半导体CMP工艺介绍
cmp生产工艺
cmp生产工艺
CMP(Chemical Mechanical Polishing)是一种常用的半导体集
成电路制造工艺,主要用于平整化和光洁度提高。
它通过机械摩擦和化学反应的结合,使表面凸起的材料被磨平,达到所需的表面粗糙度和平整度。
CMP工艺的主要步骤包括研磨、抛光和清洗三个过程。
首先,使用研磨机或机械研磨工艺,去除掉硅片表面的杂质和粗糙度,使表面平整度提高;然后,将硅片放入抛光机中,使用抛光盘来进行抛光,通过旋转的抛光盘和硅片之间的接触和摩擦,将硅片表面的凸起物质逐渐磨去,直到达到所需的平整度;最后,进行清洗工艺,将抛光产生的残留物和污染物清除干净,使硅片表面光洁度提高。
CMP工艺具有许多优点。
首先,它可以适应不同材料的抛光
需求,包括硅、氮化硅、光刻胶等。
其次,它可以实现高度的平坦度和精确的厚度控制,以满足微观尺寸的要求。
同时,CMP工艺还可以在不同硬度的材料之间进行抛光,如金属与
二氧化硅的抛光。
此外,它可以有效地减少表面缺陷,提高器件的可靠性。
然而,CMP工艺也存在一些问题和挑战。
首先,由于抛光过
程中需要使用化学物质和磨料,对环境造成一定的污染。
其次,CMP工艺具有一定的成本和复杂性,需要高精度的设备和严
格的操作控制。
此外,抛光过程中产生的摩擦和热量会导致一些材料的损伤和失效。
综上所述,CMP生产工艺是一种非常重要的半导体制造工艺,它能够实现表面平整化和光洁度的提高。
虽然存在一些问题和挑战,但通过不断的研究和改进,CMP工艺将继续在半导体
制造领域发挥重要作用,并对高性能电子器件的制造起到关键作用。
半导体-第十四讲-CMP
抛光液流量:如果抛光液流量过低,不能及时带走抛光下来的化 学反应物, 如果抛光液流量过高,不经济
抛光时间:为防止过抛,根据去除率选择抛光时间,一般为1一3 分钟
抛光液
抛光液的成分决定着抛光液的性能,抛光液中 的化学成分主要用于加强抛光去除率及钝化保护 凹处。影响其成分的主要因素有络合剂、表面活 性剂、氧化剂、pH值、磨料
表面材料与磨料发生化学反应生成一层 相对容易去除的表面层,这一表面层通过磨 料中的研磨剂和研磨压力与抛光垫的相对运 动被机械地磨去。
在化学机械研磨的处理过程中,晶片表面薄膜与研磨剂, 研磨垫相互运动的机制里,包含了机械与化学作用。因此 在同样的机台下,配合晶片表面薄膜的材料特性。可能需 要不同的研磨剂与研磨垫的组合,才能获取工艺的最佳状 况。然而从实际生产的角度而言,主要的应用是在晶片后 段工艺介质膜的平坦化。
为了满足上述工艺的目标,第一代CMP机台功能已 具备:(1)以热交换系统,控制研磨平台的常温状 况;(2)精确控制与均匀的晶片施压;(3)精确控 制旋转速率;(4)维持机台乾净;(5)晶片装卸自 动化。最早完成的商品化设备为IPEC/Westech 372系列产品。此372系列可略分为9种功能:(1) 电脑监控及显示;(2)研磨剂帮浦与流量控制;(3) 研磨平台及排放:(4)卸晶片区:(5)上晶片区; (6)载具清洁区:(7)研磨垫整容器:(8)主臂驱动 装置;(9)研磨主旋臂。IPEC/Westech因为成功 开发出这种化学机械抛光设备,在1995年时拥有 全球75%以上市场。
对于钨CMP工艺,氧化铝(矾土)是最常用的 研磨料,由于它比其他大多数研磨料都更 接近于钨的硬度。钨通过不断的,自限制 的钨表面的氧化和随之以后的机械研磨被 去除。这种膏剂形成含水钨氧化物,被数 量级为200nm的氧化铝颗粒选择性去除。已 经表明,对于典型的CVD钨,当膜变薄时去 除速率增加。这与钨晶粒尺寸的改变相关。
半导体cmp工艺
半导体cmp工艺
半导体CMP工艺是指半导体制造过程中的一种重要工艺,全称为化学机械抛光(Chemical Mechanical Planarization,简称CMP)。
其目的是通过磨料颗粒机械摩擦和化学反应的双重作用,将半导体表面微不足道地去除一层薄膜,以达到平整化、镜面化的目的。
CMP工艺具有非常广泛的应用,可以用于晶圆制备、化合物半导体器件加工、光学器件制造等领域。
半导体CMP工艺最核心的部分是机械抛光机。
一般来说,机械抛光机包括一个圆形工件,它与一个运动的抛光盘进行摩擦。
抛光盘同时也有一个旋转中心,通常与工件的旋转中心重合。
工件在抛光盘上进行旋转,旋转方向与抛光盘相反。
抛光盘快速旋转,使得机械磨料和化学液体均匀分布在工件表面,并在高压力下与工件表面摩擦,将表面的不平整部分磨平。
同时,化学液体中的酸碱物质可以针对不同的化合物进行反应,达到减少表面受损、提高表面平整度的效果。
半导体CMP工艺在半导体器件加工中的应用非常广泛。
例如,CMP可以在多晶硅上去除非常细微的污染物,并使表面变得更具平整、镜面化。
这可以有效提高器件的性能和可靠性。
在金属线路上也可以使用CMP工艺。
由于金属线路很细并且越来越小,无法逐个进行加工,CMP抛光机可以在一次过程中完成大面积的金属线路平整化加工,减少单元面积上的电阻,并提高芯片的可靠性和性能。
CMP工艺在化合物半导体器件加工中也有广泛的运用。
在低温生长的GaAs器件中,表面通常存在许多缺陷和杂质,这会严重影响器件的性能。
通过使用CMP工艺,可以将表面上所有的缺陷和杂质去除,从而保证器件的性能和质量。
cmp工作原理
CMP工作原理详解1. 概述CMP(Complementary Metal-Oxide-Semiconductor)是一种集成电路制造工艺,用于制造大规模集成电路(VLSI)的互补金属氧化物半导体器件。
CMP工艺是目前最常用和成熟的半导体制造工艺之一,广泛应用于处理器、存储器、通信芯片等领域。
本文将详细解释CMP工作原理的基本原理,包括CMP工艺的步骤、CMP机理以及相关设备和材料。
2. CMP工艺步骤CMP工艺通常包括以下步骤:2.1 表面准备CMP工艺开始前,需要对晶圆表面进行准备,以去除残留物、平整表面并提供良好的衬底。
这一步通常包括化学清洗和机械抛光等操作。
2.2 涂覆在CMP工艺中,需要在晶圆表面涂覆一层薄膜,通常使用化学气相沉积(CVD)或物理气相沉积(PVD)等技术。
这一层薄膜可以作为CMP过程中的衬底,保护晶圆表面。
2.3 机械抛光机械抛光是CMP工艺的核心步骤,通过旋转的抛光盘和抛光液,将晶圆表面的材料进行抛光,以达到平整的效果。
抛光液通常包括磨料、腐蚀剂和缓冲液等成分。
抛光盘和晶圆之间的压力和速度可以调节,以控制抛光过程中的材料去除速率。
2.4 清洗和检测抛光后的晶圆需要进行清洗,以去除抛光液和残留物。
清洗通常使用化学溶液和超纯水等。
清洗后,需要对晶圆进行检测,以评估CMP工艺的效果和质量。
3. CMP机理CMP工艺的核心机理涉及磨料、腐蚀剂、缓冲液等多个方面。
3.1 磨料磨料是CMP过程中用于去除晶圆表面材料的重要组成部分。
磨料通常是固体颗粒,可以是氧化铝、二氧化硅等硬度较高的材料。
这些颗粒在抛光过程中与晶圆表面发生摩擦和磨损,去除表面材料。
3.2 腐蚀剂腐蚀剂是CMP过程中用于溶解晶圆表面材料的化学物质。
腐蚀剂可以与晶圆表面的材料发生化学反应,使其溶解或转化为易于去除的物质。
腐蚀剂的选择和浓度对CMP过程的效果有重要影响。
3.3 缓冲液缓冲液是用于调节CMP过程中pH值和离子浓度的溶液。
半导体 第十四讲 CMP
在CMP单项工艺之中,抛光后清洗是非常重要的步 骤。通常我们必须权衡抛光指标(均匀性,平整度, 产能)与清洗指标(颗粒,划伤,其他表面损伤, 残余的离子和金属玷污)。超声搅拌可与柔软的抛 光板刷或清洁溶剂相结合,以帮助去除硅表面的 胶状悬浮物。通常硅片都需要转移到预留用于清 洁的第二块抛光盘,这个转移必须及时进行以防 硅片表面的悬浮物变干,一旦悬浮物变干则残留 物的去除会变得非常困难。
对于钨CMP工艺,氧化铝(矾土)是最常用的 研磨料,由于它比其他大多数研磨料都更 接近于钨的硬度。钨通过不断的,自限制 的钨表面的氧化和随之以后的机械研磨被 去除。这种膏剂形成含水钨氧化物,被数 量级为200nm的氧化铝颗粒选择性去除。已 经表明,对于典型的CVD钨,当膜变薄时去 除速率增加。这与钨晶粒尺寸的改变相关。
对铜的化学机械抛光特别有趣,因为铜具有低的 电阻率并且用等离子体特别难以刻蚀。所以铜的 图形能够通过一种被称为Damascene工艺的CMP技 术形成。铜可以在一种包含有直径为几百个纳米 的颗粒的水状溶剂之中被抛光。典型的膏剂包含 有铵氢氧化物,醋酸,双氧水,可获得高达每分 钟1600nm的抛光速率。与钨不同,铜是一种软金 属。机械效应在抛光过程中具有重大的影响。现 已发现抛光速率与所加压力和相对线速度呈正比。 盘的状况和压力应用机理对铜的CMP尤其重要。
Cabot所用的氧化硅粒子是经由四氯化碳 (SiCl4)在近乎1800℃的高温下与高纯度的氢、 氧作用烧结成氧化硅粒子,可以获得高纯 度及均匀分布的颗粒。经由燃烧条件的控 制,即可调整粒子的尺寸,生产的稳定性 好。相对其他氧化硅粒子的制作方式,高 温烧结可拥有较窄的粒径尺寸分布。这是 Cabot持续占有全球主要市场的因素。
半导体工艺cmp介绍
半导体工艺cmp介绍半导体工艺CMP介绍一、概述半导体工艺CMP(Chemical Mechanical Polishing)是一种在半导体制造工艺中常用的平坦化技术。
它通过同时使用化学和机械的作用,将半导体材料表面的凸起部分与凹陷部分进行磨平,以达到提高晶片平坦度的目的。
CMP技术在集成电路制造、光刻工艺、薄膜制备等领域中得到广泛应用。
二、CMP原理CMP技术基于磨料与化学溶液的共同作用,通过摩擦力和化学反应来去除材料表面的不平坦性。
具体原理如下:1. 机械研磨:磨料粒子与半导体材料表面接触,通过摩擦力将表面凸起的材料磨平。
这些磨料粒子通常由氧化铝、二氧化硅等材料制成,具有硬度高、尺寸均匀的特点。
2. 化学反应:除了机械研磨外,CMP技术还需要使用一种化学溶液,通过与半导体材料表面发生化学反应来去除残留的凸起部分。
常用的化学溶液包括氢氟酸、硝酸等,其选择取决于材料的特性和需要处理的工艺。
三、CMP步骤CMP工艺通常包括以下几个步骤:1. 研磨液分配:将研磨液均匀地分布到半导体材料表面。
这一步骤需要控制研磨液的流动速度和压力,以确保研磨液能够覆盖整个表面并充分与材料接触。
2. 研磨:通过机械研磨和化学反应的共同作用,将材料表面的凸起部分磨平。
这一步骤需要控制研磨液中磨料粒子的浓度和大小,以及研磨头的旋转速度和压力,以达到所需的研磨效果。
3. 清洗:在完成研磨后,需要对材料表面进行清洗,去除研磨液和残留的研磨颗粒。
清洗步骤通常使用纯水或化学溶液进行。
4. 检测:最后一步是对研磨后的表面进行检测,以确保达到所需的平坦度和质量要求。
常用的检测方法包括光学显微镜、原子力显微镜等。
四、应用领域CMP技术在半导体制造工艺中有广泛的应用。
主要包括以下方面:1. 集成电路制造:在集成电路的制造中,CMP技术用于晶圆表面的平坦化,以提高电路的性能和可靠性。
它可以去除晶圆表面的凸起部分,使不同层间的连接更加可靠。
2. 光刻工艺:在光刻工艺中,CMP技术用于去除光刻胶和残留的光刻图形,以及改善光刻胶表面的平坦度。
cmp工艺原理
cmp工艺原理CMP工艺原理一、介绍CMP(Chemical Mechanical Polishing)工艺是一种常用的半导体工艺,用于平整化材料表面。
它结合了化学和机械两种处理方式,可以有效去除材料表面的不平坦部分,并获得高质量的平坦表面。
CMP工艺广泛应用于集成电路制造、光学器件加工、硅片制备等领域。
二、工艺原理CMP工艺的原理主要基于材料的化学反应和机械研磨。
在CMP过程中,需要使用一种腐蚀剂和磨料,分别称为化学机械研磨液和抛光液。
这两种液体通过机械力和化学反应共同作用,实现对材料表面的平整化。
1. 机械研磨机械研磨是CMP工艺的核心步骤之一。
它通过在材料表面施加机械力,利用磨料的颗粒与材料表面发生摩擦,从而去除不平坦的部分。
磨料的颗粒大小、形状和硬度等特性会影响研磨效果。
通常情况下,较大的颗粒用于快速去除表面凸起,而较小的颗粒则用于细磨和抛光。
2. 化学反应化学反应是CMP工艺的另一个重要步骤。
在CMP过程中,腐蚀剂会与材料表面发生化学反应,使材料表面发生溶解或氧化,并去除表面的不平坦部分。
腐蚀剂的种类和浓度会根据材料的性质和要求进行选择。
化学反应的速率和选择性也是需要考虑的因素,以保证对不同材料的处理效果。
三、应用领域CMP工艺在半导体制造和光学器件加工中具有广泛的应用。
1. 半导体制造在半导体制造中,CMP工艺主要用于平整化硅片上的氧化物、金属、多晶硅等材料。
通过CMP工艺,可以使这些材料的表面平整度达到亚纳米级别,以满足高集成度和高可靠性的要求。
另外,在多层金属互连的制造过程中,CMP也常用于去除金属间的不平整和形成金属填充。
2. 光学器件加工光学器件中的镜面加工也是CMP工艺的重要应用之一。
通过CMP 工艺,可以在光学器件表面获得高质量的平坦度和光学性能,以提高器件的传输效率和抗反射性能。
此外,CMP工艺还可用于制备光纤连接器、光波导等光学器件。
四、优势和挑战CMP工艺相比传统的机械研磨工艺具有以下优势:1. 高度平整性:CMP工艺可以实现亚纳米级别的表面平整度,使材料表面的凸起和凹陷得到有效控制。
半导体CMP工艺介绍
半导体CMP工艺介绍半导体CMP工艺的基本原理是将硅片或其他基底材料放置在旋转的抛光盘上,其中涂有一层精细研磨颗粒的抛光材料。
通过施加垂直于硅片表面的压力和旋转抛光盘,在化学溶液的作用下,研磨颗粒将不均匀的材料移除,从而使表面平整化。
此外,化学溶液中添加的缓冲剂和表面活性剂等物质还可以起到控制反应速率和表面质量的作用。
CMP工艺的应用主要包括以下几个方面:1.平坦化:在半导体制造的各个步骤中,不可避免地会产生不均匀的层厚度和表面高度差。
通过CMP工艺,可以将这些不均匀物质去除,实现表面的平整化。
平坦化可以提高电子器件的性能,减少漏电流和损耗,并且提高芯片的可靠性。
2.边缘控制:在制造微小结构的芯片中,边缘效应是一个很重要的因素。
通过CMP工艺,在边缘处可以实现材料的去除,从而改善边缘效应,并提高芯片的性能。
3.材料移除:在半导体器件的制造过程中,常常会有需要移除的材料层,例如氧化物、金属等。
通过选择合适的抛光材料和化学溶液,可以对这些材料进行高效、精确的去除。
4.纳米级平整化:随着科技的发展,芯片的制造尺寸不断减小,对表面平整度和光洁度的要求也越来越高。
CMP工艺可以实现纳米级别的平整化,使得芯片表面具有非常高的质量。
除了以上的应用之外,半导体CMP工艺还被广泛应用于高深度微细加工、背隙法制备硅为基的太阳能电池、数据存储器件等领域。
虽然CMP工艺在半导体制造过程中起到了重要作用,但是在实际应用中也存在一些挑战。
例如,选择合适的抛光材料和化学溶液,控制好抛光时间和压力等参数都需要精确的掌握。
此外,还需要解决杂质污染和热效应等问题,以确保芯片的质量和稳定性。
总之,半导体CMP工艺是一种重要的半导体后期加工技术,能够在半导体制造过程中实现表面的平整化和材料的去除。
它在半导体行业中的应用已经非常广泛,并且随着芯片制造尺寸的不断缩小和技术的不断进步,CMP工艺的发展和应用还具有很大的潜力。
半导体cmp化学机械抛光
半导体cmp化学机械抛光
半导体CMP化学机械抛光,是半导体器件制造工艺中的一种技术,使用化学腐蚀及机械力对加工过程中的硅晶圆或其它衬底材料进行平坦化处理。
与传统的纯机械或纯化学的抛光方法不同,CMP工艺是通过表面化学作用和机械研磨的技术结合来实现晶圆表面微米/纳米级不同材料的去除,从而达到晶圆表面的高度(纳米级)平坦化效应,使下一步的光刻工艺得以进行。
在当代超大规模集成电路制造过程中,多层制造技术已经变成一种有效方式来提高电路性能与电路功能的复杂性,但多层金属交联技术也有其缺点,其中之一就是由于层层叠加效应因而丧失芯片平坦度。
而CMP技术是目前唯一能兼顾表面全局和局部平坦化的技术,它不但能够对硅片表面进行局部处理,同时也可以对整个硅片表面进行平坦化处理。
半导体CMP工艺介绍
FY Chang/CMP
STI & Oxide CMP
什么是STI CMP?
• 所谓STI(Shallow Trench Isolation),即浅沟槽隔离技术,它的作 用是用氧化层来隔开各个门电路(GATE),使各门电路之间互 不导通。STI CMP主要就是将wafer表面的氧化层磨平,最后停在 SIN上面。
Wafer carrier
平台Platform
终点探测 Endpoint Detection
FY Chang/CMP
钻石整理器 Diamond Conditioner
Introduction of CMP
CMP 机台的基本构造(II)
FY Chang/CMP
Introduction of CMP
• 前段制程中的应用
– Shallow trench isolation (STI-CMP)
• 后段制程中的应用
– Pre-meal dielectric planarization (ILD-CMP) – Inter-metal dielectric planarization (IMD-CMP) – Contact/Via formation (W-CMP) – Dual Damascene (Cu-CMP) – 另外还有Poly-CMP, RGPO-CMP等。
平坦化程度比较
CMP Resist Etch Back
BPSG Reflow SOG
SACVD,Dep/Etch HDP, ECR
0.1
1
(Gap fill)
10 100
Local
1000 10000
Global
平坦化 范围 (微米)
FY Chang/CMP
半导体化学机械研磨(CMP)工艺解密
半导体化学机械研磨(CMP)工艺解密化学机械研磨工艺:是个材料移除过程,结合化学侵蚀及机械抛光的工艺,将芯片表面平坦化的一个过程,单纯的化学研磨,表面精度较高,损伤低,完整性好,不容易出现表面/亚表面损伤,但是研磨速率较慢,材料去除效率较低,不能修正表面型面精度,研磨一致性比较差;单纯的机械研磨,研磨一致性好,表面平整度高,研磨效率高,但是容易出现表面层/亚表面层损伤,表面粗糙度值比较低。
化学机械研磨吸收了两者各自的优点,可以在保证材料去除效率的同时,获得较完美的表面。
有一种洗面奶产品,里面带有颗粒和洗面奶,磨砂洗面奶是在洗面奶中添加一些微小的颗粒。
通过这些颗粒与皮肤表面的摩擦作用,可以使洗面奶更有效地清除皮肤污垢以及皮肤表面老化的角质细胞。
类似磨砂的同时加上肥皂清洗的结合,这就是化学机械研磨。
研磨制程根据研磨对象不同主要分为:硅研磨(Poly CMP)、硅氧化物研磨(Silicon oxide CMP)、碳化硅研磨(Silicon carbide CMP)、钨研磨(W CMP)和铜研磨(Cu CMP)。
化学机械研磨通常去除什么呢?下图的是不是坑坑洼洼,或者有不想要的牺牲层,那就磨掉吗为什么要化学机械研磨?刚出炉的芯片Layer如下图,高低不平,坑坑洼洼,怎么办?磨。
芯片切面化学机械研磨用什么磨?磨头压住芯片,下面垫一张砂纸,然后配上洗面奶(研磨液Slurry),开磨。
原理图化学机械研磨磨好了什么样?光滑了,平坦了,白白嫩嫩的样子研磨前后几个典型的化学机械研磨工序STI CMPLI CMPILD CMP大马士革化学机械研磨CMP工艺,通常使用研磨垫,研磨液进行研磨,汤汤水水的一个过程。
随着半导体精度的越来越高,CMP的难度变得越来越大,通常来说8寸工厂CMP的员工躺着干,爽的不得了,12寸工厂CMP的员工干到躺不下,苦逼哈哈的。
化学机械研磨设备的样子,上图戴斯乃Ebara EAC。
CMP工艺介绍及用滤芯
CMP工艺介绍及用滤芯Chemical Mechanical Polishing(CMP)化学机械抛光是一个化学腐蚀和机械摩擦的结合。
是目前最为普遍的半导体材料表面平整技术,兼收了机械摩擦和化学腐蚀的优点,从而避免了由单纯机械抛光造成的表面损伤和由单纯化学抛光易造成的抛光速度慢、表面平整度和抛光一致性差等缺点。
可以获得比较完美的晶片表面。
国际上普遍认为,器件特征尺寸在0.35μm以下时,必须进行全局平面化以保证光刻影像传递的精确度和分辨率,而CMP是目前几乎唯一的可以提供全局平面化的技术。
其设备作用原理图如下:CMP耗材主要有以下几种:研磨液:研磨时添加的液体状物质,颗粒大小跟研磨后的刮伤等缺陷有关,颗粒越小越好。
基本形式是由SiO2抛光剂和一个碱性组分水溶液组成,SiO2颗粒的大小1-100nm,浓度1.5%-50%,碱性组成一般是KOH,氨或有机胺,pH为9.5-11,颗粒越大对晶片的损伤越大。
研磨垫:研磨时垫在晶片下面的片状物。
研磨垫整理器:钻石盘状物,整理研磨液。
研磨液过滤系统(Pall家资料)输送流程如下:不同的制程,需要的研磨液可能不同,研磨液的整个传输和应用流程都会用到滤芯进行过滤,主要是对研磨液中的颗粒进行过滤除杂,保证研磨液中颗粒大小的均匀性和稳定性。
半导体制备中常用的CMP制程如下:(1)前段制程中STI-CMP(Shallow trench isolation)电解质隔层,浅沟槽隔离技术,将wafer表面的氧化层磨平,前一站是CVD(化学气相沉积)区,后一站是WET(湿刻)区,抛光后露出SIN(硬质介质材料)。
STI研磨液通常由氧化铈磨料(5%-10%)的固含量。
高固含量(>10%)的气相二氧化硅研磨液也已被用于该制程。
Slurry Type 1.Tote to Day Tank 2.Global Loop 3.Point of Use(POU)Ceria(二氧化铈)Profile II Y002Profile II Y030Profile II Y002(capsule or cartridge)Fumed Silica(气相二氧化硅)CMPure CMPD1.5CMPure CMPD10Starkleen A010(capsule)CMPure CMPD1.5(cartridge)(2)后段制程中应用。
半导体cmp工艺介绍
半导体cmp工艺介绍
半导体组件的工艺是指利用工业制造来生产半导体组件的一系列技术。
它包括物理气相沉积(PVD),化学气相沉积(CVD),光刻,曝光,定向
生长,金属化,清洗,反射抑制和测试等。
物理气相沉积(PVD)是由溅射技术,杜松松蒸发技术,电渗技术和
半封装技术组成的,可以将金属或其他材料沉积在基板上的工艺。
化学气相沉积(CVD)技术是利用特定的化学气体,在基板表面形成
薄膜的一种工艺,常用来形成硅,硼,锗,硫和碳等薄膜,是半导体组件
制造中最流行的工艺之一。
光刻,也被称为光蚀,是用于精确地形成金属,有机材料或半导体材
料的技术,它可以将特定图案沉积在半导体表面上以实现芯片功能。
曝光是以光技术将图案曝光到半导体表面,可以创建各种微型图案的
工艺,以实现芯片功能。
定向生长技术使得半导体表面的原子生长受到控制,通常用于生长单
晶硅(monocrystalline silicon)和晶圆硅(wafers)。
金属化是将金属沉积在半导体表面的一种技术,用于形成金属膜。
清洗工艺用于清除半导体表面的杂质,以提高芯片质量。
反射抑制是一项技术,可以抑制半导体表面上的反射,以提高芯片性能。
cmp工艺技术
cmp工艺技术CMP工艺技术是化学机械抛光技术(Chemical Mechanical Polishing,CMP)的简称,是集化学反应和力学磨擦于一体的表面处理工艺。
该技术主要用于提高半导体器件制造过程中平坦度的要求,是制备高性能芯片的重要工艺之一。
CMP工艺技术最早应用于半导体行业,后来逐渐扩展到其他领域,如光电子器件、光纤通信、储存设备等。
它的作用是去除杂质、提高表面质量、改善界面性能、产生更平坦的表面,常用于材料的光洁度改善、表面粗糙度降低等方面。
CMP工艺技术的原理是在轮材的作用下,通过磨料和液体对材料表面进行磨擦和化学反应,以达到去除表面凸点和光洁度提高的目的。
具体来说,CMP工艺技术包括以下几个步骤:先将待处理基片放置在轮盘上,然后注入磨料颗粒和液体混合物,开始进行抛光过程。
磨料颗粒与基片表面发生摩擦,去除表面的高峰,同时液体中的化学物质对表面进行化学反应,去除残留的杂质。
最后再用清洗液将基片清洗干净,达到预期的光洁度。
CMP工艺技术具有许多优点。
首先,它可以消除表面的缺陷和杂质,使材料表面更平整、光洁。
这对于制造微电子器件的精密度要求非常重要,可以提高器件的性能和可靠性。
其次,CMP工艺技术有很高的可控性和重复性,可以精确控制加工参数,以满足不同材料和器件的加工要求。
再次,CMP工艺技术可以应用于多种材料,如硅、氧化硅、金属、玻璃等,具有很高的通用性。
此外,CMP工艺技术也可以用于不同尺寸的材料,从几纳米到几毫米,均可适用。
虽然CMP工艺技术有很多优点,但也存在一些挑战。
首先,由于抛光过程不可逆,一旦发生错误,很难修复,会造成较大的损失。
其次,抛光液中的化学物质对环境具有一定的影响,需要谨慎处理和处置。
最后,CMP工艺技术的设备成本较高,需要专业的设备和技术人员进行操作和维护。
总的来说,CMP工艺技术是一种非常重要的表面处理工艺,广泛应用于半导体制造和其他领域。
通过磨擦和化学反应的协同作用,可以实现材料表面的光洁度提高和平坦度改善。
半导体CMP工艺介绍
A
B
C
A
C RR
B
Time
SMIC
CMP 制程的应用
SMIC
Introduction of CMP
CMP 制程的应用
? 前段制程中的应用
– Shallow trench isolation (STI-CMP)
? 后段制程中的应用
– Pre-meal dielectric planarization (ILD-CMP) – Inter-metal dielectric planarization (IMD-CMP) – Contact/Via formation (W-CMP) – Dual Damascene (Cu-CMP) – 另外还有Poly-CMP, RGPO-CMP 等。
SMIC
Introduction of CMP
Teres 机台概貌
SMIC
Introduction of CMP
线性平坦化技术
SMIC
Introduction of CMP
Teres 研磨均匀性 (Non-uniformity) 的气流控制法
SMIC
Introduction of CMP
研磨皮带上的气孔设计 (Air-belt design)
SMIC
W CVD
功能: 长 W 膜 以便导电 用。
POLY CMP 流程简介-2a
P2 FOX
P2 Cell
P2 FOX
P2
P2
FOX Cell
P2 FOFXOX
POLY DEPO
功能:长POLY膜以填之。
SMIC
POLY CMP + OVER POLISH
功能:刨平POLY 膜。END POINT(终点)探测界限 +OVER POLISH(多出研磨) 残留的POLY膜。
【半导体研磨】半导体CMP工艺介绍
化学机械抛光制程简介 (Chemical Mechanical
Polishing-CMP)
Introduction of CMP
目录
• CMP的发展史 • CMP简介 • 为什么要有CMP制程 • CMP的应用 • CMP的耗材 • CMP Mirra-Mesa 机台简况
H0= step height
高低落差越来越小
局部平坦化:高低落差消失
Introduction of CMP
初始形貌对平坦化的影响
A
B
C
A C RR B
Time
CMP 制程的应用
Introduction of CMP
CMP 制程的应用
• 前段制程中的应用 • Shallow trench isolation (STI-CMP)
ROUGH POLY CMP 流程-2b
FOX
P2
P2
Cell
CELL ARRAY CROSS SECTION
PR COATING
P2 FOX
功能:PR 填入糟沟以保护糟 沟内的ROUGH POLY。
P2
P2
P2
FOX
FO
X Cell
CELL ARRAY CROSS SECTION
ROUGH POLY CMP
平坦化程度比较
CMP Resist Etch Back
BPSG Reflow SOG
SACVD,Dep/Etch HDP, ECR
0.1
1
(Gap fill)
10 100
Local
1000 10000
Global
平坦化 范围 (微米)
cmp工艺原理
cmp工艺原理CMP工艺原理CMP(Chemical Mechanical Polishing)工艺是一种通过化学和机械作用来进行材料的平坦化处理的技术。
它主要用于半导体制造中,特别是芯片制造过程中的平坦化工艺。
本文将介绍CMP工艺的原理和应用。
一、CMP工艺的原理CMP工艺的原理可以简单地概括为:在一定的压力下,通过在材料表面施加化学和机械作用,使材料表面达到平坦化的效果。
1. 机械作用:CMP工艺中最重要的机械作用是研磨。
研磨是通过在材料表面施加力,并使用研磨颗粒来去除表面的不平坦部分。
研磨颗粒可以是硅胶、氧化铝等,其硬度较高,能够有效地研磨材料表面。
2. 化学作用:在CMP过程中,还需要添加化学溶液来辅助研磨。
这些化学溶液可以改变材料表面的化学性质,使其更容易被研磨颗粒去除。
同时,化学溶液还可以控制CMP过程中的化学反应速率,从而实现更精确的控制。
3. 压力控制:在CMP过程中,适当的压力是非常重要的。
过高的压力可能导致材料过度研磨,甚至损坏芯片结构;而过低的压力则可能导致研磨效果不佳。
因此,压力的控制是CMP工艺中的一个关键因素。
二、CMP工艺的应用CMP工艺在半导体制造中有着广泛的应用。
以下是几个典型的应用场景:1. 平坦化:在芯片制造过程中,CMP工艺被广泛用于平坦化处理。
由于芯片上有许多复杂的结构和电路,表面的平坦度对于芯片的性能和可靠性至关重要。
CMP工艺能够去除表面的不平坦部分,使芯片表面达到更高的平坦度要求。
2. 介电层制备:在芯片制造过程中,通常需要制备一层介电层来隔离电路。
CMP工艺可以用于制备高质量的介电层。
通过选择合适的化学溶液和研磨颗粒,可以控制介电层的厚度和平坦度,从而满足芯片制造的要求。
3. 金属填充:在芯片制造中,有时需要在浅孔和窄槽中填充金属材料。
CMP工艺可以用于金属填充的后续平坦化处理,以确保填充的金属材料与芯片表面的平坦度一致。
4. 暴露控制:芯片制造中的光刻工艺需要对光刻胶进行暴露和显影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
34: HEAD 将WAFER拿住。CROSS 旋 转把HEAD转到PLATEN 1到2到3如 此这般顺序般研磨。
HEAD
43: 研磨完毕后,WAFER 将在 LOADCUP御载。
终点探测 Endpoint Detection
SMIC
钻石整理器 Diamond Conditioner
Introduction of CMP
CMP 机台的基本构造(II)
SMIC
Introduction of CMP
Mirra 机台概貌
Silicon wafer
Diamond disk
SMIC
没有平坦化之 前
平滑化
局部平坦化
全面平坦化
SMIC
Introduction of CMP
平坦化程度比较
CMP Resist Etch Back
BPSG Reflow SOG
SACVD,Dep/Etch HDP, ECR
0.1
1
(Gap fill)
10 100
Local
1000 10000
Global
平坦化 范围 (微米)
SMIC
Introduction of CMP
Step Height(高低落差) & Local Planarity(局部平坦化过程)
H0= step height
高低落差越来越小
局部平坦化:高低落差消失
SMIC
Introduction of CMP
初始形貌对平坦化的影响
A
• Oxide CMP 的前一站是长Oxide的CVD区,后一站是Photo区。
CMP 前
CMP 后
SMIC
W(钨) CMP流程-1
Ti/TiN
P+
P+
N-Well
N+
N+
P-Well
WCMP
W Ti/TiN
W CVD
P+
P+
N+
N+
N-Well
P-Well
Ti/TiN PVD
W CVD
功能:Glue(粘合) and barrier (阻隔)layer。以 便W得以叠长。
~End~
SMIC
SMIC
STI & Oxide CMP
什么是STI CMP?
• 所谓STI(Shallow Trench Isolation),即浅沟槽隔离技术,它的 作用是用氧化层来隔开各个门电路(GATE),使各门电路之间 互不导通。STI CMP主要就是将wafer表面的氧化层磨平,最后停 在SIN上面。
• STI CMP的前一站是CVD区,后一站是WET区。
B
C
A
C RR
B
Time
SMIC
CMP 制程的应用
SMIC
Introduction of CMP
CMP 制程的应用
• 前段制程中的应用
– Shallow trench isolation (STI-CMP)
• 后段制程中的应用
– Pre-meal dielectric planarization (ILD-CMP) – Inter-metal dielectric planarization (IMD-CMP) – Contact/Via formation (W-CMP) – Dual Damascene (Cu-CMP) – 另外还有Poly-CMP, RGPO-CMP等。
应用于生产中。 • 1998: IBM 首次使用铜制程CMP。
SMIC
Introduction of CMP
CMP制程的全貌简介
SMIC
Introduction of CMP
CMP 机台的基本构造 (I)
压力pressure
研磨液Slurry
研磨垫Pad
芯片Wafer
Wafer carrier
平台Platform
• ROUTINE MONITOR 是用来查看机台和制程的数字是否稳定, 是否在管制的范围之内的一种方法。
SMIC
Introduction of CMP
CMP Mof CMP
Mirra-Mesa 机台外观-侧面
SMIF POD
WET ROBOT
没有平坦化之前芯片的表面形态
1.2 um 0.7 um 0.3 um
M2
1.0 um
IMD
M1 0.5 um
2.2 um M2
M1 0.4 um
Isolation
SMIC
Introduction of CMP
没有平坦化情况下的PHOTO
SMIC
Introduction of CMP
各种不同的平坦化状况
功能: 长 W 膜 以便导电 用。
SMIC
POLY CMP流程简介-2a
P2 FOX
P2 Cell
P2 FOX
P2
P2
FOX Cell
P2 FOFXOX
POLY DEPO
功能:长POLY膜以填之。
POLY CMP + OVER POLISH
功能:刨平POLY 膜。END POINT(终点)探测界限 +OVER POLISH(多出研磨) 残留的POLY膜。
功能:刨平PR和ROUGH POLY 膜。 END POINT(终点)探测界限 +OVER POLISH(多出研磨)残留 的ROUGH POLY膜。
SMIC
Introduction of CMP
CMP耗材
SMIC
Introduction of CMP
CMP耗材的种类
• 研磨液(slurry)
– 研磨时添加的液体状物体, 颗粒大小跟研磨后的刮伤等缺陷有关。
SMIC
Introduction of CMP
F-Rex200 机台概貌
SMIC
终点探测图 (STI CMP endpoint profile)
光学
SMIC
摩擦电流
Introduction of CMP
为什么要做化学机械抛光 (Why CMP)?
SMIC
Introduction of CMP
• 研磨垫(pad)
– 研磨时垫在晶片下面的片状物。它的使用寿命会影响研磨速率等。
• 研磨垫整理器(condition disk)
– 钻石盘状物,整理研磨垫。
SMIC
CMP耗材的影响
• 随着CMP耗材(consumable)使用寿命(life time)的增加,CMP 的研磨速率(removal rate),研磨均匀度(Nu%)等参数都会发 生变化。故要求定时做机台的MONITOR。
MIRRA
FABS
MESA
SMIC
Introduction of CMP
Mirra-Mesa 机台外观-俯视图
Top view
(Mesa)
Mirra
SMIC
Introduction of CMP
Mirra-Mesa 机台-运作过程简称
6
5
2
3
1
4
12: FABS 的机器手从cassette 中拿出未 加工的WAFER并送到WAFER的暂放 台。
Oxide
SIN
STI STI
SIN
STI
STI
CMP 前
SMIC
CMP 后
STI & Oxide CMP
什么是Oxide CMP?
• 所谓Oxide CMP包括ILD(Inter-level Dielectric)CMP和IMD (Intermetal Dielectric)CMP,它主要是磨氧化硅(Oxide),将Oxide磨到一 定的厚度,从而达到平坦化。
SMIC
Introduction of CMP
CMP 发展史
• 1983: CMP制程由IBM发明。 • 1986: 氧化硅CMP (Oxide-CMP)开始试行。 • 1988: 金属钨CMP(W CMP)试行。 • 1992: CMP 开始出现在 SIA Roadmap。 • 1994: 台湾的半导体生产厂第一次开始将化学机械研磨
SMIC
ROUGH POLY CMP 流程-2b
FOX
P2
P2
Cell
CELL ARRAY CROSS SECTION
PR COATING
P2 FOX
功能:PR 填入糟沟以保护糟 沟内的ROUGH POLY。
P2
P2
P2
FOX
FO
X Cell
CELL ARRAY CROSS SECTION
ROUGH POLY CMP
Introduction of CMP
Teres 机台概貌
SMIC
Introduction of CMP
线性平坦化技术
SMIC
Introduction of CMP
Teres 研磨均匀性(Non-uniformity) 的气流控制法
SMIC
Introduction of CMP
研磨皮带上的气孔设计(Air-belt design)
35: Mirra 的机器手接着把WAFER从 LOADCUP 中拿出并送到MESA清洗。
56: MESA清洗部分有1)氨水(NH4OH)+MEGASONIC(超声波)糟 2)氨 水(NH4OH)刷。 3)氢氟酸水(HF)刷 4)SRD,旋转,烘干部。
61: 最后,FABS 样完毕了。
机器手把清洗S 完的M WAFIEC R 送回原本的CASSETTE。加工就这