海宁市桥梁工程中幅桥墩 桥梁博士盖梁计算
利用桥梁博士进行横梁计算的教程_计算
利用桥梁博士进行横梁计算的教程_计算利用桥梁博士进行横梁计算的教程(续一)本文介绍桥梁博士进行箱梁横梁计算。
红色字体内容为本文的操作步骤,黑体字为相应的一些说明和解释。
基本情况在前文中有所介绍,这里主要介绍加载及边界条件的设定。
一、输入施工信息共建立了三个施工阶段,阶段1安装所有单元;阶段2张拉所有钢束(钢束1、2),并灌浆;阶段3施加永久荷载。
三个施工阶段的设置分别如图1.1-1.3所示。
图1.1 试工阶段1在阶段3中所施加的永久荷载,是在求得8号墩上所承担的恒载(F0)的基础上,除以墩上箱梁的腹板数(n),而后在与腹板对应的位置处加以F0/n的集中力。
如果要做的细,还可以按各腹板所承担的承载面积进行分配。
关于边界条件,可以在有支座的位置处设计边界条件,注意一般设一个横向约束即可,其它均可只设为竖向约束。
图1.4给出了相应的约束和加载情况。
图1.2 试工阶段1图1.3 试工阶段1二、输入使用信息:收缩徐变天数取为:3650。
一般认为混凝土的收缩徐变可以持续数年。
最在升温温差取为25度,降温温差也取25度。
非线性温度按D60-2004中4.3.10定义,一个为正温差,一个为负温差。
活荷载描述:按公路一级车道荷载加载。
因为本例中桥宽有40多m,故偏保守的取为10个车道。
先按一个车道纵向影响线加载求得墩顶位置处承担的活荷载值,此例约为626KN,填入图2.1中鼠标处示处。
图2.1 活荷载输入如图2.1所示,勾选横向加载——点横向加载有效区域按钮,将弹出如图2.2所示窗口。
活载类别选择汽车,横向有效区域起点取为1m,终点为45.1m。
有必要说明下的是,采用桥博进行横向加载计算时并不用输入活载的横向分布调整系数,车道折减系数等,而是通过定义车道、横向有效分布区域等由桥博自行进行加载。
第1号桥墩盖梁计算书
注:1、工程文件名:E:\钟海\莫\建设西路\施工图-审查后\计算\盖梁2.qlt。
2、桥梁通网络版7.78版本计算。
注:横向加载位置仅按左偏、右偏、里对称、外对称加载。
注:1、加载方式为自动加载。
重要性系数为1.1。
2、横向布载时车道采用1到4列分别加载,车辆按1辆加载计算。
车道荷载数据注:集中荷载Pk已经乘以1.2系数,使得竖直力效应最大。
双孔加载按左孔或右孔的较大跨径作为计算跨径。
车辆荷载数据双孔、左孔、右孔分别加载时对应的冲击系数每片上部梁(板)恒载反力挡块数据注:外边柱之间盖梁截面按钢筋混凝土盖梁构件配筋计算。
其余按钢筋混凝土一般构件配筋计算。
注:1、“人群/每米”指横向1米宽度的支反力,不是总宽度对应的支反力。
总宽度为0米。
2、“总轴重”指一联加载长度内(双孔或左孔或右孔加载)的轮轴总重。
计算水平制动力使用。
3、“左、右支反力”未计入汽车冲击力的作用。
4、双孔加载车道均布荷载、集中荷载的跨径采用“单孔左或右跨不利作为计算跨径”。
5、双孔、左孔、右孔分别加载车道均布荷载为37.5、37.5、37.5kN/m,集中荷载为140、140、140kN。
6、双孔支反力合计:人群荷载72.614kN/m,1辆车辆荷载530.55kN,1列车道荷载920.597kN。
7、左孔(或右孔)单孔加载时1辆车轮轴只作用在左孔(或右孔)内,同车辆的前后轮轴不进入另一孔。
见示意图。
①单孔内加载不进入另一孔+------++------+↓↓↓↓--> 轮轴不进入另一孔---+ +--------------------------------+ +--------------------------------+ +---| | 单孔内加载| | 另一孔| |---+ +--------------------------------+ +--------------------------------+ +---↑↑R计算↑↑R另孔=0 ↑↑+-----+ +-----+ +-----+| | | | 计算墩| |②可进入另一孔但只计单孔不计另一孔+------++------++------+↓↓↓↓↓↓--> 轮轴进入另一孔---+ +--------------------------------+ +--------------------------------+ +---| | 单孔内加载| | 另一孔| |---+ +--------------------------------+ +--------------------------------+ +---↑↑R计算↑↑R另孔存在但视为0参与计算↑↑+-----+ +-----+ +-----+| | | | 计算墩| |活载反力和冲击系数表(表2)注:1、线荷载为63.75kN/m,指盖梁的总重量除以盖梁长度得到的每延米重量。
桥博盖梁计算书word版
桥博盖梁计算书word版某高速公路高架桥盖梁计算一、工程概况某高速公路高架桥,半幅桥宽21.00米,上部构造采用25米先简支后结构连续小箱梁,下部构造采用矩形墩、钻孔灌注桩基础。
盖梁采用C50混凝土,矩形墩采用C30混凝土。
具体布置如下图:小箱梁横向布置图桥墩一般构造图二、结构计算盖梁计算程序采用桥梁博士系统。
盖梁结构离散为36个单元,39个节点。
计算模型见下图:盖梁计算模型盖梁立体模型盖梁单元几何图形钢束布置图设计荷载:公路-I级;结构重要性系数γ:1.0;钢绞线弹性模量:1.95x105MPa,标准强度:σ=1860MPa,张拉应力:0.75σ=1395MPa,单端锚具变形:0.006m;张拉方式:两端张拉。
预应力成孔方式:预埋波纹管;钢束布置:4N1束和5N2束,均采用φs15.2-10。
共分为九个施工阶段。
盖梁按A类预应力混凝土构件设计。
三、计算结果(一)成桥后1、承载能力极限状态强度包络图2、作用长期效应组合正应力承载能力极限状态强度包络图上缘最大正应力上缘最小正应力下缘最大正应力3、作用短期效应组合正应力下缘最小正应力上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力4、作用长期效应组合主应力5、作用短期效应组合主应力6、作用长期效应组合位移最大主压应力最大主拉应力最大主压应力最大主拉应力最大位移7、作用短期效应组合位移(二)、施工阶段分析1、第一施工阶段施工内容:下部构造施工,张拉5N2束。
最小位移最大位移最小位移钢束布置图1.1、正应力1.2、主应力上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力最大主压应力最大主拉应力2、第二施工阶段施工内容:架设外边梁。
架桥机各支点计算反力:前支点:=161x1.15=185.15KN中支点:=291x1.15=334.65KN后支点:=232x1.15=266.8KN2.1、正应力2.2、主应力上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力最大主压应力最大主拉应力3、第三施工阶段施工内容:架设另一外边梁。
盖梁计算书
盖梁两大计算方法1 传统简化算法以桥梁通为代表2 盖梁影响线直接加载法以桥梁博士为代表桥梁通盖梁计算与绘图一盖梁计算原理⑴以交通部颁布现行的桥涵规范作为编程依据。
⑵斜桥以桥孔斜长为计算跨径,按正交桥的方法计算。
⑶顺桥向按简支梁加载计算荷载支反力。
⑷横向分配系数对称布载按杠杆法,偏载按刚性横梁法。
⑸三跨及以上时盖梁视为刚性支承的双悬臂多跨连续梁,两跨时为双悬臂简支梁。
⑹建立柱(肋)支承反力影响线和每个计算截面内力影响线。
⑺横桥向荷载经横向分配传递给每片梁(板),再由每片梁(板)按内力影响线加载得出各计算截面人群、汽车、挂车引起的最不利内力值。
⑻对荷载内力进行组合,求出各计算截面内力最大值和最小值,形成内力包络图。
⑼弯矩控制正截面强度和主筋根数,剪力控制斜截面抗剪强度和斜筋根数以及箍筋间距和根数,裂缝由弯矩控制。
二绘图编制原理⑴根据盖梁外廓尺寸按纵、横方向分别计算确定钢筋构造图的绘图比例,绘图比例按2增减,同时计算出立面、平面、侧面、钢筋大样等图上控制座标。
⑵根据斜交角、弯起钢筋种类、箍筋环数、盖梁等高或悬臂段变高计算钢筋编号。
⑶绘制钢筋立面、平面、侧面及钢筋大样,并计算钢筋根数和长度(含平均长度)。
⑷计算并绘制钢筋明细表和材料数量表以及弯起钢筋D值表。
⑸生成*.SCR钢筋图形文件,用户进入AutoCAD图形平台,即可将其显示在屏幕上,并进行编辑和修改,绘图机输出。
三盖梁设计1样板文件的使用系统为用户提供了文件名为n2.qlt、n3.qlt的样板文件,桥墩编号为1号桥墩的数据是完整的,分别对应2柱式、3柱式盖梁结构,该数据文件既可计算又可绘图。
2建立用户工程文件名有两种方法,一是在桥梁通主菜单的工程管理下拉式菜单的“创建工程”下建立,另一种是在桥梁通主菜单的“桥墩盖梁计算与绘图”下拉式菜单的“打开文件”按钮下建立。
3输入盖梁尺寸打开桥梁通主菜单的“桥墩计算与绘图”下拉式菜单的“盖梁计算与绘图”,弹出“桥墩盖梁计算与绘图”数据输入窗体,选择盖梁计算,再点击“盖梁尺寸”按钮,弹出数据输入窗体,根据提示输入盖梁的基本数据,数据输入完毕关闭该窗体。
桥梁博士对桥墩盖梁进行计算的过程和方法[详细]
如果需要考虑墩柱和盖梁的框架作用,还 需要把墩柱建立进来;柱底的边界条件视 情况而定,如果是整体承台或系梁连接, 可视为柱底固结;如果是无系梁的桩柱, 可以将桩使用弹性支撑或等代模型的方式 来模拟。
二、输入总体信息 计算类型为:全桥结构安全验算 计算内容:勾选计算活载 桥梁环境:相对湿度为0.8 规范选择中交04规范。 三、输入单元信息 输入单元信息,建立墩柱、盖梁及垫石单
元模型,对于T梁或小箱梁,因为支座间距 比较大不能将车轮直接作用在盖梁上,我 们还需要在盖梁上设置虚拟桥面单元来模 拟车道面,与盖梁采用主从约束来连接, 虚拟桥面连续梁的刚度至少大于盖梁的100 倍。建立模型如下:
建立模型如下:
虚拟桥面单元
盖梁单 元
墩柱单 元
虚拟桥面为连续梁时,刚度可在特征系数里修改。
四、输入施工信息 第一施工阶段:安装所有杆件
盖梁计算模型
添加边界条件
添加虚拟桥面与盖梁的主从约束:
虚拟桥面与盖梁的主从约束需要使用两种情况 分别模拟:虚拟桥面简支梁和虚拟桥面连续梁; 这两种方法分别是模拟墩台手册中的杠杆法和 偏心受压法;其目的是杠杆法控制正弯矩截面; 偏心受压法控制负弯矩截面。
勾选横向加载,输入汽车和人群的横向加
载有效区域在活载输入对话框中人群集度 和人行道宽度填入1,因为在人群荷载反力 及源自向加载区域已考虑了人群集度和宽度。
六、执行项目计算 模型建立完成,执行项目计算
七、查看计算结果 查看所需的计算结果
桥梁博士对桥墩盖梁进 行计算的过程和方法
主要介绍利用桥梁博士对桥墩盖梁进行计算 的过程和方法,重点在于虚拟桥面入盖梁活载的 加载处理。 进行盖梁计算主要由以下几个步骤:
桥梁新建工程中幅桥墩盖梁计算书
桥梁新建工程中幅桥墩盖梁计算书工程名称:海宁市赵家漾路(塘南路~水月亭路)新建工程项目名称:桥梁工程工程编号: 13LL08-S009 工程部位:赵家漾路中幅桥墩盖梁计算计算内容:中幅桥墩盖梁共 4 页设计人:复核人:反复核人:2014年08月25日一、基本设计参数1、荷载标准:城-A级,2、人群荷载:参照《城市桥梁设计规范》(CJJ 11-2011)第10.0.5条执行;3、采用的主要规范:《城市桥梁设计规范》(CJJ11-2011);《公路桥涵设计通用规范》(JTG D60-2004);《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);4、选用材料:①混凝土C30号:fcd=13.8MPa,ftd=1.39MPa,E=3x104MPa;②HRB335级钢筋:fsd=280MPa,fsd’=280MPa,E=2.00x105MPa;5、结构重要性系数:γ0=1.1;6、体系温差:升温25、降温25;上下缘温差参照《公路桥涵设计通用规范》(JTG D60-2004);7、混凝土收缩徐变:3650天;8、计算程序:使用《桥梁博士程序 V3.0》对主梁进行结构安全复核。
9、冲击系数(正弯) :0.215;10、单车道荷载:通过桥梁纵向计算,得到单车道荷载为498 kN;两侧每5.3m布置一个支座。
二、计算的基本条件1、材料在荷载作用下处于小变形和线弹性阶段;2、各种荷载对结构的作用符合线性叠加原理的条件;三、计算简图配单元模型图四、持久状况承载能力极限状态计算1、正截面抗弯最大抗力对应的最小弯矩(kN.m)最小抗力对应的最大弯矩(kN.m)配筋情况:顶板配13根HRB33528钢筋,底板配13根HRB33528钢筋。
计算结论:由图可知承载能力极限强度验算满足要求2、斜截面抗剪箍筋配置情况:除翼缘板外,沿边横梁内每15cm配6肢HRB33510箍筋,加密区箍筋间距7.5cm。
3、剪力抗力图最大剪力抗力图最小剪力抗力图计算结论:由上表可知,斜截面抗剪可以满足规范要求。
03 30mT梁桥墩盖梁计算书
-575
下拉偏拉 是
是
最大弯矩 1.83e+03 5.19e+03 下拉受弯 是
是
8
最小弯矩 496
-575
下拉偏拉 是
是
8
最大弯矩 2.02e+03 5.19e+03 下拉受弯 是
是
9
最小弯矩 540
-575
下拉偏拉 是
是
最大弯矩 2.02e+03 5.19e+03 下拉受弯 是
是
9
最小弯矩 540
上缘裂缝
7
7
下缘裂缝
上缘裂缝
8
8
下缘裂缝
上缘裂缝
9
9
下缘裂缝
上缘裂缝
10
10
下缘裂缝
上缘裂缝
11
11
下缘裂缝
上缘裂缝
12
12
下缘裂缝
上缘裂缝
13
13
下缘裂缝
上缘裂缝
14
14
下缘裂缝
上缘裂缝
15
15
下缘裂缝
上缘裂缝
16
16
下缘裂缝
上缘裂缝
17
17
下缘裂缝
上缘裂缝
18
18
下缘裂缝
短期组合 裂缝宽度(mm)
桥梁博士
表3-2 正常使用极限状态裂缝宽度验算表(mm)
位置 上缘 下缘
荷载效应 0.122 0.128
允许值 0.2 0.2
抗裂验算满足要 求
3.3.2 承载能力极限状态正截面强度验算
a)抗弯承载能力验算
单元号 节点号 1
1 2
2 2
3
3 3
桥梁博士常见问题解答
横梁计算(1) 计算方法概述横梁按照一次落架的施工方法采用平面杆系理论进行计算,考虑长度为6倍顶板厚度的顶底板参与横梁受力,根据荷载组合要求的内容进行内力、应力、极限承载力计算,按钢筋混凝土构件(钢筋混凝土横梁)/预应力构件(预应力混凝土横梁)验算结构在施工阶段、使用阶段应力、极限承载力是否符合规范要求。
(2) 荷载施加方法横梁重量按实际施加,同时将纵向计算时永久作用和除汽车、人群以外的可变作用引起的支反力标准值作为永久荷载平均施加在横梁的各腹板位置,汽车、人群荷载在其实际作用范围按最不利加载。
当然,用户可以采用其他的荷载施加方法,不必拘泥于上述内容。
(3) 将纵向一列车的支反力作为汽车横向分布调整系数时(注意城市荷载纵向计算的车道数大于4时,计算剪力时荷载乘1.25,故用多列车支反力除横向分布系数较真实),横向加载有效区域需手动扣除车轮距路缘石的距离。
(4) 每m宽人群纵向支反力作为人群横向系数,人行道宽度为纵向宽度,填1,人群集度填1,加载有效区域按实际填。
(5) 满人横向系数与人群相同,满人总宽填1预应力构件中单元应力验算应以主应力控制还是正应力控制?主应力主要用来控制构件腹板内部斜裂缝的,铁路规范明确定义截面重心轴处及翼缘板与腹板交接处需要进行主拉应力验算,桥博的计算结果中虽然也给出了主应力值,但是对于单元顶、底缘的主应力可以不受控制,因为一般主应力在单元内部发生。
正应力主要是用来控制单元顶、底缘的。
使用刚接板梁计算横向分布系数左板和右板惯矩怎么计算出来的啊?对于小箱梁和T梁,就是将上部结构沿纵桥向取1m,在这1m的范围内上部结构拼接处的悬臂接触面积。
以T梁为例,就是图中阴影部分的面积计算惯性矩即可。
部分支座的反力为0?Q:桥博计算的收缩支反力中部分支座的反力为0,结构自重在各支座处产生的支反力均不为0,可为何支反力汇总列表中收缩反力为0的支座,支反力汇总也为0。
A:程序计算各项反力后,将各作用产生的支反力叠加,若某个支座支反力为负,即出现支座脱空时,程序就将这个支座拆除,在其上反向增加一个外荷载,荷载大小等于除收缩之外其余荷载及作用产生的支反力合力,重新计算其余支座的支反力,在各支座支反力汇总时,被拆除的支反力为0,其余支反力为各作用的合力汇总。
桥梁博士对桥墩盖梁进行计算的过程和方法
13
勾选横向加载,输入汽车和人群的横向加 载有效区域在活载输入对话框中人群集度 和人行道宽度填入1,因为在人群荷载反力 及横向加载区域已考虑了人群集度和宽度。
14
六、执行项目计算 模型建立完成,执行项目计算
七、查看计算结果 查看所需的计算结果
15
4
二、输入总体信息 计算类型为:全桥结构安全验算 计算内容:勾选计算活载 桥梁环境:相对湿度为0.8 规范选择中交04规范。 三、输入单元信息 输入单元信息,建立墩柱、盖梁及垫石单
元模型,对于T梁或小箱梁,因为支座间距 比较大不能将车轮直接作用在盖梁上,我 们还需要在盖梁上设置虚拟桥面单元来模 拟车道面,与盖梁采用主从约束来连接, 虚拟桥面连续梁的刚度至少大于盖梁的100 倍。建立模型如下:
3
一、结构离散
首先对盖梁进行结构离散,即划分单元建 立盖梁模型,原则是在支座处、柱顶、特 征断面(跨中、1/4)处均需设置节点。
如果需要考虑墩柱和盖梁的框架作用,还 需要把墩柱建立进来;柱底的边界条件视 情况而定,如果是整体承台或系梁连接, 可视为柱底固结;如果是无系梁的桩柱, 可以将桩使用弹性支撑或等代模型的方式 来模拟。
5
建立模型如下:
虚拟桥面单元
盖梁单 元
墩柱单 元
6
虚拟桥面为连续梁时,刚度可在特征系数里修改。
7
四、输入施工信息 第一施工阶段:安装所有杆件
8
盖梁计算模型
添加边界条件
9
添加虚拟桥面与盖梁的主从约束: 虚拟桥面与盖梁的主从约束需要使用两种情况 分别模拟:虚拟桥面简支梁和虚拟桥面连续梁; 这两种方法分别是模拟墩台手册中的杠杆法和 偏心受压法;其目的是杠杆法控制正弯矩截面; 偏心受压法控制负弯矩截面。
桥梁博士计算报告(验算报告)
验算报告1.工程概况本桥位于XX市开发区东大市场南部,通XX公路南侧,横跨XX运河,南接XX镇。
XX运河为内河五级航道,通航净空宽38米、高5米。
本桥上部结构为预应力混凝土双幅连续箱梁,跨径布置:80.11+130+80.11,下部结构墩采...基承台接实体墩形式、台采用桩基接盖梁。
本桥上部结构采用双悬臂对称浇注的施工形式。
2.技术标准和设计参数2.1技术标准2.1.1桥面宽度:全宽30m,横向布置为0.5米防撞护栏+12.5米行车道+0.5米防撞护栏+3.0米中央分隔带+0...防撞护栏+12.5米行车道+0.5米防撞护栏2.1.2桥面纵坡:小于3%2.1.3桥面横坡:2%(单幅单向坡)2.1.4车辆荷载等级:公路II级2.2设计规范2.2.1《公路工程技术标准》(JTJ001-97)2.2.2《公路桥涵设计通用规范》(JTG D60-2004)2.2.3《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)2.2.4《公路工程抗震设计规范》(JTJ004-89)2.2.5《公路桥涵地基与基础设计规范》(JTJ024-85)2.2.6《公路桥涵施工技术规范》(JTJ041-2000)3.截面特征及单元特征信息列表原始截面信息单元号节点号截面抗弯惯距截面面积截面高度中性轴高1116.528513.2858 1.77 3.052216.139712.7575 1.78 3.053315.9812.5551 1.78 3.054415.810612.3422 1.79 3.055513.843110.2708 1.82 3.056613.843110.2708 1.82 3.057713.843110.2708 1.82 3.058813.843110.2708 1.82 3.059915.497510.7284 1.82 3.13101019.790312.1248 1.9 3.38111127.644513.8982 2.08 3.79121237.513114.908 2.29 4.25131350.98116.0081 2.53 4.77141468.448917.1614 2.79 5.34151594.471418.5492 3.12 6.05161696.911518.6656 3.15 6.11171794.509918.5508 3.12 6.05181868.448917.1614 2.79 5.34191950.964516.003 2.53 4.77202037.514.9029 2.29 4.25212127.644513.8982 2.08 3.79222219.780612.1194 1.9 3.38 232315.497510.7284 1.82 3.13 242413.843110.2708 1.82 3.05 252513.843110.2708 1.82 3.05 262613.843110.2708 1.82 3.05 272713.843110.2708 1.82 3.05 282813.843110.2708 1.82 3.05 292915.497510.7284 1.82 3.13 303019.780612.1194 1.9 3.38 313127.644513.8982 2.08 3.79 323237.514.9029 2.29 4.25 333350.964516.003 2.53 4.77 343468.448917.1614 2.79 5.34 353594.509918.5508 3.12 6.05 363696.911518.6656 3.15 6.11 373794.471418.5492 3.12 6.05 383868.448917.1614 2.79 5.34 393950.98116.0081 2.53 4.77 404037.513114.908 2.29 4.25 414127.644513.8982 2.08 3.79 424219.790312.1248 1.9 3.38 434315.497510.7284 1.82 3.13 444413.843110.2708 1.82 3.05 454513.843110.2708 1.82 3.05 464613.843110.2708 1.82 3.05 474713.843110.2708 1.82 3.05 484815.810612.3422 1.79 3.05 494915.9812.5551 1.78 3.05 505016.139712.7575 1.78 3.05 515215.62530.0 1.25 2.5 525315.62530.0 1.25 2.5 535515.62530.0 1.25 2.5 545615.62530.0 1.25 2.5 555815.62530.0 1.25 2.5 565915.62530.0 1.25 2.5 576115.62530.0 1.25 2.5 586215.62530.0 1.25 2.5第1施工阶段截面信息单元号节点号截面抗弯惯距截面面积截面高度中性轴高141468.385317.1487 5.34 2.8 151594.471418.5492 6.05 3.12 161696.911518.6656 6.11 3.15 171794.509918.5508 6.05 3.12 343468.379417.1487 5.34 2.8353594.509918.5508 6.05 3.12363696.911518.6656 6.11 3.15373794.471418.5492 6.05 3.12第2施工阶段截面信息单元号节点号截面抗弯惯距截面面积截面高度中性轴高141468.385317.1487 5.34 2.8151594.471418.5492 6.05 3.12161696.911518.6656 6.11 3.15171794.509918.5508 6.05 3.12343468.379417.1487 5.34 2.8353594.509918.5508 6.05 3.12363696.911518.6656 6.11 3.15373794.471418.5492 6.05 3.12第3施工阶段截面信息单元号节点号截面抗弯惯距截面面积截面高度中性轴高141468.501617.1733 5.34 2.8151594.832118.6199 6.05 3.13161697.293618.7363 6.11 3.16171794.870818.6215 6.05 3.13343468.495617.1733 5.34 2.8353594.939918.6431 6.05 3.13363697.371418.7579 6.11 3.16373794.901218.6415 6.05 3.134.正常使用极限状态应力验算新《公桥规》第7.1.5条规范:使用阶段预应力混凝土受弯构件正截面混凝土的压应力,应符合下列规定:受压区混凝土的最大压应力未开裂构件σkc+σpt≤0.5fck允许开裂构件σcc≤0.5fck新《公桥规》第6.3条规范:正截面抗裂应对构件正截面混凝土的拉应力进行验算,并应符合下列规定:1 全预应力混凝土构件,在作用(或荷载)短期效应组合下预制构件σst-0.85σpc≤0分段浇筑或砂浆接缝的纵向分块构件σst-0.80σpc≤02 A类预应力混凝土构件,在作用(或荷载)短期效应组合下σst-σpc≤0.7fck ;但在荷载长期效应组合下σlt-σpc≤0新《公桥规》第7.1.6条规范:使用阶段预应力混凝土受弯构件正截面混凝土的主压应力,应符合下列规定:σcp≤0.6fck新《公桥规》第6.3条规范:斜截面抗裂应对构件斜截面混凝土的主拉应力进行验算,并应符合下列规定:1 全预应力混凝土构件,在作用(或荷载)短期效应组合下预制构件σtp≤0.6fck分段浇筑或砂浆接缝的纵向分块构件σtp≤0.4fck2 A类预应力混凝土构件,在作用(或荷载)短期效应组合下预制构件σtp≤0.7fck分段浇筑或砂浆接缝的纵向分块构件σtp≤0.5fck4.1短期效应组合主截面应...单元号节点号应力上缘正应力下缘正应力最大主应力最大最小最大最小主压应力主拉应力11应力属性0.00.00.00.0 6.51e-02-6.51e-02容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是22应力属性 1.41 1.38 6.0 5.8 6.0-1.64容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是33应力属性 1.26 1.25 6.4 6.14 6.41-1.42容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是44应力属性 1.15 1.11 6.84 6.52 6.87-1.13容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是55应力属性0.7040.43510.39.5210.5-0.569容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是66应力属性0.477-9.5e-0311.310.111.7-0.311容许值20.10.020.10.024.1-3.08是否满足要求是否是是是是77应力属性 2.06 1.5111.29.8711.7-0.229容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是88应力属性 4.2 3.5810.38.8610.9-0.18容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是99应力属性 4.02 3.3310.48.9211.4-0.964容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1010应力属性 4.9 4.38.517.339.85-1.03容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1111应力属性 5.42 4.91 6.95 5.958.49-0.738容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1212应力属性 5.68 5.24 5.35 4.477.01-0.861容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1313应力属性 6.02 5.63 4.02 3.24 6.03-0.906容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1414应力属性 6.67 6.36 3.42 2.71 5.62-0.643容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1515应力属性 6.2 5.93 3.1 2.47 5.43-0.858容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1616应力属性 6.7 6.12 2.65 2.11 6.32-0.7容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1717应力属性7.13 6.52 2.21 1.7 6.89-0.57容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1818应力属性 6.68 6.13 2.42 1.87 6.29-0.626容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是1919应力属性 6.41 5.95 3.47 2.85 6.11-0.561容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2020应力属性 6.21 5.84 4.68 3.99 6.65-0.638容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2121应力属性 5.5 5.2 6.1 5.337.83-0.545容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2222应力属性 5.29 4.928.037.079.86-0.733容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2323应力属性 4.69 4.2310.39.0112.2-0.535容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2424应力属性 3.39 2.8211.49.8613.2-1.62e-02容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2525应力属性 1.81 1.1111.59.7513.2-0.311容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2626应力属性 1.640.92811.79.8813.5-0.304容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2727应力属性 3.03 2.3511.79.9613.6-0.133容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2828应力属性 4.04 3.4112.610.814.6-3.71e-02容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是2929应力属性 6.17 5.7310.49.0812.4-0.443容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3030应力属性7.21 6.767.83 6.959.71-0.829容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3131应力属性7.757.24 5.63 5.17.9-0.631容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3232应力属性8.017.43 4.24 3.927.76-0.765容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3333应力属性8.67.94 3.03 2.718.25-0.644容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3434应力属性9.718.96 1.96 1.599.3-0.438容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3535应力属性9.528.73 1.83 1.449.3-0.686容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3636应力属性9.148.34 2.24 1.837.84-0.584容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3737应力属性9.448.66 1.88 1.498.28-0.402容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3838应力属性8.487.76 2.3 1.917.16-0.417容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是3939应力属性7.87.12 2.83 2.43 6.57-0.416容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4040应力属性7.07 6.42 4.09 3.7 6.06-0.428容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4141应力属性 5.81 5.2 5.81 5.327.09-0.338容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4242应力属性 4.9 4.327.4 6.668.47-0.424容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4343应力属性 3.45 2.939.358.3210.1-0.204容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4444应力属性 3.28 2.839.458.379.86-0.175容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4545应力属性0.8160.42510.79.6511.1-3.75e-03容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4646应力属性0.7350.410.79.7511.0-3.47e-03容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4747应力属性0.8320.64410.09.3310.2-0.338容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4848应力属性 1.17 1.14 6.79 6.49 6.81-0.889容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是4949应力属性 1.28 1.26 6.37 6.12 6.38-1.18容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是5050应力属性 1.41 1.38 5.99 5.8 5.99-1.39容许值20.10.020.10.024.1-3.08是否满足要求是是是是是是5152应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否5253应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否5355应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否5456应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否5558应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否5659应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否5761应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否5862应力属性0.00.00.00.00.00.0容许值0.00.00.00.00.00.0是否满足要求否否否否否否单元下缘最大应力:ZMAX<[SZ(iE,L,1,2).M...单元下缘最小应力:ZMIN<[SZ(iE,L,1,2).MINB],iE=1-75>单元最大主压应力:ZMAX<[SZ(iE,L,1,2).M...单元最大主拉应力:ZMIN<[SZ(iE,L,1,2).MINA],iE=1-75>下图图中红、蓝、橙、黑分别代表上缘最大、最小应力及下缘最大、最小。
桥梁博士常见问题解答
横梁计算(1) 计算方法概述横梁按照一次落架的施工方法采用平面杆系理论进行计算,考虑长度为6倍顶板厚度的顶底板参与横梁受力,根据荷载组合要求的内容进行内力、应力、极限承载力计算,按钢筋混凝土构件(钢筋混凝土横梁)/预应力构件(预应力混凝土横梁)验算结构在施工阶段、使用阶段应力、极限承载力是否符合规范要求。
(2) 荷载施加方法横梁重量按实际施加,同时将纵向计算时永久作用和除汽车、人群以外的可变作用引起的支反力标准值作为永久荷载平均施加在横梁的各腹板位置,汽车、人群荷载在其实际作用范围按最不利加载。
当然,用户可以采用其他的荷载施加方法,不必拘泥于上述内容。
(3) 将纵向一列车的支反力作为汽车横向分布调整系数时(注意城市荷载纵向计算的车道数大于4时,计算剪力时荷载乘1.25,故用多列车支反力除横向分布系数较真实),横向加载有效区域需手动扣除车轮距路缘石的距离。
(4) 每m宽人群纵向支反力作为人群横向系数,人行道宽度为纵向宽度,填1,人群集度填1,加载有效区域按实际填。
(5) 满人横向系数与人群相同,满人总宽填1预应力构件中单元应力验算应以主应力控制还是正应力控制?主应力主要用来控制构件腹板内部斜裂缝的,铁路规范明确定义截面重心轴处及翼缘板与腹板交接处需要进行主拉应力验算,桥博的计算结果中虽然也给出了主应力值,但是对于单元顶、底缘的主应力可以不受控制,因为一般主应力在单元内部发生。
正应力主要是用来控制单元顶、底缘的。
使用刚接板梁计算横向分布系数左板和右板惯矩怎么计算出来的啊?对于小箱梁和T梁,就是将上部结构沿纵桥向取1m,在这1m的范围内上部结构拼接处的悬臂接触面积。
以T梁为例,就是图中阴影部分的面积计算惯性矩即可。
部分支座的反力为0?Q:桥博计算的收缩支反力中部分支座的反力为0,结构自重在各支座处产生的支反力均不为0,可为何支反力汇总列表中收缩反力为0的支座,支反力汇总也为0。
A:程序计算各项反力后,将各作用产生的支反力叠加,若某个支座支反力为负,即出现支座脱空时,程序就将这个支座拆除,在其上反向增加一个外荷载,荷载大小等于除收缩之外其余荷载及作用产生的支反力合力,重新计算其余支座的支反力,在各支座支反力汇总时,被拆除的支反力为0,其余支反力为各作用的合力汇总。
桥梁博士计算报告(横梁计算)
6.横梁计算6.1计算方法概述横梁按照一次落架的施工方法采用平面杆系理论进行计算,考虑长度为6倍顶板厚度的顶底板参与横梁...根据荷载组合要求的内容进行内力、应力、极限承载力计算,按全预应力构件验算结构在施工阶段、使用阶段...极限承载力及整体刚度是否符合规范要求。
6.2荷载施加方法横梁重量按实际施加,同时将纵向计算时永久作用和除汽车、人群以外的可变作用引起的支反力标准值...永久荷载平均施加在横梁的各腹板位置,汽车、人群荷载在其实际作用范围按最不利加载。
6.3数值符号及荷载组合数值符号的规定及荷载组合与纵向计算相同。
6.4应力验算规则应力验算规则与纵向计算相同。
6.5边横梁计算结果6....施工阶段应力验算按照新《公桥规》第6.1.3条规定,钢丝、钢绞线的张拉控制应力值σcon≤0.75fpk,故允许值为0.75fpk=0.75×1860=1395Mpa。
表5.6.1.1所列为钢绞线的张拉控制应力。
表6.5.1.1 钢绞线张拉控制应力表钢束号钢束束数编束根数张拉控制应力(Mpa)1416 1.23e+032216 1.25e+033217 1.26e+034217 1.27e+035216 1.26e+036416 1.25e+037416 1.23e+03由表6.5.1.1可见,所有预应力束的张拉控制应力均满足要求。
按照新《公桥规》第7.2.8条规定,在预应力和构件自重等施工荷载作用下截面边缘混凝土的法向应力...下列规定:压应力σcct≤0.70fck’,拉应力σctt≤0.70ftk’。
本桥施工时混凝土强度已达到标准强度的85%,故压应力允许值0.70fck’=0.70×0.85×32.4=19.28M...拉应力允许值0.70ftk’=0.70×0.85×2.65=1.58Mpa。
表6.5.1.2所列为施工阶段混凝土的最大、最小正应力。
盖梁计算方法
盖梁计算2009-10-23 22:28:27| 分类:道路桥梁| 标签:|字号大中小订阅个人文章,转载请注明。
桥墩桥台盖梁在桥梁结构中广泛应用,其计算也是桥梁设计中经常接触的问题,06年我曾就此专门写过一个ppt总结盖梁的计算,温故知新,贴上来和大家一起交流。
1本文讨论的范围本文仅对常规的使用方式给出一种盖梁计算的方法供探讨,力求简单、实用,便于掌握。
2概述盖梁的作用将上部结构荷载传递到下部,转换受力特点。
盖梁的形式常见的盖梁多为矩形。
为节省材料根据桥墩盖梁的受力特点,桥墩盖梁也常在悬臂下部切去部分呈变截面状;在多联相连的桥梁中,梁高不等时在伸缩缝位置会出现“L”形盖梁,对多孔简支结构,有时会出现倒“T”形盖梁。
盖梁的受力特点盖梁为典型的受弯、受剪连续梁,暂不深究其更深的东西,探讨起来没完了。
采用的计算程序选用最常用的杆系计算程序作为计算工具,例如gqjs、桥博等,本文选用桥梁博士作为计算工具。
3 盖梁计算桥梁运营过程中,盖梁承担上部结构传递来的恒载和活载,并转换为竖向力传递给基础。
本文以一普通钢筋混凝土盖梁为例进行分析,分以下步骤逐步进行。
计算数据准备1)计算盖梁承受的上部结构恒载:梁重+二期恒载,从桥梁纵向计算结果文件中提取恒载在该墩处的支反力。
注意:二期恒载主要指铺装、护栏等上部附属结构荷载,本步要计算出各个支座传递给盖梁的恒荷载。
2)计算盖梁上作用的活载:从桥梁纵向计算结果文件中提取单车道汽车荷载引起的该墩处的支反力,以该支反力作为横向加载的车重。
3)根据上部结构桥面宽度确定横向加载区域。
建模计算1)根据盖梁构造图对盖梁进行单元离散;注意:进行单元离散时特征截面及支撑位置需要设置节点,同时确定盖梁上恒荷载作用的位置。
2)根据单元离散图在桥梁博士中建立计算模型,在施工阶段将恒载作用输入,在使用阶段输入活载信息,输入完毕进行计算。
在桥博的视频教程中,有关于桥博模拟盖梁计算的完整视频,是很好的参考材料。
桥梁博士V4工程案例教程03_桥梁博士V4桥台计算解决方案课件
桥梁博士V4工程案例教程桥台计算解决方案目录一、常见桥台形式荷载计算:台后搭板荷载:台后搭板荷载转化为集中荷载作用在前墙顶部。
考虑搭板的1/2重量作用到盖梁上,并考虑搭板上10cm的沥青铺装作用,则搭板总荷载为:(8x0.35x11x26+8x11x0.1x24)x0.5=445.6kN;(作用位置为前墙后缘)台后填土重:台后填土重量约为U台空心的体积内土重(未考虑基础襟边上填土重):(2x10x9.2+10x5.838+5.686x9.2+2x5.686x5.838)x11.785/6x18=6967KN;土压力作用:本例假定台后土容重为18KN/m3,内摩擦角为30度。
由图可知,台后土层厚度为11.785m,按线性荷载计算:台后主动土压力:故台后土压力顶部数值为0KN/m,底部土压力数值为767.3KN/m。
对于汽车荷载需要需要换算成均布的土层厚度,由下表计算可得,由汽车荷载引起的荷载在桥梁宽度范围内的竖向线荷载值为25.67KN/m,在台身竖直方向上按均布荷载添加。
汽车荷载土压力:注:本示例不再考虑制动力、温度力等纵向作用力。
实际建模时,应根据桥梁结构形式及支座性质考虑纵向作用的制动力、温度力等作用,并在运营分析中添加。
(1)创建基础构件新建一个模型,对于基础构件需要建立钻孔信息来进行基础的各项计算,所以需要在总体信息→地质及总体信息→钻孔中填写钻孔资料,具体参数可参考附带资料中信息。
地质信息中各参数意义可参考桥博V4.0相关资料,本例不再阐述。
在结构建模界面中点击结构建模→基础选项,在模型中创建一个基础构件,并修改结构类型为U型基础。
单击选中创建完的基础构件,根据图纸信息对U型基础的各参数进行修改:属性框中U型扩大基础的各主要参数含义如下:前墙方向与顺桥向夹角:创建斜交基础时填写,可以理解为侧墙与前墙的角度,在平面上以Y坐标的正值方向为基础,逆时针方向角度为正,顺时针方向角度为负。
斜交时基础末端形式:当为斜交基础时选择,有两种选项“垂直于侧墙”和“平行于前墙”,其示意图如下:前墙下基础长度:与前墙相接的基础(也就是从上往下第一层)横桥向长度。
路桥CAD课程考试桥梁博士计算书(截图)
图 4 桥梁博士模型
原始信息和毛截面特征
截
节点 节点
单元 节点
面 截面面 截面抗弯 截面中性
单元类 单元自重
X坐 Y坐
单元重
号
号
高
积
惯距
轴高度
型 提高系数
标
标
度
1
0
0 1.5 31.63 6.10535 0.774
1
2 0.68 0 1.5 31.63 6.10535 0.774
621
预砼
1.04
10 15.9 0 1.5 14.054 4.46603 0.823 10
11 17.9 0 1.5 14.054 4.46603 0.823
731
预砼
1.04
11 17.9 0 1.5 14.054 4.46603 0.823 11
12 19.9 0 1.5 14.054 4.46603 0.823
731
预砼
1.04
12 19.9 0 1.5 14.054 4.46603 0.823 12
13 20.9 0 1.5 14.054 4.46603 0.823
384
预砼
1.04
13 20.9 0 1.5 14.054 4.46603 0.823 13
14 23.9 0 1.5 14.054 4.46603 0.823
《路桥 CAD》 课程考试
桥梁博士软件应用 净跨径 27m 的简支箱梁计算
学生姓名: 班级: 学号:
符健 桥梁 1 班 20095974
第 1 页 共 18 页
目录
一、建模信息·············································3
桥博盖梁计算书-8页文档资料
某高速公路高架桥盖梁计算一、工程概况某高速公路高架桥,半幅桥宽21.00米,上部构造采用25米先简支后结构连续小箱梁,下部构造采用矩形墩、钻孔灌注桩基础。
盖梁采用C50混凝土,矩形墩采用C30混凝土。
具体布置如下图:二、结构计算桥墩一般构造图盖梁计算程序采用桥梁博士系统。
盖梁结构离散为36个单元,39个节点。
计算模型见下图:盖梁计算模型盖梁立体模型设计荷载:公路-I 级; 结构重要性系数γ:1.0;钢绞线弹性模量:1.95x105MPa ,标准强度:σ=1860MPa ,张拉应力:0.75σ=1395MPa ,单端锚具变形:0.006m ;张拉方式:两端张拉。
预应力成孔方式:预埋波纹管;钢束布置:4N1束和5N2束,均采用φs 15.2-10。
共分为九个施工阶段。
盖梁按A 类预应力混凝土构件设计。
三、计算结果 (一)成桥后1、承载能力极限状态强度包络图2、作用长期效应组合正应力3、作用短期效应组合正应力盖梁单元几何图形钢束布置图承载能力极限状态强度包络图 上缘最大正应力 上缘最小正应力 下缘最大正应力 下缘最小正应力上缘最大正应力4、作用长期效应组合主应力5、作用短期效应组合主应力6、作用长期效应组合位移上缘最小正应力下缘最大正应力下缘最小正应力最大主压应力最大主拉应力最大主压应力最大主拉应力最大位移7、作用短期效应组合位移(二)、施工阶段分析1、第一施工阶段施工内容:下部构造施工,张拉5N2束。
1.1、正应力1.2、主应力最小位移最大位移最小位移上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力最大主压应力钢束布置图2、第二施工阶段施工内容:架设外边梁。
架桥机各支点计算反力:前支点:=161x1.15=185.15KN 中支点:=291x1.15=334.65KN 后支点:=232x1.15=266.8KN 2.1、正应力2.2、主应力最大主拉应力上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力最大主压应力最大主拉应力3、第三施工阶段施工内容:架设另一外边梁。
桥梁8—墩柱盖梁计算
(6)盖梁的位移——挠度验算 对于高跨比 l / h≤5.0 的钢筋混凝土盖梁不作挠度验算。
(4)钢筋混凝土梁端位于柱外的悬臂部分计算 在柱外设有边梁时,其外边梁作用点至柱边缘的距离(圆形截面柱可换算为 边长等于 0.8 倍直径的方形截面柱)大于盖梁截面高度时,其正截面和斜截面承 载力按《桥规》 (JTG D62)第 5 章有关规定计算,当边梁作用点至柱边缘的距离 等于或小于盖梁截面高度时, 属于悬臂深梁, 则可按“撑杆——系杆体系” (见 《桥 规》 (JTG D62)第 8.5.3 条)方法计算悬臂部分正截面抗弯承载力;斜截面抗剪 承载力可按钢筋混凝土一般受弯构件计算。
1 2
(7—193)
a) 实际结构
b) 等效结构
图 8—2 排架墩桩基结构模拟
式中 θH——实际结构由 H=1 作用在桩顶(或承台底)引起的角变位。 θM——实际结构由 M=1 作用在桩顶(或承台底)引起的角变位。 δF——实际结构由 F=1 作用在桩顶(或承台底)引起的轴向压缩变位。 δH——实际结构由 H=1 作用在桩顶(或承台底)引起的水平变位。 E—— 桩基材料的弹性模量。 其中:
(5) 盖梁的最大裂缝宽度 钢筋混凝土盖梁的最大裂缝宽度可按 《桥规》 (JTG D62) 第 6.4.3 条计算。即: 30 d W f k C1C2C3 ss ( ) (m m) (7—198) Es 0.28 10
As Ap bh0 (b f b)h f
1 0.4l C 1 。其最大宽度应满足规范的限值。 但其中系数 3 3 h
(一)盖梁的计算跨径 按简支梁计算的盖梁,其计算跨径应取lc和1.15ln两者较小者,其中lc 为盖梁支承中心线之间的距离,ln为盖梁的净跨径。在确定圆形墩柱的净 跨径时,圆形截面墩柱可换算为边长等于0.8倍直径的方形截面柱。当盖梁 作为连续梁或刚构分析时,计算跨径可取支承中心的距离。 (二)钢筋混凝土盖梁强度计算 对于钢筋混凝土盖梁,当其高度与跨度之比l/h > 5.0时(l为盖梁的计 算跨径;h为盖梁的高度),可按《桥规》(JTG D62)第5章~第七章钢 筋混凝土一般构件计算。 当钢筋混凝土盖梁,按简支梁计算其高跨比为2.0<l / h≤5.0和连续梁或 刚构其高跨比为2.5<l / h≤5.0时,称为“短梁”。其受力特征类似于深梁, 与一般梁有所区别,其正截面抗弯承载力、斜截面抗剪承载力和抗剪截面 应按下述计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算书
工程名称:海宁市赵家漾路(塘南路~水月亭路)
新建工程
项目名称:桥梁工程
工程编号: 13LL08-S009 工程部位:赵家漾路中幅桥墩盖梁计算
计算内容:中幅桥墩盖梁
共 4 页
设计人:
复核人:
反复核人:
2014年08月25日
一、基本设计参数
1、荷载标准:城-A级,
2、人群荷载:参照《城市桥梁设计规范》(CJJ 11-2011)第10.0.5条执行;
3、采用的主要规范:
《城市桥梁设计规范》(CJJ11-2011);
《公路桥涵设计通用规范》(JTG D60-2004);
《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);
4、选用材料:
①混凝土C30号:fcd=13.8MPa,ftd=1.39MPa,E=3x104MPa;
②HRB335级钢筋:fsd=280MPa,fsd’=280MPa,E=2.00x105MPa;
5、结构重要性系数:γ0=1.1;
6、体系温差:升温25、降温25;上下缘温差参照《公路桥涵设计通用规范》(JTG D60-2004);
7、混凝土收缩徐变:3650天;
8、计算程序:使用《桥梁博士程序 V3.0》对主梁进行结构安全复核。
9、冲击系数(正弯) :0.215;
10、单车道荷载:通过桥梁纵向计算,得到单车道荷载为498 kN;
两侧每5.3m布置一个支座。
二、计算的基本条件
1、材料在荷载作用下处于小变形和线弹性阶段;
2、各种荷载对结构的作用符合线性叠加原理的条件;
三、计算简图
配单元模型图
四、持久状况承载能力极限状态计算
1、正截面抗弯
最大抗力对应的最小弯矩(kN.m)
最小抗力对应的最大弯矩(kN.m)
配筋情况:顶板配13根HRB33528钢筋,底板配13根HRB33528钢筋。
计算结论:由图可知承载能力极限强度验算满足要求
2、斜截面抗剪
箍筋配置情况:除翼缘板外,沿边横梁内每15cm配6肢HRB33510箍筋,加密区箍筋间距7.5cm。
3、剪力抗力图
最大剪力抗力图
最小剪力抗力图
计算结论:由上表可知,斜截面抗剪可以满足规范要求。
五、持久状况正常使用极限状态计算
1、裂缝宽度验算
根据《公路桥梁钢筋混凝土及预应力混凝土桥涵设计规范》6.4.1~6.4.4条,钢筋混凝土结构在Ⅰ类环境下,裂缝宽度需要<0.20mm;根据设计标准将其定为0.17mm的限制值。
计算得到的各计算单元裂缝宽度如图所示:
短期效应组合上下缘最大裂缝宽度(mm)计算结论:由图可知,最大裂缝宽度为0.2132mm,不满足本次设计要求。
六、结构支反力计算结果
计算结论:。