统计学习题答案(袁卫_庞皓_曾五一_贾俊平_主编的统计学_详细的,很全)
统计学课后题答案(袁卫_庞皓_曾五一_贾俊平_)
版权归wagxjysys所有违者必究第1章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。
3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为4.536 kg。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。
第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
袁卫庞皓曾五一贾俊平主编的统计学第二版课后谜底
袁卫庞皓曾五一贾俊平主编的统计学第二版课后谜底附录1:各章练习题答案第1章绪论(略)第2章统计数据的描述2.1(1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B 2121C3232D 1818E1515合计100100 (3)条形图(略)2.2(1)频数分布表如下:40个企业按产品销售收入分组表向上累积向下累积按销售收入分组(万元)企业数(个)频率(%)企业数频率企业数频率100以下100~110110~120120~130130~140140以上591274312.522.530.017.510.07.55142633374012.535.065.082.592.5100.04035261473100.087.565.035.017. 57.5合计40100.0————(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40100.02.3频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~3030~354610.015.0通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。
在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求等问题敷设原在安装料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编工作术指导情况等情况电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试装置调准确灵35~4040~4545~50159637.522.515.0合计40100.0直方图(略)。
统计学教材(贾俊平版)课后习题详细答案
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学教材课后答案 第三版 袁卫 庞皓 曾五一 贾俊平主编
第四章、参数估计1.简述评价估计量好坏的标准答:评价估计量好坏的标准主要有:无偏性、有效性和相合性。
设总体参数θ的估计量有1ˆθ和2ˆθ,如果()1ˆE θθ=,称1ˆθ是无偏估计量;如果1ˆθ和2ˆθ是无偏估计量,且()1ˆD θ小于()2ˆD θ,则1ˆθ比2ˆθ更有效;如果当样本容量n →∞,1ˆθθ→,则1ˆθ是相合估计量。
2.说明区间估计的基本原理答:总体参数的区间估计是在一定的置信水平下,根据样本统计量的抽样分布计算出用样本统计量加减抽样误差表示的估计区间,使该区间包含总体参数的概率为置信水平。
置信水平反映估计的可信度,而区间的长度反映估计的精确度。
3.解释置信水平为95%的置信区间的含义答:总体参数是固定的,未知的,置信区间是一个随机区间。
置信水平为95%的置信区间的含义是指,在相同条件下多次抽样下,在所有构造的置信区间里大约有95%包含总体参数的真值。
4.简述样本容量与置信水平、总体方差、允许误差的关系答:以估计总体均值时样本容量的确定公式为例:()22/22z n E ασ= 样本容量与置信水平成正比、与总体方差成正比、与允许误差成反比。
练习题:●1.解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25,(1)样本均值的抽样标准差σ5=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2Z 6×0.7906=1.5496。
●2.解:(1)已假定总体标准差为σ=15元,则样本均值的抽样标准误差为x σ15=2.1429(2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E=α/2Z 6×2.1429=4.2000。
(3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96,这时总体均值的置信区间为±α/2x Z 0±4.2=124.2115.8 可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。
统计学习题答案(袁卫主编第三版)
为大家谋福利,低价供应第1章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。
3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为4.536 kg。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。
第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:C B C ED B C C B C(1) 指出上面的数据属于什么类型;用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
解:(1)由于表2.21中的数据为服务质量的等级,可以进行优劣等级比较,但不能计算差异大小,属于顺序数据。
统计学(第三版袁卫_庞皓_曾五一_贾俊平主编)各章节课后习题答案
附录1:各章练习题答案第1章绪论(略)第2章统计数据的描述2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.7 (1(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。
2.82.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。
(2)17.21=s (万元)。
2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
统计学(第三版)课后答案 袁卫等主编
统计学第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
3. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
统计学(第四版)袁卫 庞皓 贾俊平 杨灿 统计学 第七章练习题参考解答
STATISTICS
单击练此习处题编第部辑七分母章版参标考题解样答式
练习题7.1
1. 设销售收入 为自变量,销售成本 为因变量。现已根据某百货
公司某年12个月的有关资料计算出以下数据:(单位:万元)
(xt x)2 425053.73 x 647.88
(yt y)2 262855.25
F (k 1, n k) F0.05 (1, 26) 2.91
F=17.70503 F0.05 (1, 26) 2.91
所以y和 联合起来对最终消费有显著影响,即回归方 程整体上是显著的。
练习题7.7
下表给出y对x2和x3回归的结果:
离差来源
平方和(SS) 自由度(df)
由F=58.20479,大于临界值 F0.05 (4 1, 22 4) 3.16 ,
说明模型在整体上是显著的。
练习题7.5
为进一步研究前期的消费对本期消费的影响,准备拟合以下
形式的消费函数: ct 1 yt 2ct1 ut
式中:ct 为t 期的消费;ct1 为 t-1期的消费;yt 为国民总收入。
t 2 (n 2) t0.025 (10) 2.2281 t 245.71875 t0.025 (8) 2.2281
H0 : 0 ,检验说明x对y有显著影响.
(4) 假定下年1月销售收入为800万元,利用拟合的回归方 程预测其销售成本,并给出置信度为95%的预测区间
y 549.8
(xt x)(yt y) 334229.09
(1)拟合简单线性回归方程,并对方程中回归系数的经济意义作 出解释。
统计学(贾俊平)第五版课后习题答案(完整版)
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
【VIP专享】统计学(第三版)课后答案 袁卫等主编
打分,形成匹配样本。 (4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述
思考题 1 描述次数分配表的编制过程 答:分二个步骤: (1) 按照统计研究的目的,将数据按分组标志进行分组。 按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合 并成一个组,这取决于分组的粗细。 按数量标志进行分组,可分为单项式分组与组距式分组 单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间) 作为一个组。 统计分组应遵循“不重不漏”原则 (2) 将数据分配到各个组,统计各组的次数,编制次数分配表。
显著性水平通常是人们事先给出的一个值用于检验结果的可靠性度量但确定了显著性水平等于控制了犯第一错误的概率但犯第二类错误的概率却是不确定的因此作出拒绝原假设的结论其可靠性是确定的但作出不拒绝原假设的结论其可靠性是难以控制的
统计学 第一章 1. 什么是统计学?怎样理解统计学与统计数据的关系? 答:统计学是一门收集、整理、显示和分析统计数据的科学。统计学与统计数 据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在 于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存 在意义。
7 为什么要计算离散系数? 答:在比较二组数据的差异程度时,由于方差和标准差受变量值水平和计量单 位的影响不能直接比较,由此需计算离散系数作为比较的指标。
练习题:
1. 频数分布表如下:
服务质量等级评价的频数分布
服务质量等级 家庭数(频率)
A
B
统计学贾俊平课后习题答案完整版
统计学贾俊平课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.3频数分布表如下2.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析) 第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =(万元);M e= 。
统计学第三版练习+答案 袁卫 庞皓
(2).P(X>2)=1-P(X≤2)=C6 0 0.20 0.86 + C6 1 0.21 0.85 + C62 0.22 0.84 = 0.90112
5
6
第五章
抽样分布课堂练习
抽样分布:全部可能样本统计量的概率分布叫做抽样分布。以下是一个极端的例子: ▲ 案例 1:假定一个实验小组有四人 N=4,其写作成绩分别为:21、20、19、18(分) (25 为满分) 。若样本容量 n=2,则全部可能样本(不重复抽样)是 6 个,6 个样本及它们 的平均数、标准差如下表: 21+20; 21+19; 21+18; 20+19; 20+18; 19+18
x ~N(50,18 /36),P(48≤ x <52)=2Ф0(2/3)-1=„„
2
▲习题 3:从阿根廷、加拿大、美国到货三批玉米,分别为 600 包、6000 包、60000 包。 合同规定三批玉米平均每包重量都是 80 公斤,标准差都是 4 公斤。要求: (1)若从每批 玉米中都抽取 300 包为样本,分别计算它们的平均数分布。有何启示?(要求都使用修 正系数) (2)分别计算三批玉米平均重量少于 79.5 公斤的概率?
750 1750 2700 9625 4875 3000
22700 263.9535
4:极差 某商场两类商品半年净收入如下: SE : (万美元/月) 23 PM: (万美元/月)29 5:方差与标准差 (1) 总体方差与标准差 某项心理测试(被试者年龄 18—35 岁)分数如下表:
测试分数(分)被试者 f 组中值 40—60 60—80 80—100 100—120 120—140 140—160 160—180 合计 1 4 12 16 9 5 3 50 50 70 90 110 130 150 Xf 50 280 1080 1760 1170 750 (X-112 )2f
统计学课后题答案(袁卫庞皓曾五一贾俊平)
第1章绪论5.简要说明抽样误差和非抽样误差。
答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
b5E2RGbCAP6.一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为 4.536 kg。
要求:p1EanqFDPw(1>描述总体;(2>描述研究变量;(3>描述样本;(4>描述推断。
答:(1>总体:最近的一个集装箱内的全部油漆;(2>研究变量:装满的油漆罐的质量;(3>样本:最近的一个集装箱内的50罐油漆;(4>推断:50罐油漆的质量应为4.536×50=226.8kg。
7.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝实验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝实验(即在品尝实验中,两个品牌不做外观标记>,请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:DXDiTa9E3d(1>描述总体;(2>描述研究变量;(3>描述样本;(4>描述推断。
答:(1>总体:市场上的“可口可乐”与“百事可乐”(2>研究变量:更好口味的品牌名称;(3>样本:1000名消费者品尝的两个品牌(4>推断:两个品牌中哪个口味更好。
第2章统计数据的描述思考题4. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
统计学(贾俊平)第五版课后习题答案(完整版)
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学教材(贾俊平版)课后习题详细答案
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(贾俊平)第五版课后习题答案(完整版)
亲爱的,一章一章来,肯定能弄完的,你是最棒的!统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
708 729 694 681 695 685 706 661 735 665
668 710 693 697 674 658 698 666 696 698
706 692 691 747 699 682 698 700 710 722
(1)描述总体;
(2)描述研究变量;
(3)描述样本;
(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;
(2)研究变量:装满的油漆罐的质量;
(3)样本:最近的一个集装箱内的50罐油漆;
(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。要求:
(2)频数分布表如下:
服务质量等级评价的频数分布
服务质量等级 家庭数(频数) 频率%
A 14 14
B 21 21
C 32 32
D 18 18
E 15 15
合计 100 100
(3)条形图的制作:将上表(包含总标题,去掉合计栏)复制到Excel表中,点击:图表向导→条形图→选择子图表类型→完成(见Excel练习题2.1)。即得到如下的条形图:
(1)描述总体;
(2)描述研究变量;
(3)描述样本;
(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”
(2)研究变量:更好口味的品牌名称;
(3)样本:1000名消费者品尝的两个品牌
(4)推断:两个品牌中哪个口味更好。
第2章 统计数据的描述——练习题
●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。调查结果如下:
直方图:将上表(包含总标题,去掉合计栏)复制到Excel表中,点击:图表向导→柱形图→选择子图表类型→完成。即得到如下的直方图:(见Excel练习题2.3)
●4.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:
700 716 728 7“上限不在组内”的原则,用划记法(或Excel排序法,见Excel练习题2.5)统计各组内数据的个数——天数,并填入表内,得到频数分布表如下表;
按照“上限不在组内”的原则,用划记法统计各组内数据的个数——企业数,也可以用Excel进行排序统计(见Excel练习题2.2),将结果填入表内,得到频数分布表如下表中的左两列;
将各组企业数除以企业总数40,得到各组频率,填入表中第三列;
在向上的数轴中标出频数的分布,由下至上逐组计算企业数的向上累积及频率的向上累积,由上至下逐组计算企业数的向下累积及频率的向下累积。
713 699 725 726 704 729 703 696 717 688
(1)利用计算机对上面的数据进行排序;
(2)以组距为10进行等距分组,整理成频数分布表,并绘制直方图;
(3)绘制茎叶图,并与直方图作比较。
解:(1)排序:将全部数据复制到Excel中,并移动到同一列,点击:数据→排序→确定,即完成数据排序的工作。(见Excel练习题2.4)
71 0 0 2 2 3 3 5 6 7 7 8 8 9
72 0 1 2 2 5 6 7 8 9 9
73 3 5 6
74 1 4 7
将直方图与茎叶图对比,可见两图十分相似。
某管理局下属40个企分组表
按销售收入分组(万元) 企业数(个) 频率(%)
先进企业
良好企业
一般企业
落后企业 11
11
9
9 27.5
27.5
22.5
22.5
合计 40 100.0
● 3.某百货公司连续40天的商品销售额如下(单位:万元):
41 25 29 47 38 34 30 38 43 40
为便于计算和分析,确定将数据分为5组,各组组距为5,组限以整5的倍数划分;
为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值24已落在最小组之中,最大值49已落在最大组之中,故将各组均设计成闭口形式;
按照“上限不在组内”的原则,用划记法或用Excel统计各组内数据的个数——天数,(见Excel练习题2.3)并填入表内,得到频数分布表如下表中的左两列;
67 1 3 4 6 7 9
68 1 1 2 3 3 3 4 5 5 5 8 8 9 9
69 0 0 1 1 1 1 2 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 8 9 9
70 0 0 1 1 2 2 3 4 5 6 6 6 7 7 8 8 8 9
(见Excel练习题2.4)
(3)制作茎叶图:以十位以上数作为茎,填入表格的首列,将百、十位数相同的数据的个位数按由小到大的顺序填入相应行中,即成为叶,
得到茎叶图如下:
65 1 8
66 1 4 5 6 8
整理得到频数分布表如下:
40个企业按产品销售收入分组表
按销售收入分组
(万元) 企业数
(个) 频率
(%) 向上累积 向下累积
企业数 频率 企业数 频率
100以下
100~110
110~120
120~130
130~140
140以上 5
9
12
7
4
3 12.5
22.5
将各组天数除以总天数40,得到各组频率,填入表中第三列;
得到频数分布表如下:
某百货公司日商品销售额分组表
按销售额分组(万元) 频数(天) 频率(%)
25~30
30~35
35~40
40~45
45~50 4
6
15
9
6 10.0
15.0
37.5
22.5
15.0
合计 40 100.0
30.0
17.5
10.0
7.5 5
14
26
33
37
40 12.5
35.0
65.0
82.5
92.5
100.0 40
35
26
14
7
3 100.0
87.5
65.0
35.0
17.5
7.5
合计 40 100.0 — — — —
(2)按题目要求分组并进行统计,得到分组表如下:
46 36 45 37 37 36 45 43 33 44
35 28 46 34 30 37 44 26 38 44
42 36 37 37 49 39 42 32 36 35
根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
解:全部数据中,最大的为49,最小的为25,知数据全距为49-25=24;
(2)分组如下:
由于全部数据中,最大的为9,最小的为-25,知数据全距为9-(-25)=34;
为便于计算和分析,确定将数据分为7组,各组组距为5,组限以整5的倍数划分;
为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值-25已落在最小组之中,最大值9已落在最大组之中,故将各组均设计成闭口形式;
A D B C C A E D C B
C B C E D B C C B C
(1) 指出上面的数据属于什么类型;
(2) 用Excel制作一张频数分布表;
(3) 绘制一张条形图,反映评价等级的分布。
解:(1)由于表2.21中的数据为服务质量的等级,可以进行优劣等级比较,但不能计算差异大小,属于顺序数据。
690~700 26 26
700~710 18 18
710~720 13 13
720~730 10 10
730~740 3 3
740~750 3 3
合计 100
100
制作直方图:将上表(包含总标题,去掉合计栏)复制到Excel表中,选择全表后,点击:图表向导→柱形图→选择子图表类型→完成。即得到如下的直方图:
97 88 123 115 119 138 112 146 113 126
(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;
(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
B E C C A D C B A E
D A C B C D E C E E
A D B C C A E D C B
B A C D E A B D D C
C B C E D B C C B C
D A C B C D E C E B
B E C C A D C B A E
B A C D E A B D D C
(2)按题目要求,利用已排序的Excel表数据进行分组及统计,得到频数分布表如下:
(见Excel练习题2.4)
100只灯泡使用寿命非频数分布
按使用寿命分组(小时) 灯泡个数(只) 频率(%)