《勾股定理的应用》说课稿

合集下载

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)作为一名教职工,通常需要用到说课稿来辅助教学,说课稿有利于教学水平的提高,有助于教研活动的开展。

怎么样才能写出优秀的说课稿呢?为了让您对于勾股定理说课稿的写作了解的更为全面,下面作者给大家分享了5篇《勾股定理》说课稿,希望可以给予您一定的参考与启发。

《勾股定理》说课稿篇一教材分析《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。

它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。

勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。

能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历观察-猜想-归纳-验证的数学过程,并从中体会数形结合及从特殊到一般的数学思想。

培养学生观察、比较、分析、推理的能力。

情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。

(三)本节课的重点:是勾股定理的发现、验证和应用。

难点:是用拼图方法、面积法证明勾股定理教法和学法教法指导:数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

使学生得到获得新知的成功感受,从而激发学生钻研新知。

《勾股定理》优秀说课稿(精选12篇)

《勾股定理》优秀说课稿(精选12篇)

《勾股定理》优秀说课稿(精选12篇)《勾股定理》优秀说课稿篇1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。

"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

第一、情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

第二、追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

从上面低起点的问题入手,有利于学生参与探索。

学生很容易发现,在等腰三角形中存在如下关系。

关于勾股定理说课稿四篇

关于勾股定理说课稿四篇

关于勾股定理说课稿四篇篇一:勾股定理的引入大家好!今天我要给大家讲解的是数学中的一个重要定理——勾股定理。

勾股定理是数学中的一条基本定理,也是我们学习几何的基础。

它的发现和应用可以追溯到古代中国和古希腊时期。

勾股定理的证明方法有很多,其中一种最常见的方法是利用几何图形进行证明。

下面我将为大家介绍勾股定理的定义、历史背景以及一个简单的证明方法。

首先,我们来看一下勾股定理的定义。

勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。

换句话说,设直角三角形的两条直角边分别为a和b,斜边为c,则有a² + b² = c²。

这就是勾股定理的数学表达式。

接下来,我们了解一下勾股定理的历史背景。

勾股定理最早可以追溯到古代中国的《周髀算经》和《九章算术》中。

在中国,勾股定理被称为“勾股数学”,并被广泛应用于农业、建筑和天文学等领域。

而在古希腊,勾股定理被归功于毕达哥拉斯学派的数学家毕达哥拉斯。

他将勾股定理应用于几何学,并给出了一个简单的证明方法。

最后,我们来看一下勾股定理的证明方法。

一个简单的证明方法是通过几何图形进行证明。

我们可以画一个直角三角形,并在每条边上标出相应的长度。

然后,根据勾股定理的定义,我们可以计算出每条边的平方和,验证它们是否相等。

如果相等,那么我们就证明了勾股定理的正确性。

总结一下,勾股定理是数学中的一条基本定理,它在几何学中有着广泛的应用。

它的定义是直角三角形的直角边的平方等于另外两条边的平方和。

勾股定理的历史可以追溯到古代中国和古希腊时期。

证明勾股定理的方法有很多,其中一种常见的方法是通过几何图形进行证明。

希望通过今天的讲解,大家对勾股定理有了更深入的了解。

篇二:勾股定理的应用大家好!今天我要给大家讲解的是勾股定理的应用。

勾股定理是数学中的一条基本定理,它不仅在几何学中有着广泛的应用,还可以用于解决实际问题。

下面我将为大家介绍勾股定理在几何学和实际问题中的应用。

初中数学《勾股定理》说课稿5篇

初中数学《勾股定理》说课稿5篇

初中数学《勾股定理》说课稿5篇初中数学《勾股定理》说课稿1一、教材分析^p :〔一〕、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有非常广泛的应用,同时在应用中浸透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。

课标要求学生必须掌握。

〔二〕、教学目的:根据数学课标的要求和教材的详细内容,结合学生实际我确定了本节课的教学目的。

知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理断定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探究,经历知识的发生、开展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联络,感受定理与逆定理之间的和谐及辩证统一的关系2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,浸透与别人交流、合作的意识和探究精神〔三〕、学情分析^p :尽管已到初二下学期学生知识增多,才能增强,但思维的局限性还很大,才能也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探究二、教学过程:本节课的设计原那么是:使学生在动手操作的根底上和合作交流的良好气氛中,通过巧妙而自然地在学生的认识构造与几何知识构造之间筑了一个信息流通渠道,进而到达完善学生的数学认识构造的目的。

勾股定理说课稿范文三篇

勾股定理说课稿范文三篇

勾股定理说课稿范文三篇勾股定理说课稿篇1一、教材分析勾股定理是同学在已经把握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条特别重要的性质,是几何中最重要的定理之一。

它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一。

在实际生活中用途很大,教材在编写时留意培育同学的动手操作力量和分析问题的力量,通过实际分析、拼图等活动,让同学获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并把握勾股定理及其证明。

2、能够敏捷地运用勾股定理及其计算。

3、培育同学观看、比较、分析、推理的力量。

4、通过介绍中国古代勾股方面的成就,激发同学喜爱祖国与喜爱祖国悠久文化的思想感情,培育他们的民族骄傲感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、教法和学法教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥老师的主导作用;运用各种手段激发同学学习欲望和爱好,组织同学活动,让同学主动参加学习全过程。

2、切实体现同学的主体地位,让同学通过观看、分析、争论、操作、归纳,理解定理。

提高同学动手操作力量,以及分析问题和解决问题的力量。

3、通过演示实物,引导同学观看、操作、分析、证明,使同学得到获得新知的胜利感受,从而激发同学钻研新知的欲望。

三、教学程序本节内容的教学主要体现在同学动手、动脑方面,依据同学的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,假如勾是3,股是4,那么弦等于5。

这样引起同学学习爱好,激发同学求知欲。

2、是不是全部的直角三角形都有这共性质呢?老师要擅长激疑,使同学进入乐学状态。

3、板书课题,出示学习目标。

(二)初步感知理解教材老师指导同学自学教材,通过自学感悟理解新知,体现了同学的自主学习意识,熬炼同学主动探究学问,养成良好的自学习惯。

《勾股定理》优秀说课稿

《勾股定理》优秀说课稿

《勾股定理》优秀说课稿《勾股定理》优秀说课稿篇一一、教学目标(一)知识点1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。

2、会利用勾股定理解释生活中的简单现象。

(二)能力训练要求1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。

2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。

(三)情感与价值观要求1、培养学生积极参与、合作交流的意识。

2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的`勇气。

二、教学重、难点重点:探索和验证勾股定理。

难点:在方格纸上通过计算面积的方法探索勾股定理。

三、教学方法交流探索猜想。

在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。

四、教具准备1、学生每人课前准备若干张方格纸。

2、投影片三张:第一张:填空(记作1.1.1 A);第二张:问题串(记作1.1.1 B);第三张:做一做(记作1.1.1 C)。

五。

教学过程Ⅰ。

创设问题情境,引入新课出示投影片(1.1.1 A)(1)三角形按角分类,可分为_________、_________、_________。

(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?《勾股定理》说课稿篇二一、说教材分析1.教材的地位和作用华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。

因此他的教育教学价值就具体体现在如下三维目标中:知识与技能:1、经历勾股定理的探索过程,体会数形结合思想。

《勾股定理》说课稿【优秀6篇】

《勾股定理》说课稿【优秀6篇】

《勾股定理》说课稿【优秀6篇】《勾股定理》说课稿篇一各位专家领导:上午好!今天我说课的课题是《勾股定理》。

一、教材分析:(一)本节内容在全书和章节的地位。

这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。

勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

(二)三维教学目标:1、知识与能力目标。

(1)理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2、过程与方法目标。

在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

3、情感态度与价值观。

通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(三)教学重点、难点:1、教学重点:勾股定理的证明与运用2、教学难点:用面积法等方法证明勾股定理3、难点成因:对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

4、突破措施:(1)创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;(2)自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;(3)张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。

《勾股定理》说课稿(优秀5篇)

《勾股定理》说课稿(优秀5篇)

《勾股定理》说课稿(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《勾股定理》说课稿(优秀5篇)作为一名无私奉献的老师,总不可避免地需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。

勾股定理说课稿(优秀7篇)

勾股定理说课稿(优秀7篇)

勾股定理说课稿(优秀7篇)一、教材分析(一)教材地位与作用勾股定理它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

情感态度与价值观:激发爱国热情,体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

教学难点:用面积法(拼图法)发现勾股定理。

突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。

另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。

把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

三、教学过程设计1、创设情境,提出问题2、实验操作,模型构建3、回归生活,应用新知4、知识拓展,巩固深化5、感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

勾股定理说课稿模板五篇

勾股定理说课稿模板五篇

勾股定理说课稿模板五篇在教学工作者实际的教学活动中,通常需要用到说课稿来辅助教学,借助说课稿可以更好地组织教学活动。

怎么样才能写出优秀的说课稿呢?下面是小编为大家整理的勾股定理说课稿5篇,仅供参考,大家一起来看看吧。

勾股定理说课稿篇1尊敬的各位评委、老师,大家好!我说课的题目是华师版八年级上册第十四章第一节第一课时《勾股定理》。

教材分析:如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。

它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。

勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。

新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下:1、探索并利用拼图证明勾股定理。

2、利用勾股定理解决简单的数学问题。

3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。

本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下:勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。

为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下:教法分析:新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。

《勾股定理的应用》说课稿

《勾股定理的应用》说课稿

《勾股定理的应用》说课稿各位评委老师,你们好!今天我说课的题目是《勾股定理的应用》,下面我将从教材的地位和作用、学情、教学目标、教学重、难点、教法和学法、教学过程六个方面对本课进行分析。

一、说教材的地位和作用本节选自华东师大版八年级数学上册第14章第2节,本节是在掌握勾股定理的基础上对勾股定理的应用之一。

教材在编写时注重培养学生的动手操作能力和分析问题的能力。

通过实际分析,使学生获得较为直观的印象。

通过联系和比较,了解勾股定理在实际生活中的广泛应用。

勾股定理作为数学学习的工具,掌握好本节内容对其他内容的学习奠定基础。

《勾股定理的应用》分为两个课时,本节课是第一课时。

二:说学情在本节内容之前,学生已经准确的理解了勾股定理的内容,并能运用它解决一些数学问题,同时也具备了一定的合作意识与能力,并对“做数学”有相当的兴趣和积极性,但探究问题的能力还是有限,对生活中的实际问题与勾股定理的联系还不明确,特别是构建数学模型还有困难,自主学习能力也有待于加强。

三、说教学目标课标要求:能运用勾股定理及逆定理解决简单的实际问题1.知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度价值观目标:培养合情推理能力,体会数学源于生活又服务于生活,激发学习热情。

四、说教学重、难点重点:勾股定理及逆定理的应用。

难点:勾股定理的正确使用及体会数学建模思想。

关键:在现实情境中捕捉直角三角形,把实际问题化成勾股定理几何模型,然后针对性解决。

五、说教法和学法1、教法分析我主要采用了引导发现法问题教学法演示法合作探究法练习巩固法等2、学法分析我主要采用了:自主探究学习法实验法合作探究学习个人展示法练习巩固法等六、说教学程序【第一环节情境引入导入新课】本环节我设计了一个受台风影响树木断裂的问题,学生先独立思考,然后二人复述,再上黑板展示,最后教师引导学生发现解题思路,引出本节内容。

《勾股定理的应用》教案

《勾股定理的应用》教案

《勾股定理的应用》教案《勾股定理的应用》教案(通用8篇)《勾股定理的应用》教案篇1【学习目标】能运用勾股定理及直角三角形的判别条件解决简单的实际问题.【学习重点】勾股定理及直角三角形的判别条件的运用.【学习重点】直角三角形模型的建立.【学习过程】一.课前复习勾股定理及勾股定理逆定理的区别二.新课学习探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?思考:1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为这样的线路有几条?可分为几类?2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从A点到B点的最短路线是什么?你是如何画的?1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

4.你是如何将这个实际问题转化为数学问题的?小结:你是如何解决圆柱体侧面上两点之间的最短距离问题的?探究点二:利用勾股定理逆定理如何判断两线垂直?1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,但他随身只带了卷尺。

(参看P13页雕塑图1-13)(1)你能替他想办法完成任务吗?1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?探究点三:利用勾股定理的方程思想在实际问题中的应用例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.1.3思考:1.求滑道AC的长的问题可以转化为什么数学问题?2.你是如何解决这个问题的?写出解答过程。

最新【勾股定理说课稿优质课】勾股定理的应用说课稿.doc

最新【勾股定理说课稿优质课】勾股定理的应用说课稿.doc

【个人简历范文】“说课”是教学改革中涌现出来的新生事物,是进行教学研究、教学交流和教学探讨的一种新的教学研究形式,整理的勾股定理的应用说课稿,供参考!勾股左理的应用说课稿1一、教材分析勾股迫理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的左理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象:通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制泄教学目标如下1、理解并掌握勾股泄理及其证明。

2、能够灵活地运用勾股定理及英计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方而的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点勾股左理的证明和应用。

三、教学难点勾股迫理的证明。

四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

五、教学程序本节内容的教学主要体现在学生动手、动脑方而,根据学生的认知规律和学习心理,教学程序设计如下(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根宜尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。

这样引起学生学习兴趣,激发学生求知欲。

勾股定理说课稿范文合集六篇

勾股定理说课稿范文合集六篇

勾股定理说课稿范文合集六篇勾股定理说课稿篇1一、说教材分析本节研究的是勾股定理的探索及其应用。

它从边的角度进一步对直角三角形的特征进行了刻画。

它的主要内容是探索勾股定理,验证勾股定理的正确性,在此基础上,让学生利用勾股定理来解决一些实际问题。

本节课是在学生认识直角三角形的基础上,在了解正方形和等腰直角三角形以后进行学习的,它是前面所学知识的延伸和拓展,又是后面学习勾股定理逆定理的基础,具有承上启下的作用。

二、说教学目标教学目标的确定:教学目标是一堂课的中心任务,它只有在丰富多彩的数学活动中才能充分实现。

一堂课的教学目标应全面、适度、明确、具体,便于检测。

因此根据学生已有的认知基础和新课程标准,我确定了本节课教学目标为:1、知识技能:(1)了解勾股定理的文化背景,体验勾股定理的探索和验证过程。

(2)运用勾股定理进行简单的计算和解释生活中的实际问题。

(3)运用勾股定理会在数轴上画出表示无理数的点。

2、数学思考:在勾股定理的探索、从实际问题抽象出直角三角形和在数轴上画出表示无理数的点的过程中,发展合情推理能力,初步体会、掌握转化和数形结合的思想方法。

3、解决问题:通过拼图、探究活动,体验数学思维的严谨性,发展形象思维。

学会与人合作并能与他人交流思维的过程和探究的结果。

能够运用勾股定理解决直角三角形,在数轴上画出表示无理数的点等有关实际问题。

4、情感态度:(1)通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值,感受数学文化,激发学习热情。

(2)通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(3)通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质。

三、说教学重、难点教学重、难点的确定:关注学生是否能与同伴进行有效的合作交流;关注学生是否积极的进行思考;关注学生能否探索出解决问题的方法。

重点:通过探索、拼图验证勾股定理及勾股定理的应用过程,使学生获得一些研究问题与合作交流的方法经验。

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿1

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿1

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿1一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。

本节课的主要内容是让学生掌握勾股定理的应用,并能运用勾股定理解决实际问题。

教材通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,进而引导学生探索勾股定理的应用。

教材还提供了丰富的例题和练习题,帮助学生巩固所学知识。

二. 学情分析八年级的学生已经学习了相似多边形的性质、四边形的性质等知识,对数学问题的解决有一定的基础。

但学生在解决实际问题时,往往不能将所学的理论知识与实际问题有效结合,因此,在教学过程中,需要引导学生将理论知识运用到实际问题中,提高学生解决实际问题的能力。

三. 说教学目标1.知识与技能目标:学生能掌握勾股定理的应用,并能运用勾股定理解决实际问题。

2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。

四. 说教学重难点1.教学重点:学生能掌握勾股定理的应用,并能运用勾股定理解决实际问题。

2.教学难点:如何引导学生将理论知识与实际问题有效结合,提高学生解决实际问题的能力。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。

2.教学手段:利用多媒体课件、板书、练习题等。

六. 说教学过程1.导入:通过播放勾股定理的发现过程的视频,引导学生进入学习状态。

2.新课导入:讲解勾股定理的定义和证明,让学生理解并掌握勾股定理。

3.案例分析:提供一些实际问题,让学生运用勾股定理解决,巩固所学知识。

4.小组讨论:让学生分组讨论,分享各自解决问题的方法,培养团队协作能力。

5.总结提升:对所学内容进行总结,引导学生将理论知识与实际问题有效结合。

6.课后作业:布置一些练习题,让学生巩固所学知识。

七. 说板书设计板书设计如下:1.勾股定理的定义2.勾股定理的证明3.勾股定理的应用八. 说教学评价教学评价主要通过以下几个方面进行:1.课堂参与度:观察学生在课堂上的发言、提问等情况,了解学生的参与度。

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿一. 教材分析《勾股定理的应用》是人教版八年级数学上册第一章第三节的内容。

这一节主要让学生学会运用勾股定理解决实际问题,巩固他们对勾股定理的理解。

教材通过例题和练习题的安排,让学生在解决实际问题的过程中,加深对勾股定理的记忆和应用。

二. 学情分析八年级的学生已经学习了勾股定理的定义和证明,他们对勾股定理有了初步的理解。

但是,他们在解决实际问题时,可能会对题目中的信息提取和运用勾股定理不够熟练。

因此,在教学过程中,我需要关注学生的理解和应用情况,引导他们正确运用勾股定理解决实际问题。

三. 说教学目标1.知识与技能目标:学生能理解勾股定理的应用,会在实际问题中正确运用勾股定理。

2.过程与方法目标:通过解决实际问题,学生能提高自己的问题解决能力,培养数学思维。

3.情感态度与价值观目标:学生能感受到数学与生活的联系,增强学习数学的兴趣。

四. 说教学重难点1.教学重点:学生能正确运用勾股定理解决实际问题。

2.教学难点:学生能在复杂的情境中,正确提取信息,运用勾股定理。

五. 说教学方法与手段1.教学方法:引导发现法,让学生在解决实际问题的过程中,发现和理解勾股定理的应用。

2.教学手段:多媒体教学,通过图片、动画等形式,直观展示勾股定理的应用。

六. 说教学过程1.导入:通过一个生活中的实际问题,引出勾股定理的应用,激发学生的学习兴趣。

2.新课导入:讲解勾股定理的应用,通过例题和练习题,让学生理解和掌握。

3.课堂实践:学生自主解决一些实际问题,巩固对勾股定理的应用。

4.总结提升:对学生的解题过程进行点评,总结勾股定理的应用方法和技巧。

5.课后作业:布置一些实际问题,让学生进一步巩固和应用勾股定理。

七. 说板书设计板书设计如下:1.勾股定理的应用2.解题步骤:a.理解题意,提取相关信息b.确定已知和未知c.运用勾股定理,列出方程d.解方程,求解未知数e.检验答案,确认无误八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和课后反馈来进行。

《勾股定理的应用》说课稿

《勾股定理的应用》说课稿

《勾股定理的应用》说课稿
一、教材分析:
1.教材所处的地位和作用
勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理。

勾股定理为我们提供了直角三角形的三边间的数量关系, 它被广泛应用于数学和实际生活的各个方面。

本节课是勾股定理的应用,原为北师大版教材《蚂蚁怎样走最近》,冀教版教材并未涉及到,但这个有趣的问题,不仅是勾股定理的应用,而且体现了二、三维图形的转化,通过图形的转化突破了本问题的难点,对发展学生的空间观念也有很大的好处。

为此,我结合两个版本的教材和教学实际设计了此课。

2.教学目标:
根据课改提倡的“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。

在教学设计上,我以生活中有趣的问题为切入点,在掌握知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:
(一)知识与技能
1.能运用勾股定理解决简单的实际问题。

2.在解决实际问题中,体验空间图形展开成平面图形时,对应的点、线的位置关系,从中培养空间观念。

(二)过程与方法
1.在解决实际问题的过程中,进一步培养“形”到“数”和从“数”到“形”的
转化,培养学生的转化、推理能力。

2.学生通过动手实践、自主探索与合作交流等学习方式,锻炼他们的归纳问题,分析问题和解决问题的能力。

(三)情感态度与价值观
在运用数学知识解答问题的活动中获取成功的体验、建立学习的自信心,并在有关的学习和运用过程中发展学生的数学应用意识,进一步培养学生动手操作的良好习惯。

《勾股定理的应用专题课》说课稿

《勾股定理的应用专题课》说课稿

《勾股定理的应用专题课》说课稿说课流程一、说教材二、说教学目标三、说学情四、说教法与学法五、说教学过程六、说教学反思一.说教材1.教材的地位和作用:勾股定理在日常生活中有着非常重要而广泛的应用,因此它是整个初中数学的一个重点。

本节课是在北师大版八年级上册第一章“勾股定理”一章新授课全部结束的基础上设计的一节专题课。

对“勾股定理”一章来说,从《数学课程标准》的要求到教材内容的设置,起点都比较低—主要表现在两方面:一方面表现在知识点少,即仅有勾股定理及勾股定理逆定理两个知识点;另一方面能力要求单一,即运用勾股定理解决简单的实际问题。

因此为了提高学生质疑、发现、解决问题的能力,根据学生的实际情况,利用教材资源和学生的智慧设计本节课的内容。

在本节课中,通过丰富的题目,使学生更深刻地体会勾股定理在解题中的应用。

为后面的学习打下良好的基础。

二. 教学目标:知识目标:能进一步运用勾股定理的数学模型解决现实世界的实际问题能力目标:1.通过对数学问题的分析与解决,培养学生的探究能力、质疑能力,提高用数学知识来解决问题的能力.2.帮助学生感受数学与现实生活的联系,情感目标:1.体验数学学习的乐趣,形成积极参与数学活动的意识,再一次感受勾股定理的应用价值,锻炼克服困难的意志,建立自信心。

2.培养学生交流与合作的协作精神三.说学情本节课的教学对象是八年级学生,他们的参与意识强,思维活跃,对于真实情境及现实生活中的数学问题具有极大的学习兴趣,而且在前面的学习中,学生已经历了探索和验证勾股定理的过程,又通过观察、操作、思考,充分认识了勾股定理的本质特征,并在此过程中,获得了初步的数学活动经验和体验,具备了一定的动手操作、合作交流和观察、分析的能力。

初步具备了有条理地思考与表达的能力。

四.说教法与学法(1)说教法:本节采用“以学生为主体,以问题为中心,以活动为基础,以培养学生提出问题和解决问题为目标”的方法进行,充分体现我校高效课堂的教学模式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《勾股定理的应用》说课稿
各位评委老师,你们好!
今天我说课的题目是《勾股定理的应用》,下面我将从教材的地位和作用、学情、教学目标、教学重、难点、教法和学法、教学过程六个方面对本课进行分析。

一、说教材的地位和作用
本节选自华东师大版八年级数学上册第14章第2节,本节是在掌握勾股定理的基础上对勾股定理的应用之一。

教材在编写时注重培养学生的动手操作能力和分析问题的能力。

通过实际分析,使学生获得较为直观的印象。

通过联系和比较,了解勾股定理在实际生活中的广泛应用。

勾股定理作为数学学习的工具,掌握好本节内容对其他内容的学习奠定基础。

《勾股定理的应用》分为两个课时,本节课是第一课时。

二:说学情
在本节内容之前,学生已经准确的理解了勾股定理的内容,并能运用它解决一些数学问题,同时也具备了一定的合作意识与能力,并对“做数学”有相当的兴趣和积极性,但探究问题的能力还是有限,对生活中的实际问题与勾股定理的联系还不明确,特别是构建数学模型还有困难,自主学习能力也有待于加强。

三、说教学目标
课标要求:能运用勾股定理及逆定理解决简单的实际问题
1.知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度价值观目标:培养合情推理能力,体会数学源于生活又服务于生活,激发学习热情。

四、说教学重、难点
重点:勾股定理及逆定理的应用。

难点:勾股定理的正确使用及体会数学建模思想。

关键:在现实情境中捕捉直角三角形,把实际问题化成勾股定理几何模型,然后针对性解决。

五、说教法和学法
1、教法分析
我主要采用了引导发现法问题教学法演示法合作探究法练习巩固法等
2、学法分析
我主要采用了:自主探究学习法实验法合作探究学习个人展示法练习巩固法等
六、说教学程序
【第一环节情境引入导入新课】
本环节我设计了一个受台风影响树木断裂的问题,学生先独立思考,然后二人复述,再上黑板展示,最后教师引导学生发现解题思路,引出本节内容。

设计意图:通过给学生提供现实背景及生活素材,激发学生为解决问题而生成的求知欲。

并体会数学来源于生活。

【第二环节自主学习】
我把例1设计了5个问题,例2设计了4个问题,然后学生课前根据老师设计问题自主探究,独立完成
设计意图:
1、通过自主学习,培养学生的自主探究学习的能力。

2、问题具体化,让学生亲历知识生成的过程,明确本节的重点,突破难点。

3、问题的层次化引导了学生数学模型的建立。

4、要求学生把解题过程规范写出来,让学生在理解知识内涵,掌握规律的基础上规范解题。

【第三环节合作探究】
小组合作探究学习,教师巡视指导。

设计意图:一方面培养学生团队合作意识。

另一方面让学生在讨论辨析中明辨事理,突破疑点和难点。

【第四环节师生点拨]
通过合作探究,小组提出问题,学生解决问题,老师补充。

老师质疑,师生共同解决。

设计意图:通过问题的解决和思维的展示,突破本节课的重难点。

【第五环节巩固训练】
1、课本练习1
2、【2008年德州中考】有两棵树,一棵树高8米,另一颗树高2米,两树相距8米,一只小鸟从一颗树飞到另一棵树梢至少飞米。

(黑板展示3号完成1题,2号完成2题,然后全体学生共同点评)
设计意图:
1、让学生在训练中反思基础,认识规律,熟练掌握其应用方法,明确应用的条件
2、通过黑板测验激发学生的竞争力,同时巩固本节课的内容。

【第五环节拓展创新】
如图,在长、宽都是5,高是7的长方体纸箱的外部,一Array只蚂蚁从顶点A沿纸箱表面爬到顶点B处,求它所行的最短路线的
长。

(学生先独立思考,然后各抒己见,教师引导达成共识,最后老师
继续拓展,长宽不一样又应该怎么求)
设计意图:进一步深化和拓展本节知识的内涵与外延,从而提高学生的思维能力。

【第五环节课堂小结】
鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系。

设计意图:培养学生的语言表达能力、归纳总结能力等。

相关文档
最新文档