福建厦门2020中考数学
2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)1.旋转中心可能是点B。
2.有一组邻边相等的平行四边形是矩形。
3.y=3(x-2)^2+3.4.方差为2.5.选项B。
6.∠2的度数为65°。
7.对角线互相垂直平分的四边形是正方形。
8.∠AED度数为110°。
9.x=1或x=-2.10.竹竿AB与AD的长度之比为sinα/sinβ。
11.选项B。
12.线段DE的长为15/4.连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,因此三条线段的垂直平分线正好都过B,即旋转中心是B。
因此选B。
本题考查了旋转中心的确认,解题的关键是熟知旋转的性质特点。
根据矩形的判定定理,可以快速确定答案。
有一个角为直角的平行四边形是矩形满足判定条件,因此选A。
B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误。
根据“上加下减,左加右减”的原则,将抛物线y=3x向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为y=3(x+2)+3,故答案选A。
先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案。
根据题意,得:(6+7+x+9+5)/5 = x/2,解得:x=3,因此这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6-6)²+(7-6)²+(3-6)²+(9-6)²+(5-6)²]/5=4,因此选A。
根据对顶角相等,得∠1与∠2一定相等,因此A选项中的答案可能成立。
B、C项中无法确定∠1与∠2是否相等,因此也可能成立。
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1,因此也成立。
因此需要进一步分析,可以发现只有D选项中的角度关系是符合题意的,因此选D。
2020年福建省中考数学试题及答案

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)−15的相反数是( ) A .5B .15C .−15D .﹣52.(4分)如图所示的六角螺母,其俯视图是( )A .B .C .D .3.(4分)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .144.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算:|﹣8|=.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形.其中正确的是 .(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(8分)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②18.(8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE =∠DAF .19.(8分)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sin A =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2. (1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.B .2.B .3.D .4.C .5.B .6.C .7.D .8.A .9.A .10.C . 二、填空题:本题共6小题,每小题4分,共24分.11.8.12.13.13.4π.14.﹣10907.15.30.16.①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:解不等式①,得:x ≤2, 解不等式②,得:x >﹣3, 则不等式组的解集为﹣3<x ≤2. 18.【解答】证明:∵四边形ABCD 是菱形, ∴∠B =∠D ,AB =AD , 在△ABE 和△ADF 中, {AB =AD ∠B =∠D BE =DF, ∴△ABE ≌△ADF (SAS ), ∴∠BAE =∠DAF .19.【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=x+1x+2⋅x+2(x+1)(x−1) =1x−1,当x =√2+1时,原式=12+1−1=√22.20.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨, 10x +(100﹣x )×1=235, 解得,x =15, ∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨; (2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元. 21.【解答】解:(1)连接OB ,如图1, ∵AB 与⊙O 相切于点B , ∴∠ABO =90°, ∵sin A =12, ∴∠A =30°,∴∠BOD =∠ABO +∠A =120°, ∴∠BED =12∠BOD =60°;(2)证明:连接OF ,OB ,如图2, ∵AB 是切线, ∴∠OBF =90°, ∵BF =3√3,OB =3, ∴tan∠BOF =BFOB =√3, ∴∠BOF =60°, ∵∠BOD =120°, ∴∠BOF =∠DOF =60°, 在△BOF 和△DOF 中, {OB =OD∠BOF =∠DOF OF =OF, ∴△BOF ≌△DOF (SAS ),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.22.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120(户);(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.【解答】解:(1)如图,四边形ABCD即为所求;(2)证明:如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP , ∴△ABP ∽△CDP , ∴AB CD=AP CP,∵AB ,CD 的中点分别为M ,N , ∴AB =2AM ,CD =2CN , ∴AM CN=AP PC,连接MP ,NP , ∵∠BAP =∠DCP , ∴△APM ∽△CPN , ∴∠APM =∠CPN , ∵点P 在AC 上,∴∠APM +∠CPM =180°, ∴∠CPN +∠CPM =180°, ∴M ,P ,N 三点在同一条直线上.24.【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到, ∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF ,∴EP PF =PC CF .25.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3解析式为:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t=10t+80t−40=10(√t2√2√t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.。
2020年福建省中考数学试卷及答案

2020年福建省中考数学试卷一、单项选择题:认真审题,仔细想一想,然后选出唯一正确答案。
本题共10小题,每小题4分,共40分.1.(4分)(2020•福建)−15的相反数是( ) A .5B .15C .−15D .﹣52.(4分)(2020•福建)如图所示的六角螺母,其俯视图是( )A .B .C .D .3.(4分)(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .144.(4分)(2020•福建)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.5.(4分)(2020•福建)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)(2020•福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.(4分)(2020•福建)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.(4分)(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.(4分)(2020•福建)如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC =60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)(2020•福建)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)|﹣8|=.12.(4分)(2020•福建)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)(2020•福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)(2020•福建)设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形; ②四边形ABCD 可以是菱形; ③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形.其中正确的是 .(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(8分)(2020•福建)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②18.(8分)(2020•福建)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE =∠DAF .19.(8分)(2020•福建)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 20.(8分)(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)(2020•福建)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD̂上不与B ,D 重合的点,sin A =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)(2020•福建)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(12分)(2020•福建)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)(2020•福建)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2. (1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)(2020•福建)−15的相反数是( ) A .5B .15C .−15D .﹣5【解答】解:−15的相反数是15,故选:B .2.(4分)(2020•福建)如图所示的六角螺母,其俯视图是( )A .B .C .D .【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆. 故选:B .3.(4分)(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14【解答】解:∵D ,E ,F 分别是AB ,BC ,CA 的中点, ∴DE =12AC ,DF =12BC ,EF =12AB , ∴DF BC=EF AB=DE AC=12,∴△DEF ∽△ABC , ∴S △DEF S △ABC=(DE AC)2=(12)2=14,∵等边三角形ABC 的面积为1, ∴△DEF 的面积是14,故选:D .4.(4分)(2020•福建)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A .等边三角形是轴对称图形,不是中心对称图形; B .平行四边形不是轴对称图形,是中心对称图形; C .圆既是轴对称图形又是中心对称图形; D .扇形是轴对称图形,不是中心对称图形. 故选:C .5.(4分)(2020•福建)如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A.10B.5C.4D.3【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.(4分)(2020•福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.(4分)(2020•福建)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a⋅1a=1,故本选项符合题意;故选:D.8.(4分)(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=3【解答】解:依题意,得:3(x﹣1)=6210 x.故选:A .9.(4分)(2020•福建)如图,四边形ABCD 内接于⊙O ,AB =CD ,A 为BD ̂中点,∠BDC =60°,则∠ADB 等于( )A .40°B .50°C .60°D .70°【解答】解:∵A 为BD ̂中点, ∴AB ̂═AD ̂, ∵AB =CD , ∴AB̂=CD ̂, ∴AB̂=AD ̂=CD ̂, ∵圆周角∠BDC =60°,∴∠BDC 对的BĈ的度数是2×60°=120°, ∴AB̂的度数是13×(360°﹣120°)=80°, ∴AB̂对的圆周角∠ADB 的度数是12×80°=40°, 故选:A .10.(4分)(2020•福建)已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2﹣2ax 上的点,下列命题正确的是( ) A .若|x 1﹣1|>|x 2﹣1|,则y 1>y 2 B .若|x 1﹣1|>|x 2﹣1|,则y 1<y 2 C .若|x 1﹣1|=|x 2﹣1|,则y 1=y 2D .若y 1=y 2,则x 1=x 2【解答】解:∵抛物线y =ax 2﹣2ax =a (x ﹣1)2﹣a , ∴该抛物线的对称轴是直线x =1,当a >0时,若|x 1﹣1|>|x 2﹣1|,则y 1>y 2,故选项B 错误; 当a <0时,若|x 1﹣1|>|x 2﹣1|,则y 1<y 2,故选项A 错误; 若|x 1﹣1|=|x 2﹣1|,则y 1=y 2,故选项C 正确; 若y 1=y 2,则|x 1﹣1|=|x 2﹣1|,故选项D 错误;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)|﹣8|= 8 .【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.(4分)(2020•福建)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为 13 .【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为13, 故答案为:13. 13.(4分)(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 4π .(结果保留π)【解答】解:S 扇形=90⋅π⋅42360=4π, 故答案为4π.14.(4分)(2020•福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 ﹣10907 米.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.(4分)(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC = 30 度.【解答】解:正六边形的每个内角的度数为:(6−2)⋅180°6=120°,所以∠ABC =120°﹣90°=30°,故答案为:30.16.(4分)(2020•福建)设A ,B ,C ,D 是反比例函数y =k x 图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【解答】解:如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当OA =OC =OB =OD 时,四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②【解答】解:解不等式①,得:x ≤2,解不等式②,得:x >﹣3,则不等式组的解集为﹣3<x ≤2.18.(8分)(2020•福建)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE =∠DAF .【解答】证明:四边形ABCD 是菱形,∴∠B =∠D ,AB =AD ,在△ABE 和△ADF 中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .19.(8分)(2020•福建)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=1x−1,当x =√2+1时,原式=2+1−1=√22. 20.(8分)(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨,10x +(100﹣x )×1=235,解得,x =15,∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)(2020•福建)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sin A =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.【解答】解:(1)连接OB ,如图1,∵AB 与⊙O 相切于点B ,∴∠ABO =90°,∵sin A =12,∴∠A =30°,∴∠BOD =∠ABO +∠A =120°,∴∠BED =12∠BOD =60°;(2)连接OF ,OB ,如图2,∵AB 是切线,∴∠OBF =90°,∵BF =3√3,OB =3,∴tan ∠BOF =BF OB =√3,∴∠BOF =60°,∵∠BOD =120°,∴∠BOF =∠DOF =60°,在△BOF 和△DOF 中,{OB =OD ∠BOF =∠DOF OF =OF,∴△BOF ≌△DOF (SAS ),∴∠OBF =∠ODF =90°,∴DF 与⊙O 相切.22.(10分)(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)(2020•福建)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.【解答】解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP ,∴△ABP ∽△CDP ,∴AB CD =AP PC ,∵AB ,CD 的中点分别为M ,N ,∴AB =2AM ,CD =2CN ,∴AM CN =AP PC ,连接MP ,NP ,∵∠BAP =∠DCP ,∴△APM ∽△CPN ,∴∠APM =∠CPN ,∵点P 在AC 上,∴∠APM +∠CPM =180°,∴∠CPN +∠CPM =180°,∴M ,P ,N 三点在同一条直线上.24.(12分)(2020•福建)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;②求证:EP PF =PC CF .【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF , ∴EP PF =PC CF .25.(14分)(2020•福建)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.(1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l 3:y =﹣2x +q 过点C ,∴0=﹣2×1+q ,∴q =2,∴直线l 3,解析式为L :y =﹣2x +2,∴l 3∥l 1,∴CF ∥AB ,∴∠ECF =∠ABE ,∠CFE =∠BAE ,∴△CEF ∽△BEA ,∴S △CEF S △ABE =(CE BE )2, 设BE =t (0<t <4),则CE =4﹣t ,∴S △ABE =12×t ×10=5t ,∴S △CEF =(CE BE )2×S △ABE =(4−t t )2×5t =5(4−t)2t, ∴S △ABE +S △CEF =5t +5(4−t)2t =10t +80t −40=10(√t 2√2√t)2+40√2−40, ∴当t =2√2时,S △ABE +S △CEF 的最小值为40√2−40.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。
厦门市2020版中考数学试卷C卷

厦门市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九下·未央月考) -2019的相反数是()A . -2019B . 2019C . -D .2. (2分)下列式子中:,,,,,其中属于最简二次根式的有几个()A . 1B . 2C . 3D . 43. (2分)(2016·丹东) 2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A . 6.76×106B . 6.76×105C . 67.6×105D . 0.676×1064. (2分)(2020·射阳模拟) 如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A . ①②③B . ②①③C . ③①②D . ①③②5. (2分)在同一直角坐标系中,函数y=kx+k与的图像大致是()A .B .C .D .6. (2分) (2016九上·长清开学考) 如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线AC的长是()A . 1B .C . 2D . 27. (2分) (2019八下·苏州期中) 如图,等边与正方形重叠,其中、两点分别在、上,且 .若,,则的面积为()A . 1B . 2C .D . 48. (2分) (2019七下·河池期中) 如图,如果AB//EF,CD//EF,下列各式正确的是()A .B .C .D .9. (2分) (2019九上·龙泉驿月考) 在同一坐标系中,函数y= 和y=kx+1的图象大致是()A .B .C .D .10. (2分)若抛物线与轴的交点为(0,3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是x=1C . 当x=1时,y的最大值为-4D . 抛物线与轴的交点为(-1,0),(3,0)二、填空题 (共7题;共7分)11. (1分)(2020·宁波模拟) 当前,新冠状性肺炎疫情已波及全世界200多个国家和地区,截止2020年5月12日14:00,全球确诊人数累计已达4175216人。
2020数学中考试题.doc

2020年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1. -2的相反数是A .2B .-2C .±2D .-122.下列事件中,是必然事件的是A . 抛掷1枚硬币,掷得的结果是正面朝上B . 抛掷1枚硬币,掷得的结果是反面朝上C . 抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上D .抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上3.图1是一个立体图形的三视图,则这个立体图形是 A .圆锥 B .球C .圆柱D .三棱锥4.某种彩票的中奖机会是1%,下列说法正确的是 A .买1张这种彩票一定不会中奖 B .买1张这种彩票一定会中奖 C .买100张这种彩票一定会中奖D .当购买彩票的数量很大时,中奖的频率稳定在1%5.若二次根式x -1有意义,则x 的取值范围是 A .x >1 B .x ≥1 C .x <1 D .x ≤16.如图2,在菱形ABCD 中,AC 、BD 是对角线, 若∠BAC =50°,则∠ABC 等于 A .40° B .50° C .80° D .100°7.已知两个变量x 和y ,它们之间的3组对应值如下表所示.则y 与x 之间的函数关系式可能是 A .y =x B .y =2x +1C .y =x 2+x +1D .y =3x二、填空题(本大题有10小题,每小题4分,共40分) 8.计算: 3a -2a = .9.已知∠A =40°,则∠A 的余角的度数是 . 10.计算: m 3÷m 2= .11.在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片上的数字恰好是奇数的概率是 . 12.如图3,在等腰梯形ABCD 中,AD ∥BC ,对角线AC与BD 相交于点O ,若OB =3,则OC = . 13.“x 与y 的和大于1”用不等式表示为 .14.如图4,点D 是等边△ABC 内一点,如果△ABD 绕点A逆时针旋转后能与△ACE 重合,那么旋转了 度. 15.五边形的内角和的度数是 .16.已知a +b =2,ab =-1,则3a +ab +3b = ;a 2+b 2= .17.如图5,已知∠ABC =90°,AB =πr ,BC =πr2,半径为r的⊙O 从点A 出发,沿A →B →C 方向滚动到点C 时停止. 请你根据题意,在图5上画出圆心..O 运动路径的示意图; 圆心O 运动的路程是 . 三、解答题(本大题有9小题,共89分) 18.(本题满分18分)(1)计算:4÷(-2)+(-1)2×40; (2)画出函数y =-x +1的图象;(3)已知:如图6,点B 、F 、C 、E 在一条直线上,∠A =∠D ,AC =DF ,且AC ∥DF . 求证:△ABC ≌△DEF .19.(本题满分7分)解方程组: ⎩⎨⎧3x +y =4,2x -y =1.20.(本题满分7分)已知:如图7,在△ABC 中,∠C =90°,点D 、E 分别在边AB 、AC上,DE ∥BC ,DE =3, BC =9. (1)求 ADAB的值;(2)若BD =10,求sin ∠A 的值.21.(本题满分7分)已知A 组数据如下:0,1,-2,-1,0,-1,3.(1)求A 组数据的平均数;(2)从A 组数据中选取5个数据,记这5个数据为B 组数据. 要求B 组数据满足两个条件:①它的平均数与A 组数据的平均数相等;②它的方差比A 组数据的方差大.你选取的B 组数据是 ,请说明理由. 【注:A 组数据的方差的计算式是S A 2=17[(x 1-—x )2+(x 2-—x )2+(x 3-—x )2+(x 4-—x )2+(x 5-—x )2+(x 6-—x )2+(x 7-—x )2]】22.(本题满分9分)工厂加工某种零件,经测试,单独加工完成这种零件,甲车床需用x 小时,乙车床需用 (x 2-1)小时,丙车床需用(2x -2)小时.(1)单独加工完成这种零件,若甲车床所用的时间是丙车床的 23,求乙车床单独加工完成这种零件所需的时间;(2)加工这种零件,乙车床的工作效率与丙车床的工作效率能否相同?请说明理由.23.(本题满分9分)已知:如图8,⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,弦CD 交AB 于E ,∠BCD =∠BAC . (1)求证:AC =AD ;(2)过点C 作直线CF ,交AB 的延长线于点F ,若∠BCF =30°,则结论“CF 一定是⊙O 的切线” 是否正确?若正确,请证明;若不正确,请举反例.24.(本题满分10分)如图9,在平面直角坐标系中,已知点A (2,3)、B (6,3),连结AB . 如果点P 在直线y =x -1上,且点P 到直线AB 的距离小于1,那么称点P 是线段AB 的“邻近点”.(1)判断点C( 72,52) 是否是线段AB 的“邻近点”,并说明理由;(2)若点Q (m ,n )是线段AB 的“邻近点”,求m 的取值范围.25.(本题满分10分)已知□ABCD ,对角线AC 与BD 相交于点O ,点P 在边AD 上,过点P 分别作PE ⊥AC 、PF ⊥BD ,垂足分别为E 、F ,PE =PF . (1)如图10,若PE =3,EO =1,求∠EPF 的度数; (2)若点P 是AD 的中点,点F 是DO 的中点,BF =BC +32-4,求BC 的长.26.(本题满分12分)已知点A (1,c )和点B (3,d )是直线y =k 1x +b 与双曲线y =k 2x(k 2>0)的交点.(1)过点A 作AM ⊥x 轴,垂足为M ,连结BM .若AM =BM ,求点B 的坐标; (2)设点P 在线段AB 上,过点P 作PE ⊥x 轴,垂足为E ,并交双曲线y =k 2x(k 2>0)于点N .当PN NE 取最大值时,若PN = 12,求此时双曲线的解析式. x。
2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)一、选择题1.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D2.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 4.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .15.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解10.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠A BC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα11.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.15.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.若a ,b 互为相反数,则22a b ab +=________.18.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量 100 200 500 1000 2000 A出芽种子数961654919841965发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).x 在实数范围内有意义,则x的取值范围是_____.20.若式子3三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.24.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.25.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.A解析:A 【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.5.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D6.C解析:C 【解析】 【分析】依据∠1=25°,∠BAC =90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°. 【详解】如图,∵∠1=25°,∠BAC =90°, ∴∠3=180°-90°-25°=65°,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.B解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB∥CD,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE平分∠BAC,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.10.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.11.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13 【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.15.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C ∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 16.cm 【解析】试题解析:如图折痕为GH 由勾股定理得:AB==10cm 由折叠得:AG=BG=AB=×10=5cmGH ⊥AB ∴∠AGH=90°∵∠A=∠A ∠AGH=∠C=90°∴△ACB ∽△AGH ∴∴∴G解析:cm .【解析】试题解析:如图,折痕为GH ,由勾股定理得:AB==10cm , 由折叠得:AG=BG=AB=×10=5cm ,GH ⊥AB ,∴∠AGH=90°, ∵∠A=∠A ,∠AGH=∠C=90°,∴△ACB ∽△AGH , ∴, ∴, ∴GH=cm .考点:翻折变换17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm 根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.22.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
2020年福建省中考数学试卷(权威解析)

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣52.如图所示的六角螺母,其俯视图是( )A .B .C .D .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( ) A .1B .12C .13D .14第3题 第5题 第6题4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A.10B.5C.4D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|=.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x≤6−x,①3x+1>2(x−1).②18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE =∠DAF.19.(8分)先化简,再求值:(1−1x+2)÷x2−1x+2,其中x=√2+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣5【解答】解:−15的相反数是15,故选:B .2.如图所示的六角螺母,其俯视图是( )A .B .C .D .【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆. 故选:B .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14【解答】解:∵D ,E ,F 分别是AB ,BC ,CA 的中点, ∴DE =12AC ,DF =12BC ,EF =12AB , ∴DF BC=EF AB=DE AC=12,∴△DEF ∽△ABC , ∴S △DEF S △ABC=(DE AC)2=(12)2=14,∵等边三角形ABC 的面积为1, ∴△DEF 的面积是14,故选:D .4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A .等边三角形是轴对称图形,不是中心对称图形; B .平行四边形不是轴对称图形,是中心对称图形; C .圆既是轴对称图形又是中心对称图形; D .扇形是轴对称图形,不是中心对称图形. 故选:C .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A .10B .5C .4D .3【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a⋅1a=1,故本选项符合题意;故选:D.8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=3【解答】解:依题意,得:3(x﹣1)=6210 x.故选:A.9.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A .40°B .50°C .60°D .70°【解答】解:∵A 为BD ̂中点,∴AB ̂═AD ̂,∵AB =CD ,∴AB ̂=CD ̂,∴AB ̂=AD ̂=CD ̂,∵圆周角∠BDC =60°,∴∠BDC 对的BC ̂的度数是2×60°=120°,∴AB ̂的度数是13×(360°﹣120°)=80°,∴AB ̂对的圆周角∠ADB 的度数是12×80°=40°,故选:A .10.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2﹣2ax 上的点,下列命题正确的是()A .若|x 1﹣1|>|x 2﹣1|,则y 1>y 2B .若|x 1﹣1|>|x 2﹣1|,则y 1<y 2C .若|x 1﹣1|=|x 2﹣1|,则y 1=y 2D .若y 1=y 2,则x 1=x 2【解答】解:∵抛物线y =ax 2﹣2ax =a (x ﹣1)2﹣a ,∴该抛物线的对称轴是直线x =1,当a >0时,若|x 1﹣1|>|x 2﹣1|,则y 1>y 2,故选项B 错误;当a <0时,若|x 1﹣1|>|x 2﹣1|,则y 1<y 2,故选项A 错误;若|x 1﹣1|=|x 2﹣1|,则y 1=y 2,故选项C 正确;若y 1=y 2,则|x 1﹣1|=|x 2﹣1|,故选项D 错误;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|= 8 .【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为 13 .【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为13, 故答案为:13. 13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 4π .(结果保留π)【解答】解:S 扇形=90⋅π⋅42360=4π, 故答案为4π.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 ﹣10907 米.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC = 30 度.【解答】解:正六边形的每个内角的度数为:(6−2)⋅180°6=120°,所以∠ABC =120°﹣90°=30°,故答案为:30. 16.设A ,B ,C ,D 是反比例函数y =k x图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【解答】解:如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当OA =OC =OB =OD 时,四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②【解答】解:解不等式①,得:x ≤2,解不等式②,得:x >﹣3,则不等式组的解集为﹣3<x ≤2.18.(8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE=∠DAF .【解答】证明:四边形ABCD 是菱形,∴∠B =∠D ,AB =AD ,在△ABE 和△ADF 中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .19.(8分)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=1x−1,当x =√2+1时,原式=1√2+1−1=√22. 20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨,10x +(100﹣x )×1=235,解得,x =15,∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.【解答】解:(1)连接OB ,如图1,∵AB 与⊙O 相切于点B ,∴∠ABO =90°,∵sinA =12,∴∠A =30°,∴∠BOD =∠ABO +∠A =120°,∴∠BED =12∠BOD =60°;(2)连接OF ,OB ,如图2,∵AB 是切线,∴∠OBF =90°,∵BF =3√3,OB =3,∴tan ∠BOF =BF OB =√3, ∴∠BOF =60°,∵∠BOD =120°,∴∠BOF =∠DOF =60°,在△BOF 和△DOF 中,{OB =OD ∠BOF =∠DOF OF =OF,∴△BOF ≌△DOF (SAS ),∴∠OBF =∠ODF =90°,∴DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.【解答】解:(1)如图,四边形ABCD 即为所求;(2)如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP ,∴△ABP ∽△CDP ,∴AB CD =AP PC ,∵AB ,CD 的中点分别为M ,N ,∴AB =2AM ,CD =2CN ,∴AM CN =AP PC ,连接MP ,NP ,∵∠BAP =∠DCP ,∴△APM ∽△CPN ,∴∠APM =∠CPN ,∵点P 在AC 上,∴∠APM +∠CPM =180°,∴∠CPN +∠CPM =180°,∴M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;②求证:EP PF =PC CF .【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF , ∴EP PF =PC CF .25.(14分)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.(1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t=10t+80t−40=10(√t√2√t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.。
2020年厦门市数学中考试题带答案

2020年厦门市数学中考试题带答案一、选择题1.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<32.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°3.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B 点,甲虫沿大半圆弧ACB路线爬行,乙虫沿小半圆弧ADA1、A1EA2、A2FA3、A3GB路线爬行,则下列结论正确的是 ( )A.甲先到B点B.乙先到B点C.甲、乙同时到B点 D.无法确定4.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣55.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m B.小球距O点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:26.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)8.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲B .乙C .丙D .一样10.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .3611.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .1812.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x-=+B .5076010696020500x x -=+C .1069605076050020x x-=+D .5076010696050020x x -=+ 二、填空题13.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.14.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 15.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.计算:82-=_______________.19.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.20.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .三、解答题21.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一 如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全..表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.22.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.23.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地i=,从B到C坡面的坡角到B地的路程.已知:从A到C坡面的坡度1:3∠=︒,42CBA45BC=公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈)≈,3 1.73224.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D'处,折痕为EF.≌;(1)求证:ABE AD F'(2)连结CF,判断四边形AECF是什么特殊四边形?证明你的结论.25.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=706【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.2.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.3.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门市xx 年初中毕业和高中阶段各类学校招生考试
数 学 试 卷
(满分:A 卷100分,B 卷50分;考试时间:120分钟)
考生注意:本试卷为A 卷填空题和选择题.答题卷为A 卷填空题的答题栏、选择题的答题表、A 卷的解答题和B 卷.考生必须把.....试卷上...试题的答案填在.......答题卷...的相应答题位置上........,答在试卷....上.视为无效.....收卷时只收.....答题卷...,试卷由考场统一处理, 请考生不要私自带走. 一、填空题:(本大题共10小题,每小题3分,共30分)(答案须填....在答题...卷.) 1、-3的相反数是 . 2、计算:sin 30°= .
3、已知:∠A =30°,则∠A 的补角是_____度.
4、计算:3x 2y +2x 2y = .
5、分解因式:ma +mb = .
6、已知:如图,D 是BC 上一点, ∠C =62°, ∠CAD =32°, 则 ∠ADB = 度.
7、已知:如图,OA 、OB 为⊙O 的半径,C 、D 分别为OA 、OB 的中点, 若AD =3厘米,则BC = 厘米.
8、已知一条弧的长是3π厘米, 弧的半径是6厘米,则这条弧 所对的圆心角是 度(弧长公式:l =n πR 180
).
9、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过
100度,那么每度电价按a 元收费;如果超过100度,那么超过部分....每度电价按b 元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是 元(用含a 、b 的代数式表示).
10、矩形ABCD 中,M 是BC 边上且与B 、C 不重合的点,点P 是射线AM 上的点,若以A 、P 、
D 为顶点的三角形与△ABM 相似,则这样的点有 个.
D C
B
A
二、选择题:(本大题共5小题,每小题4分,共20分)(答案须填....在答题卷....
) 每小题都有四个选项,其中有且只有一个选项是正确的,请将正确选项的字母代号填写在答题卷上的答题表中相应的空格内,选对每小题得4分,选错、不选或多选均得0分.
11、下列计算正确的是
(A )2·3= 6 (B) 2+3=6 (C) 8=3 2 (D) 4÷2=2
12、已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米, 则⊙O 的半径是 (A )3厘米
(B) 4厘米 (C) 5厘米
(D) 8厘米
13、已知:如图, ⊙O 的两条弦AE 、BC 相交于点D,连结AC 、BE.
若∠ACB =60°,则下列结论中正确的是 (A ) ∠AOB =60° (B) ∠ADB =60° (C) ∠AEB =60° (D) ∠AEB =30°
14、一定质量的干松木,当它的体积V =2m 3时,它的密度ρ=0.5×103kg/m 3,
则ρ与V 的函数关系式是
(A ) ρ=1000V (B) ρ=V +1000
(C) ρ=500V (D) ρ=1000
V
15、矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内, B 、D 两
点对应的坐标分别是(2, 0), (0, 0),且 A 、C 两点关于x 轴对称.则C 点对应的坐标是 (A )(1, 1) (B) (1, -1) (C) (1, -2) (D) (2, -2)
厦门市xx年初中毕业和高中阶段各类学校招生考试
数 学 答 题 卷
(满分:A 卷100分,B 卷50分;考试时间:120分钟)
A
卷
一、填空题答题栏:(本大题共10小题,每小题3分,共30分) 1、 . 2、 . 3、 度. 4、 . 5、 . 6、 度. 7、 厘米. 8、 度. 9、 元. 10、 个.
二、选择题答题表:(本大题共5小题,每小题4分,共20分)
三、解答题:(本大题共5小题,每小题10分,共50分)
16、(本题满分10分)
解不等式组 ⎩⎨⎧2x -1≥x +1
3x -1≥x +5
并把解集在数轴上表示出来.
17、(本题满分10分)
解方程组 ⎩⎨⎧x -y =5
xy =6
18、(本题满分10分)
(1) 甲品牌拖拉机开始工作时,油箱中有油30升.如果每小时耗油6
得分 评 卷 人
得分 评 卷 人
得分 评 卷 人
升,求油箱中的余油量y (升)与工作时间x (时)之间的函数关系式.
(2) 如图,线段AB 表示乙品牌拖拉机在工作时油箱中的余油量y (升)与工作时间x (时)之间的函数关系的图象.
性能、售后服务等条件上都一样.购买哪种品牌的拖拉机,并说明理由. 19、(本题满分10分)
如图,已知在等腰梯形ABCD 中,AD ∥BC. (1) 若AD =5, BC =11,梯形的高是4,求梯形的周长.
(2) 若AD =a , BC =b , 梯形的高是h ,梯形的周长为c .
则c = .
(请用含a 、b 、h 的代数式表示; 答案直接写在横线上,不要求证明.) (3)若AD =3, BC =7, BD =52,求证:AC ⊥BD. 20、(本题满分10分)
已知正方形ABCD 和正方形AEFG 有一个公共点A,点G 、E 分别在线段AD 、AB 上.
D
C
B A
(1) 如图1, 连结DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋
转的过程中线段DF与BF的长始终相等.”是否正确,若正确请证明,若不正确请举反例说明;
(2) 若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到
一条线段的长与线段DG的长始终相等.并以图2为例说明理由.
B卷
四、填空题:(本大题共4小题,每小题3分,共12分)
21、计算:x
x2-y2-
y
x2-y
2
=.
图1
图2
22、已知正四边形ABCD 的半径是2,则它的面积是 .
23、我们知道xx 年10月我国成功地发射了第一艘载人飞船.下面是关于“神舟五号载人飞
船”在太空中飞行的一段报道:
15日15时57分,据航天员杨利伟报告和地面监测表明“神舟五号载人飞船”变轨..
成功.据北京航天指挥控制中心现场工作人员介绍,飞船发射升空后,进入的是绕地球飞
行的椭圆轨道.实施变轨后...,飞船进入的是距地球表面约343千米的圆形轨道. 看完上面的这段报道,请你说出“神舟五号载人飞船”变轨后...
的轨迹是: .(地球的半径约为6371千米)
24、已知关于x 的方程x 2-(a +b )x +ab -2=0. x 1、x 2是此方程的两个实数根,现给出三个
结论:
(1) x 1≠x 2 (2) x 1x 2>a b (3 ) x 12+x 22>a 2+b 2 则正确结论的序号是 .(在横线上填上所有正确结论的序号) 五、解答题:(第25、26题每题8分, 第27题10分,第28题12分,共38分) 25、(本题满分8分)
如图,在△ABC 中,∠A 的平分线AM 与BC 交于点M,且与△ABC
的外接圆O 交于点D.过D 作⊙O 的切线交AC 的延长线于E ,
连结DC, 求证: . 要求:请根据题目所给的条件和图形,在题中的横线上写出一个正确的结论,并加以证明(在写结论和证明时都不能在图中添加其它字母和线段).按证明结论时需要用到的已知条件的多少给分,若用足已知条件而证得结论即可得满分.
26、(本题满分8分)
为了从甲、乙两名同学中选拔一人参加射击比赛,在同等的条件下,教练给甲、乙两名同学安排了一次射击测验, 每人打10发子弹,
下面是甲、乙两人各自的射击情况记录(其中乙的情况记录表上射中9、10环的子弹数被墨水污染看不清楚,但是教练记得乙射中9、10环的子弹数均不为0发):
甲: 乙:
得分 评 卷 人
得分 评 卷 人
M
E C B A O
(1)求甲同学在这次测验中平均每次射中的环数;
(2) 根据这次测验的情况,如果你是教练,你认为选谁参加比赛比较合适,并说明理由(结果保
留到小数点后第1位). 27、
(本题满分10分)
已知抛物线y =a x 2+(b -1)x +2. (1)若抛物线经过点(1,4)、(-1,-2), 求此抛物线的解析式;
(2) 若此抛物线与直线y =x 有两个不同的交点P 、Q,且点P 、Q 关于原点对称.
① 求b 的值;
② 请在横线上填上一个符合条件的a 的值: a = ,并在此条件下画出该函数的图象.
得分 评 卷 人
y
28、(本题满分12分)
已知圆心在原点,半径为1的⊙O,直线AB与⊙O切于点P (m,n).且与x、y轴交于点A(a,0)、B(0,b) (a>0,b>0).
(1)如图1,当m=
3
2时,求a的值;
(2)如图2,连结OP,过P向x轴引垂线交x轴于点C,设x表示△OPC的面积,y=a+b, 试
求y与x之间的函数关系式,并写出自变量x的取值范围.
y x
图1
y x
图2。