数列基础练习题
数列(一)(练习题)
数列的基础练习题一、数列的概念与简单表示法1、下列说法正确的是 ( )A. 数列1,3,5,7可表示为{1,3,5,7}B. 数列1,0,-1,-2与数列-2,-1, 0, 1是相同的数列C. 数列1n n +⎧⎫⎨⎬⎩⎭的第k 项是11k + D. 数列可以看做是一个定义域为正整数集N *的函数3、已知数列的通项公式为2815n a n n =−+,则3( ) A. 不是数列{}n a 中的项 B. 只是数列{}n a 中的第2项C. 只是数列{}n a 中的第6项D. 是数列{}n a 中的第2项或第6项 5、已知数列1,3,5,7,,21,,n −则35是它的 ( ) A. 第22项 B. 第23项 C. 第24项 D. 第28项 6、已知130n n a a +−−=,则数列{}n a 是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列二、等差数列题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1−n n a a 在直03=−−y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=−=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=−,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +−=−=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )A .1B .-1C .2D .218、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q −−+++=,则其前n 项和n S = .2、等差数列 ,4,1,2−的前n 项和为 ( )A. ()4321−n nB. ()7321−n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++−−n n n a a a a a a ,155=n S ,则=n 。
数列基础练习题简单
等差数列一、填空题1. 等差数列8,5,2,…的第20项为___________.2. 在等差数列中已知a 1=12, a 6=27,则d=___________3. 在等差数列中已知13d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________ 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。
二、选择题1. 一架飞机起飞时,第一秒滑跑2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米,则滑跑的时间一共是()A. 15秒B.16秒C.17秒D.18秒 2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A.84B.72C.60D.48 3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )A.6B.3C.12D.44. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20项的和等于( )A.160B.180C.200D.2205. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )A.45B.75C.180D.300 6. 若lg 2,lg(21),lg(23)x x-+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或327. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,且是等比数列D.既不是等差数列也不是等比数列 8. 数列3,7,13,21,31,…的通项公式是( )A. 41n a n =-B. 322n a n n n =-++C. 21n a n n =++ D.不存在三、计算题1. 根据下列各题中的条件,求相应的等差数列{}n a 的有关未知数: (1)151,,5,66n a d S ==-=-求n 及n a ; (2)12,15,10,n n d n a a S ===-求及2. 设等差数列{}n a 的前n 项和公式是253n S n n =+,求它的前3项,并求它的通项公式3. 如果等差数列{}n a 的前4项的和是2,前9项的和是-6,求其前n 项和的公式。
数列简单练习题
数列简单练习题数列是数学中一个基础且重要的概念,它在各个领域中都有广泛的应用。
为了帮助大家更好地理解和掌握数列的概念及相关计算方法,本文将为大家提供一系列数列简单练习题。
通过这些练习题的训练,相信大家能够在数列方面得到更好的掌握。
练习题一:等差数列求和1. 求等差数列2, 5, 8, 11, 14, …的前10项之和。
解析:根据等差数列的求和公式,可知等差数列的前n项之和为Sn = n * (a1 + an) /2,其中a1为首项,an为末项,n为项数。
根据给定的数列可知,a1 = 2,an = 2 + (n-1) * 3 = 3n - 1。
代入公式,得到S10 = 10 * (2 + (10-1) * 3) / 2 = 10 * (2 + 27) / 2 = 10 * 29 / 2 = 145。
所以,等差数列2, 5, 8, 11, 14, …的前10项之和为145。
练习题二:等比数列求和2. 求等比数列1, 3, 9, 27, …的前5项之和。
解析:根据等比数列的求和公式,可知等比数列的前n项之和为Sn = a1 * (q^n - 1) / (q - 1),其中a1为首项,q为公比,n为项数。
根据给定的数列可知,a1 = 1,q = 3。
代入公式,得到S5 = 1 * (3^5 - 1) / (3 - 1) = 1 * (243 - 1) / 2 = 242 / 2 = 121。
所以,等比数列1, 3, 9, 27, …的前5项之和为121。
练习题三:斐波那契数列3. 斐波那契数列的定义是f(1) = 1,f(2) = 1,f(n) = f(n-1) + f(n-2)(n≥3)。
求斐波那契数列的前10项。
解析:根据斐波那契数列的定义可知,首先确定前两项f(1)和f(2)分别为1。
然后根据递推公式f(n) = f(n-1) + f(n-2),可以计算出后续的项。
利用递推公式,可以得到斐波那契数列的前10项依次为1, 1, 2, 3, 5, 8, 13, 21, 34, 55。
数列基础练习题及答案
A .a7,A .数列专题数列1,3,7,15, 的通项公式a n等于(2n B . 2n1各项不为零的等差数列则 b6bε=(2已知等差数列{ a n },44.2n-1 D亠 2 a n}中,2a3—a7.2nj+ 2an = 0,数列{b n}是等比数列,且 b7=a^2 ,则此数列的前.33.22.1611项的和S H.11等差数列Ia nf的公差d = 0 , a^20 ,且a3,a7 ,a9成等比数列.S n为;、a/的前n项和,贝U S w的值为()-110 90.-90 .110已知等比数列{a n}满足& ∙a2 =3, a2 = 6 ,则aγ64 B . 81 C . 128 D已知⅛n是等比数列,a1=4, a4.2431,则公比q =( 2A 、、一2已知数列⅛n 是公差不为O的等差数列,a1=2 ,且a2 ,a3, a4 1成等比数列.(1)求数列的通项公式;(2)设b n =2晁R,求数列Z的前n项和S n.8.设数列{a n}是首项为1 ,公差为d的等差数列,且a1,a2 - 1忌-1是等比数列{g}的前三项•(1)求{a n}的通项公式;(2)求数列{b n}的前n项和T n •9 .已知等差数列{a n}满足a3=5, a s - 2a2=3,又等比数列{b ∏}中,b=3且公比q=3.(1)求数列{a n}, {b n}的通项公式;2) 若 G=a n+b n,求数列{c n}的前n项和S n.10 .设等比数列⅛n[的前n项和为S n,已知a2 =6, 6a1 a^ 30 ,求a n和S n。
11.已知{a n}是公差不为零的等差数列,a1= 1,且a1, a3, a o成等比数列.(I)求数列{a n}的通项;(∏)求数列{2an}的前n项和S n.12 •已知等差数列∙⅛n “n ∙N )的前n项和为S n ,且a3 = 5,S3 = 9 •(I) 求数列<a n的通项公式;(II) 设等比数列Ib n Xn ∙N J ,若b2 = a2,b3 = a5 ,求数列 Z 的前n项和T n.13•已知{a n}是首项为19 ,公差为-2的等差数列,S n为{ a n}的前n项和。
数列基础练习题及答案
1.C
2.D
3.C
4.D
5.A
6.D
7.1 ;2 .
8.1 ;2 .
9.1 , ;2 .
10. 或 , 或
11.1 2 ;
12.I ;II .
13.1a =-2n+21 S =-n +20n2b =3 -2n+21 T =-n +20n+
1求 的通项公式;
2求数列 的前 项和 .
9.已知等差数列{an}满足a3=5,a5﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
1求数列{an},{bn}的通项公式;
2若cn=an+bn,求数列{cn}的前n项和Sn.
10.设等比数列 的前 项和为 ,已知 ,求 和 ;
11.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
Ⅰ求数列{an}的通项;Ⅱ求数列{ }的前n项和Sn.
12.已知等差数列 的前 项和为 ,且 .
I求数列 的通项公式;
II设等比数列 ,若 ,求数列 的前 项和 .
13.已知 是首项为19,公差为-2的等差数列, 为 的前n项和;
Ⅰ求通项 及 ;
Ⅱ设 是首项为1,公比为3的等比数列,求数列 的通项公式及其前n项和
数列专题
1.数列1,3,7,15, 的通项公式 等于
A. B. C. D.
2.各项不为零的等差数列{ }中,2a3- +2a11=0,数列{ }是等比数列,且b7=a7, 则b6b8= .
A.2B.4C.8D.16
3.已知等差数列{ }, ,则此数列的前11项的和
A.44B.33C.22D.11
4.等差数列 的公差 , ,且 , , 成等比数列. 为 的前 项和,则 的值为
数字推理练习题
数字推理练习题一、基础数列题1. 观察下列数列,找出规律并求出下一个数:2, 4, 6, 8, __2. 根据数列的规律,找出缺失的数字:3, 6, 11, 18, __, 473. 完成下列数列:1, 3, 6, 10, __, 21, 284. 下一个数是:10, 5, 2.5, 1.25, __5. 找出数列的规律并求出下一个数:2, 5, 10, 17, __二、等差数列题6. 一个等差数列的首项是5,公差是3,求第10项。
7. 已知等差数列的第3项是15,第5项是25,求首项和公差。
8. 一个等差数列的前5项之和是40,第1项是4,求第5项。
9. 等差数列的前n项和公式是S_n = n/2 * (a_1 + a_n),若S_10 = 220,a_1 = 4,求第10项。
10. 已知等差数列的第1项是10,公差是2,求前10项的和。
三、等比数列题11. 一个等比数列的首项是2,公比是3,求第6项。
12. 已知等比数列的第3项是8,第5项是32,求首项和公比。
13. 完成下列等比数列:2, 6, 18, __, 16214. 等比数列的前n项和公式是S_n = a_1 * (1 - r^n) / (1 - r),若S_5 = 63,a_1 = 3,求公比。
15. 已知等比数列的第1项是8,公比是2,求前5项的和。
四、混合数列题16. 观察下列数列,找出规律并求出下一个数:2, 3, 10, 15, 56, __17. 根据数列的规律,找出缺失的数字:8, 27, 64, 125, __, 21618. 完成下列数列:1, 4, 9, 16, __, 36, 4919. 下一个数是:1, 4, 9, 16, 25, __20. 找出数列的规律并求出下一个数:1, 7, 19, 37, __五、数列综合题21. 一个数列的前3项是1, 2, 4,从第4项开始,每一项都是它前三项的和,求第10项。
等差数列性质基础练习题
等差数列性质基础练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n 1)d,其中a1是首项,d是公差,n是项数。
若等差数列的首项为3,公差为2,则第五项的值为______。
2. 在等差数列{an}中,已知a3 = 7,a7 = 19,则公差d为______。
3. 已知等差数列的前三项分别为2,5,8,则第10项的值为______。
4. 等差数列的前n项和公式为:Sn = n(a1 + an)/2,若等差数列的前5项和为35,公差为3,则首项a1的值为______。
5. 在等差数列{an}中,若a4 = 16,a10 = 44,则第8项的值为______。
二、选择题A. an = a1 + (n 1)dB. an = a1 (n 1)dC. an = a1 / (n 1)dD. an = a1 (n 1)dA. 公差为4B. 公差为8C. 公差为12D. 公差为163. 在等差数列{an}中,若a1 = 3,d = 2,则第6项的值为()。
A. 9B. 11C. 13D. 15A. 首项为3B. 首项为5C. 首项为7D. 首项为95. 在等差数列{an}中,若a3 = 6,a7 = 18,则第5项的值为()。
A. 10B. 12C. 14D. 16三、解答题1. 已知等差数列的前4项分别为2,5,8,11,求第10项的值。
2. 在等差数列{an}中,已知a5 = 15,a10 = 35,求首项a1和公差d。
3. 已知等差数列的前7项和为49,公差为3,求第4项的值。
4. 在等差数列{an}中,若a1 = 4,d = 5,求前8项的和。
5. 已知等差数列的前5项和为55,公差为7,求第6项的值。
四、判断题1. 等差数列的任意两项之间的差都是相同的。
()2. 等差数列的通项公式中,n表示项数,而不是项的位置。
()3. 在等差数列中,如果首项为负数,公差为正数,那么数列中的项会逐渐减小。
小学数学数列练习题
小学数学数列练习题1. 题目一:找规律已知数列 2, 4, 8, 16, 32, ...请计算数列的第十项与第十五项,并写出其规律。
解答:根据观察,数列中的每一项都是前一项乘以2得到的。
可以得出数列的通项公式为:an = 2^n,其中n为项数。
根据公式,数列的第十项为a10 = 2^10 = 1024。
数列的第十五项为a15 = 2^15 = 32768。
因此,数列的规律是每一项都是前一项乘以2。
2. 题目二:求和已知数列 3, 6, 9, 12, 15, ...请计算数列的前十项的和,并写出计算过程。
解答:根据观察,数列中的每一项都是前一项加上3得到的。
可以得出数列的通项公式为:an = 3n,其中n为项数。
我们需要计算数列的前十项的和,即S10 = a1 + a2 + a3 + ... + a10。
根据通项公式,数列的第一项为a1 = 3。
数列的第二项为a2 = 3 * 2 = 6。
数列的第三项为a3 = 3 * 3 = 9。
以此类推,数列的第十项为a10 = 3 * 10 = 30。
将各项相加得到数列的前十项的和:S10 = 3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30 = 165。
因此,数列的前十项的和为165。
3. 题目三:递推数列的前六项依次为1, 1, 2, 3, 5, 8。
请写出数列的通项公式,并计算数列的第十项。
解答:根据观察,数列中的每一项都是前两项之和得到的。
可以得出数列的通项公式为:an = an-1 + an-2,其中n≥3。
我们需要计算数列的第十项,即a10。
根据通项公式和已知条件,可以不断递推得到:a3 = a2 + a1 = 1 + 1 = 2a4 = a3 + a2 = 2 + 1 = 3a5 = a4 + a3 = 3 + 2 = 5a6 = a5 + a4 = 5 + 3 = 8a7 = a6 + a5 = 8 + 5 = 13a8 = a7 + a6 = 13 + 8 = 21a9 = a8 + a7 = 21 + 13 = 34a10 = a9 + a8 = 34 + 21 = 55因此,数列的第十项为55。
数列基础知识练习题
数列基础知识练习题数列是数学中的重要概念,它由一系列按特定规律排列的数字组成。
在数学中,数列的研究具有重要的意义,它不仅在数论、代数、几何等领域有广泛的应用,也有助于培养学生的逻辑思维和问题解决能力。
下面我们来练习一些关于数列的基础知识题目,帮助大家巩固相关概念。
1.下列数列中,哪些是等差数列?a) 1, 4, 7, 10, 13b) 2, 4, 8, 16, 32c) 3, 6, 11, 18, 27解答:等差数列是指数列中相邻两项之差保持不变。
根据这个定义,我们可以观察每个数列的相邻项之间的差是否相等。
只有数列a)和c)的差是恒定的,所以它们是等差数列。
2.求下列等差数列的公差和通项公式:a) 2, 5, 8, 11, 14b) -3, 1, 5, 9, 13解答:公差是指等差数列中相邻两项之差的值。
我们观察每个数列的相邻项,可以得到:a) 公差为3。
通项公式可以表示为an = 2 + 3(n-1),其中n代表项数。
b) 公差为4。
通项公式可以表示为an = -3 + 4(n-1)。
3.下列数列中,哪些是等比数列?a) 2, 4, 8, 16, 32b) 3, 6, 12, 24, 48c) 1, 4, 9, 16, 25解答:等比数列是指数列中相邻两项之比保持不变。
根据这个定义,我们可以观察每个数列的相邻项之间的比值是否相等。
只有数列a)和b)的比值是恒定的,所以它们是等比数列。
4.求下列等比数列的公比和通项公式:a) 3, 9, 27, 81, 243b) -2, 4, -8, 16, -32解答:公比是指等比数列中相邻两项之比的值。
我们观察每个数列的相邻项,可以得到:a) 公比为3。
通项公式可以表示为an = 3^(n-1),其中n代表项数。
b) 公比为-2。
通项公式可以表示为an = (-2)^n,其中n代表项数。
5.求下列数列的前n项和:a) 1, 2, 3, 4, 5, ...b) 2, 4, 6, 8, 10, ...解答:前n项和是指数列前n项的和。
2024年数学九年级下册数列基础练习题(含答案)
2024年数学九年级下册数列基础练习题(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d等于()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an=2n+1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 在等差数列{an}中,已知a3+a7=20,a4+a6=18,则首项a1等于()A. 5B. 6C. 7D. 84. 数列{an}为等比数列,a1=2,a3=8,则公比q等于()A. 2B. 3C. 4D. 55. 已知数列{an}的通项公式为an=n^2+n,则第6项a6等于()A. 42B. 51C. 66D. 786. 在等比数列{an}中,已知a1=3,a3=9,则a5等于()A. 27B. 30C. 33D. 367. 数列{an}的前n项和为Sn=2^n1,则a3等于()A. 4B. 6C. 8D. 108. 已知数列{an}为等差数列,a1=1,a10=37,则a5等于()A. 11B. 13C. 15D. 179. 数列{an}的通项公式为an=3n2,则第7项a7等于()A. 19B. 21C. 23D. 2510. 在等比数列{an}中,已知a1=2,a4=16,则公比q等于()A. 2B. 4C. 6D. 8二、判断题:1. 等差数列的任意两项之差是常数。
()2. 等比数列的任意两项之比是常数。
()3. 数列{an}的通项公式为an=2n,则数列{an}是等差数列。
()4. 数列{an}的通项公式为an=3^n,则数列{an}是等比数列。
()5. 在等差数列中,若公差为正数,则数列是递增的。
()6. 在等比数列中,若公比为正数,则数列是递增的。
()7. 等差数列的前n项和公式为Sn=n(a1+an)/2。
()8. 等比数列的前n项和公式为Sn=a1(1q^n)/(1q)。
()9. 数列{an}的通项公式为an=n^2,则数列{an}是等差数列。
高中数学数列 基础练习题
高中数学数列基础练习题一、单选题1. ( 2分) (2019·全国Ⅲ卷理)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16B. 8C. 4D. 22. ( 2分) (2019·全国Ⅰ卷理)记S n为等差数列的前n项和。
已知=0,=5,则()A. a n=2n-5B. a n=3n-10C. S n=2n2-8nD. S n= n2-2n3. ( 2分) (2018高三上·广东月考)设数列为等差数列,其前项和为,已知,,若对任意,都有成立,则的值为( )A. B. C. D.4. ( 2分) (2018高三上·长春期中)下列四个命题中真命题的个数是()①设,则的充要条件是;②在中,;③将函数的向右平移1个单位得到函数;④;⑤已知是等差数列的前项和,若,则;A. 1B. 2C. 3D. 45. ( 2分) (2019·浙江)设a,b∈R,数列{a n},满足a1 =a,a n+1= a n2+b,b∈N*,则()A. 当b= 时,a10>10B. 当b= 时,a10>10C. 当b=-2时,a10>10D. 当b=-4时,a10>106. ( 2分) (2018·浙江)已知成等比数列,且.若,则()A. B. C. D.7. ( 2分) 在等差数列中,,其前项和为,若,则的值等于()A. 2011B. -2012C. 2014D. -20138. ( 2分) 已知a>0,b>0,且为3a与3b的等比中项,则的最大值为()A. B. C. D.9. ( 2分) 已知数列满足下面说法正确的是()①当时,数列为递减数列;②当时,数列不一定有最大项;③当时,数列为递减数列;④当为正整数时,数列必有两项相等的最大项.A. ①②B. ②④C. ③④D. ②③10. ( 2分) 已知f(x),g(x)都是定义在R上的函数,,,且(,且,.若数列的前n项和大于62,则n的最小值为()A. 6B. 7C. 8D. 9二、填空题11. ( 1分) (2018高三上·晋江期中)已知等差数列满足,且,数列满足,的前n项和为,当取得最大值时,n的值为________.12. ( 1分) (2018·衡水模拟)已知数列的通项公式为,前项和为,则________.13. ( 1分) (2018·中原模拟)已知等差数列的前项和为,且,数列的前项和为,且对于任意的,则实数的取值范围为________.14. ( 1分) (2019·浙江模拟)数列满足,若数列是等比数列,则取值范围是________.15. ( 1分) (2019·江苏)已知数列是等差数列,是其前n项和.若,则的值是________.16. ( 1分) (2019·全国Ⅲ卷文)记S n为等差数列{a n}的前n项和,若,则________.17. ( 1分) (2019·全国Ⅲ卷理)记S n为等差数列{a n}项和,若a1≠0,a2=3a1,则=________。
数列练习题及解析
数列练习题及解析题目1:求以下数列的第n项。
1, 4, 7, 10, 13, ...解析1:这是一个等差数列,公差为3。
数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
所以,an = 1 + (n-1)3 = 3n - 2。
题目2:求以下数列的前n项和。
2, 4, 6, 8, 10, ...解析2:这是一个公差为2的等差数列。
数列的前n项和可以表示为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和。
首项a1为2,第n项an为2n,代入公式得到:Sn = (2 + 2n) * n / 2 = n(n+1)。
题目3:已知数列的通项公式an = 2^n,求第6项及前6项和。
解析3:根据通项公式an = 2^n,可得到第6项为a6 = 2^6 = 64。
前6项和可以表示为:S6 = a1 + a2 + a3 + a4 + a5 + a6 = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6。
利用等比数列求和公式,S6 = (a1 * (1 - q^n)) / (1 - q),其中a1为首项,q为公比。
代入公式得到:S6 = (2 * (1 - 2^6)) / (1 - 2) = 127。
题目4:已知等差数列的首项为3,公差为-2,求满足an < 0的最小n值。
解析4:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件得到:3 + (n-1)(-2) < 0。
化简不等式得到:-2n + 5 < 0。
解得:n > 5/2,即n的最小取值为3。
题目5:已知等差数列的前4项和为20,首项为a1,公差为d,求a1与d的值。
解析5:根据等差数列的前n项和公式Sn = (n/2)(2a1 + (n-1)d),代入已知条件得到:20 = (4/2)(2a1 + 3d)。
化简得到:10 = 2a1 + 3d。
高数极限基础练习题
高数极限基础练习题一、数列极限1. 计算下列数列的极限:(1) $\lim_{n \to \infty} \frac{1}{n}$(2) $\lim_{n \to \infty} \frac{n+1}{2n+3}$(3) $\lim_{n \to \infty} \frac{n^2 1}{n^2 + 1}$(4) $\lim_{n \to \infty} \frac{\sqrt{n^2 + n}}{n + 1}$ 2. 判断下列数列极限是否存在,若存在,求出其极限值:(1) $\lim_{n \to \infty} (1)^n$(2) $\lim_{n \to \infty} \sin(n\pi)$(3) $\lim_{n \to \infty} \frac{n!}{n^n}$二、函数极限1. 计算下列函数的极限:(1) $\lim_{x \to 0} \frac{\sin x}{x}$(2) $\lim_{x \to 1} \frac{x^2 1}{x 1}$(3) $\lim_{x \to \infty} \frac{1}{x}$(4) $\lim_{x \to 0} \frac{e^x 1}{x}$2. 判断下列函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin 3x}{x}$(2) $\lim_{x \to \infty} \frac{\ln x}{x}$(3) $\lim_{x \to \infty} (1 + \frac{1}{x})^x$三、无穷小与无穷大1. 判断下列表达式是否为无穷小:(1) $\frac{1}{x^2}$ 当 $x \to \infty$(2) $\sin \frac{1}{x}$ 当 $x \to \infty$(3) $e^{x}$ 当 $x \to \infty$2. 判断下列表达式是否为无穷大:(1) $x^3$ 当 $x \to \infty$(2) $\ln x$ 当 $x \to \infty$(3) $\frac{1}{\sqrt{x}}$ 当 $x \to 0^+$四、极限运算法则1. 利用极限运算法则计算下列极限:(1) $\lim_{x \to 0} (3x^2 + 2x 1)$(2) $\lim_{x \to 1} \frac{x^3 3x^2 + 2x}{x^2 2x + 1}$(3) $\lim_{x \to \infty} (x^3 2x^2 + 3)$2. 利用极限的性质,计算下列极限:(1) $\lim_{x \to 0} \frac{\sin x}{x} \cdot\frac{1}{\cos x}$(2) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$(3) $\lim_{x \to 0} \frac{e^x e^{x}}{2x}$五、复合函数极限1. 计算下列复合函数的极限:(1) $\lim_{x \to 0} \frac{\sin(\sqrt{x^2 + 1})}{x}$(2) $\lim_{x \to \infty} \frac{\ln(x^2 + 1)}{x}$(3) $\lim_{x \to 0} \frac{e^{x^2} 1}{x^2}$2. 判断下列复合函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin(\tan x)}{x}$(2) $\lim_{x \to \infty} \frac{\ln(e^x + 1)}{x}$(3) $\lim_{x \to 0} \frac{1 \cos(\sqrt{x})}{x}$六、极限的应用1. 计算下列极限问题:(1) 设 $f(x)2. 已知函数 $f(x) = \frac{x^2 1}{x 1}$,求 $\lim_{x \to 1} f(x)$。
数列基础练习(含答案)—题型全覆盖
数列一、选择题(本大题共18小题,共90.0分)1. 已知等差数列{a n }满足a 1+a 5=10,a 8=3a 3,则数列{a n }的前10项的和等于( )A. 10B. 11C. 100D. 1102. 已知等差数列{a n }和等差数列{b n }的前n 项和分别为S n ,T n 且(n +1)S n =(7n +23)T n ,则使a nb n 为整数的正整数n 的个数是( )A. 2B. 3C. 4D. 53. 数列0,0,0,…,0,…是( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列也不是等比数列4. 设等比数列{a n }中,每项均是正数,且a 5a 6=81,则A. 20B. −20C. −4D. −55. 数列112,314,518,7116,…,(2n −1)+12n ,…的前n 项和S n 的值等于( )A. n 2+1−12n B. 2n 2−n +1−12n C. n 2+1−12n−1D. n 2−n +1−12n6. 已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n+1,则S n =A. 2n−1B. (32)n−1C. (23)n−1D. 12n−17.( )A. 32−1nB. 2−3n+1C. 1−1n+1D. 32+1n8. 两数√2+1与√2−1的等比中项是( )。
A. −1或1B. −1C. 1D. 129. 在等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A. S 4B. S 5C. S 6D. S 710. 数列1,11+2,11+2+3,…,11+2+3+⋯+n 的前n 项和为95,则正整数n 的值为( )A. 6B. 8C. 9D. 10A. 12B. 1C. −1D. 212.已知数列{a n}中,a1=1,前n项和为S n,且点P(a n,a n+1)(n∈N∗)在直线x−y+1=0上,则1S1+1S2+1S3+...+1S n=()A. n(n+1)2B. 2n(n+1)C. 2nn+1D. n2(n+1)13.在数列{a n}中,a1=2,a n+1n+1=a nn+ln(1+1n),则a n=()A. 2+nlnnB. 2n+(n−1)lnnC. 2n+nlnnD. 1+n+nlnn14.在数列{a n}中,a2=3,a3=5,且a n+2=2a n+1−a n,则a6=()A. 9B. 11C. 13D. 1515.若数列{a n}的通项公式是a n=(−1)n(3n−2),则a1+a2+⋯+a2018=()A. 1009B. 3027C. 5217D. 610616.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+⋯+log3a10=()A. 12B. 10C. 8D. 2+log3517.数列{a n}的通项公式a n=√n+√n+1,若前n项的和为10,则项数为()A. 11B. 99C. 120D. 12118.等差数列{a n}的前n项和为S n,S100>0,S101<0,则满足a n a n+1<0的n=()A. 50B. 51C. 100D. 101二、填空题(本大题共9小题,共45.0分)19.设数列{a n}的前n项和为S n,且a1=−1,a n+1=S n S n+1,则S n=.20.设S n为等比数列{a n}的前n项和,已知S4=14,S8=56,则S16=____________.21.已知{a n}是递增数列,且对于任意的n∈N∗,a n=n2+λn恒成立,则实数λ的取值范围是_________.22.已知数列{a n}的前n项和为S n,且,则{a n}的通项为______.23.已知数列{a n}的前n项和S n=2n−3,则数列{a n}的通项公式为_________.24.若数列{a n}满足a1=12,a1+2a2+3a3+⋅⋅⋅+na n=n2a n,则a2019=______.25.设数列{a n}的前n项和为S n,且满足a1+2a2+⋯+2n−1a n=n,则S5=________.26.若f(x)+f(1−x)=4,a n=f(0)+f(1n )+⋯+f(n−1n)+f(1)(n∈N+),则数列{a n}的通项公式为______.三、解答题(本大题共8小题,共96.0分)28. 已知数列{a n }的前n 项和为S n ,且满足3S n =2a n +1.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =(n +1)a n ,求数列{b n }的前n 项和T n .29. 已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6−2顺次成等比数列.(1)求数列{a n }的通项公式; (2)记b n =(−1)n a 2n+1a n a n+1,{b n }的前n 项和S n ,求S 2n .30. 已知数列{a n }满足a 1=1,a n+1=2a na n +2,(n ∈N ∗),b n =1a n. (1)证明数列{b n }为等差数列; (2)求数列{a n }的通项公式.31.设等差数列{a n}的前n项和为S n,若S9=81,a3+a5=14.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,若{b n}的前n项和为T n,证明:T n<12.32.设数列{a n}的前n项和为S n.已知a n>0,a n2+2a n=4S n+3.(1)求{a n}的通项公式.(2)设b n=1a n⋅a n+1,求数列{b n}的前n项和.33.已知等比数列{a n}满足a n+1=a n+2n.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若b n=log2a na n+1,求数列{b n}的前n项和S n.34.在数列{a n}中,已知a1=35,a n=2−1a n−1(n≥2,n∈N∗),数列{b n}满足b n=1a n−1(n∈N∗).(1)求证:数列{b n}是等差数列;(2)求{a n}的通项公式a n.35.已知数列{a n}满足,且a1=8.(1)证明:数列为等比数列;(2)设,记数列{b n}的前n项和为T n,若对任意n∈N∗,m≥T n恒成立,求m的取值范围.2.答案和解析1.【答案】C解:设等差数列{a n }的公差为d , ∵a 1+a 5=10,a 8=3a 3,∴2a 1+4d =10,a 1+7d =3(a 1+2d), 解得a 1=1,d =2. ∴S 10=10a 1+10×92d =10+90=100.2.【答案】C解:由题意,可得S nT n=7n+23n+1,则a n b n=2a n2b n=n(a 1+a 2n−1)2n(b 1+b 2n−1)2=S2n−1T 2n−1=14n+162n =7n+8n=7+8n ,经验证,知当n =1,2,4,8时,a nb n 为整数, 即使a nb n 为整数的正整数n 的个数是4.3.【答案】A解:数列0,0,0,…,0,…是无穷数列,从第二项开始起,每一项与它前一项的差都等于常数0,符合等差数列的定义,所以,数列0,0,0,…,0,…是等差数列,根据等比数列的定义可知,等比数列中不含有为0的项,所以,数列0,0,0,…,0,…不是等比数列. 故选A .4.【答案】B解:∵等比数列{a n }中,每项均是正数,a 5a 6=81, ∴a 5a 6=a 4a 7=a 3a 8=a 2a 9=a 1a 10=81, ∴log 13a 1+log 13a 2+⋯+log 13a 10.,=log 13(a 5a 6)5,=5log 1381,=−20.解:该数列的通项公式为a n =(2n −1)+12n ,∴S n =[1+3+5+⋯+(2n −1)]+(12+122+123+⋯+12n )=n [1+(2n −1)]2+12(1−12n )1−12=n 2+1−12n.6.【答案】B解:由S n =2a n+1可得当n >1时,S n−1=2a n ,,两式相减可得: 当n >1时,s n −s n−1=a n =2a n+1−2a n , 所以a n+1=32a n ; 因为a 1=1,所以a n =(32)n−1.故选B .7.【答案】A解:∵a n+1−a n =1n (n+1)=1n −1n+1,∴a 2−a 1=1−12,a 3−a 2=12−13,...,a n −a n−1=1n−1−1n , 以上n −1式相加,得a n −a 1=1−1n , ∵a 1=12,∴a n =32−1n . 故选A .8.【答案】A解:设√2+1与√2−1的等比中项是x ,则满足x 2=(√2+1)(√2−1)=(√2)2−1=2−1,则x =1或x =−1,9.【答案】B 10.【答案】C解:设a n =11+2+3+⋯+n =2(n+1)n =2(1n −1n+1),∴该数列的前n 项和为S n =2(1−12+12−13+⋯+1n −1n+1)=2nn+1, 令2nn+1=95,解得n =9.解:∵在数列{a n }中,a 1=12,a n =1−1a n−1(n ≥2,n ∈N +),∴a 2=1−1a 1=1−2=−1,a 3=1−1−1=2, a 4=1−12=12,∴{a n }是周期为3的周期数列, ∴2020=3×673+1, ∴a 2020=a 1=12.12.【答案】C解:∵点P(a n ,a n+1)(n ∈N ∗)在直线x −y +1=0上∴a n −a n+1+1=0∴数列{a n }是以1为首项,以1为公差的等差数列.∴a n =n∴s n =n(n +1)2∴1s n =2n(n +1)=2(1n −1n +1) 1S 1+1S 2+1S 3+⋯+1S n =2(1−12+12−13+⋯+1n −1n +1)=2n n +113.【答案】C解:由an+1n+1=a n n+ln(1+1n ),设ann =b n ,b 1=a 11=2,则a n+1n+1=b n+1,可得b n+1−b n =ln(n+1n)那么:b n −b n−1=ln(nn−1),n ≥2,…b 2−b 1=ln 21,累加可得:b n −b 1=ln(21×32×……×nn−1)=lnn . ∴b n =b 1+lnn =2+lnn ,当n =1也满足. 则a n =n(2+lnn)14.【答案】B因为a2=3,a3=5,所以a1=1,d=2,所以a6=a1+5d=11.15.【答案】B解:a n=(−1)n(3n−2),则a1+a2+⋯+a2018=(−1+4)+(−7+10)+(−13+16)+⋯+(−6049+6052)=3+3+⋯+3=3×1009=3027.16.【答案】B解:∵a5a6=a4a7,∴a5a6+a4a7=2a5a6=18,∴a5a6=9,∴log3a1+log3a2+⋅⋅⋅+log3a10=log3(a5a6)5=5log39=10.17.【答案】C解:∵数列{a n}的通项公式是a n=√n+√n+1=√n+1−√n,∴其前n项的和为S n=(√2−1)+(√3−√2)+⋯+√n+1−√n=√n+1−1,即√n+1−1=10,则n+1=121,即n=120,18.【答案】A解:根据题意,等差数列{a n}中,S100>0,S101<0,则有S100=(a1+a100)×1002=50(a1+a100)=50(a50+a51)>0,则有a50+a51>0;又由S101=(a1+a101)×1012=101a51<0,则有a51<0;则有a50>0,若a n a n+1<0,必有n=50;19.【答案】−1n解:∵a n+1=S n S n+1,∴a n+1=S n+1−S n=S n S n+1,∴S n+1−S nS n+1S n =1S n−1S n+1=1,即1S n+1−1S n=−1,又a1=−1,即1S1=1a1=−1,∴数列{1S n }是以首项和公差均为−1的等差数列,∴1S n=−1−1(n−1)=−n,∴S n=−1n,解:设等比数列{a n }的公比为q , 因为S 4=a 1(1−q 4)1−q =14,S 8=a 1(1−q 8)1−q=56,所以1−q 41−q 8=14,所以1+q 4=4,所以q 4=3, 又因为a 1(1−q 4)1−q=14,所以a 11−q =−7,所以S 16=a 1(1−q 16)1−q=a 11−q[1−(q 4)4]=560.故答案为560.21.【答案】(−3,+∞)解:解法一(定义法)因为{a n }是递增数列,所以对任意的n ∈N ∗,都有a n+1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理得2n +1+λ>0,即λ>−(2n +1) (∗). 因为n ≥1,所以−(2n +1)≤−3,要使不等式(∗)恒成立,只需λ>−3.解法二(函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =−λ2,要使数列{a n }为递增数列,只需使定义在正整数集上的函数f (n )为增函数,故只需满足f (1)<f (2),即λ>−3.22.【答案】a n ={3,n =12n +2 ,n ≥2,n ∈Z解:∵数列{a n }的前n 项和为S n ,且S n =n 2+3n −1, ∴a 1=S 1=3,当n ≥2时,a n =S n −S n−1=n 2+3n −1−[(n −1)2+3(n −1)−1]=2n +2,则{a n }的通项公式为a n ={3,n =12n +2 ,n ≥2,n ∈Z,23.【答案】a n ={−1,n =1,2n−1,n ≥2解:当n ≥2时,a n =S n −S n−1=2n−1,当n =1时,a 1=S 1=−1,所以a n ={−1,n =1,2n−1,n ≥2.24.【答案】4673解:因为a 1+2a 2+3a 3+⋯+na n =n 2a n ,所以当n ≥2时,a 1+2a 2+3a 3+⋯+(n −1)a n−1=(n −1)2a n−1,所以na n =(n −1)a n−1=⋯=2a 2=a 1,由a 1=12可知a n =a 1n=12n,所以a 2019=122019=4673, 故答案为4673.25.【答案】3116解:a 1+2a 2+⋯+2n−2a n−1+2n−1a n =n ,➀ 当n ≥2时,a 1+2a 2+⋯+2n−2a n−1=n −1,➀ ➀−➀,得2n−1a n =1,即a n =12n−1, ➀ 当n =1时,a 1=1,满足➀式,∴{a n }是以a 1=1为首项,q =12为公比的等比数列,通项公式为a n =12, ∴S 5=1×[1−(12)5]1−12=2−(12)4=3116.26.【答案】a n =2(n +1)解:由f(x)+f(1−x)=4,可得自变量的和为1,则函数值的和为4, 由a n =f(0)+f(1n )+f(2n )+⋯+f(n−1n )+f(1),a n =f(1)+f(n−1n )+f(n−2n)+⋯+f(1n )+f(0),相加可得2a n =[f(0)+f(1)]+[f(1n )+f(n−1n)]+⋯+[f(1)+f(0)]=4+4+⋯+4=4(n +1), 解得a n =2(n +1). 故答案为a n =2(n +1).27.【答案】3027解:∵f (x )+f (1−x )=3x−22x−1+3(1−x )−22(1−x )−1=3x−22x−1+1−3x1−2x =6x−32x−1=3, 设S =f(12019)+f(22019)+f(32019)+⋯+f(20182019)………①, 则S =f(20182019)+f(20172019)+f(20162019)+⋯+f(12019) ………②, ①+②得:2S =2018[f(12019)+f(20182019)]=2018×3, S =1009×3=3027,28.解:(1)当n =1时,3S 1=2a 1+1,可得a 1=1,当n ≥2时,由{3S n =2a n +13S n−1=2a n−1+1得3(S n −S n−1)=2a n −2a n−1,整理得a n =−2a n−1, 所以数列{a n }是公比为−2,首项为1的等比数列 从而a n =(−2)n−1.(2)由b n =(n +1)a n ,得b n =(n +1)×(−2)n−1,则:T n =2×(−2)0+3×(−2)1+4×(−2)2+⋯+(n +1)×(−2)n−1,……① 那么:−2T n =2×(−2)1+3×(−2)2+⋯+n ×(−2)n−1+(n +1)×(−2)n ,……② 由①−②得:3T n =2×(−2)0+(−2)1+(−2)2+⋯+(−2)n−1−(n +1)×(−2)n =1+1−(−2)n 1−(−2)−(n +1)×(−2)n =43−(n +43)×(−2)n ,从而:T n =49−3n+49×(−2)n .29.解:(1)设等差数列{a n }的公差为d ,因为a 3=3,a 2+2,a 4,a 6−2顺次成等比数列,所以a 42=(a 2+2)(a 6−2),所以(3+d)2=(5−d)(1+3d),化简得d 2−2d +1=0,解得d =1.所以a 1=a 3−2d =1,所以a n =a 1+(n −1)d =1+(n −1)×1=n . (2)由(1)得b n =(−1)n a 2n+1a n a n+1=(−1)n 2n+1n(n+1)=(−1)n (1n +1n+1),所以S 2n =b 1+b 2+b 3+⋯+b 2n =−(1+12)+(12+13)−(13+14)+⋯+(12n +12n+1)=−1+12n+1=−2n2n+1.30.(1)证明:∵a 1≠0,且有a n+1=2ana n +2,(n ∈N ∗), ∴ a n ≠0,又∵b n =1a n,∴b n+1=1an+1=a n +22a n=1a n+12=b n +12,即b n+1−b n =12,且b 1=1a 1=1,∴ 数列{b n }是首项为1,公差为12的等差数列. (2)解:由(1)知b n =1+n−12=n+12,即1a n=n+12⇒a n =2n+1.31.解:(1)设等差数列{a n }的公差为d ,由S 9=9a 5=81,得a 5=9, 又由a 3+a 5=14,得a 3=5, 由上可得等差数列{a n }的公差d =2, ∴a n =a 3+(n −3)d =2n −1;(2)证明:由题意得,b n=1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1).所以T n=12(1−13+13−15+⋯+12n−1−12n+1)=12(1−12n+1)<12.32.解:(1)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3,两式相减得a n+12−a n2+2(a n+1−a n)=4a n+1,即2(a n+1+a n)=a n+12−a n2=(a n+1+a n)(a n+1−a n),∵a n>0,∴a n+1−a n=2,∵a12+2a1=4a1+3,∴a1=−1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n−1)=2n+1;(2)∵a n=2n+1,∴b n=1a n a n+1=1 (2n+1)(2n+3)=12(1 2n+1−12n+3),∴数列{b n}的前n项和T n=12(13−15+15−17+⋯+12n+1−12n+3)=12(13−12n+3)=n3(2n+3).33.解:(Ⅰ)当n=1时,a2=a1+2,当n=2时,a3=a2+4=a1+6,∵数列{a n}是等比数列,∴a22=a1a3,即(a1+2)2=a1(a1+6),解得a1=2.∴q=a2a1=42=2,∴a n=a1q n−1=2×2n−1=2n;(Ⅱ)∵b n=log2a na n+1=n2n+1,∴S n=122+223+324+⋯+n2n+1①,∴12S n=12+22+32+⋯+n2②,由①−②得12S n=122+123+124+⋯+12n+1−n2n+2=122(1−12n )1−12−n 2n+2 =12−12n+1−n 2n+2 ∴S n =1−n+22n+1.34.(1)证明:当n ≥2时,b n −b n−1=1a n −1−1a n−1−1=12−1a n−1−1−1an−1−1=a n−1−1a n−1−1=1, 所以数列{b n }为等差数列, 且首项为1a1−1=−52,公差为1;(2)解:由(1)知,所以1an−1=n −72=2n−72,故a n =1+22n−7=2n−52n−7.35.解:(1)证明:因为数列{a n }满足,所以a n+1=2a n −2,整理得a n+1−2=2(a n −2), 因为a 1−2=6≠0且a n+1−2a n −2=2为常数,所以数列是以6为首项,2为公比的等比数列;(2)解:由(1)知a n −2=6·2n−1,即a n =3·2n +2, 所以b n =(−1)n a n(2n +1)(2n+1+1)=(−1)n (12n +1+12n+1+1)当n 为偶数时,;当n 为奇数时,;当n 为偶数时,是递减的,此时当时,T n 取最大值29,则m ⩾−29;当n 为奇数时,是递增的,由上式易得到T n <−13,则m ⩾−13. 综上,m 的取值范围是[−29,+∞).。
数列的概念基础练习题
一、数列的概念选择题1.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .122.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D3.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯4.已知数列{}n a 的前n 项和为()*22nn S n =+∈N ,则3a=( )A .10B .8C .6D .45.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+6.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+ B .21n +C .2(1)1n -+D .2n7.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项8.数列23451,,,,,3579的一个通项公式n a 是( ) A .21nn + B .23nn + C .23nn - D .21nn - 9.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞10.数列{}n a 满足 112a =,111n na a +=-,则2018a 等于( )A .12B .-1C .2D .311.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21112.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .1113.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4514.设数列{},{}n n a b 满足*172700,,105n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >B .43<b bC .33>a bD .44<a b15.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16D .1216.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .11217.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个18.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-19.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348B .1358C .1347D .135720.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .5二、多选题21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=22.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .223.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .425.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .326.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >27.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =28.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =29.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 30.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥31.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列32.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <33.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <34.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+35.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.2.A解析:A 【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】10a =,1n a +1n =时,2a 2n =时,3a 3n =时,4a ; ∴ 数列{}n a 的周期是320206733110a a a ⨯+∴===故选:A. 【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.3.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.4.D解析:D 【分析】根据332a S S =-,代入即可得结果. 【详解】()()3233222224a S S =-=+-+=.故选:D. 【点睛】本题主要考查了由数列的前n 项和求数列中的项,属于基础题.5.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a .12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅, 34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.6.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.7.B解析:B根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.8.D解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.9.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.10.B【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.11.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.12.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.13.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.14.C解析:C 【分析】 由题意有1328010n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:1328010n n a a +=+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】本题考查了根据数列间的递推关系比较项的大小,属于简单题.15.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===,因为21212S a a =+=,所以211122a =-=-. 故选:A16.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n n a a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;17.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列;(2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.18.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.19.C解析:C 【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案 【详解】解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+= 故选:C20.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B本题考查了利用数列的递推关系求项,属于简单题二、多选题 21.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.22.ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立,解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立,由12+n 递减,且1223n <+≤,所以2a -≤,即2a ≥-,当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.23.ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.24.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减,可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.25.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.26.ABC 【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.27.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.28.AD 【分析】对于,作差后利用等差数列的通项公式运算可得答案;对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案; 对于,由求出及解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.29.AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.30.AB 【分析】根据等差数列的性质及可分析出结果. 【详解】 因为等差数列中, 所以,又, 所以,所以,,故AB 正确,C 错误; 因为,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.31.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.32.ABD 【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案. 【详解】由,可得,故B 正确; 由,可得, 由,可得,所以,故等差数列是递减数列,即,故A 正确; 又,所以,故C 不正确解析:ABD 【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()117179171702a a S a +==<,故D 正确.故选:ABD. 【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 33.AC 【分析】将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由,可得,令, ,所以是奇函数,且在上单调递减,所以, 所以当数列为等差数列时,;解析:AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112xf x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题34.AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.35.AD 【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:解析:AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。
高三第一轮复习数列基础练习题
/ 8 高三第一轮复习数列基础练习题 敕章知识点小结 等差数列 1相关公式: (1) 定义:),1(1为常数dndaann(2)通项公式:dnaan)1(1 (3)前n项和公式:dnnnaaanSnn2)1(2)(11(4)通项公式推广:dmnaamn)( 2.等差数列}{na的一些性质 (1)对于任意正整数n,都有121aaaann (2)}{na的通项公式)2()(2112aanaaan (3)对于任意的整数srqp,,,,如果srqp,那么srqpaaaa (4)对于任意的正整数rqp,,,如果qrp2,则qrpaaa2 (5)对于任意的正整数n>1,有112nnnaaa (6)对于任意的非零实数b,数列}{nba是等差数列,则}{na是等差数列 (7)已知}{nb是等差数列,则}{nnba也是等差数列 (8)}{},{},{},{},{23133122nnnnnaaaaa等都是等差数列 (9)nS是等差数列na的前n项和,则kkkkkSSSSS232,, 仍成等差数列,即)(323mmmSSS (10)若)(nmSSnm,则0nnS(11)若pSqSqp,,则)(qpSqp (12)bnanSn2,反之也成立 、等比数列 1相关公式: (1)定义:)0,1(1qnqaann (2)通项公式:11nnqaa (3)前n项和公式:1q 1)1(1q 11qqanaSnn (4)通项公式推广:mnmnqaa 2.等比数列}{na的一些性质
高中数学数列基础练习及参考答案
高中数学数列基础练习及参考答案一、填空题1. 已知等差数列的首项为5,公差为3,求第10项。
解:首项 a1 = 5,公差 d = 3,要求第10项 an,可以使用等差数列通项公式 an = a1 + (n-1)d。
将已知的数值代入:an = 5 + (10-1)3 = 5 + 9 × 3 = 5 + 27 = 32。
2. 某等差数列的前四项依次是4, 7, 10, 13,求公差。
解:已知数列的前四项分别为4, 7, 10, 13,设公差为d。
根据等差数列的性质,第2项减去第1项等于公差,第3项减去第2项仍然等于公差,以此类推。
则可得到以下方程组:7 - 4 = d10 - 7 = d13 - 10 = d解以上方程组可得公差 d = 3。
3. 某等差数列的前四项和为30,公差为2,求首项。
解:已知数列的前四项和为30,公差为2,设首项为a1。
根据等差数列的性质,可得到以下方程:(1/2)[2a1 + 3(2a1+2)] = 30化简得:[2an + 3an + 6] = 60整理得:5an = 54则 an = 10.8因为 a1 = 10.8 - 3(2) = 4.8,所以首项为4.8。
二、选择题1. 若等差数列的首项为3,公差为2,求第6项的值。
A. 8B. 11C. 13D. 15解:根据等差数列通项公式,第6项 an = a1 + (n-1)d = 3 + (6-1)2 =3 + 5 × 2 = 3 + 10 = 13。
所以选项 C. 13 正确。
2. 若等差数列的公差为-4,前五项的和为10,求该等差数列的首项。
A. -5B. -4C. -2D. 1解:设等差数列的首项为 a1,则根据等差数列和的公式,前五项和为:S5 = (5/2)[2a1 + 4d] = 10化简得:a1 + 2d = 2代入公差d为-4,得到 a1 - 8 = 2整理得:a1 = 10所以选项 D. 1 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列数学练习题一、单选题1.数列的一个通项公式是()A.( B.(C.()( D.(2.已知数列中,,,则A. 1 B. 2 C. 3 D. 43.数列{}中,,则()A. B. C. D.4.设等差数列的前项和为,若,,则的最大值为()A. 2 B. 3 C. 4 D. 55.已知等差数列中,若,则它的前7项和为A. 120 B. 115 C. 110 D. 1056.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q为 ( )A. B. 3 C.± D.±37.设公差为-2的等差数列,如果a1+a4+a7+…+a97=50,那么a3+a6+a+…+a99等于( )9A.-182 B.-78C.-148 D.-828.在等差数列中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于( ) A. 45 B. 75C. 180 D. 3009.已知数列的通项公式为=n2-n-50,则-8是该数列的( ) A.第5项 B.第6项C.第7项 D.非任何一项10.等差数列的公差为2,若,,成等比数列,则的前8项和A . 72B . 56C . 36D . 16 二、填空题11.已知等差数列 中,已知 ,则 =________________. 12.若数列 的前 项和为 ,则 的值为__________.13.已知(1,1),(3,5)是等差数列 图象上的两点,则 ________________. 14.在等差数列 中, , ,则公差 __________. 15.在等差数列{}n a 中, 347a a +=,则126a a a +++=_______.16.等差数列{}n a 中,已知6110a a +=,且公差d 0>,则其前n 项和取最小值时的n 的值为______.三、解答题17.已知数列 的通项公式为 ,求证:数列 是等差数列; 18.等比数列 中,已知 . (1)求数列 的通项公式;(2)若 分别为等差数列 的第3项和第5项,试求数列 的通项公式及前 项和 .19.已知等差数列 满足 , . (1)求首项及公差; (2)求 的通项公式.参考答案1.C【解析】【分析】观察数列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,故可得数列的通项公式.【详解】观察数列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,=(n∈Z*).故可得数列的通项公式an故选:C.【点睛】本题考查了数列的概念及简单表示法,考查了数列的通项公式的求法,是基础题.2.B【解析】【分析】根据题意将,代入递推表达式求解即可【详解】,,故选B【点睛】根据递推表达式求前面的项,直接代入求解。
3.A【解析】【分析】用并项求和法求和.【详解】,故选A. 【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.4.C【解析】【分析】由,可以得到,,利用可得的最大值.【详解】因为,所以,又,所以,而,故,当且仅当等号成立,所以的最大值为4,选C.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.5.D【解析】【分析】由题得,即可得解.【详解】由题得=105.故答案为:D【点睛】(1)本题主要考查等差数列的求和和性质,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 等差数列中,如果m+n=p+q,则,特殊地,2m=p+q时,则,是的等差中项.6.B【解析】【分析】由已知条件设出首项与公差,利用等比中项列式求出其关系,表示出第2、3项,中作比即可求出公比.【详解】设等差数列公差为d,首项为,则,,,由等比中项公式:,化简可得:.所以:,,作比可得公比为:3.故选B.【点睛】本题考查等差数列的通项以及等比中项,根据题意列出等量关系式,由公比的定义即可求出结果.7.D【解析】【分析】由两式的关系可知后面式子的每一项均与前面式子差2d,由此即可求出结果. 【详解】由两式的性质可知:,则.故选D.【点睛】本题考查数列的基本性质,由两式之间的规律结合数列的公差的意义即可求出结果,注意项数的计算.8.C【解析】【分析】由数列的基本性质,,代入已知条件即可解得结果.【详解】由等差数列的性质可知:,代入已知条件可得:,解得:.故选C.【点睛】本题考查等差数列基本性质,脚标之和相等,则该项的和也相等,注意等差中项公式的使用.9.C【解析】【分析】令,解出正整数n即为数列的第几项.【详解】由题意,令,解得或(舍),即为数列的第几项.故选C.【点睛】本题考查数列通项公式的应用,熟练掌握数列的基本性质,n为数列的项数. 10.A【解析】【分析】a 2,a4,a8成等比数列,可得=(a1+2)(a1+14),解得:a1.再利用求和公式即可得出.【详解】∵a2,a4,a8成等比数列,∴=a2a8,可得=(a1+2)(a1+14),化为:a1=2.则{an}的前8项和2×8+×2=72.故选:A.【点睛】本题考查了等差数列与等比数列的通项公式、求和公式,考查了推理能力与计算能力,属于基础题.11.54【解析】试题分析:∵等差数列,∴.考点:等差数列前项和.12.24【解析】【分析】由,根据求出、的值,从而可得结果.【详解】因为数列的前项和为,所以,,,故答案为.【点睛】本题主要考查数列的通项公式与前项和公式之间的关系,属于中档题. 已知数列前项和与第项关系,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意的情况.13.【解析】【分析】利用等差数列的通项公式及其性质即可得出【详解】∵(1,1),(3,5)是等差数列{a n }图象上的两点. ∴d==2,a 1=1. ∴a n =a 1+(n ﹣1)d=2n ﹣1. 【点睛】本题考查了等差数列的通项公式及其性质、等差数列与一次函数之间的关系,属于基础题. 14. .【解析】分析:根据等差数列中的基本量间的关系求解可得结论. 详解:由题意得.点睛:在等差数列 中,若公差为 ,则,注意此结论和过两点的直线的斜率公式间的联系. 15.21【解析】由题意,根据等差数列通项公式的性质,可得1625347a a a a a a +=+=+=, 所以()12345634321a a a a a a a a +++++=+=,故正确答案为21. 16.8【解析】6110a a +=12150a d ∴+=,则1152a d =-()()()2111158642222n n n n n d S na d nd d n --⎡⎤∴=+=-+=--⎣⎦即()28642n d S n ⎡⎤=--⎣⎦ 0d > ,由二次函数的对称轴为8n =可知,当8n =时, n S 取最小值。
故答案为8 17.见解析 【解析】 【分析】根据等差数列的定义判断即可。
【详解】因为,所以,所以,所以数列是等差数列.【点睛】等差数列的常用判断方法有:定义法,等差中项法,通项公式法和前n项和公式法。
18.(1) .(2) .【解析】试题分析:(1)本题考察的是求等比数列的通项公式,由已知所给的条件建立等量关系可以分别求出首项和公比,代入等比数列的通项公式,即可得到所求答案。
(2)由(1)可得等差数列的第3项和第5项,然后根据等差数列的性质可以求出等差数列的通项,然后根据等差数列的求和公式,即可得到其前项和。
试题解析:(Ⅰ)设的公比为由已知得,解得,所以(Ⅱ)由(Ⅰ)得,,则,设的公差为,则有解得从而所以数列的前项和考点:等差、等比数列的性质视频19.(1)首项为4,公差为2(2)},运用等差数列的通项公式,解方程【解析】分析:设公差为d的等差数列{an可得首项和公差,即可得到所求;(1)设等差数列的公差为.因为,所以.又因为,所以,故.(2)所以.点睛:本题考查等差数列的通项公式的运用,考查方程思想和运算能力,属于基础题.。