周期变化,利用终止运行的条件判断即可求解【详解】由程序框图得:1,1S k ==; 第一次运行1,2;8S k == 第二次运行1212,3;842S k =⨯=== 第三次运行121,4;2S k =⨯==故周期为4, 当2020k =,程序运行了2019次,201945043=⨯+,故S 的值为12 故答案为12【点睛】 本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题 14.63【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|x-y|解析:63【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y 的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【分析】首先分析程序框图的作用是输出三个数中的最大值从而比较三个数的大小求得结果【详解】根据题中所给的程序框图可以判断出其作用是输出三者中的最大出那个数因为而所以其最大值是故答案是:【点睛】该题考查 解析:a【分析】首先分析程序框图的作用是输出三个数中的最大值,从而比较三个数的大小,求得结果.【详解】根据题中所给的程序框图,可以判断出其作用是输出三者中的最大出那个数, 因为12221log log 3log 13a eb ==>=>,而ln 21c =<, 所以其最大值是a ,故答案是:a .【点睛】该题考查的是有关程序框图的输出结果的求解问题,属于简单题目.16.17【解析】分析:模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值详解:模拟程序的运行可得执行循环体不满足条件执行循环体;不满足条件执行循环体;不满足条件退出 解析:17【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的a 的值.详解:模拟程序的运行,可得255,68a b ==,执行循环体51,68,51r a b ===,不满足条件0r =,执行循环体17,51,17r a b ===;不满足条件0r =,执行循环体0,17,0r a b ===;不满足条件0r =,退出循环,输出a 的值为17,故答案为17.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.4【解析】当输入时运算程序继续此时进而有这时输出应填答案解析:4【解析】当输入6,8,0a b i ===时,1,,2i a b b b a =<=-=,运算程序继续,此时6,2a b ==,2,,4i a b a a b =>=-=,进而有3,,2i a b a a b =>=-=,这时2,314a b i ===+=,输出2,314a b i ===+=,应填答案4.18.或1【解析】试题分析:根据已知中的程序框图可得:该程序的功能是计算并输出分段函数的函数值分段讨论满足y=4的x 值最后综合讨论结果可得答案考点:(1)流程图;(2)分段函数解析:或1【解析】试题分析:根据已知中的程序框图可得:该程序的功能是计算并输出分段函数的函数值,分段讨论满足y=4的x 值,最后综合讨论结果可得答案.考点:(1)流程图;(2)分段函数.19.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =20.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细 解析:4【分析】执行程序,当4K =时循环结束,即可得出【详解】因为第一次进入循环后1,1S K ==;第二次进入循环后3,2S K ==;第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.三、解答题21.()()()()204848212812x x y x x x ⎧≤≤⎪=≤≤⎨⎪-≤≤⎩;程序框图见解析; 【解析】试题分析:根据题意可得到面积函数是一个分段函数,写出函数后,利用条件分支结构写出程序框图即可.试题由题意可得y =.程序框图如图:点睛:本题考查分段函数的算法写法,属于中档题,注意当分段函数为两段时,需要一个分支结构,如果分段函数三段时,需要两个分支结构才能完成,特别在写算法程序时,注意分支结构的连接,是与否的处理一定要细心.22.见解析【分析】利用二分法得到算法:取[,]a b 中点01()2b x a =+,判断()0()f a f x 符号,依次进行直到满足精度,再画出流程图得到答案.【详解】算法:第一步:取[,]a b 中点01()2b x a =+,将区间一分为二; 第二步:若()00f x =,则0x 就是方程的根;否则所求根*x 在0x 左侧或右侧; 若()0()0f a f x >,则()*0,x x b ∈,以0x 代替a ; 若()0()0f a f x <,则()*0,x a x ∈,以0x 代替b ;第三步:若||a b c -<,计算终止,此时*0x x ≈,否则转到第一步.【点睛】本题考查了利用二分法解方程的算法和程序框图,意在考查学生的理解能力和应用能力. 23.详见解析【分析】根据辗转相除法的算法步骤画出程序框图得到答案.【详解】如图【点睛】本题考查了辗转相除法的程序框图,意在考查学生对于程序框图的理解和掌握. 24.(1)见解析(2)15,见解析【分析】(1)由题意画出茎叶图,根据茎叶图写出两条合理结论即可;(2)计算出x ,根据程序框图的功能是计算出数据方差,计算方差,说出方差的统计学意义即可得解.【详解】(1)茎叶图如图所示:结论有:①甲家树苗的平均直径小于乙家树苗的平均直径;②乙家树苗比甲家树苗长的更均匀; ③甲家树苗的中位数是17,乙家树苗的中位数是18.(答案合理即可给分,写出两条即可).(2)由题意()1151714161818202721241910x =+++++++++=, 因为该程序框图的算法功能是求数据方差, 所以2221[(1519)(1719)(2419)]1510S =-+-++-=,S是10株树苗根部直径的方差,是描述离散程度的量,S越小,长得越整齐,S越大,长得越粗细不均.【点睛】本题考查了茎叶图和程序框图的应用,考查了数据方差的概念和计算,属于中档题. 25.(1) ①处应填;②处应填 (2)见解析【解析】分析:(1)由已知中程序的功能是给出个数,其规律是:第个数是;第个数是;第个数比第个数大,第个数比第大,,依次类推,要计算区间个数的和,可以根据循环此时,循环变量的初值、步长计算出循环变量的终值,得到①中的条件;再根据累加的变化规律,得到②中累加通项的表达式;(2)利用直到型循环结构,写出程序.详解:(1)因为是求30个数的和,故循环体应执行30次,其中是计数变量,因此判断框内的条件就是限制计数变量的,故应为,算法中的变量实质是表示参与求和的各个数,由于它也是变化的,且满足第个数比其前一个数大,第个数比其前一个数大,故应有,故①处应填;②处应填.(2)根据框图,写出算法如下:点睛:本题主要考查了直到型的循环结构的算法框图,解答中循环体的循环次数=(循环终值-初值)+步长+1,确定循环的次数,其中循环次数、终值、初值、步长中,能知道其中的三个可求解另一个,对于循环结构的程序框图,判断框内的内容容易出错,做题时要注意,同时注意循环点所在的位置.26.见解析.【解析】试题分析:根据题意,由于商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么并且第一年为起始量,那么为了是几年后可使总销售量达到40 000台可知其算法框图和程序.试题程序框图如图所示:程序如下:m=5000;S=0;i=0;while S<40000 S=S+m;m=m* (1+0.1); i=i+1;endprint(%io(2),i);。
高二数学《算法初步》单元测试
高二数学《算法初步》单元测试【小编寄语】查词典数学网小编给大家整理了高二数学《算法初步》单元测试,希望能给大家带来帮助!1.以下图程序框图,能判断随意输入的数x 的奇偶性:此中判断框内的条件是( )A.m=0B.x=0C.x=1D.m=12.算法的过程称为“数学机械化”,数学机械化的最大长处是能够让计算机来达成,中国今世数学家在这方面研究处于世界当先地位,为此而获取首届自然科学500 万大奖的是 ( )A.袁隆平B.华罗庚C.苏步青D.吴文俊3.算法S1 m=aS2 若 bS3 若 cS4 若 dS5 输出 m,则输出 m 表示( )A.a, b,c, d 中最大值B.a, b,c, d 中最小值C.将 a, b, c, d 由小到大排序D.将 a, b, c,d 由大到小排序第1页/共9页4.如图程序运转后输出的结果为( )5.计算机履行下边的程序段后,输出的结果是( )A.1, 3B.4, 1C.0,0D.6, 06.用“展转相除法”求得 459 和 357 的最大条约数是( )A.3B.9C.17D.517.算法的三种基本构造是( )A. 次序构造、模块构造、条件构造B. 次序构造、循环构造、模块构造C. 次序构造、条件构造、循环构造D. 模块构造、条件构造、循环构造8.下边为一个求20 个数的均匀数的程序,在横线上应填补的语句为( )A.i>20B.i<20C.i>=20D.i<=209.用秦九韶算法计算多项式当时的值时 ,需要做乘法和加法的次数分别是( )A.6,6B.5,6C.5,5D.6,510.给出以下一个算法的程序框图(以下图 ),该程序框图的功能是 ( )A.求输出 a,b,c 三数的最大数第2页/共9页B.求输出 a,b,c 三数的最小数C.将 a,b,c 按从小到大摆列D.将 a,b,c 按从大到小摆列11.若输入 8 时,则以下程序履行后输出的结果是.12.下左程序运转后输出的结果为_________.x=5y=-20IF x<0 THENx=y-3ELSEy=y+3END IFPRINT x-y ; y-xEND(第 12 题)13.用直接插入排序法对:7,1,3,12,8,4,9,10 进行从小到大排序时 ,第四步获取的一组数为: _ _ .14.求方程的近似根,要先将它近似地放在某两个连续整数之间,则应该在区间上 .15.学了算法你的收获有两点,一方面认识我国古代数学家的优秀成就,另一方面,数学的机械化,能做很多我们用第3页/共9页笔和纸不敢做的有很大计算量的问题,这主要归功于算法语句的.16.上右程序输出的n 的值是 ____________.j=1n=0WHILE j<=11j=j+1IF j MOD 4=0 THENn=n+1END IFj=j+117.函数 y=请设计算法流程图,要求输入自变量,输出函数值.18.某电信部门规定:拨打市内电话时,假如通话时间不超出 3 分钟,则收取通话费0.2 元,假如通话时间超出 3 分钟,则超出部分以每分钟0.1 元收取通话费 (通话不足 1 分钟时按 1 分钟计 ),试设计一个计算通话花费的算法.要求写出算法,画出程序框图,编写程序.19.把“五进制”数转变为“十进制”数,再把它转变为“八进制”数.20.给定一个年份,写出该年是否是闰年的算法,程序框图和程序 .第4页/共9页21.已知正四棱锥的底面边长为3,高为 4,求正四棱锥的体积和表面积,写出算法的伪代码,并画出相应图.参照答案:1.A;2.D;3.B;4.D;5.B;6.D;7.C;8.A;9.A; 10.B; 11. 0.7; 12. 22,-22; 13. [ 1 3 7 12 ] 8 4 9 10; 14. (1 ,2); 15. 循环语句 ; 16. 3;17.18.解我们用 c(单位:元 )表示通话费, t(单位:分钟 )表示通话时间,则依题意有算法步骤以下:第一步,输入通话时间t;第二步,假如t≤3,那么 c = 0.2 ;不然令 c = 0.2+0.1 (t-3);第三步,输出通话花费 c ;程序框图以下图INPUT tIF t<= 3 THENc=0.2ELSEc=0.2+0.1(t-3)END IFPRINT c第5页/共9页END(第 18 题程序 )19.解 :①20.S1:输入一个年份xS2:若 z 能被 100 整除,则履行S3 不然履行S4S3:若 x 能被 400 整除,则 x 为闰年,不然x 不为闰年S4:若 x 能被 4 整除,则 x 为闰年,不然x 不为闰年INPUT xIF x=100k(k 是正整数 )THENIF x=400k(k 是正整数 )THENPRINT“x是闰年”ELSE“x不是闰年”ENDELSE IF x=4k(k是正整数)THENPRINT“x是闰年”ELSE“x不是闰年”END教师范读的是阅读教课中不行缺乏的部分,我常采纳范读,让少儿学习、模拟。
高二数学必修三《算法初步》单元测试
高二数学必修三《算法初步》单元测试班级 姓名 学号一、选择题:1. 下列关于算法的说法中正确的个数有( )①求解某一类问题的算法是唯一的 ②算法必须在有限步操作之后停止 ③算法的每一步操作必须是明确的,不能有歧义或模糊 ④算法执行后一定产生确定的结果A. 1B. 2C. 3D. 4 2)A. 输出a=10B. 赋值a=10C. 判断a=10D. 输入a=13.条件语句的一般形式如右所示,其中B 表示的是( ) A .条件B .条件语句C .满足条件时执行的内容D .不满足条件时执行的内容4( ) A ... 5.x=5 y=6PRINT x+y=11 END上面程序运行时输出的结果是( )A.xy=11B.11C.xy=11D.出错信息6.图中程序运行后输出的结果为( ) (A )3 43 (B ) 43 3(C )-18 16 (D )16 -187.图中程序是计算2+3+4+5+6的值的程序。
在WHILE 后的①处和在s=s+i 之后的②处所就 填写的语句可以是( )A .①i>1 ②i=i -1B .①i>1 ②i=i+1C .①i>=1 ②i=i+1D .①i>=1 ②i=i -1 8.阅读下面的流程图,若输入的a 、b 、c 分别是21、32、75,则输出的a 、b 、c 分别是:( )A .75、21、32B .21、32、75C .32、21、75D .75、32、21第8题9.如果下边程序执行后输出的结果是990,那么在程序中UNTIL 后面的“条件”应为( ) A. i>10B. i<8C. i<=9D. i<9 10.右边程序运行的结果是( ) A .17 B .19 C .21 D .2311.如右图所示的程序是用来( ) A .计算3×10的值 B .计算93的值C .计算103的值 D .计算1×2×3×…×10的值12.为了在运行下面的程序之后得到输出16,键盘输入x 应该是( ) INPUT xIF x<0 THENy=(x+1) (x+1) ELSEINPUT tIF t<= 4 THEN c=0.2 ELESc=0.2+0.1(t -3) END IF PRINT c END(第13题)(第14题) y=(x-1) (x-1)END IFPRINT y ENDA . 3或-3B . -5C .5或-3D .5或-5 二、填空题:(本大题共6小题,每小题4分,共24分)13.若输入8时,则下列程序执行后输出的结果是14.有如下程序框图(如右图所示),则该程序框图表示的算法的功能是 .15.(如图所示)程序框图能判断任意输入的正整数x 是奇数或是偶数。
高二数学算法初步练习题
高二数学算法初步练习题高二数学算法初步练习题对算法的描绘有:①对一类问题都有效;②算法可履行的步骤一定是有限的 ;③算法能够一步一步地进行,每一步都有切实的含义 ;④是一种通法,只需循规蹈矩地做,总能获得结果.以上对算法的描绘正确的有()A.1 个B.2 个C.3 个D.4 个分析:选 D.由算法的观点可知①②③④都正确,因此选 D.2.以下语句表达中是算法的有()①从济南到巴黎能够先乘火车到北京,再坐飞机到达;②利用公式S=12ah 计算底为1,高为 2 的三角形的面积;③ 12x ④求 M(1,2) 与 N(-3 , -5)两点连线的方程,可先求 MN 的斜率,再利用点斜式方程求得 .A. ①②③B.①③④C.①②④D.②③④分析:选 C.算法是解决问题的步骤与过程,这个问题其实不单仅限于数学识题,①②④都表达了一种算法.3.清晨从起床到出门需要洗脸刷牙(5 min) 、刷水壶 (2 min) 、烧水 (8 min) 、泡面 (3 min) 、吃饭 (10 min) 、听广播 (8 min) 几个过程 .从以下选项中选出最好的一种算法()A. 第一步,洗脸刷牙.第二步,刷水壶 .第三步,烧水 .第四步,泡面 .第五步,吃饭.第六步,听广播B.第一步,刷水壶 .第二步,烧水同时洗脸刷牙 .第三步,泡面,第四步,吃饭 .第五步,听广播C.第一步,刷水壶 .第二步,烧水同时洗脸刷牙.第三步,泡面 .第四步,吃饭同时听广播D.第一步,吃饭同时听广播.第二步,泡面 .第三步,烧水同时洗脸刷牙 .第四步,刷水壶分析:选 C.由于 A 选项共用时间36 min , B 选项共用时间31 min , C 选项共用时间23 min , D 选项的算法步骤不切合常理.新课标第一网4.已知 A(-1,0) ,B(3,2) ,下边是求直线AB 的方程的一个算法,请将其增补完好:S1:___________________________________________________ ________________.S2:用点斜式写出直线AB 的方程 y-0=12[x-(-1)].S3:将第二步的方程化简,获得方程x-2y+1=0.分析:点斜式是由定点和斜率两个条件求的方程,由两点可以求斜率 .答案:求出直线AB 的斜率 k=2-03--1=12一、选择题1.以下四种表达,能称为算法的是()A.在家里一般是爸爸做饭B.做饭需要刷锅、淘米、加水、加热这些步骤C.在野外做饭叫野炊D.做饭一定有米分析:选 B.算法是用于解决某一类问题的步骤,它拥有必定的规则,而且每一步都是明确的.故只有 B 项能够称为算法.2.计算以下各式的S 值,能设计算法求解的是()①S=1+2+3++100;②S=1+2+3++100+③S=1+2+3++n(n1 且 nN).A. ①②B. ①③C.②③D. ①②③分析:选 B.由算法的有限性可知,②不可以设计算法.高二数学算法初步练习 3.对于一元二次方程 x2-5x+6=0 的求根问题,以下说法正确的选项是 ()A.只好设计一种算法B.能够设计两种算法C.不可以设计算法D.不可以依据解题过程设计算法分析:选 B.可分别用求根公式与因式分解设计算法.一般说来,“教师”观点之形成经历了十分漫长的历史。
高二数学第一章算法初步单元检测题()
高二数学第一章算法初步单元检测题()数学是研究现实世界空间形式和数量关系的一门科学。
小编预备了高二数学第一章算法初步单元检测题,期望你喜爱。
一、选择题1.下列对算法的明白得不正确的是()A.算法有一个共同特点确实是对一类问题都有效(而不是个别问题)B.算法要求是一步步执行,每一步都能得到唯独的结果C.算法一样是机械的,有时要进行大量重复的运算,它们的优点是一种通法D.任何问题都能够用算法来解决【解析】并不是所有的问题都能够用算法来解决,只有步骤明确,且是有限运算等才能够用算法解决.【答案】D2.运算下列各式中的s值,能设运算法求解的是()(1)s=1+2+3++100;(2)s=1+2+3++100+(3)s=1+2+3++n(n1且nN).A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)【解析】(1)(3)能设运算法求解.但(2)不能设运算法求解.缘故是s是无限多个正整数相加,步骤无限步,不符合算法的特点.【答案】B3.想泡茶喝,当时的情形是:火差不多生起了,凉水和茶叶也有了,开水没有,开水壶要洗,茶壶和茶杯要洗,下面给出了四种不同形式的算法过程,你认为最好的一种算法是()A.洗开水壶,灌水,烧水,在等待水开时,洗茶壶、茶杯、拿茶叶,等水开了后泡茶喝B.洗开水壶,洗茶壶和茶杯,拿茶叶,一切就绪后,灌水,烧水,坐等水开后泡茶喝C.洗开水壶,灌水,烧水,坐等水开,等水开后,再拿茶叶,洗茶壶、茶杯,泡茶喝D.洗开水壶,灌水,烧水,再拿茶叶,坐等水开,洗茶壶、茶杯,泡茶喝【解析】解决一个问题能够有多种算法,能够选择其中最优、最简单、步骤尽可能少的算法.选项中的四种算法中都符合题意.但算法A运用了统筹法原理,因此那个算法要比其余的三种算法科学.【答案】A4.给下面一个算法:(1)给出三个数x、y、z;(2)运算M=x+y+z;(3)运算N=13M;(4)得出每次运算结果.则上述算法是()A.求和B.求余数C.求平均数D.先求和再求平均数【解析】由算法过程可知,M为三数之和,N为这三数的平均数,故选D.【答案】D5.下面是某个问题的算法过程:1.比较a与b的大小,若a2.比较a与c的大小,若a3.比较b与c的大小,若b4.输出a,b,c.该算法终止后解决的问题是()A.输入a,b,c三个数,按从小到大的顺序输出B.输入a,b,c三个数,按从大到小的顺序输出C.输入a,b,c三个数,按输入顺序输出D.输入a,b,c三个数,无规律地输出【解析】通过第1步和第2步能够发觉,a为最大值,通过第3步能够看出,c为最小值,可知输出的三个数是按从大到小的顺序输出.【答案】B二、填空题6.在下面求15和18的最小公倍数的算法中,其中不恰当的一步是___ _____.(1)先将15分解素因数:15=3(2)然后将18分解素因数:18=32(3)确定它们的所有素因数:2,3,5;(4)运算出它们的最小公倍数:235=30.【解析】正确的应该是:先确定素因数的指数:2,3,5的指数分别为1, 2,1;然后运算出它们的最小公倍数:2325=90.【答案】(4)7.下列是用二分法求方程x2-5=0的近似解的算法,请补充完整.1.令f(x)=x2-5,给定精度d.2.确定区间(a,b),满足f(a)f(b)0.3.取区间中点m=________.4.若f(a)f(m)0,则含零点的区间为(a,m);否则,含零点的区间为(m,b).将新得到的含零点的区间仍记为(a,b).5.判定(a,b)的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.【解析】区间(a,b)的中点,确实是a与b的平均数a+b2.【答案】a+b28.给出下列算法:1.输入x的值.2.当x4时,运算y=x+2;否则执行下一步.3.运算y=4-x.4.输出y.当输入x=0时,输出y=________.【答案】2三、解答题9.解关于x的方程ax+2=0(aR),写出算法.【解】算法如下:(1)移项,得ax=-2.(2)当a0时,x=-2a,输出x,终止算法;当a=0时,输出方程无实根,终止算法.10.写出求a、b、c三个数中最小的数的算法.【解】(1)比较a、b的大小,若a(2)比较m与c的大小,若m(3)输出结果.与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学算法初步单元测试题及答案Last revised by LE LE in 2021江苏省南通中学高二(上)数学单元测试08。
9。
25算法初步(题目)一 填空题1.描述算法的方法通常有:(1)自然语言;(2) ▲ ;(3)伪代码. 2.已知流程图符号,写出对应名称.(1) ▲ ;(2) ▲ ;(3) ▲ .3.下列给出的几个式子中,正确的赋值语句是(填序号) ▲①3←A ; ②M ← —M ; ③B ←A ←2 ; ④x+y ←04. 用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f 当4.0=x 时的值时,至多需要做乘法和加法的次数分别是 ▲ _和 ▲ 5.简单随机抽样,系统抽样的共同特点是 ▲ 。
6.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,,7999)中抽取一个容量为50的样本,已知最后一个入样编号是7900,则最前面2个入样编号是 ▲7.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n= ▲ .8.11.下面是一个算法的伪代码.如果输出的y 的值是20,则输入的x 的值是 ▲ . 2或6二 填空题9下面伪代码运行后的输出的结果是(1) ▲ (2) ▲ (3) ▲Read x If x≤5 Then y←10x Else y←+5 End If Print y10.( 1) 下面这段伪代码的功能是 ▲ 。
(2) 下列算法输出的结果是(写式子) ▲(3)下图为一个求20个数的平均数的程序,在横线上应填充的语句为 ▲ 。
11(1)在如图所示的流程图中,输出的结果是 ▲ . (2) 右边的流程图最后输出的n 的值是 ▲ .(3)下列流程图中,语句1(语句1与i 无关)将被执行的次数为 ▲ . (4)右图给出的是计算1111246100++++的值的一个流程图,其中判断 框内应填入的条件是 ▲ 。
第9(2)第10(1)题 第10(2)题第10(3)题第11(2)第11(4)题第11(1)第11(3)题江苏省南通中学高二(上)数学单元测试08。
9。
25算法初步_(答卷纸)__班级__________姓名__________学号__________一填空题(本大题共8小题,每小题5分,共40分)1.______________________________; 2._______________ ______;3.______________________________; 4._______________ ______;5.______________________________;6._______________ _____________;7.______________________________; 8._______________ ______;二填空题(本大题共10小格,每小格5分,共50分)9(1).________________; 9(2)_________ ______;9(3).__________________;10(1).______________________;10(2)._______________ ______;10(3)._____________________;11(1)._______________________; 11(2)._______________ ______;11(3)._______________________; 11(4)._______________________。
三解答题(本大题共4小题,共70分)12.(本小题满分共18分)已知5913 (101)S=++++,分别用“For”语句和“While”语句描述计算S这一问题的算法过程。
13.(本小题满分共18分)某商场为了促销,采用购物打折的优惠办法:每位顾客一次购物:①在1000元以上者按九五折优惠;②在2000元以上者按九折优惠;③在5000元以上者按八折优惠。
(1)写出实际付款y(元)与购物原价款x(元)的函数关系式;(2)用伪代码表示优惠付款的算法;14.(本小题满分共18分)Do…End Do”语句表示,并画出其流程图。
15.(本小题满分共16分)某城市现有人口总数为100万人,如果年自然增长率为%,试解答下列问题:(1)写出该城市人口数y(万人)与年份x(年)的函数关系式;(2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法。
江苏省南通中学高二(上)数学单元测试08。
9。
25算法初步___(参考答案)班级__________姓名__________学号__________一 填空题1.描述算法的方法通常有:(1)自然语言;(2) ▲ ;(3)伪代码. 流程图 2.已知流程图符号,写出对应名称.(1) ▲ ;(2) ▲ ;(3) ▲ . 起止框 处理框 判断框3.下列给出的几个式子中,正确的赋值语句是(填序号) ▲ ②①3←A ; ②M ← —M ; ③B ←A ←2 ; ④x+y ←04. 用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f 当4.0=x 时的值时,至多需要做乘法和加法的次数分别是 ▲ _和 ▲ 6 , 65.简单随机抽样,系统抽样的共同特点是 ▲ 。
6.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,,7999)中抽取一个容量为50的样本,已知最后一个入样编号是7900,则最前面2个入样编号是 ▲ 。
0060,02207.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n= ▲ . 1928.11.下面是一个算法的伪代码.如果输出的y 的值是20,则输入的x 的值是 ▲ . 2或6Read x If x≤5 Then y←10x Else y←+5 End If Print y二 填空题9下面伪代码运行后的输出的结果是(1) ▲ (2) ▲ (3) ▲(1)2006 (2) 9 (3)810.( 1) 下面这段伪代码的功能是 ▲ 。
统计x 1到x 10十个数据中负数的个数。
(2) 下列算法输出的结果是(写式子) ▲ 23121115 (333)++++ (3)下图为一个求20个数的平均数的程序,在横线上应填充的语句为 ▲ i>20第9(2)11(1)在如图所示的流程图中,输出的结果是 ▲ .20 (2) 右边的流程图最后输出的n 的值是 ▲ .5(3)下列流程图中,语句1(语句1与i 无关)将被执行的次数为 ▲ .25(4)右图给出的是计算1111246100++++的值的一个流程图,其中判断 框内应填入的条件是 ▲ 。
.50i >三 解答题12.(本小题满分共18分)已知 5913...101S =++++,分别用“For ”语句和“While ”语句描述计算S 这一问题的算法过程。
第11(2)第11(4)题第11(1)第11(3)题第10(1)题第10(2)题第10(3)题13. (本小题满分共18分)某商场为了促销,采用购物打折的优惠办法:每位顾客一次购物:①在1000元以上者按九五折优惠;②在2000元以上者按九折优惠;③在5000元以上者按八折优惠。
(1)写出实际付款y (元)与购物原价款x (元)的函数关系式;(2)用伪代码表示优惠付款的算法;(1)解:设购物原价款数为x 元,实际付款为y 元,则实际付款方式可用分段函数表示为:10000.95100020000.9200050000.85000x x x x y x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≥⎪⎪⎩ 用条件语句表示表示为:14.(本小题满分共18分)将下列问题的算法改用伪代码中的“Do …End Do ”语句表示,并画出其流程图。
i ←1S ←0While i ≤10S ←S+i i ←i+1 End While Print S Read xIf x <1000 theny x ←Else if x <2000 theny x 95.0←else if x <5000 theny x 9.0←elsey x 8.0←End ifEnd ifPrint yS ←0 i ←1 S ←S+i i ←i+i开始 N15.(本小题满分共16分)某城市现有人口总数为100万人,如果年自然增长率为%,试解答下列问题:(1)写出该城市人口数y (万人)与年份x (年)的函数关系式;(2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法。
解(1)x y 012.1100⨯= (2)法1 10←xx y 012.1100⨯← Rrint y法2(3)分析:即求满足120012.1100≥⨯n 的最小正整数n ,其算法流程图如右:i ←1 S ←0 Do S ←S+I i ←i+1 Until i>10 End Do Print S S ←0n ←0 Print 结束 n ←n +1 S ←100× n Y N开始S←100 For I Form 1 To 10 S←S× End For Print S。