x86汇编指令集
汇编语言基于x86处理器
汇编语言基于x86处理器
汇编语言是一种低级编程语言,用于与计算机硬件直接交互。
基于x86处理器的汇编语言主要用于编写针对x86架构的计算机程序。
x86处理器是一种广泛使用的处理器架构,包括Intel和AMD 等厂商生产的多个处理器系列。
在x86汇编语言中,程序员使用特定的指令集来操作寄存器、内存和其他硬件设备,实现计算机指令的精确控制和数据处理。
以下是一些基于x86处理器的汇编语言的特点和要点:
寄存器:x86处理器提供了多个通用寄存器,如AX、BX、CX、DX等,以及专用寄存器如指令指针寄存器IP、堆栈指针寄存器SP等。
程序员可以使用这些寄存器来存储数据、进行计算和操作。
指令集:x86汇编语言提供了广泛的指令集,包括数据传输、算术运算、逻辑运算、条件分支、循环控制等。
程序员可以使用这些指令来实现各种操作和算法。
内存访问:x86汇编语言可以直接访问内存,读取和写入数据。
程序员需要了解内存地址和数据类型的操作方式,以正确地操作内存中的数据。
栈操作:x86汇编语言中的栈用于存储局部变量、函数调用和
返回地址等信息。
程序员可以使用栈指针寄存器来管理栈,并使用相关指令进行入栈和出栈操作。
中断处理:x86处理器支持中断和异常处理机制。
程序员可以编写中断处理程序,以响应硬件中断或软件触发的异常情况。
编写基于x86处理器的汇编语言程序需要对x86架构的指令集和寄存器使用有深入的理解,以及对计算机硬件和操作系统的了解。
熟练掌握汇编语言的编写技巧和调试工具对于开发和调优x86汇编语言程序非常重要。
x86 汇编判断指令
x86 汇编判断指令摘要:一、x86 汇编简介二、判断指令的作用三、x86 汇编中的判断指令1.汇编语言中的条件语句2.比较指令3.跳转指令四、判断指令的应用实例1.简单条件判断2.复杂条件判断五、判断指令在编程中的重要性正文:x86 汇编是一种低级编程语言,用于编写操作系统、驱动程序和嵌入式系统等。
汇编语言中的判断指令是控制程序流程的关键,它们可以根据程序执行过程中的条件来决定接下来的执行路径。
判断指令的作用是根据某些条件来改变程序的执行流程。
在x86 汇编中,判断指令通常用于实现条件语句,如if-else 语句。
通过使用判断指令,程序员可以更加灵活地控制程序的执行流程,实现复杂的逻辑功能。
在x86 汇编中,判断指令主要包括以下几类:1.汇编语言中的条件语句汇编语言中的条件语句主要包括je(等于)、jne(不等于)、jg(大于)、jl(小于)和jge(大于等于)、jle(小于等于)等。
这些条件语句用于根据某些条件来跳转到指定的指令位置。
例如,以下代码实现了一个简单的if-else 语句:```cmp eax, 10jne else_labeljmp end_labelelse_label:mov eax, 20end_label:```2.比较指令比较指令用于比较两个操作数的大小,从而决定程序的执行路径。
在x86 汇编中,比较指令主要包括cmp(比较)、test(测试)等。
例如,以下代码实现了一个比较两个整数大小的功能:```cmp eax, ebx```3.跳转指令跳转指令用于改变程序的执行流程。
在x86 汇编中,跳转指令主要包括jmp(无条件跳转)、jz(零标志跳转)、jnz(非零标志跳转)等。
例如,以下代码实现了一个根据条件跳转到指定位置的功能:```jmp label```判断指令在编程中具有重要意义,它们使得程序员能够根据不同的条件执行不同的操作。
在复杂的程序中,判断指令可以帮助程序员更好地组织代码,提高程序的可读性和可维护性。
x86汇编语言指令集
语法: LEA r,m LDS r,m LES r,m
XLAT(XLATB)
功能: 查表指令
语法: XLAT XLAT m
算数运算指令
ADD,ADC
功能: 加法指令
语法: ADD OP1,OP2 ADC OP1,OP2
格式: ADD r1,r2 ADD r,m ADD m,r ADD r,data
C: CARRY,当弁时成立 CXZ: CX寄存器的值为0(ZERO)时成立
E: EQUAL,当Z=1时成立
G: GREATER(大于),当Z=0且S=0时成立
L: LESS(小于),当S不为零时成立
N: NOT(相反条件),需和其它符号配合使用
O: OVERFLOW,O=1时成立
P: PARITY,P=1时成立
PE: PARITY EVEN,P=1时成立
PO: PARITY ODD,P=0时成立
S: SIGN,S=1时成立
Z: ZERO,Z=1时成立
LOOP
功能: 循环指令集
语法: LOOP 地址
LOOPE(Z)
地址 LOOPNE(Z) 地址
2)算术指令:用来执行算术运算。
算术指令类型 指 令 说 明
加法指令 ADD(加法)、ADC(带进位加法)、INC(加1)
减法指令 SUB(减法)、SBB(带借位减法)、DEC(减1)、NEG(求补)、CMP(比较)
乘法指令 MUL(无符号数乘法)、IMUL(带符号数乘法)
语法: SCASB SCASW
标志位: C,P,Z,S,O
LODSB,LODSW,STOSB,STOSW
汇编语言的种类
汇编语言的种类汇编语言是计算机领域中的一门编程语言,它与机器语言密切相关,用于书写可以被计算机直接执行的程序代码。
汇编语言直接操作计算机底层硬件,因此在性能和效果上具有很大优势。
在汇编语言中,不同的体系结构和处理器都有不同的指令集和语法规则,这导致了汇编语言的种类繁多。
本文将介绍几种常见的汇编语言。
1. x86汇编语言x86汇编语言是最为广泛应用的汇编语言之一,在PC和服务器领域得到广泛使用。
x86指令集是英特尔和AMD等处理器厂商所采用的指令集架构,在x86汇编语言中,可以直接操作寄存器、内存以及其他外设,具有很高的灵活性和可操作性。
x86汇编语言使用Intel语法和AT&T语法两种不同的语法规则,常用的编译器有MASM、NASM和GAS。
2. ARM汇编语言ARM汇编语言广泛应用于移动设备、嵌入式系统和物联网等领域。
ARM处理器以其低功耗、高性能和内容丰富的架构而闻名,ARM汇编语言可以直接操作处理器寄存器、存储器和外设,具有很好的可移植性和可扩展性。
ARM汇编语言使用ARM体系结构定义的指令集和语法规则,常用的编译器有ARM汇编器和GNU汇编器等。
3. MIPS汇编语言MIPS汇编语言被广泛应用在嵌入式系统、数字信号处理以及网络设备等领域。
MIPS处理器以其简洁的指令集和高效的架构而著称,MIPS汇编语言可以直接控制寄存器、存储器以及其他外设,具有很高的执行效率和指令流水线能力。
MIPS汇编语言使用MIPS体系结构定义的指令集和语法规则,常用的编译器有MIPS汇编器。
4. PowerPC汇编语言PowerPC汇编语言主要应用于IBM PowerPC架构的服务器、工作站以及游戏机等领域。
PowerPC处理器以其高性能和可扩展性而著称,PowerPC汇编语言可以直接操作处理器寄存器、存储器和外设,具有很好的可移植性和性能表现。
PowerPC汇编语言使用PowerPC指令集和语法规则,常见的编译器有PowerPC汇编器。
x86架构汇编指令
x86架构汇编指令x86架构汇编指令是一种底层的机器语言指令集,用于在x86架构的计算机上执行任务。
它包含了一系列指令,用于操作寄存器、内存和其他硬件设备,以及进行算术和逻辑运算等操作。
本文将介绍几个常用的x86架构汇编指令,包括MOV、ADD、SUB和JMP。
1. MOV指令:MOV指令用于将数据从一个位置复制到另一个位置。
它的语法如下:MOV destination, source其中destination可以是一个寄存器或内存地址,source可以是一个寄存器、内存地址或立即数。
例如,MOV AX, BX将BX寄存器的值复制到AX寄存器中。
2. ADD指令:ADD指令用于将两个数相加,并将结果存储在目标位置。
它的语法如下:ADD destination, source其中destination可以是一个寄存器或内存地址,source可以是一个寄存器、内存地址或立即数。
例如,ADD AX, BX将AX寄存器的值与BX寄存器的值相加,并将结果存储在AX寄存器中。
3. SUB指令:SUB指令用于将两个数相减,并将结果存储在目标位置。
它的语法如下:SUB destination, source其中destination可以是一个寄存器或内存地址,source可以是一个寄存器、内存地址或立即数。
例如,SUB AX, BX将AX寄存器的值减去BX寄存器的值,并将结果存储在AX寄存器中。
4. JMP指令:JMP指令用于无条件地跳转到指定的地址。
它的语法如下:JMP destination其中destination可以是一个标签或地址。
例如,JMP LOOP将跳转到LOOP标签所在的位置。
除了上述指令外,x86架构汇编还包括许多其他指令,如CMP、AND、OR、NOT、XOR等,用于进行比较、逻辑运算和位操作等。
这些指令可以组合使用,以实现复杂的功能。
x86架构汇编指令的编写需要遵循一定的规范和语法。
每条指令都由一个助记符和操作数组成,它们之间用逗号隔开。
x86 str汇编指令
x86 str汇编指令
x86汇编指令中的str指令用于将数据从内存移动到寄存器中。
在x86架构中,mov指令可以实现相同的功能,但str指令具有一些优势。
首先,str指令遵循ARM汇编语义,即“加载/存储”(Load/Store)操作。
在ARM架构中,数据从内存到CPU之间的移动必须通过ldr/str 指令完成。
这与x86架构有所不同,x86架构中的mov指令可以在寄存器之间移动数据,或者将立即数移动到寄存器中。
其次,str指令在移动数据时具有更高的灵活性。
例如,str指令可以加载内存中的一个字节、字或双字数据到寄存器中,而mov指令只能移动一个字节或字。
此外,str指令还可以加载内存中的相对地址,这在某些场景下非常有用。
然而,需要注意的是,x86架构中并没有真正的ldr指令。
在x86汇编中,mov指令可以实现类似的功能,将从内存中某个地址的数据移动到寄存器中。
而str指令在x86架构中主要用作存储器到寄存器的数据传送。
总之,x86汇编指令中的str指令用于将数据从内存移动到寄存器,与mov指令具有相似的功能,但str指令在某些方面更具优势,例如
加载内存中的相对地址。
然而,需要注意的是,x86架构中并没有真正的ldr指令,而是使用mov指令来实现类似的功能。
xrstor指令
xrstor指令xrstor指令是一条x86汇编指令,用于将寄存器中的值存储到内存中的指定地址。
它是存储指令中的一种,用于将通用寄存器(GPR)中的值存储到内存中。
在x86指令集中,存储指令可以分为两个类别:一类是从内存中读取数据到寄存器,另一类是将寄存器中的数据写回到内存。
xrstor指令属于后者,它将寄存器的值写入指定的内存地址。
xrstor指令的操作数可以是内存地址,也可以是一个寄存器。
指令的语法如下:```xrstor m512xrstor m64```其中,m512和m64分别表示内存地址,可以是通用寄存器或内存中的存储单元。
xrstor指令的具体操作步骤如下:1. 将寄存器中的值按指定格式打包。
2. 将打包后的数据写入指定的内存地址。
xrstor指令一般与xsave指令配合使用,用于在执行上下文切换时保存和恢复系统状态。
其中,xsave指令用于保存系统状态,xrstor指令用于恢复系统状态。
在处理器上下文切换时,系统需要保存当前执行线程的上下文状态,例如通用寄存器的值、标志寄存器的值、浮点寄存器的值等。
xrstor指令可以用于将上下文状态从内存恢复到寄存器中,以便继续执行。
在实际应用中,xrstor指令常常与其他汇编指令配合使用,用于实现特定的功能。
例如,在操作系统中,当执行线程切换时,保存和恢复线程的上下文状态是必需的。
xrstor指令可以与其他指令一起使用,将线程的上下文状态从内存中恢复到寄存器中。
总结起来,xrstor指令是一条用于将寄存器中的值存储到内存中的指定地址的x86汇编指令。
它一般与xsave指令配合使用,用于保存和恢复系统状态。
在实际应用中,xrstor指令常常与其他指令配合使用,用于实现特定的功能,例如在操作系统中保存和恢复线程的上下文状态。
x86汇编sub指令
x86汇编sub指令x86汇编中的sub指令用于执行减法操作。
它的基本语法如下:sub destination, source其中,destination是目标操作数,而source是源操作数。
sub指令的功能是将源操作数的值减去目标操作数的值,并将结果存储到目标操作数中。
在使用sub指令时,需要注意以下几点:1. 操作数的大小:- 如果目标操作数和源操作数都是字节大小的变量,那么执行sub指令时,将会进行无符号字节级别的减法运算。
- 如果目标操作数和源操作数都是字大小的变量,那么执行sub指令时,将会进行无符号字级别的减法运算。
- 如果目标操作数和源操作数都是双字大小的变量,那么执行sub指令时,将会进行无符号双字级别的减法运算。
2. 符号位的处理:- 当执行sub指令时,会根据运算结果设置CF(Carry Flag)标志和OF(Overflow Flag)标志。
如果结果小于0,则CF标志会被设置为1,否则为0。
如果结果溢出,则OF标志会被设置为1,否则为0。
接下来,我将为你提供两个示例来说明sub指令的使用。
示例1:字节级别的减法运算```asmsection .datavar1 db 10 ; 目标操作数var2 db 5 ; 源操作数section .textglobal _start_start:mov al, [var1] ; 将目标操作数加载到AL寄存器中sub al, [var2] ; 将源操作数从AL寄存器中减去mov [var1], al ; 将结果存储到目标操作数中; 可以在这里读取目标操作数的值,然后进行打印等操作; 退出程序mov eax, 1xor ebx, ebxint 0x80```示例2:双字级别的减法运算```asmsection .datavar1 dd 100 ; 目标操作数var2 dd 50 ; 源操作数section .textglobal _start_start:mov eax, [var1] ; 将目标操作数加载到EAX寄存器中sub eax, [var2] ; 将源操作数从EAX寄存器中减去mov [var1], eax ; 将结果存储到目标操作数中; 可以在这里读取目标操作数的值,然后进行打印等操作; 退出程序mov eax, 1xor ebx, ebxint 0x80```这两个示例展示了如何使用sub指令进行减法运算,并将结果存储在目标操作数中。
简明X86汇编语言教程
简明X86汇编语言教程在计算机科学领域中,汇编语言是一种低级语言,用于编写和控制计算机硬件操作的程序。
X86汇编语言是一种广泛应用于个人电脑和服务器系统的指令集体系结构。
本教程将简明地介绍X86汇编语言的基本概念、语法和指令集,以帮助初学者入门。
下面将按照教程的逻辑顺序,逐步介绍相关内容。
1. 汇编语言简介汇编语言是机器语言的简化形式,通过使用助记符,可以更便于人们理解和编写程序。
我们将会一起了解如何使用X86汇编语言进行编程,包括数据类型、寄存器的使用和基本指令的命令格式等。
2. 数据传送和运算在这一部分,我们将会学习如何在寄存器中存储和传送数据,以及如何进行基本的算术和逻辑运算。
我们还将介绍一些常用的指令,例如mov、add、sub等。
3. 程序控制结构我们将介绍如何使用条件语句(如if-else和循环语句),以及如何使用标志寄存器来判断程序的执行流程。
同时,我们还将学习如何调用和返回函数。
4. 存储器管理在这个部分,我们将了解如何在程序中使用存储器。
我们将学习如何声明和定义变量、数组和常量,以及如何使用栈来管理函数的调用和返回。
5. 输入和输出我们将会学习如何从键盘读取输入,以及如何将数据输出到屏幕上。
通过学习这些知识,我们可以编写更加实用的程序,与用户进行交互。
6. 异常处理在这一部分,我们将介绍如何处理程序中的异常和错误。
我们将学习如何使用中断来响应外部事件,并进行相应的处理。
我们还将了解如何调试程序,以及如何优化程序的性能。
通过学习本教程,您将掌握X86汇编语言的基本知识和技巧,能够编写简单的汇编程序并进行调试和优化。
希望这个教程对您学习和理解汇编语言有所帮助。
总结本教程简明地介绍了X86汇编语言的基本概念、语法和指令集。
通过系统地学习和实践,您将逐渐掌握汇编语言的编程技巧,并能够编写出高效、可靠的汇编程序。
汇编语言虽然相对较低级,但在某些场景下仍然非常重要,因此掌握汇编语言将为您成为一名更全面的程序员打下稳固的基础。
x86汇编 讲解
x86汇编讲解摘要:1.x86 汇编简介2.x86 汇编的基本语法3.x86 汇编的寄存器和内存4.x86 汇编的指令集5.x86 汇编的应用场景正文:【x86 汇编简介】x86 汇编是一种用于编写计算机程序的低级编程语言。
它是x86 架构处理器的指令集体系结构(ISA) 的助记符表示形式。
x86 汇编语言可以用于编写操作系统、驱动程序和嵌入式系统等底层应用程序。
由于其底层特性,x86 汇编语言能够直接访问计算机硬件,并实现高性能的计算。
【x86 汇编的基本语法】x86 汇编语言的基本语法包括以下几个部分:1.指令:x86 汇编指令是用于完成特定任务的命令。
每个指令都有一个操作码,它表示指令要执行的操作。
操作码后面通常跟有一些操作数,用于指定操作的对象。
2.寄存器:x86 汇编中的寄存器是一组高速存储单元,用于存储数据和地址。
常用的寄存器包括通用寄存器(EAX、EBX、ECX、EDX)、指针寄存器(ESP、EBP)和索引寄存器(ESI、EDI)等。
3.内存:x86 汇编中的内存是指计算机中的主存储器,用于存储程序和数据。
内存地址通常用基址(Base Address)加偏移量(Displacement)的方式表示。
4.常用指令:x86 汇编中有很多常用指令,包括数据传输指令(如MOV)、算术指令(如ADD、SUB)、逻辑指令(如AND、OR)、跳转指令(如JMP、JZ、JNZ)等。
【x86 汇编的寄存器和内存】x86 汇编中的寄存器和内存扮演着非常重要的角色。
它们可以存储程序中的数据和地址,并在程序运行过程中进行高速读写。
以下是一些常用的寄存器和内存操作指令:1.寄存器指令:MOV 寄存器,数值将数值移动到指定的寄存器中。
2.内存指令:MOV 内存地址,寄存器将寄存器的值移动到指定的内存地址。
3.加载/存储指令:LOAD/STORE 寄存器,内存地址在内存和寄存器之间传输数据。
【x86 汇编的指令集】x86 汇编指令集非常丰富,可以完成各种复杂的操作。
x86汇编 语法
x86汇编语法
x86汇编语言是一种低级语言,用于编写在x86架构上运行的程序的机器代码。
它使用助记符表示指令,这些助记符通常与对应的机器代码指令相对应。
以下是一些x86汇编语言的语法要点:
1. 指令格式:x86汇编语言中的指令通常由操作码和操作数组成。
操作码指定要执行的操作,而操作数指定要操作的数据或寄存器。
例如,MOV指令将一个值从一个位置移动到另一个位置,其格式为“MOV destination, source”。
2. 寄存器:x86架构包含多个寄存器,用于存储数据和地址。
在汇编语言中,可以使用寄存器名来引用寄存器中的值。
例如,EAX寄存器可以表示为“EAX”。
3. 立即数:立即数是直接包含在指令中的数字值。
例如,MOV AX, 1000H指令将1000H(十进制为4096)移动到AX寄存器中。
4. 内存操作数:当需要从内存中读取或写入数据时,可以在指令中使用内存操作数。
内存操作数由一个基址和一个变址量组成,它们可以是寄存器或立即数。
例如,MOV AX, [BX+SI]指令将BX和SI寄存器的值相加,并将结果作为基址,从该基址处读取一个字(16位)到AX寄存器中。
5. 标志寄存器:x86架构包含一个标志寄存器,用于存储各种状态标志。
这些标志用于指示算术操作的结果、零标志、符号标志等。
在汇编语言中,可以使
用条件码指令来测试标志寄存器的值。
以上是x86汇编语言的一些基本语法要点。
学习x86汇编语言需要熟悉指令集、寄存器、内存操作数、标志寄存器等概念,并能够编写简单的程序来执行基本操作。
x86 汇编判断指令
x86 汇编判断指令摘要:一、x86 汇编简介二、判断指令概述三、比较指令1.通用比较指令2.专用比较指令四、逻辑指令1.AND 指令2.OR 指令3.XOR 指令4.NOT 指令五、移位指令1.循环移位指令2.方向控制移位指令六、测试指令1.测试指令概述2.常见测试指令七、总结正文:x86 汇编是一种基于英特尔x86 架构的计算机编程语言。
在x86 汇编中,判断指令被广泛应用于条件跳转、条件执行等场景。
本文将详细介绍x86 汇编中的判断指令。
判断指令主要分为比较指令、逻辑指令、移位指令和测试指令四类。
首先,比较指令用于比较两个操作数的值。
通用比较指令有CMP(比较)、TEST(测试)等。
专用比较指令有CMPXCHG(比较交换)、MOVSX (移动到零扩展)等。
其次,逻辑指令用于对操作数执行逻辑运算。
常见的逻辑指令有AND (逻辑与)、OR(逻辑或)、XOR(逻辑异或)和NOT(逻辑非)。
再者,移位指令用于将操作数的二进制位进行移位操作。
循环移位指令有ROL(循环左移)、ROR(循环右移)等。
方向控制移位指令有SHL(逻辑左移)、SHR(逻辑右移)等。
最后,测试指令用于测试操作数的特定位是否为1。
常见的测试指令有JC(无符号大于)、JE(无符号等于)、JG(无符号大于等于)、JL(无符号小于)、JN(无符号不等于)等。
总之,x86 汇编中的判断指令在编程过程中起着关键作用,通过灵活运用各种判断指令,可以实现条件跳转、条件执行等多种功能。
x86汇编指令整理
x86汇编指令整理1,寻址⽅式1,⽴即数寻址MOV AX, 0102H ;AX←0102H2、寄存器寻址⽅式指令中指明某个寄存器其内容即为操作数,寄存器在CPU内,不⽤总线周期,执⾏速度快。
8位寄存器r8:AH、AL、BH、BL、CH、CL、DH、DL16位寄存器r16:AX、BX、CX、DX、SI、DI、BP、SP4个段寄存器seg:CS、DS、SS、ESMOV AX, BX ;AX←BX3,直接寻址⽅式指令中直接给出操作数所在内存单元的有效地址(EA即偏移地址)默认的段地址在DS段寄存器,若在其它段可使⽤段超越前缀改变。
⽤⽅括号包含有效地址,表达存储单元的内容直接地址也可⽤标号代表,⽅括号可省略。
MOV AX, [2000H] ;AX←DS:[2000H]MOV AX, ES: [2000H] ;AX←ES:[2000H]4、寄存器间接寻址⽅式指令中给出的寄存器的内容包含操作数的有效地址。
间接寻址中使⽤的寄存器名要⽤⽅括号括起来1、基址寻址⽤BX或BP作间接寻址寄存器如:MOV AX,[BX] ;隐含在DS段MOV AX,[BP] ;隐含在SS段2、变址寻址⽤SI或DI作间接寻址寄存器如:MOV CL, [SI]MOV AX, [DI]单独使⽤SI或DI时,隐含在DS段中在串操作时,SI隐含在DS段中,DI隐含在ES段中。
3、相对基址寻址指令中给出基址寄存器及位移量,⼆者之和为操作数的有效地址。
位移量可以是8位或16位。
有效地址=BX/BP+8/16位位移量4、相对变址寻址指令中给出变址寄存器及位移量,⼆者之和为操作数的有效地址。
有效地址=SI/DI+8/16位位移量段地址对应BX/SI/DI寄存器默认是DS,对应BP寄存器默认是SS;可⽤段超越前缀改变MOV AX, [SI+06H] ;AX←DS:[SI+06H]MOV AX, 06H[SI] ;AX←DS:[SI+06H]5、基址变址寻址⽅式有效地址由基址寄存器(BX或BP)的内容加上变址寄存器(SI或DI)的内容构成:有效地址=BX/BP+SI/DI段地址对应BX基址寄存器默认是DS,对应BP基址寄存器默认是SS;可⽤段超越前缀改变 MOV AX, [BX+SI] ;AX←DS:[BX+SI]MOV AX, [BX][SI] ;AX←DS:[BX+SI]6、相对基址变址寻址⽅式有效地址是基址寄存器(BX/BP)、变址寄存器(SI/DI)与⼀个8位或16位位移量之和:有效地址=BX/BP+SI/DI+8/16位位移量段地址对应BX基址寄存器默认是DS,对应BP基址寄存器默认是SS;可⽤段超越前缀改变 MOV AX, [BX+DI+6] ;AX←DS:[BX+DI+6]MOV AX, 6[BX+DI] MOV AX, 6[BX][DI]各种寻址⽅式综合举例设BX=1200H DI=10A0H 位移量=2BC0HDS=2400H 求各种寻址⽅式下的有效地址和物理地址。
ARM,MIPS,X86三种典型指令集的简介及其特点
ARM、MIPS、X86三种典型指令集的特点20122261 梅亮亮1.ARM指令集1.1 ARM指令集的特点:●体积小,低功耗,低成本,高性能;●支持 Thumb ( 16 位) /ARM ( 32 位)双指令集,能很好的兼容 8 位 /16 位器件;●大量使用寄存器,指令执行速度更快;●大多数数据操作都在寄存器中完成;●寻址方式灵活简单,执行效率高;●指令长度固定;●流水线处理方式●Load_store结构:在RISC中,所有的计算都要求在寄存器中完成。
而寄存器和内存的通信则由单独的指令来完成。
而在CSIC中,CPU是可以直接对内存进行操作的。
1.2 Thumb指令及应用Thumb指令集是ARM指令集的一个子集,所有的Thumb指令都有对应的ARM指令。
它舍弃了ARM指令集的一些特性如大多数的Thumb指令是无条件执行的,而几乎所有的ARM指令都是有条件执行的;大多数的Thumb数据处理指令的目的寄存器与其中一个源寄存器相同。
Thumb指令集在保留32代码优势的同时,大大的节省了系统的存储空间。
Thumb指令集中操作数仍然是32位,指令地址也为32位,指令编码16位。
由于Thumb指令的长度为16位,即只用ARM指令一半的位数来实现同样的功能,所以,要实现特定的程序功能,所需的Thumb指令的条数较ARM指令多。
1.2.1 Thumb指令优势与局限性优势:– Thumb代码所需的存储空间约为ARM代码的60%~70%;– Thumb代码使用的指令数比ARM代码多约30%~40%;–若使用32位的存储器,ARM代码比Thumb代码快约40%;–若使用16位的存储器,Thumb代码比ARM代码快约40%~50%;–与ARM代码相比较,使用Thumb代码,存储器的功耗会降低约30%。
局限性:条件跳转限制在256byte 偏移范围内,无条件跳转限制为4K偏移范围内,而ARM为32 Mbytes偏移。
80X86常用汇编指令集
80X86常用汇编指令集ZZ作者 : 赵振东ZZD学习汇编语言,最关键的就在于汇编指令集的掌握以及计算机工作方式的理解,以下是80X86汇编过程中经常用到的一些汇编指令。
从功能分类上来说,一共可分为一、数据传送指令:MOV、XCHG、LEA、LDS、LES、PUSH、POP、PUSHF、POPF、CBW、CWD、CWDE。
二、算术指令:ADD、ADC、INC、SUB、SBB、DEC、CMP、MUL、DIV、DAA、DAS、AAA、AAS。
三、逻辑指令:AND、OR、XOR、NOT、TEST、SHL、SAL、SHR、SAR、RCL、RCR、ROL、ROR。
四、控制转移指令:JMP、Jcc、JCXZ、LOOP、LOOPZ、LOOPNZ、LOOPNE、CALL、RET、INT。
五、串操作指令:MOVS、LODS、STOS、CMPS、SCAS。
六、标志处理指令:CLC、STC、CLD、STD。
七、32位CPU新增指令(后续补充并完善)除上述的一些指令外,还有许多32位80X86CPU新增指令,这些指令有时会简化程序设计,不过由于我也是刚刚学习汇编,这些都是从书上看到的,所以很多还不是十分了解,我写这些的目的仅仅是想让自己能更好的去记住这些指令的作用和用法,同事也希望和我一样刚入门的朋友能够多了解一些,并没有其他目的,所有的示例也并没有经过实际的代码测试,所以希望各位朋友,不管你喜欢不喜欢,反对不反对,请文明发言,谢谢!------------------------------------------------数据传送指令开始-------------------------------------------------------1、MOV(传送)指令写法:MOV target,source功能描述:将源操作数source的值复制到target中去,source值不变注意事项:1)target不能是CS(代码段寄存器),我的理解是代码段不可写,只可读,所以相应这地方也不能对CS执行复制操作。
x86汇编 讲解
x86汇编讲解摘要:1.汇编语言简介2.x86汇编语言的特点3.x86汇编语言的基本语法4.x86汇编语言的寻址方式5.x86汇编语言的指令集6.x86汇编语言的程序结构7.x86汇编语言的应用领域正文:汇编语言是一种低级编程语言,它用助记符代替机器码操作指令。
汇编语言与计算机硬件结构密切相关,因此不同计算机体系结构有着不同的汇编语言。
x86汇编语言就是针对英特尔x86架构设计的一种汇编语言。
x86汇编语言具有以下特点:1.寄存器繁多:x86汇编语言拥有多种寄存器,如通用寄存器、指针寄存器、索引寄存器等。
2.内存寻址:x86汇编语言使用段寄存器进行内存寻址,提供了多种寻址方式,如直接寻址、间接寻址、寄存器间接寻址等。
3.操作数:x86汇编语言支持多种操作数,如立即数、寄存器、内存单元等。
4.指令集丰富:x86汇编语言拥有丰富的指令集,可以完成各种操作,如数据传输、算术运算、逻辑运算、跳转等。
x86汇编语言的基本语法包括:1.指令:x86汇编语言的指令由操作码和操作数组成,如MOV AX, 10。
2.伪指令:x86汇编语言中的伪指令用于描述程序的结构,如ORG、END 等。
3.宏:x86汇编语言支持宏定义,可以将一段代码定义为一个宏,如宏MOV_MEMORY。
x86汇编语言的寻址方式包括:1.直接寻址(DA):直接访问内存单元。
2.间接寻址(IA):通过寄存器或内存单元间接访问内存单元。
3.寄存器间接寻址(RIA):直接使用寄存器中的值作为操作数。
4.寄存器相对寻址(RRA):使用寄存器与基址寄存器的差值作为操作数。
x86汇编语言的指令集包括:1.数据传输指令:如MOV、PUSH、POP等。
2.算术运算指令:如ADD、SUB、MUL、DIV等。
3.逻辑运算指令:如AND、OR、XOR、NOT等。
4.移位运算指令:如SHL、SHR、ROL、ROR等。
5.比较运算指令:如CMP等。
6.跳转指令:如JMP、JZ、JNZ等。
汇编语言x86汇编指令集大全
汇编语言x86汇编指令集大全汇编语言是计算机体系结构学科中的重要内容之一,它可以直接操作计算机硬件,实现对机器指令的精确控制。
而x86汇编则是汇编语言中最常用的一种,它广泛应用于各类个人电脑和服务器等计算设备中。
x86汇编指令集是汇编语言中的核心,掌握其基本指令对于开发高效的汇编程序至关重要。
本文将介绍x86汇编指令集的各个方面,包括数据传输指令、算术运算指令、逻辑运算指令、分支控制指令以及其他常用指令等内容,以帮助读者全面理解和掌握x86汇编语言。
一、数据传输指令数据传输指令是汇编语言中最基本的指令之一,用于实现数据在寄存器、内存和I/O端口之间的传递。
常见的数据传输指令包括MOV、XCHG、PUSH和POP等。
MOV指令用于将数据从一个位置传送到另一个位置,可以将数据从内存中传送到寄存器,也可以将数据从寄存器传送到内存。
例如,MOV AX, BX表示将寄存器BX中的数据传送到寄存器AX中。
XCHG指令用于交换两个操作数的值,例如,XCHG AX, BX表示交换寄存器AX和BX中的数据。
PUSH指令将数据推入堆栈,POP指令从堆栈中弹出数据。
这两个指令常用于函数调用和局部变量的保存与恢复。
二、算术运算指令算术运算指令用于执行各种数值计算操作,包括加法、减法、乘法、除法以及取模等。
常见的算术运算指令包括ADD、SUB、MUL、DIV和IMUL等。
ADD指令用于进行加法运算,可以将两个操作数相加,并将结果保存在目标操作数中。
例如,ADD AX, BX表示将寄存器BX中的值加到寄存器AX中。
SUB指令用于进行减法运算,可以将目标操作数减去源操作数,并将结果保存在目标操作数中。
MUL指令用于进行无符号数的乘法运算,可以将一个操作数与寄存器中的值相乘,并将结果保存在一对寄存器中。
DIV指令用于进行无符号数的除法运算,可以将寄存器中的值除以一个操作数,并将商保存在一个寄存器中,余数保存在另一个寄存器中。
IMUL指令用于进行有符号数的乘法运算,功能与MUL指令类似,但结果为有符号数。
x86指令集
CLD Clear Direction Flag
CLFLUSH Flush Cache Line
CLI Clear Interrupt Flag
CLTS Clear Task-Switched Flag in CR0
CMC Complement Carry Flag
CVTTPS2PI Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
CVTTSD2SI Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Doubleword Integer
CVTTPD2DQ Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
CVTTPS2DQ Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
CVTTSS2SI Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
CWD/CDQ Convert Word to Doubleword/Convert Doubleword to Quadword
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x86汇编指令集数据传输指令它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.1. 通用数据传送指令.MOV 传送字或字节.MOVSX 先符号扩展,再传送.MOVZX 先零扩展,再传送.MOVSX reg16,r/m8 ; o16 0F BE /r [386]MOVSX reg32,r/m8 ; o32 0F BE /r [386]MOVSX reg32,r/m16 ; o32 0F BF /r [386]MOVZX reg16,r/m8 ; o16 0F B6 /r [386]MOVZX reg32,r/m8 ; o32 0F B6 /r [386]MOVZX reg32,r/m16 ; o32 0F B7 /r [386]PUSH 把字压入堆栈.POP 把字弹出堆栈.PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.BSWAP 交换32位寄存器里字节的顺序XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )XADD 先交换再累加.( 结果在第一个操作数里)XLAT 字节查表转换.── BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL )2. 输入输出端口传送指令.IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器)输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时,其范围是0-65535.3. 目的地址传送指令.LEA 装入有效地址.例: LEA DX,string ;把偏移地址存到DX.LDS 传送目标指针,把指针内容装入DS.例: LDS SI,string ;把段地址:偏移地址存到DS:SI.LES 传送目标指针,把指针内容装入ES.例: LES DI,string ;把段地址:偏移地址存到ES:DI.LFS 传送目标指针,把指针内容装入FS.例: LFS DI,string ;把段地址:偏移地址存到FS:DI.LGS 传送目标指针,把指针内容装入GS.例: LGS DI,string ;把段地址:偏移地址存到GS:DI.LSS 传送目标指针,把指针内容装入SS.例: LSS DI,string ;把段地址:偏移地址存到SS:DI.4. 标志传送指令.LAHF 标志寄存器传送,把标志装入AH.SAHF 标志寄存器传送,把AH内容装入标志寄存器.PUSHF 标志入栈.POPF 标志出栈.PUSHD 32位标志入栈.POPD 32位标志出栈.二、算术运算指令───────────────────────────────────────ADD 加法.ADC 带进位加法.INC 加1.AAA 加法的ASCII码调整.DAA 加法的十进制调整.SUB 减法.SBB 带借位减法.DEC 减1.NEC 求反(以0 减之).CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).AAS 减法的ASCII码调整.DAS 减法的十进制调整.MUL 无符号乘法.IMUL 整数乘法.以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),AAM 乘法的ASCII码调整.DIV 无符号除法.IDIV 整数除法.以上两条,结果回送:商回送AL,余数回送AH, (字节运算);或商回送AX,余数回送DX, (字运算).AAD 除法的ASCII码调整.CBW 字节转换为字. (把AL中字节的符号扩展到AH中去)CWD 字转换为双字. (把AX中的字的符号扩展到DX中去)CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去)三、逻辑运算指令───────────────────────────────────────AND 与运算.OR 或运算.XOR 异或运算.NOT 取反.TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果).SHL 逻辑左移.SAL 算术左移.(=SHL)SHR 逻辑右移.SAR 算术右移.(=SHR)ROL 循环左移.ROR 循环右移.RCL 通过进位的循环左移.RCR 通过进位的循环右移.以上八种移位指令,其移位次数可达255次.移位一次时, 可直接用操作码. 如SHL AX,1.移位>1次时, 则由寄存器CL给出移位次数.如MOV CL,04SHL AX,CL四、串指令───────────────────────────────────────DS:SI 源串段寄存器:源串变址.ES:DI 目标串段寄存器:目标串变址.CX 重复次数计数器.AL/AX 扫描值.D标志0表示重复操作中SI和DI应自动增量; 1表示应自动减量.Z标志用来控制扫描或比较操作的结束.MOVS 串传送.( MOVSB 传送字符. MOVSW 传送字. MOVSD 传送双字. )CMPS 串比较.( CMPSB 比较字符. CMPSW 比较字. )SCAS 串扫描.把AL或AX的内容与目标串作比较,比较结果反映在标志位.LODS 装入串.把源串中的元素(字或字节)逐一装入AL或AX中.( LODSB 传送字符. LODSW 传送字. LODSD 传送双字. )STOS 保存串.是LODS的逆过程.REP 当CX/ECX<>0时重复.REPE/REPZ 当ZF=1或比较结果相等,且CX/ECX<>0时重复.REPNE/REPNZ 当ZF=0或比较结果不相等,且CX/ECX<>0时重复.REPC 当CF=1且CX/ECX<>0时重复.REPNC 当CF=0且CX/ECX<>0时重复.五、程序转移指令───────────────────────────────────────1>无条件转移指令(长转移)JMP 无条件转移指令CALL 过程调用RET/RETF过程返回.2>条件转移指令(短转移,-128到+127的距离内)( 当且仅当(SF XOR OF)=1时,OP1 JA/JNBE 不小于或不等于时转移.JAE/JNB 大于或等于转移.JB/JNAE 小于转移.JBE/JNA 小于或等于转移.以上四条,测试无符号整数运算的结果(标志C和Z).JG/JNLE 大于转移.JGE/JNL 大于或等于转移.JL/JNGE 小于转移.JLE/JNG 小于或等于转移.以上四条,测试带符号整数运算的结果(标志S,O和Z).JE/JZ 等于转移.JNE/JNZ 不等于时转移.JC 有进位时转移.JNC 无进位时转移.JNO 不溢出时转移.JNP/JPO 奇偶性为奇数时转移.JNS 符号位为"0" 时转移.JO 溢出转移.JP/JPE 奇偶性为偶数时转移.JS 符号位为"1" 时转移.3>循环控制指令(短转移)LOOP CX不为零时循环.LOOPE/LOOPZ CX不为零且标志Z=1时循环.LOOPNE/LOOPNZ CX不为零且标志Z=0时循环.JCXZ CX为零时转移.JECXZ ECX为零时转移.4>中断指令INT 中断指令INTO 溢出中断IRET 中断返回5>处理器控制指令HLT 处理器暂停, 直到出现中断或复位信号才继续.WAIT 当芯片引线TEST为高电平时使CPU进入等待状态.ESC 转换到外处理器.LOCK 封锁总线.NOP 空操作.STC 置进位标志位.CLC 清进位标志位.CMC 进位标志取反.STD 置方向标志位.CLD 清方向标志位.STI 置中断允许位.CLI 清中断允许位.六、伪指令───────────────────────────────────────DW 定义字(2字节).PROC 定义过程.ENDP 过程结束.SEGMENT 定义段.ASSUME 建立段寄存器寻址.ENDS 段结束.END 程序结束.八、位操作指令,处理器控制指令1.位操作指令,8086新增的一组指令,包括位测试,位扫描。
BT,BTC,BTR,BTS,BSF,BSR1.1 BT(Bit Test),位测试指令,指令格式:BT OPRD1,OPRD2,规则:操作作OPRD1可以是16位或32位的通用寄存器或者存储单元。
操作数OPRD2必须是8位立即数或者是与OPRD1操作数长度相等的通用寄存器。
如果用OPRD2除以OPRD1,假设商存放在Divd中,余数存放在Mod中,那么对OPRD1操作数要进行测试的位号就是Mod,它的主要功能就是把要测试位的值送往CF,看几个简单的例子:1.2 BTC(Bit Test And Complement),测试并取反用法和规则与BT是一样,但在功能有些不同,它不但将要测试位的值送往CF,并且还将该位取反。
1.3 BTR(Bit Test And Reset),测试并复位,用法和规则与BT是一样,但在功能有些不同,它不但将要测试位的值送往CF,并且还将该位复位(即清0)。
1.4 BTS(Bit Test And Set),测试并置位,用法和规则与BT是一样,但在功能有些不同,它不但将要测试位的值送往CF,并且还将该位置位(即置1)。
1.5 BSF(Bit Scan Forward),顺向位扫描,指令格式:BSF OPRD1,OPRD2,功能:将从右向左(从最低位到最高位)对OPRD2操作数进行扫描,并将第一个为1的位号送给操作数OPRD1。
操作数OPRD1,OPRD2可以是16位或32位通用寄存器或者存储单元,但OPRD1和OPRD2操作数的长度必须相等。
1.6 BSR(Bit Scan Reverse),逆向位扫描,指令格式:BSR OPRD1,OPRD2,功能:将从左向右(从最高位到最低位)对OPRD2操作数进行扫描,并将第一个为1的位号送给操作数OPRD1。
操作数OPRD1,OPRD2可以是16位或32位通用寄存器或存储单元,但OPRD1和OPRD2操作数的长度必须相等。
1.7 举个简单的例子来说明这6条指令:AA DW 1234H,5678HBB DW 9999H,7777HMOV EAX,12345678HMOV BX,9999HBT EAX,8;CF=0,EAX保持不变BTC EAX,8;CF=0,EAX=12345778HBTR EAX,8;CF=0,EAX=12345678HBTS EAX,8;CF=0,EAX=12345778HBSF AX,BX;AX=0BSR AX,BX;AX=15BT WORD PTR [AA],4;CF=1,[AA]的内容不变BTC WORD PTR [AA],4;CF=1,[AA]=1223HBTR WORD PTR [AA],4;CF=1,[AA]=1223HBTS WORD PTR [AA],4;CF=1,[AA]=1234HBSF WORD PTR [AA],BX;[AA]=0;BSR WORD PTR [AA],BX;[AA]=15(十进制)BT DWORD PTR [BB],12;CF=1,[BB]的内容保持不变BTC DWORD PTR [BB],12;CF=1,[BB]=76779999H BTR DWORD PTR [BB],12;CF=1,[BB]=76779999H BTS DWORD PTR [BB],12;CF=1,[BB]=77779999H BSF DWORD PTR [BB],12;[BB]=0BSR DWORD PTR [BB],12;[BB]=31(十进制)2.处理器控制指令处理器控制指令主要是用来设置/清除标志,空操作以及与外部事件同步等。