2017年广东成人高考高起点数学(文)真题【含答案】
2017成人高考高起点文科数学真题和答案解析
本试卷第Ⅰ卷(选择题)和第Ⅱ卷(费选择题)两部分,共4页,时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必先在答题卡上讲姓名、座号、准考证号填写清楚……的准考证号、姓名、考场号和座号。
2、在答第Ⅰ卷时,用2B铅笔将答题卡对应题目的答案标号涂黑,修改时用其他答案。
答案不能答在试卷上。
3、在答第Ⅱ卷时必须使用0.5毫米的黑色签字笔作答,答案必须写在答题卡上,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案,不能用胶带纸和修正带。
不按以上要求作答的答案无效。
4、如需作图,考生应先用铅笔绘图,确认无误后,用0.5毫米的黑色签字笔再描一遍。
5、本试卷中,tanα表示角α的正切,cosα表示角α的余切。
第Ⅰ卷(选择题,共85分)一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
(1)设集合A={0,1},B={0,1,2},则A∩B=A.{0,1}B.{0,2}C.{1,2}D.{0,1,2}答案:A2.函数y=2sinxcosx的最小正周期是A.π/2B.πC.2πD.4π答案:B3.等差数列{an}中,若a1=2,a3=6,a7=A.14B.12C.10D.8答案:A4、若甲:x>1,e2>1,则()。
A.甲是乙的必要条件,但不是乙的充分条件B.甲是乙的充分条件,但不是乙的必要条件C.甲不是乙的充分条件,也不是乙的必要条件D.甲是乙的充分必要条件答案:B5、不等式|2x-3|≤1的解集为()。
A.{x|1≤x≤3}B.{x|x≤-1或x≥2}C.{x|1≤x≤2}D.{x|2≤x≤3}答案:C6、下列函数中,为偶函数的是()。
A.y=log2xB.y=x2+xC.y=6/xD.y=x2答案:D7、点(2,4)关于直线y=x的对称点的坐标是()。
A.(-2,4)B.(-2,-4)D..(-4,-2)答案:C8、将一颗骰子抛掷1次,得到的点数为偶数的概率为()。
2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A. B. C. D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(5分)曲线y=x2+在点(1,2)处的切线方程为.15.(5分)已知α∈(0,),tanα=2,则cos(α﹣)=.16.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算过程.第17~21题为必选题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。
(完整版)2017年成人高考高起专《数学》真题及答案
2017年成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是( )A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a -c>b -cB.|a|>|b|C.a 2>b 2D.ac>bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D. √236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x -y+1=0B.x+y -5=0C.x -y -1=0D.x -2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x -y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。
2017年广东成人高考专升本高等数学(一)真题及答案
♦ 2017年广东成人高考专升本高等数学(一)真题及答案1.当x→0时,下列列变量量是⽆无穷⼩小量量的为 1 A. x 2B. 2xC. sin xD. ln(x e )lim(1 2 )x2. x xA.eB. e1C. e 2D. e2⎧ 1e x , x 0⎫3.若函数 f (x ) ⎪ 2⎪⎩a , x 0, 1⎪ ⎬ ⎪⎭ 在x=0处连续,则常数a=A.0B. 2C.1D.2设函数 f (x ) x ln x ,则 f (e )A.-1B.0C.1.2函数f (x ) x 33x 的极⼩小值为 A.-2 B.0 C.2 D.4⽅方程 x 2 2 y 2 3Z 21 表示的⼆二次曲⾯面是圆锥⾯面 旋转抛物⾯面 球⾯面 椭球⾯面1(2x k ) dx 1 若 0,则常数k=A.-2B.-1C.0D.1设函数f(x)在[a,b]上连续且f(x)>0, 则bf (x ) dx0 abf (x ) dx0 abf (x) dx 0 a∞b f (x ) dx a的符号⽆无法确定x 1 y 2 z 3空间直线 3 A. (3,-1,2)B. (1, -2,3)C. (1,1,-1)D. (1,-1,-1) 1 2 的⽅方向向量量可取为 (1)n已 知 a 为常数,则级数 n 1 n a 2发散 条件收敛 绝对收敛收敛性与a 的取值有关limx 2 11. x 2 sin(x 2) . 曲线yx 12x 1 的⽔水平渐近线⽅方程为 .limf (x )f (1)若函数f(x)满⾜足f’(1)=2,则 x 1 x 21.设函数 f (x ) x 1x , 则f'(x) =.2(sin x cos x ) dx 2.1+ x ∞12 dx16. 0 .已知曲线 y x 2 x 2 的切线L 斜率为3,则L 的⽅方程为.z设⼆二元函数 z ln(x 2y ) ,则x.设f(x)为连续函数,则 x(f (t ) dt ) 0 .x n幂级数 n 0 3n的收敛半径为 .lim求 x 0 e x sin x 1x 2 ⎧⎪x 1t 2 ,⎫⎪dy⎨y 1t 3 ,⎬22.设⎪⎩⎪⎭ ,求 dx已知sinx 是f(x) 的⼀一个原函数,求xf (x ) dx计算xf(x ) dxz2z百度文库资料店设⼆二元函数z x 2 y2 x y 1,求y 及x y百度文库资料店=计算⼆二重积分 D x 2 y 2 dxdy,其中区域 D(x , y ) | xy 24求微分⽅方程y dy x 2dx的通解28.⽤用铁⽪皮做⼀一个容积为V 的圆柱形有盖桶,证明当圆柱的⾼高等于底⾯面直径时,所使⽤用的 铁⽪皮⾯面积最⼩小.1~5 CCBDA 6~10 DCAABy1 参考答案1111.[答案]112.2 13.1 14.2xx 215.216. 2 17.3x-y-3=0 18. x 2 y19.f(x) 20.3 lim e x sin x 1 2 lim e x cos xlime x sin x 1 21. x 0x x 0 2x x 0 2 2dy2dydt3t3dx dxdtt 2t2因为sinx 是f(x)的⼀一个原函数,所以xf (x ) dx xf (x ) f (x ) dx xf (x )sin x Cx2百度文库资料店设t ,则x t2 , dx 2tdt,0 t 2 .· |r 4 122t1 xdx1 tdx0 02 1 2(1 1 t)dt2 ⎡t | 2 ln(1 t ) |2 ⎤ ⎣ 0 0 ⎦2(2 ln 3) 4 2 ln 3因为 z x 2 y 2x y 1,所以 z 2x 2y 1 y z 2xy 21x2zxy 4xy26.D 可表示为0 2 ,0 r 2x 2 y 2dxdy r ·r dr dDD22dr 2 dr 0 02 13 230 16 3 y dy x 2 , dxydy x 2 dx ,两边同时积分, 1 y 2 1 x 3 C ,2 313y 2 2x 3 Cy2 2x2 C即31设圆柱形的底⾯面半径为r,⾼高为h,则V r 2 h ,令dS4 r 2 h 0,dr2r h d 2 S4dr 2于是由实际问题得,S 存在最⼩小值,即当圆柱的⾼高等于底⾯面直径时,所使⽤用的铁⽪皮⾯面积最 ⼩小.。
2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅ C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF 与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA (sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
广东成人高考数学试题及答案
广东成人高考数学试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 4x + 3,求f(1)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的首项a1=1,公差d=2,求第10项的值。
A. 19B. 20C. 21D. 22答案:A3. 若直线l的斜率为3,且经过点(2, -1),求直线l的方程。
A. y = 3x - 7B. y = 3x + 5C. y = -3x + 7D. y = -3x - 5答案:A4. 计算定积分∫(0到1) x^2 dx的值。
A. 1/3B. 1/2C. 1D. 2答案:B5. 已知圆的方程为(x-1)^2 + (y+2)^2 = 9,求圆心坐标。
A. (1, -2)B. (-1, 2)C. (-1, -2)D. (1, 2)答案:A6. 若矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式。
A. -2B. 0C. 2D. -5答案:C7. 计算极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. π/2D. ∞答案:B8. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,求其渐近线方程。
A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±xD. y = ±(a^2/b^2)x答案:A9. 若函数f(x) = x^3 - 3x^2 + 2,求f'(x)。
A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^2 - 6x + 2D. 3x^2 - 6x + 1答案:A10. 计算二项式(1+x)^5展开式中含x^3的系数。
A. 10B. 20C. 30D. 40答案:B二、填空题(每题4分,共20分)11. 已知向量a = (3, -1),向量b = (2, 4),求向量a与向量b的数量积。
答案:512. 计算定积分∫(0到π/2) sin(x) dx的值。
2017年全国成人高考高起点语文真题及答案
2017年成人高等学校高起点招生全国统一考试语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题,共40分)一、语文知识与语言运用。
(24分,每小题4分)1.下列词语中加点字的读音全都不相同的一组是(C)A.乘.载乘.凉乘.风破浪B.传.媒传.奇不见经传.C.总括.训诂.沽.名钓脊D.法度.度.量审时度.势2.下列各组词语中没有错别字的一项是(B )A.际遇辑录风雨飘遥B.蒙昧迷惘处之泰然C.豁达墨契简明厄要D.料俏羁伴似无忌惮3.依次填入下列横线处的词语,恰当的一项是(D )远方山边的牧民帐篷上,升起了青烟,一群群牛羊如星星般在翠绿的草原上。
我想象中的长江源头“无人区”并没有出现,反倒是____田园牧歌的景象。
A.悠悠点缀一览B.袅袅连缀一派C.悠悠连缀一览D.袅袅点缀一派4.下列各句中加点成语的使用,不正确...的一项是(B )A.可可西里这个昔日疮痍满目....的盗猎场,如今动植物繁盛,已成为高原物种基因库。
B.近日,由于强降雨的作用,这个瀑布水量大涨,湍流直下,声势浩大,气壮山河....。
C.中国经济的发展成就有目共睹....,其智慧与经验颇值得其他发展中国家学习和借鉴。
D.整个舞台空灵而富有诗意,充满时尚感,似行云流水,出神人化,令人叹.为.观止..。
5.下列各句中,有语病的一项是(A )A.士者国之宝,人才尤其是高端人才,各地都争相延聘,呈现出越来越高的流动。
B.这一报告显示,高等职业教育就业率持续走高,毕业生对经济发展的贡献颇大。
C.改善民生是个动态过程,随着社会保障水平的提高,老百姓的要求也越来越高。
D.以智能化为核心的又一次工业革命正席卷而来,改变着人类生活的方方面面。
6.依次填入下面横线处的语句,顺序最恰当的一项是(C )山里的樱花,远远望去,有娇羞地,也有,更多的则是,独自盛开,和周围的青山、树木、杂草,以及那些不知名的小花。
2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i) C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017-2019高考数学(文科)试卷及答案
22.(10 分)在直角坐标系 xOy 中,曲线 C 的参数方程为
方程为
,(t 为参数).
(1)若 a=﹣1,求 C 与 l 的交点坐标;
,(θ 为参数),直线 l 的参数
(2)若 C 上的点到 l 距离的最大值为 ,求 a.
[选修 4-5:不等式选讲](10 分) 23.已知函数 f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|. (1)当 a=1 时,求不等式 f(x)≥g(x)的解集; (2)若不等式 f(x)≥g(x)的解集包含[﹣1,1],求 a 的取值范围.
b5
8A Uni--20--20 学年第一学期工作计划 9864
21.(12 分)已知函数 f(x)=ex(ex﹣a)﹣a2x. (1)讨论 f(x)的单调性; (2)若 f(x)≥0,求 a 的取值范围.
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题 计分。[选修 4-4:坐标系与参数方程选讲](10 分)
点,则在这四个正方体中,直线 AB 与平面 MNQ 不平行的是( )
A.
B.
C.
D.
7.(5 分)设 x,y 满足约束条件
,则 z=x+y 的最大值为( )
A.0 B.1 C.2 D.3
8.(5 分)函数 y=
的部分图象大致为( )
A.
B.
C.
D. 9.(5 分)已知函数 f(x)=lnx+ln(2﹣x),则( ) A.f(x)在(0,2)单调递增
b11
∵ <A<π,
8A Uni--20--20 学年第一学期工作计划 9864
∴A= ,
2017-2019高考数学(文科)试卷及答案
2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x |x <2},B={x |3﹣2x >0},则( )A .A ∩B={x |x <32}B .A ∩B=∅C .A ∪B={x |x <32} D .A ∪B=R2.(5分)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别是x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数 3.(5分)下列各式的运算结果为纯虚数的是( ) A .i (1+i )2B .i 2(1﹣i )C .(1+i )2D .i (1+i )4.(5分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π45.(5分)已知F 是双曲线C :x 2﹣y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A .13B .12C .23D .326.(5分)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .7.(5分)设x ,y 满足约束条件{x +3y ≤3x −y ≥1y ≥0,则z=x +y 的最大值为( )A .0B .1C .2D .38.(5分)函数y=sin2x1−cosx的部分图象大致为( )A .B .C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC )=0,a=2,c=√2,则C=( ) A .π12 B .π6C .π4D .π312.(5分)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,√3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,√3]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年成人高考数学完整版.doc
2017年成人高等学校招生全国统一考试高起点数学第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.1017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。