等差数列的前n项和作业解析
等差数列的前n项和公式同步练习(含解析)
《第二节等差数列》同步练习(等差数列的前n项和公式)一、选择题1.已知等差数列{a n}的前n项和为S n,且S2=10,S5=55,则过点P(n,S nn ),Q(n+2,S n+2n+2)(n∈N*)的直线的斜率为( )A.4B.3C.2D.12.[2022辽宁名校高三上联考]已知数列{a n}是等差数列,前n项和为S n,若a1+a2+a3+a4=3,a17+a18+a19+a20=5,则S20=( )A.10B.15C.20D.403.[2022四川成都七中高一下期中]已知等差数列{a n}的公差d<0,a5a7=35,a4+a8=12,前n 项和为S n,则S n的最大值为( )A.66B.72C.132D.1984.(多选)[2022湖南高三上联考]两个等差数列{a n}与{b n}的前n项和分别为S n与T n,且S2n T n =8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀n∈N*,使得T n>05.(多选)[2022安徽临泉一中高二期末]已知等差数列{a n}的前n项和为S n,若S2 021>0,S2 022<0,则( )A.数列{a n}是递增数列B.|a1 012|>|a1 011|C.当S n取得最大值时,n=1 011D.S1 012<S1 0096.[2022山东潍坊高二调研]在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.4日B.3日C.5日D.6日7.如果有穷数列a1,a2,…,a n(n∈N*)满足a i=a n-i+1(i=1,2,3,…,n),那么称该数列为“对称数列”.设{a n}是项数为2k-1(k∈N,k≥2)的“对称数列”,其中a k,a k+1,…,a2k-1是首项为50,公差为-4的等差数列,记{a n }的各项之和为S 2k -1,则S 2k -1的最大值为( ) A.622B.624C.626D.6288.(多选)[2022江苏南京高三月考]如图的形状出现在中国南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….设第n 层有a n 个球,从上往下n 层球的总数为S n ,则( )A.S 5=35B.a n +1-a n =nC.S n -S n -1=n(n+1)2,n ≥2 D.1a 1+1a 2+1a 3+…+1a 100=200101二、非选择题9.如图所示,八个边长为1的小正方形拼成一个长为4,宽为2的矩形,A ,B ,D ,E 均为小正方形的顶点,在线段DE 上有 2 020个不同的点P 1,P 2,…,P 2 020,且它们等分DE.记M i =AB ⃗⃗⃗⃗⃗ ·AP i ⃗⃗⃗⃗⃗⃗ (i =1,2,…,2 020).则M 1+M 2+…+M 2 020的值为 .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,则{a n }的通项公式a n = ;若数列{b n }满足b n =12a n -30,其前n 项和为T n ,则T n 的最小值为 .11.[2022辽宁阜新高二上期末]在等差数列{a n }中,S n 是数列{a n }的前n 项和,已知a 2=4,S 4=20.(1)求数列{a n }的通项公式;(2)若b n =(-1)n·a n ,求数列{b n }的前n 项和T n .12.[2022河北唐山一中高二上月考]记S n是等差数列{a n}的前n项和,若S5=-35,S7=-21.(1)求数列{a n}的通项公式,并求S n的最小值;(2)设b n=|a n|,求数列{b n}的前n项和T n.参考答案一、选择题1.C设d为数列{a n}的公差,则{S nn }是公差为d2的等差数列.2.C由题易知S4,S8-S4,S12-S8,S16-S12,S20-S16成等差数列,又S4=3,S20-S16=5,则S20=(S20-S16)+(S16-S12)+(S12-S8)+(S8-S4)+S4=(5+3)×52=20.3.A因为d<0,a5a7=35,a4+a8=a5+a7=12,所以a5=7,a7=5,则d=-1,所以a n=a7+(n-7)d=-n+12,所以a12=0,所以当n=11或12时,S n取得最大值,最大值为S11=S12=12(a1+a12)2= 12×(11+0)2=66.4.AB由S2nT n =8n3n+5,知S10T5=10(a1+a10)25(b1+b5)2=a1+a10b3=a3+a8b3=4020=2,即a3+a8=2b3,故A正确;同理可得a4+a11b4=S14T7=2813>2,故C错误;当S n=2n2时,有S2n=8n2,则T n=n(3n+5),易得b n=6n+2,故B正确;当S n=-2n2时,有S2n=-8n2,则T n=-n(3n+5)<0,则不存在n∈N*,使得T n>0,故D错误.5.BC因为S2 021=2021(a1+a2021)2=2 021a1 011>0,S2 022=2022(a1+a2022)2=1 011(a1 011+a1 012)<0,所以a1 011>0,a1 011+a1 012<0,所以a1 012<0,且|a1 012|>|a1 011|,所以数列{a n}是递减数列,且当n=1 011时,S n取得最大值,故B,C正确,A错误.又S1 012-S1 009=a1 010+a1 011+a1 012=3a1 011>0,所以S1 012>S1 009,故D错误.故选BC.6.A记良马第n日行程为a n,驽马第n日行程为b n,则由题意知数列{a n}是首项为97,公差为15的等差数列,数列{b n}是首项为92,公差为-1的等差数列,则a n=97+15(n-1)=15n+82,b n=92-(n-1)=93-n.因为数列{a n}的前n项和为n(97+15n+82)2=n(179+15n)2,数列{b n}的前n项和为n(92+93−n)2=n(185−n)2,所以n(179+15n)2+n(185−n)2=420×2,整理得n2+26n-120=0,解得n=4或n=-30(舍去),即4日相逢.7.C易知a k+a k+1+…+a2k-1=50k+k(k−1)×(−4)2=-2k2+52k,S2k-1=a1+…+a k+a k+1+…+a2k-1=2(a k+a k+1+…+a2k-1)-a k=-4k2+104k-50=-4(k-13)2+626,当k=13时,S2k-1取到最大值,且最大值为626.故选C.8.ACD因为a1=1,a2-a1=2,a3-a2=3,……,a n-a n-1=n,以上n个式子相加可得a n=1+2+3+…+n=n(n+1)2,所以S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故A正确;由递推关系可知a n+1-a n=n+1,故B 不正确;当n ≥2时,S n -S n -1=a n =n(n+1)2,故C 正确;因为1a n =2n(n+1)=2(1n−1n+1),所以1a 1+1a 2+…+1a 100=2[(1-12)+(12−13)+…+(1100−1101)]=2(1-1101)=200101,故D 正确.故选ACD.二、非选择题9.14 140 解析如图,设C 为DE 的中点,则AC =72.因为P 1,P 2,…,P 2 020等分DE ,所以AP i ⃗⃗⃗⃗⃗⃗ +AP 2 021−i ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ .又M 1+M 2+…+M 2 020=AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),令S =M 1+M 2+…+M 2 020,则2S =AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ ·(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +…+AP 1⃗⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·[(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AP 2⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+…+(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 1⃗⃗⃗⃗⃗⃗⃗ )]=(2×2 020)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =4 040×√5×72×√5=28 280,所以S =14 140.10.4n -2 -225 解析因为2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的公差为d.由a 3=10,S 6=72,得{a 1+2d =10,6a 1+15d =72,解得{a 1=2,d =4,所以a n =4n -2,所以b n =12a n -30=2n -31.令{b n ≤0,b n+1≥0,即{2n −31≤0,2(n +1)−31≥0,解得292≤n ≤312.因为n ∈N *,所以数列{b n }的前15项均为负值且第16项为正值,所以T 15最小.因为数列{b n }的首项为-29,公差为2,所以T 15=15(−29+2×15−31)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.11.(1)设首项为a 1,公差为d ,由题意知 {a 1+d =4,4a 1+4×32d =20,解得{a 1=2,d =2,故a n =2n. (2)由(1)得b n =(-1)n·a n =(-1)n·2n.当n 为偶数时,T n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2·2=n ;当n 为奇数时,T n =(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n =(n -1)-2n =-n -1, 所以T n ={n,n 为偶数,−n −1,n 为奇数.12.(1)设{a n }的公差为d ,则{5a 1+5×42d =−35,7a 1+7×62d =−21,解得{a 1=−15,d =4, 所以a n =-15+4(n -1)=4n -19.由a n=4n-19≥0,得n≥194,所以当n=1,2,3,4时,a n<0,当n≥5时,a n>0,所以S n的最小值为S4=4a1+4×32d=-36.(2)由(1)知,当n≤4时,b n=|a n|=-a n;当n≥5时,b n=|a n|=a n.又S n=na1+n(n−1)2d=2n2-17n,所以当n≤4时,T n=-S n=17n-2n2,当n≥5时,T n=S n-2S4=2n2-17n-2×(-36)=2n2-17n+72,即T n={17n−2n2,n≤4, 2n2−17n+72,n≥5.。
等差数列的前n项和公式推导与例题解析
等差数列的前n 项和·例题解析一、等差数列前n 项和公式推导:(1) Sn=a1+a2+......an-1+an 也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n (a1+an )]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)二、对于等差数列前n 项和公式的应用【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而直接去求,所列方程组化简后可得++相减即得+,a2a9d=28a4d=25a5d=3 6111⎧⎨⎩即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3若a m=b N,则有3n-1=5N-3即=+ n N 213 () N-若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40 n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+ 解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n ∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例11】 求证:前n 项和为4n 2+3n 的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n -1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证由S n=an2+bn,得当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212 即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d=1725d d=29817162∴a n=25+(n-1)(-2)=-2n+27∴-+≥-++≥≤≥∴2n2702(n1)270n13.5n12.5n=13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。
(完整版)等差数列的前n项和练习含答案
课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。
等差数列前n项和的性质及应用
密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。
题型03 等差数列前n项和构造新等差数列(解析版)
(用数字作答).
【解析】:第一个 5 项和为 10,第二个 5 项和为-5,则每 5 项构成的等差数列的公差为-25= 52 d , d 1。
5.(高考题)已知{an} 是等差数列, a1 a2 4 , a7 a8 28 ,则该数列前 10 项和 S10 等于 (
)
A.64
B.100
C.110
C.24
D.42
【解析】:第一个 2 项和为 2,第二个 2 项和为 8,则每 2 项构成的等差数列的公差为 6,第三个 2 项和为
14,则 S6 2 8 14 24 ,选 C。
8.(高考题)设等差数列{an} 的前 n 项和为 Sn ,若 S3 9 , S6 36 ,则 a7 a8 a9 (
.
【解析】:第一个 m 项和为 30,第二个 m 项和为 100-30=70,则每 m 项和构成等差数列,其公差为 40,
则每 m 项和分别为:30,70,110……,则前 3m 项和为 110+100=210。
3.(高考题)设 Sn 是等差数列an 的前 n 项和,若
S3 S6
1 ,则 3
S6 S12
)
A.63
B.45
C.36
D.27
【解析】:第一个 3 项和为 9,第二个 3 项和为 27,则每 3 项构成的等差数列的公差为 18,则第三个 3 项和
为 27+18=45,选 B。
〖母题 1〗(1)在以 d 为公差的等差数列an 中,设 S1 a1 ... an ,
S2 an1 an2 ... a2n , S3 a2n1 a2n2 ... a3n ,求证 S1, S2 , S3 也是等差数列,并求其公差.
为 292+192=484,则 S24 100 292 484 876 ;
等差数列及其前n项和知识点讲解+例题讲解(含解析)
等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。
等差数列的前n项和(精练)(解析版)
4.2.2 等差数列的前n 项和1.(2020·宜宾市叙州区第一中学校高三三模(文))已知等差数列{}n a 的前n 项和为n S ,9445,31n S a -==,若198n S =,则n =( ) A .10 B .11C .12D .13【答案】B【解析】945S =1955945()952a a a a ⇒=+=⇒= ,所以154()()198(531)11222n n n n n nS a a a a n -=+=+∴=+∴= ,选B.2.(2020·东北育才学校高二月考(文))已知等差数列{}n a 的前n 项和为n S ,若74328a a =+,则25S =( ) A .50 B .100C .150D .200【答案】D【解析】设等差数列{a n }首项为1a ,公差为d,∵74328a a =+,∴3(()116)238a d a d +=++,∴1a +12d=8,即138a = 故S 25=()125252a a +=132522a ⨯=25a 13=200故选:D . 3.(2020·四川省泸县第二中学开学考试(文))等差数列{}n a 的前n 项和为n S ,23a =,且936S S =,则{}n a 的公差d =( )A .1B .2C .3D .4【答案】A【解析】由等差数列性质知()()1319329353939,?654922a a a a S a S S a ++=======,则56a =.所以5213a a d -==.故选A. 4.(2020·云南高一期末)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺题组一 等差数列的基本量【答案】C【解析】从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩,解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺).故选C .5.(2020·陕西省洛南中学高二月考)在等差数列{}n a 中,已知12232,10a a a a +=+=,求通项公式n a 及前n 项和n S .【答案】45n a n =-,223n S n n =- *(1,)n n N ≥∈【解析】令等差数列{}n a 的公差为d ,则由12232,10a a a a +=+=,知:11222310a d a d +=⎧⎨+=⎩,解之得11{4a d =-=; ∴根据等差数列的通项公式及前n 项和公式,有:()()1114145n a a n d n n =+-=-+-=-,21232nn a a S n n n +=⋅=- *(1,)n n N ≥∈;1.(2020·湖北黄州·黄冈中学其他(理))已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21C .7D .3【答案】B【解析】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯=.故选:B.2.(2019·贵州六盘水·高二期末(理))在等差数列{}n a 中,358a a +=,则7S =( )题组二 前n 项和S n 与等差中项A .12B .28C .24D .35【答案】B【解析】等差数列{}n a 中,358a a +=,故17358a a a a +=+=,所以()7717782822S a a +⨯===.故选:B. 3.(2020·湖北荆州·高二期末)已知等差数列{}n a 的前n 项和为n S ,若57942a a a ++=,则13S =( ) A .36 B .72C .91D .182【答案】D【解析】数列{}n a 为等差数列,则5797342a a a a ++==,解得714a = 则()113137131313141822a a S a+=⨯==⨯=故选:D4.(2019·黄梅国际育才高级中学月考)若两个等差数列{}{},n n a b 的前n 项和分别为A n 、B n ,且满足4255n n A n B n +=-,则513513a a b b ++的值为( )A .78B .79C .87D .1920【答案】A【解析】等差数列{}n a 、{}n b 前n 项和分别为n A ,n B ,由4255n n A n B n +=-, 得1131171131751717511177)2)217(4172717(51758a a a a a a Ab b b b b b B +++⨯+=====+++⨯-.故选:A . 5.(2020·赣州市赣县第三中学期中)设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若20121n n S n T n -=-.则33a b =( ) A .595B .11C .12D .13【答案】B【解析】因为等差数列{}n a 前n 项和为n S ,所以1()2n n n a a S +=, 当n 是奇数时,112()2n n n n a a S na ++==,所以33533555a a Sb b T ==,故选:B6.(2020·广西田阳高中高二月考(理))已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825D .1621【答案】A【解析】因为等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-, 所以可设(5)n S kn n =+,(21)n T kn n =-, 所以77618a S S k =-=,66521b T T k =-=,所以7667a b =.故选:A 7.(2020·商丘市第一高级中学高一期末)等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且7453n n S n T n +=-,则使得nna b 为整数的正整数n 的个数是( ) A .3 B .4C .5D .6【答案】C【解析】∵等差数列{a n }、{b n },∴121121,22n n n n a a b ba b --++== , ∴()()121211212122n n n n n n n n n a a a na S n b b b nb T ----+===+ ,又7453n n S n T n +=- , ∴()()7214566721324n n n a b n n -+==+--- , 经验证,当n=1,3,5,13,35时,n n a b 为整数,则使得nna b 为整数的正整数的n 的个数是5.本题选择C 选项.1.(2020·榆林市第二中学高二月考)设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则题组三 前n 项和S n 的性质13141516a a a a +++= ( )A .12B .8C .20D .16【答案】C【解析】∵等差数列{}n a 的前n 项和为n S ,488,20S S ==, 由等差数列的性质得:4841281612,,,S S S S S S S ---成等比数列 又4848,20812,S S S =-=-=∴128122012416,S S S -=-=+=16121314151616420S S a a a a -=+++=+=.故选:C .2.(2020·重庆其他(文))等差数列{}n a 的前n 项和为n S ,已知312S =,651S =,则9S 的值等于( ) A .66 B .90C .117D .127【答案】C【解析】等差数列{}n a 的前n 项和为n S ,由题意可得63963,,S S S S S --成等差数列,故()()363962S S S S S -=+-,代入数据可得()()9251121125S -=+-,解得9117S =故选C3.(2020·江苏徐州·高二期中)已知n S 为等差数列{}n a 的前n 项之和,且315S =,648S =,则9S 的值为( ). A .63 B .81C .99D .108【答案】C【解析】由n S 为等差数列{}n a 的前n 项之和,则3S ,639633(1),,......m m S S S S S S ---- 也成等差数列, 则3S ,6396,S S S S --成等差数列,所以633962()()S S S S S -=+-,由315S =,648S =, 得999S =,故选:C.4.(2020·昆明市官渡区第一中学高二期末(理))等差数列{}n a 的前n 项和为n S ,且1020S =,2015S =,则30S =( ) A .10 B .20C .30-D .15-【答案】D【解析】由等差数列{}n a 的前n 项和的性质可得:10S ,1200S S -,3020S S -也成等差数列,20101030202()()S S S S S ∴-=+-,302(1520)2015S ∴⨯-=+-,解得3015S =-.故选D .5.(2020·朔州市朔城区第一中学校期末(文))设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27【答案】B【解析】由等差数列性质知S 3、S 6﹣S 3、S 9﹣S 6成等差数列,即9,27,S 9﹣S 6成等差,∴S 9﹣S 6=45 ∴a 7+a 8+a 9=45故选B .6.(2020·新疆二模(文))在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若101221210S S -=,则2020S =( ) A .-4040 B .-2020 C .2020 D .4040【答案】C【解析】设等差数列{}n a 的前n 项和为2+n S An Bn =,则+nS An B n=, 所以n S n ⎧⎫⎨⎬⎩⎭是等差数列.因为101221210S S -=,所以n S n ⎧⎫⎨⎬⎩⎭的公差为1,又11201811S a ==-,所以n S n ⎧⎫⎨⎬⎩⎭是以2018-为首项,1为公差的等差数列, 所以202020182019112020S =-+⨯=,所以20202020S =故选:C 8.(2020·河北路南·唐山一中)已知n S 是等差数列{}n a 的前n 项和,若12017a =-, 20142008620142008S S -=,则2017S =__________. 【答案】2017- 【解析】n S 是等差数列{}n a 的前n 项和, n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d ,201420086,66,120142008S S d d -=∴==, 112017,20171S a =-∴=-,()()20172017112018,2018201720172017nS n n S n∴=-+-⨯=-+∴=-+⨯=-, 故答案为2017-.9.(2020·湖南怀化·高二期末)已知n S 是等差数列{}n a 的前n 项和,若12a =-,20202018220202018S S -=,则20192019S =________. 【答案】2016 【解析】n S 是等差数列{}n a 的前n 项和,n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d .20202018 220202018S S -=,22d ∴=,1d =.12a =-,1S21∴=-. 2(1)13n S n n n ∴=-+-⨯=-.2019S20162019∴=.故答案为:2016.1.(2020·安徽铜陵·)设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n=( ) A .6 B .7C .10D .9【答案】B【解析】由等差数列中,59S S =,可得,故,其中,可知当时,最大.2.(2020·河北运河·沧州市一中月考)等差数列{}n a 中,10a >,201520160a a +>,201520160a a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .2015 B .2016C .4030D .4031【答案】C【解析】由题意知201520160,0a a ><,所以14030201520160a a a a +=+>,而14031201620a a a +=<,则有()140304*********a a S ⨯+=>,而()140314031403102a a S ⨯+=<,所以使前n 项和0n S >成立的最大自然数n 是4030,故选C .3.(2020·河北路南·唐山一中期末)已知等差数列{}n a 的前n 项和为n S ,且856a a -=-,9475S S -=,题组四 前n 项和S n 的最值则n S 取得最大值时n =( ) A .14 B .15C .16D .17【答案】A【解析】设等差数列{}n a 的公差为d ,则11369364675d a d a d =-⎧⎨+--=⎩,解得1227d a =-⎧⎨=⎩,故292n a n =-,故当114n ≤≤时,0n a >;当15n ≥时,0n a <, 所以当14n =时,n S 取最大值.故选:A.4.(2020·广西南宁三中开学考试)已知等差数列{}n a 的通项公式为29n a n =-,则使得前n 项和n S 最小的n 的值为( ) A .3 B .4C .5D .6【答案】B【解析】由290n a n =-≤,解得92n ≤,14n ∴≤≤时,0n a <;5n ≥时,0n a > 则使得前n 项和n S 最小的n 的值为4故选:B5.(2020·四川青羊·石室中学高一期末)在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】由于191109510569()10()9050222a a a a S a S a a ++====+>,()< ,所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a .故选C .6.(2020·福建宁德·期末)公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d < B .70a >C .{}n S 中5S 最大D .49a a <【答案】AD【解析】根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=<所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.7.(2020·黑龙江让胡路·大庆一中高一期末)已知等差数列{}n a 的前n 项和为n S ,若780a a +>,790a a +<则n S 取最大值时n 的值是( ) A .4 B .5C .6D .7【答案】D【解析】等差数列{}n a 的前n 项和为n S ,且780a a +>,790a a +<,12130a d ∴+>且12140a d +<,10,0,a d ∴><且780,0a a ><,所以当S n 取最大值时7n =.故选:D8.(2020·浙江其他)已知等差数列{}n a 的前n 项和n S ,且34S =,714S =,则23n n S a +-最小时,n 的值为( ). A .2 B .1或2C .2或3D .3或4【答案】C【解析】设等差数列{}n a 的公差为d ,因为34S =,714S =,所以1132342767142a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a =,13d =,所以2223(1)11550[1(2)]23318n n n n n n S an n +----=+⨯-++=, 因为n ∈+N ,所以当2n =或3n =时,其有最小值.选:C1.(2020·山西大同·高三其他(理))若等差数列{}n a 的前n 项和为n S ,已知129,a a Z =∈,且()5*n S S n N ≤∈,则12n a a a +++=________.【答案】2210,51050,5n n n n n n ⎧-≤⎨-+>⎩【解析】∵等差数列{}n a 的前n 项和为n S ,129,a a Z =∈,且5n S S ≤,56940,950a d a d ∴=+≥=+<, 2,2a Z d ∈∴=-,2(1)9(2)102n n n S n n n -∴=+⨯-=-, ∴当5n ≤时,212..10n a a a n n ++⋯+=-;当5n >时,()()21212345210n a a a a a a a a n n++⋯⋯+=++++--()222105510n n =⨯-+-21050n n =-+,212210,5..1050,5n n n n a a a n n n ⎧-≤∴++⋯+=⎨-+>⎩.故答案为:2210,51050,5n n n n n n ⎧-≤⎨-+>⎩. 2.(2020·黑龙江香坊·哈尔滨市第六中学校高三三模(理))已知等差数列{}n a 前三项的和为3-,前三项的积为15,(1)求等差数列{}n a 的通项公式;(2)若公差0d >,求数列{}n a 的前n 项和n T .题组五 含有绝对值的求和【答案】(1)49n a n =-或74n a n =-(2)25,1{2712,2n n T n n n ==-+≥【解析】(1)设等差数列的{}n a 的公差为d 由1233a a a ++=-,得233a =-所以21a =- 又12315a a a =得1315a a =-,即1111(2)15a d a a d +=-⎧⎨+=-⎩所以154a d =-⎧⎨=⎩,或134a d =⎧⎨=-⎩即49n a n =-或74n a n =- (2)当公差0d >时,49n a n =-1)当2n ≤时,490n a n =-<,112125,6T a T a a =-==--= 设数列{}n a 的前项和为n S ,则2(549)272n n S n n n -+-=⨯=-2)当3n ≥时,490n a n =->123123n n n T a a a a a a a a =++++=--+++()()123122n a a a a a a =++++-+2222712n S S n n =-=-+当1n =时,15T =也满足212171127T ≠⨯-⨯+=, 当2n =时,26T =也满足222272126T =⨯-⨯+=,所以数列{}n a 的前n 项和25127122n n T n n n =⎧=⎨-+≥⎩ 3.(2020·全国高三(文))在等差数列{}n a 中,28a =,64a =-. (1)求n a 的通项公式; (2)求12||||||n n T a a a =+++的表达式.【答案】(1)314n a n =-+;(2)2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 【解析】(1)设公差为d ,则11854a d a d +=⎧⎨+=-⎩,解得111a =,3d =-,所以314n a n =-+.(2)由314n a n =-+0≥可得4n ≤, 所以当4n ≤时,112()(11314)22n n n n a a n n T a a a +-+=+++===232522n n -+, 当5n ≥时,12345()n n T a a a a a a =+++-++1234122()()n a a a a a a a =+++-+++114()4()222n n a a a a ++=⨯-(253)522n n -=-23255222n n =-+. 所以2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 4.(2020·石嘴山市第三中学高三其他(理))已知数列{}n a 满足:313a =-,()141,n n a a n n N -=+>∈. (1)求1a 及通项n a ;(2)设n S 是数列{}n a 的前n 项和,则数列1S ,2S ,3S ,…n S …中哪一项最小?并求出这个最小值. (3)求数列{}n a 的前10项和.【答案】(1)121a =-,425n a n =-;(2)6S 最小,666S =-;(3)前10项和为:102. 【解析】(1)()142n n a a n -=+≥,∴当3n =时,324a a =+,217a =-,214a a =+,121a =-,由14n n a a --=知数列为首项是21-,公差为4的等差数列, 故425n a n =-;(2)425n a n =-,故610a =-<,730a =>,故6S 最小,()6656214662S ⨯=⨯-+⨯=-; (3)当16n ≤≤时,0n a <;当7n ≥时,0n a >,()()10121012678910……T a a a a a a a a a a ∴=+++=-+++++++()()()61061061092102142661022S S S S S ⨯=-+-=-=⨯-+⨯-⨯-=. 5.(2020·湖北武汉)已知数列{}n a 是等差数列,公差为d ,n S 为数列{}n a 的前n 项和,172a a +=-,315S =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和T n .【答案】(1)()*311n a n n N =-+∈;(2)2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 【解析】(1)∵{}n a 是等差数列,公差为d ,且172a a +=-,315S =,∴11262323152a d a d +=-⎧⎪⎨⨯+=⎪⎩,解得18a =,3d =-, ∴()()()11813311n a a n d n n =+-=+--=-+, ∴数列{}n a 的通项公式为:()*311n a n n N=-+∈.(2)令0n a ≥,则3110n -+≥,∴311n ≤,∴233n ≤,*n N ∈. ∴3n ≤时,0n a >;4n ≥时,0n a <, ∵18a =,311n a n =-+,∴3n ≤时,12(8311)2n n n n T a a a -+=++⋅⋅⋅+=()1932n n -=, 当4n ≥时,()121234n n n T a a a a a a a a =++⋅⋅⋅+=+++--⋅⋅⋅-()()12312322n n a a a a a a S S =++-++⋅⋅⋅+=-23(199)(193)319602222n n n n ⨯---+=⨯-=.∴2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 6.(2020·任丘市第一中学)在公差是整数的等差数列{}n a 中,17a =-,且前n 项和4n S S ≥. (1)求数列{}n a 的通项公式n a ;(2)令n n b a =,求数列{}n b 的前n 项和n T .【答案】(1)29n a n =-;(2)()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩. 【解析】(1)设等差数列{}n a 的公差为d ,则d Z ∈,由题意知,{}n S 的最小值为4S ,则4500a a ≤⎧⎨≥⎩,17a =-,所以370470d d -≤⎧⎨-≥⎩,解得7743d ≤≤,d Z ∈,2d ∴=,因此,()()1172129n a a n d n n =+-=-+-=-; (2)29n n b a n ==-.当4n ≤时,0n a <,则n n n b a a ==-,()272982n n n n T S n n -+-∴=-=-=-+;当5n ≥时,0n a >,则n n n b a a ==,()22428216832n n T S S n n n n ∴=-=--⨯-=-+.综上所述:()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩.。
2.3 等差数列的前n项和 作业 及 答案
等差数列性质及前n 项和 作业1.在等差数列{a n }中,已知a 1=10,d =2,S n =580,则n 等于( )A .10B.15 C .20 D .30解析:选C.因为S n =na 1+12n (n -1)d =10n +12n (n -1)×2=n 2+9n ,所以n 2+9n =580,解得n =20或n =-29(舍).2.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B.20 C .22 D .24解析:选B.由S 10=S 11,得a 11=S 11-S 10=0,所以a 1=a 11+(1-11)d =0+(-10)×(-2)=20.3.已知等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 为( )A .1B.53 C .2 D .3解析:选C.因为S 3=(a 1+a 3)×32=6,而a 3=4,所以a 1=0,所以d =a 3-a 12=2. 4.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于( )A .66B.99 C .144 D .297解析:选B.根据等差数列的性质得(a 1+a 4+a 7)+(a 3+a 6+a 9)=3(a 1+a 9)=66,所以S 9=9(a 1+a 9)2=99. 5.已知等差数列{a n }中,S n 是其前n 项和,a 1=-11,S 1010-S 88=2,则S 11=( ) A .-11B.11 C .10 D .-10解析:选A.因为{a n }为等差数列,所以⎩⎨⎧⎭⎬⎫S n n 为等差数列,首项S 11=a 1=-11,设⎩⎨⎧⎭⎬⎫S n n 的公差为d ,则S 1010-S 88=2d =2,所以d =1,所以 S 1111=-11+10d =-1,所以S 11=-11. 6.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项公式a n =________.解析:由已知得⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2,故a n =2n . 答案:2n7.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________. 解析:因为在等差数列{a n }中,a n >0,a 7=12a 4+4,所以a 1+6d =12(a 1+3d )+4,解得a 1+9d =a 10=8,S n 为数列{a n }的前n 项和,则S 19=192(a 1+a 19)=19a 10=152. 答案:1528.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18=________.解析:由a 1>0,a 10·a 11<0知d <0,且a 10>0,a 11<0,所以T 18=a 1+a 2+…+a 10-a 11-a 12-…-a 18=2S 10-S 18=60.答案:609.已知等差数列{a n }的前n 项和为S n ,a 10=30,a 20=50.(1)求通项公式a n ;(2)若S n =242,求n .解:(1)由a 10=30,a 20=50,得⎩⎪⎨⎪⎧a 1+9d =30a 1+19d =50,解得a 1=12,d =2. 所以a n =a 1+(n -1)d =2n +10.(2)由S n =na 1+n (n -1)2d =242, 得12n +n (n -1)2×2=242, 解得n =11或n =-22(舍去).10.已知等差数列{a n }满足a 2=3,a 3+a 5=2.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及S n 的最大值.解:(1)设数列{a n }的公差为d ,因为等差数列{a n }满足a 2=3,a 3+a 5=2,所以⎩⎪⎨⎪⎧a 1+d =3,2a 1+6d =2,解得a 1=4,d =-1,所以a n =a 1+(n -1)d =4+(n -1)×(-1)=5-n .(2)因为等差数列{a n }中,a 1=4,d =-1,a n =5-n ,所以S n =n (a 1+a n )2=n (4+5-n )2=-12n 2+92n =-12⎝⎛⎭⎫n -922+818,因为n ∈N *, 所以n =4或n =5时,S n 取最大值为10.[B 能力提升]11.(2019·昆明一中期末)已知等差数列{a n }的前n 项和为S n ,若m >1,且a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B.20 C .10 D .9解析:选C.S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m ,a m -1+a m +1-a 2m =0⇔2a m =a 2m ,由S 2m -1=38,可知a m >0,所以a m =2,(2m -1)×2=38,解得m =10,故选C.12.(2019·河北沧州一中高二(上)期中考试)在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为________.解析:因为在前m 项中偶数项之和为S 偶=63,所以奇数项之和为S 奇=135-63=72,设等差数列{a n }的公差为d ,则S 奇-S 偶=2a 1+(m -1)d 2=72-63=9.又a m =a 1+d (m -1),所以a 1+a m 2=9,因为a m -a 1=14,所以a 1=2,a m =16.因为m (a 1+a m )2=135,所以m =15,所以d =14m -1=1,所以a 100=a 1+99d =101. 答案:10113.已知等差数列{a n }的前n 项和为S n ,且a 3+a 5=a 4+7,S 10=100.(1)求{a n }的通项公式;(2)求满足不等式S n <3a n -2的n 的值.解:(1)设数列{a n }的公差为d ,由a 3+a 5=a 4+7,得2a 1+6d =a 1+3d +7,①由S 10=100得10a 1+45d =100,②解得a 1=1,d =2,所以a n =a 1+(n -1)d =2n -1.(2)因为a 1=1,a n =2n -1,所以S n =n (a 1+a n )2=n 2, 由不等式S n <3a n -2,得n 2<3(2n -1)-2,所以,n 2-6n +5<0,解得1<n <5,因为n ∈N *,所以n 的值为2,3,4.14.(选做题)已知数列{a n }的前n 项和S n =100n -n 2(n ∈N *).(1)判断{a n }是不是等差数列,若是,求其首项、公差;(2)设b n =|a n |,求数列{b n }的前n 项和.解:(1)当n ≥2时,a n =S n -S n -1=(100n -n 2)-[100(n -1)-(n -1)2]=101-2n . 因为a 1=S 1=100×1-12=99符合上式,所以a n =101-2n (n ∈N *).因为a n +1-a n =-2为常数,所以数列{a n }是首项为99,公差为-2的等差数列.(2)令a n =101-2n ≥0,得n ≤50.5,因为n ∈N *,所以n ≤50(n ∈N *).①当1≤n ≤50(n ∈N *)时,a n >0,此时b n =|a n |=a n ,所以数列{b n }的前n 项和S ′n =100n -n 2.②当n ≥51(n ∈N *)时,a n <0,此时b n =|a n |=-a n ,由b 51+b 52+…+b n =-(a 51+a 52+…+a n )=-(S n -S 50)=S 50-S n ,得数列{b n }的前n 项和S ′n =S 50+(S 50-S n )=2S 50-S n =2×2 500-(100n -n 2)=5 000-100n +n 2.由①②得数列{b n }的前n 项和为S ′n =⎩⎪⎨⎪⎧100n -n 2(n ∈N *,1≤n ≤50),5 000-100n +n 2(n ∈N *,n ≥51).数列的概念与简单表示法、等差数列(强化练)一、选择题1.已知数列3,3,15,…,3(2n -1),…,那么9在此数列中的项数是( )A .12B.13 C .14D .15 解析:选C.根据题意,a n =3(2n -1).由a n =3(2n -1)=9,解得n =14,即9是此数列的第14项.故选C.2.(2019·湖北荆州检测)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A .15B.30 C .31 D .64 解析:选A.设等差数列{a n }的公差为d ,因为a 3+a 4+a 5=3,所以3a 4=3,即a 1+3d=1.又由a 8=8得a 1+7d =8,联立解得a 1=-174,d =74,则a 12=-174+74×11=15.故选A. 3.若数列{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:选C.设数列{a n }的公差为d ,令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,所以b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.4.(2019·长春十一中月考)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B.99 C .98 D .97解析:选C.设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98.5.(2019·湖南濮阳月考)已知等差数列{a n }一共有9项,前4项和为3,最后3项和为4,则中间一项的值为( )A.1720B.5960 C .1 D .6766解析:选D.设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1=1322,d =766. 所以中间一项为a 5=a 1+4d =1322+4×766=6766.故选D. 6.数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 020等于( ) A .1 006B.2 020 C .505 D .1 010解析:选D.由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,故a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 020=505×2=1 010.7.已知数列{a n }满足a 1=2,a n +1-a n =a n +1a n ,那么a 31=( )A .-358B.-259 C .-130D .-261 解析:选B.由已知可得1a n +1-1a n=-1,设b n =1a n ,则数列{b n }是以12为首项,公差为-1的等差数列,所以b 31=12+(31-1)×(-1)=-592,故a 31=-259. 8.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( )A .30尺B.90尺 C .150尺 D .180尺解析:选B.由题意知,该女子每天织布的数量组成等差数列{a n },其中a 1=5,a 30=1,所以S 30=30×(5+1)2=90,即共织布90尺. 9.已知数列{a n }满足:a 1=17,对于任意的n ∈N *都有a n +1=72a n (1-a n ),则a 2 019-a 2 020=( )A .-27B.27 C .-37 D .37解析:选D.a 1=17,a 2=72×17×67=37,a 3=72×37×47=67,a 4=72×67×17=37,….归纳可知,当n 为大于1的奇数时,a n =67;当n 为正偶数时,a n =37.故a 2 019-a 2 020=37. 10.在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *).有下列命题: ①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中最大的项;③若S 7>S 8,则必有S 8>S 9;④若S 7>S 8,则必有S 6>S 9.其中正确命题的个数是( )A .1B.2 C .3 D .4解析:选 D.根据等差数列的性质,若S 11-S 3=4(a 7+a 8)=0,则a 7+a 8=0,S 14=14(a 1+a 14)2=7(a 7+a 8)=0,根据等差数列S n 的图象,当S 3=S 11时,对称轴是n =3+112=7,那么S 7是最大值;若S 7>S 8,则a 8<0,那么d <0,所以a 9<0,所以S 9-S 8<0,即S 8>S 9,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9.故①②③④正确.二、填空题11.已知数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1(n ∈N *),则a 6=________. 解析:因为a n +2=a n +a n +1,所以a 3=a 1+a 2=2,a 4=a 2+a 3=3,a 5=a 3+a 4=5,a 6=a 4+a 5=8.答案:812.已知等差数列{a n }中,a 2与a 6的等差中项为5,a 3与a 7的等差中项为7,则a n =________.解析:设等差数列{a n }的公差为d ,依题意,a 4=5,a 5=7,又a 5=a 4+d ,得d =2. 所以a 1=a 4-3d =5-3×2=-1,故a n =a 1+2(n -1)=2n -3.答案:2n -313.已知等差数列{a n }中,a 2=2,a 4=8,若ab n =3n -1,则b 2 018=________.解析:由a 2=2,a 4=8,得公差d =8-22=3,所以a n =2+(n -2)×3=3n -4,所以a n+1=3n -1.又由数列{a n }的公差不为0,所以结合ab n =3n -1,可得b n =n +1,故b 2 018=2 019.答案:2 01914.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,所以a 6b 6=1941. 答案:1941三、解答题15.在等差数列{a n }中,(1)已知a 2=-1,S 15=75,求a n 与S n ;(2)已知d =2,S 100=10 000,求a 1与a n .解:(1)设{a n }的公差为d .因为{a n }是等差数列,S n 是其前n 项和,a 2=-1,S 15=75,所以⎩⎪⎨⎪⎧a 2=a 1+d =-1,S 15=15a 1+15×142d =75,解得a 1=-2,d =1,所以a n =-2+(n -1)×1=n -3.S n =-2n +n (n -1)2×1=n 2-5n 2. (2)因为S 100=100a 1+100×(100-1)2×2=10 000, 所以a 1=1,所以a n =a 1+(n -1)d =2n -1.16.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .因为S 7=7,S 15=75,所以⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75.所以a 1=-2,d =1. 所以S n =n 2-5n 2,所以S n n =12n -52, 所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12. 所以T n =-2n +n (n -1)2×12=14n 2-94n . 17.(2019·福建外国语中学调研)已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)因为S 4=28,所以(a 1+a 4)×42=28, 所以a 1+a 4=14,则a 2+a 3=14,又a 2a 3=45,公差d >0,所以a 2<a 3,a 2=5,a 3=9,所以⎩⎪⎨⎪⎧a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4, 所以a n =4n -3.(2)由(1)知S n =2n 2-n ,所以b n =S nn +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }是等差数列,所以b 1+b 3=2b 2,即2×62+c =11+c +153+c , 解得c =-12(c =0舍去). 18.某工厂用分期付款的方式购买40套机器设备,共需1 150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%,若交付150万元后的第1个月开始算分期付款的第1个月,问分期付款的第10个月应付多少钱?全部按期付清后,买这40套机器设备实际花了多少钱?解:因为购买设备时已付150万元,所以欠款为1 000万元,依据题意,知其后应分20次付款,则每次付款的数额顺次构成数列{a n},且a1=50+1 000×1%=60,a2=50+(1 000-50)×1%=59.5,a3=50+(1 000-50×2)×1%=59,…,a n=50+[1 000-50(n-1)]×1%=60-0.5(n-1)(1≤n≤20,n∈N*),所以数列{a n}是以60为首项,-0.5为公差的等差数列,所以a10=60-9×0.5=55.5,S20=20[60+(60-19×0.5)]2=1 105.所以全部按期付清后,买这40套机器设备实际共花费了1 105+150=1 255(万元).故分期付款的第10个月应付55.5万元,全部按期付清后,买这40套机器设备实际花了1 255万元.。
等差数列的前n项和习题(含答案)
[A 基础达标]1.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A .2B .3C .6D .7解析:选B.由⎩⎪⎨⎪⎧S 2=4,S 4=20得⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.2.已知数列{a n }为等差数列,a 10=10,数列前10项和S 10=70,则公差d =( )A .-23B .-13 C.13 D .23解析:选D.由S 10=10(a 1+a 10)2,得70=5(a 1+10),解得a 1=4,所以d =a 10-a 110-1=10-49=23,故选D. 3.在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:选B.(a 1+a 2+a 3)+(a 18+a 19+a 20)=(-24)+78=54,又a 1+a 20=a 2+a 19=a 3+a 18,则3(a 1+a 20)=54,所以a 1+a 20=18.则S 20=20(a 1+a 20)2=10×18=180. 4.已知数列{a n }的前n 项和公式是S n =2n 2+3n ,则⎩⎨⎧⎭⎬⎫S n n ( ) A .是公差为2的等差数列B .是公差为3的等差数列C .是公差为4的等差数列D .不是等差数列解析:选A.因为S n =2n 2+3n ,所以S n n=2n +3, 当n ≥2时,S n n -S n -1n -1=2n +3-2(n -1)-3=2, 故⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. 5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若a n b n =2n 3n +1,则S 21T 21的值为( ) A.1315B .2335 C.1117 D .49解析:选C.S 21T 21=21(a 1+a 21)221(b 1+b 21)2=a 1+a 21b 1+b 21=a 11b 11=2×113×11+1=1117. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析:设等差数列的首项为a 1,公差为d ,则由6S 5-5S 3=5知,6×(5a 1+10d )-5(3a 1+3d )=5,得3(a 1+3d )=1,所以a 4=13. 答案:138.若等差数列{a n }满足3a 8=5a 13,且a 1>0,S n 为其前n 项和,则S n 最大时n =________.解析:因为3a 8=5a 13,所以3(a 1+7d )=5(a 1+12d ),所以d =-2a 139,故a n =a 1+(n -1)d =a 1-2a 139(n -1)=a 139(41-2n ).由a 1>0可得当n ≤20时,a n >0,当n >20时,a n <0,所以S n 最大时n =20.答案:209.已知在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.所以a n =1+(n -1)×(-2)=3-2n .(2)由a 1=1,d =-2,得S n =2n -n 2.又S k =-35,则2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.10.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?解:设最下面一层放n 根,则最多可堆n 层,则1+2+3+…+n =n (n +1)2≥600, 所以n 2+n -1 200≥0,记f (n )=n 2+n -1 200,因为当n ∈N +时,f (n )单调递增,而f (35)=60>0,f (34)=-10<0,所以n ≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.[B 能力提升]11.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( )A .5B .6C .7D .8解析:选B.由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,所以4(a 1+a n )=280,所以a 1+a n =70.又S n =n (a 1+a n )2=n 2×70=210,所以n =6. 12.若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),则它们的第11项之比为____________.解析:设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a 11=a 1+a 212,b 11=b 1+b 212, 所以a 11b 11=12(a 1+a 21)12(b 1+b 21)=12(a 1+a 21)·2112(b 1+b 21)·21=S 21T 21=7×21+14×21+27=43. 答案:4∶313.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)证明:数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,并求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解:(1)由题意S 2n =a n ⎝⎛⎭⎫S n -12,结合a n =S n -S n -1(n ≥2)得S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12(n ≥2),化简整理得1S n -1S n -1=2(n ≥2),知数列⎩⎨⎧⎭⎬⎫1S n 为公差为2的等差数列,所以1S n =1S 1+(n -1)×2=1+(n -1)×2=2n -1,所以S n =12n -1. (2)b n =S n 2n +1=12×⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎝⎛1-13+13-15+…+12n -1- ⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.14.(选做题)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝⎛⎭⎫n -142-18,所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,得2c 2+c =0,所以c =-12或c =0(舍去),所以c =-12.。
等差数列的概念及前n项和
等差数列的概念及前n 项和考点解析及例题讲解1. 等差数列的前n 项和公式等差数列各项的和等于首末两项的和乘项数除以2. 一般地,数列{a n }的前n 项和记作S n ,即S n = a 1+a 2+a 3+…+a n .可以得到等差数列的前n 项和公式S n = n (a 1+ a n ) 2. 因为a n = a 1+(n -1)d ,所以上面公式又可写成S n = n a 1 + n ( n - 1 ) 2d . 在这两个公式中,都包含四个变量,只要知道其中任意三个,就可求出第四个.例1 在小于100的正整数集合中,有多少个数是7的倍数?并求它们的和.解 在小于100的正整数集合中,以下各数是7的倍数7,7×2,7×3,…,7×14.即7,14,28, (98)显然,这是一个等差数列.其中a 1=7,d =7,项数为不大于1007的最大整数值,即n =14,a 14= 98.因此S 14 = 14× ( 7 + 98 )2= 735. 即在小于100的正整数的集合中,有14个数是7的倍数,它们的和等于735.例2 在等差数列-5,-1,3,7,…中.前多少项的和是345? 解 这里a 1=-5,d =-1-(-5)=4,S n =345. 根据等差数列的前n 项和公式得345 = -5n + n ( n - 1 ) 2×4, 整理得2n 2 -7n -345 = 0,解得n 1=15,n 2= - 232 (不合题意,舍去).所以n = 15 .即这个数列的前15项的和是345基础知识训练6.设等差数列{}n a 的前n 项和为958224S a a a S n ,则,若-=+等于( )(A )72 (B )60 (C )48 (D )361. 在等差数列中:(1)已知n a d a ,则,421===_________;(2)已知n d a a n ,则,,22111====_________.2. 已知等差数列{}n a 满足==+=+653426104S a a a a 项和,则它的前,________.3. 已知等差数列{}n a 有7212201918321=++-=++a a a a a a ,,则其前20项的和等于____.4. 在数列{}n a 中,==+∈+=++1074110)(2a a a N n a a n n ,则,且______.5. 在等差数列{}n a 中,若.512115481a a a a a ,,求,==+6. 在等差数列{}n a 中,.2191的最大值项和,试求其前,n S n d a -== 综合知识训练1. 若等差数列{}n a 的前三项和等于,则且21316a a S ==( )(A )1 (B )2 (C )3 (D )42. 等差数列{}n a 的前n 项何为的值为,则,,若43253S a a S n ==( )(A )12 (B )14 (C )16 (D )183. 设{}n a 是公差为正数的等差数列,若此数列前3项的和为9,前3项的积为24,则2013a =( )(A )2011 (B )2012 (C )2013 (D )2014 4. n S 是等差数列的前n 项和,1821a a a ++为一个确定的常数,则以下也为确定常数的是( )(A )11S (B )13S (C )15S (D )以上都不正确5. 若数列为等差数列,=++++==2064212121a a a a d a ,则,( ) (A )50 (B )55 (C )25 (D )21506. 若数列为等差数列,且==+57320a a a ,则( )(A )5 (B )10 (C )15 (D )207. 设数列的首项=∈+==++1211)(32a N n a a a n n ,则,且满足_____.8. 已知数列的通项=-+-=111212a a n a n ,则_______.9. 一个四边形的内角度数成等差数列,且最小角是 30,则最大角是{}n a {}n a {}n a {}n a。
等差数列前n项和性质
n n 1
证明 :Q
S偶
a2
a4
...
a2n2
(n
1) • (a2 2
a2n2 )
(n
1) • (2 • 2
an )
(n
1) • an
(n
1) • a中
S奇
a1
a3
...
a2n1
n • (a1 2
a2n1 )
n • (2 • 2
an )
n • an n • a中
解:由等差数列前n项和性质知S10,S20 -S10,S30 -S20 也成等差数列,即10,30,S30 -40成等差数列, 230 10 (S30-40) 解得S30 90
1.等差数列an中,已知 S2 2, S6 24, 求S4
答案:30
2.设等差数列{an}的前n项和为Sn,若
例2.在等差数列{an}中,S10=100,S100=10.求S110. 法三:(新数列法)∵S10,S20-S10,S30-S20,…,S100-S90,S110
-S100,…成等差数列, ∴设该数列公差为 d,则其前 10 项和为 10×100+10×2 9d=10,
解得 d=-22. ∴前 11 项和为 11×100+10×2 11d=11×100+10×2 11×(-22)=
则S9 S4 0,即 a5 +a6 +a7 +a8 +a9 =0, 即5a7 =0,故a7 =0,而ak +a4 =0,故k=10
等差数列前n项和的性质(1)
已知等差数列的前n项和Sn,如何求an ? 利用Sn与an的关系:
2020年高中数学 人教A版 必修5 课后作业本《等差数列的前n项和公式的性质及应用》(含答案解析)
2020年高中数学 人教A 版 必修5 课后作业本《等差数列的前n 项和公式的性质及应用》一、选择题1.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .112.数列{a n }为等差数列,若a 1=1,d=2,S k +2-S k =24,则k=( )A .8B .7C .6D .53.记等差数列{a n }的前n 项和为S n ,若a 1=,S 4=20,则S 6=( )12A .16B .24C .36D . 484.设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }的前8项和为( )A .128B .80C .64D .565.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( )A .160B .180C .200D .2206.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项7.等差数列{a n }的前n 项和为S n ,已知a m-1+a m +1-a =0,S 2m-1=38,则m=( )2m A .38 B .20 C .10 D .9二、填空题8.有两个等差数列{a n },{b n },它们的前n 项和分别为S n 和T n .若=,则等于Sn Tn 2n +1n +2a8b7________.9.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________.10.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________.11.已知等差数列{a n },{b n }的前n 项和分别为A n ,B n ,且满足=,则An Bn 2n n +3a1+a2+a12b2+b4+b9=________.12.数列{a n }的通项公式a n =ncos ,其前n 项和为S n ,则S 2 016等于________.n π2三、解答题13.设正项数列{a n }的前n 项和为S n ,并且对于任意n ∈N *,a n 与1的等差中项等于,求数Sn 列{a n }的通项公式.14.已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.15.某电站沿一条公路竖立电线杆,相邻两根电线杆的距离都是50 m ,最远一根电线杆距离电站1 550 m ,一汽车每次从电站运出3根电线杆供应施工.若该汽车往返运输总行程为17 500 m ,共竖立多少根电线杆?第一根电线杆距离电站多少米?16.已知数列{a n },a n ∈N *,S n 是其前n 项和,S n =(a n +2)2.18(1)求证{a n }是等差数列;(2)设b n =a n -30,求数列{b n }的前n 项和的最小值.12答案解析1.答案为:A ;解析:a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5==5a 3=5.5 a1+a5 22.答案为:D ;解析:∵S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d=2a 1+(2k +1)d=2×1+(2k +1)×2=4k +4=24,∴k=5.3.答案为:D ;解析:设数列{a n }的公差为d ,则S n =+d ,n 2n n -1 2∴S 4=2+6d=20,∴d=3,∴S 6=3+15d=48.4.答案为:C ;解析:设数列{a n }的前n 项和为S n ,则S 8===8 a1+a8 28 a2+a7 28× 3+13 2=64.5.答案为:B ;解析:∵{a n }是等差数列,∴a 1+a 20=a 2+a 19=a 3+a 18.又a 1+a 2+a 3=-24,a 18+a 19+a 20=78,∴a 1+a 20+a 2+a 19+a 3+a 18=54.∴3(a 1+a 20)=54.∴a 1+a 20=18.∴S 20==180.20 a1+a20 26.答案为:A ;解析:∵a 1+a 2+a 3=34,① a n +a n-1+a n-2=146,②又∵a 1+a n =a 2+a n-1=a 3+a n-2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③ S n ==390.④ a1+an ·n 2将③代入④中得n=13.7.答案为:C ;解析:由等差数列的性质,得a m-1+a m +1=2a m ,∴2a m =a .由题意得a m ≠0,∴a m =2.2m 又S 2m-1===2(2m-1)=38,∴m=10. 2m -1 a1+a2m -1 22am 2m -1 28.答案为:;3115解析:由{a n },{b n }是等差数列,=,不妨设S n =kn(2n +1),T n =kn(n +2)(k≠0),Sn Tn 2n +1n +2则a n =3k +4k(n-1)=4kn-k ,b n =3k +2k(n-1)=2kn +k.所以==.a8b732k -k 14k +k 31159.答案为:20;解析:由已知得3a 3=105,3a 4=99,∴a 3=35,a 4=33,∴d=-2,a n =a 4+(n-4)(-2)=41-2n ,由Error!,得n=20.10.答案为:3;解析:S 奇=a 1+a 3+a 5+a 7+a 9=15,S 偶=a 2+a 4+a 6+a 8+a 10=30,∴S 偶-S 奇=5d=15,∴d=3.11.答案为:;32解析:=======.a1+a2+a12b2+b4+b93a1+12d13b1+12d2a5b5a1+a92b1+b929×a1+a929×b1+b92A9B92×99+33212.答案为:1 008;解析:由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 016=504×2=1 008.13.解:由题意知,=,得:S n =,Sn an +12 an +1 24∴a 1=S 1=1,又∵a n +1=S n +1-S n =[(a n +1+1)2-(a n +1)2],14∴(a n +1-1)2-(a n +1)2=0.即(a n +1+a n )(a n +1-a n -2)=0,∵a n >0,∴a n +1-a n =2,∴{a n }是以1为首项,2为公差的等差数列.∴a n =2n-1.14.解:(1)设等差数列的公差为d ,{an }则a n =a 1+(n-1)d.由a 1=1,a 3=-3可得1+2d=-3,解得d=-2.从而a n =1+(n-1)×(-2)=3-2n.(2)由(1)可知a n =3-2n.所以S n ==2n-n 2.n[1+ 3-2n ]2进而由S k =-35可得2k-k 2=-35,即k 2-2k-35=0.解得k=7或k=-5.又k ∈N *,故k=7为所求结果.15.解:由题意知汽车逐趟(由近及远)往返运输行程组成一个等差数列,记为{a n },则a n =1 550×2=3 100,d=50×3×2=300,S n =17 500.由等差数列的通项公式及前n 项和公式,得Error!由①得a 1=3 400-300n.代入②得n(3 400-300n)+150n(n-1)-17 500=0,整理得3n 2-65n +350=0,解得n=10或n=(舍去),353所以a 1=3 400-300×10=400.故汽车拉了10趟,共拉电线杆3×10=30(根),最近的一趟往返行程400 m ,第一根电线杆距离电站×400-100=100(m).12所以共竖立了30根电线杆,第一根电线杆距离电站100 m.16.解:(1)证明:当n=1时,a 1=S 1=(a 1+2)2,解得a 1=2.18当n≥2时,a n =S n -S n-1=(a n +2)2-(a n-1+2)2,1818即8a n =(a n +2)2-(a n-1+2)2,整理得,(a n -2)2-(a n-1+2)2=0,即(a n +a n-1)(a n -a n-1-4)=0.∵a n ∈N *,∴a n +a n-1>0,∴a n -a n-1-4=0,即a n -a n-1=4(n≥2).故{a n }是以2为首项,4为公差的等差数列.(2)设{b n }的前n 项和为T n ,∵b n =a n -30,且由(1)知a n =2+(n-1)×4=4n-2,12∴b n =(4n-2)-30=2n-31,12故数列{b n }是单调递增的等差数列.令2n-31=0,得n=15,12∵n ∈N *,∴当n≤15时,b n <0;当n≥16时,b n >0,即b 1<b 2<…<b 15<0<b 16<b 17<…,当n=15时,T n 取得最小值,最小值为T 15=×15=-225.-29-12。
等差等比数列及其前n项和作业及答案
等差等比数列及其前n 项和作业及答案一、选择题:1.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b=2”,那么 ( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件解析:由a b +c b=2,可得a +c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b≠2. 答案:B 2.(2009·福建高考)等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .3 解析:∵S 3=(a 1+a 3)×32=6,而a 3=4,∴a 1=0, ∴d =a 3-a 12=2. 答案:C 3.(2010·广州模拟)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k等于 ( )A .9B .8C .7D .6解析:a n =⎩⎪⎨⎪⎧ S 1 (n =1)S n -S n -1 (n ≥2)=⎩⎪⎨⎪⎧-8 (n =1)-10+2n (n ≥2)=2n -10, ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N *,∴k =8. 答案:B 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 ( )A .63B .45C .36D .27解析:由{a n }是等差数列,则S 3,S 6-S 3,S 9-S 6成等差数列.由2(S 6-S 3)=S 3+(S 9-S 6)得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 答案:B5.设数列{a n }是等差数列,且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则 ( )A .S 5<S 6B .S 5=S 6C .S 7=S 5D .S 7=S 6解析:因为a 4=-4,a 9=4,所以a 4+a 9=0,即a 6+a 7=0,所以S 7=S 5+a 6+a 7=S 5. 答案:C6.各项都是正数的等比数列{}a n 中,a 2,123,a 1成等差数列,则a 3+a 4a 4+a 5的值为 ( ) A.5-12 B.5+12 C.1-52 D.5+12或5-12解析:设{a n }的公比为q ,∵a 1+a 2=a 3, ∴a 1+a 1q =a 1q 2,即q 2-q -1=0, ∴q =1±52,又∵a n >0,∴q >0,∴q =1+52,a 3+a 4a 4+a 5=1q =5-12. 答案:A 7.(2009·广东高考)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C.2 D .2 解析:∵a 3·a 9=2a 25=a 26,∴a 6a 5= 2. 又a 2=1=a 1·2,∴a 1=22. 答案:B 8.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于 ( )A .1∶2B .2∶3C .3∶4D .1∶3解析:∵{a n }为等比数列, ∴S 3,S 6-S 3,S 9-S 6成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 又∵S 6∶S 3=1∶2,∴14S 23=S 3(S 9-12S 3),即34S 3=S 9, ∴S 9∶S 3=3∶4. 答案:C 9.若数列{a n }满足a 2n +1a 2np (p 为正常数,n ∈N *),则称{a n }为“等方比数列”. 甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件解析:数列{a n }是等比数列则a n +1a n =q ,可得a 2n +1a 2n=q 2,则{a n }为“等方比数列”.当{a n }为“等方比数列”时,则a 2n +1a 2n=p (p 为正常数,n ∈N *),当n ≥1时a n +1a n =±p ,所以此数列{a n }并不一定是等比数列. 答案:B10.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( ) A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 解析:∵q 3=a 5a 2=18∴q =12,a 1=4,数列{a n ·a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C. 答案:C11. 在等差数列{a n }中,若a 1<0,S 9=S 12,则当S n 取得最小值时,n 等于A .10B .11C .9或10D .10或11解析:设数列{a n }的公差为d ,则由题意得9a 1+12×9×(9-1)d =12a 1+12×12×(12-1)d , 即3a 1=-30d ,∴a 1=-10d . ∵a 1<0,∴d >0. ∴S n =na 1+12n (n -1)d =12dn 2-212dn =d 2⎝⎛⎭⎫n -2122-441d 8∴S n 有最小值,又n ∈N *, ∴n =10,或n =11时,S n 取最小值. 答案:D12.在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S n n 最大时,n 的值等于 ( )A .8B .9C .8或9D .17解析:∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5,而a 3a 5=4,∴a 3=4,a 5=1, ∴q =12,a 1=16,a n =16×(12)n -1=25-n , b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2∴S n n =9-n 2, ∴当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S n n 最大. 答案:C 二、填空题:13.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.解析:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52. 答案:52 14.(2009·辽宁高考)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d )=2,所以a 4=13. 答案:1315.(2009·浙江高考)设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 解析:a 4=a 1(12)3=181,S 4=a 1(1-124)1-12=158a 1, ∴S 4a 4=15. 答案:15 16.(2009·宁夏、海南高考)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:∵a n +2+a n +1=6a n ,∴a n ·q 2+a n ·q =6a n (a n ≠0), ∴q 2+q -6=0,∴q =-3或q =2. ∵q >0,∴q =2,∴a 1=12,a 3=2,a 4=4, ∴S 4=12+1+2+4=152. 答案:152三、解答题:17.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2-,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:由已知a n +1=2a n +2n 得 b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.(2)由(1)知a n 2-=n ,即a n =n ·2n -1. S n =1+2×21+3×22+…+n ×2n -1, 两边乘以2得,2S n =2+2×22+…+n ×2n . 两式相减得S n =-1-21-22-…-2n -1+n ·2n =-(2n -1)+n ·2n =(n -1)2n+1. 18.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值; (2)求证:数列{S n +2}是等比数列.解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2). ∵S 1+2=4≠0, ∴S n -1+2≠0, ∴S n +2S n -1+22, 故{S n +2}是以4为首项,2为公比的等比数列. 19.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36.(1)求数列{a n }的通项公式;(2)设b n =6n +(-1)n -1λ·2a n (λ为正整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有b n +1>b n 成立.解:(1)∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d , 由a 3=5,S 6=36得⎩⎪⎨⎪⎧ a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.(2)由(1)知b n =6n +(-1)n -1·λ·22n -1,要使得对任意n ∈N *都有b n +1>b n 恒成立, ∴b n +1-b n =6n +1+(-1)n ·λ·22n +1-6n -(-1)n -1·λ·22n -1=5·6n -5λ·(-1)n -1·22n -1>0恒成立, 即12λ·(-1)n -1<(32)n . 当n 为奇数时, 即λ<2·(32)n ,而(32)n 的最小值为32, ∴λ<3. 当n 为偶数时,λ>-2(32)n , 而-2(32)n 的最大值为-92,∴λ>-92.由上式可得-92<λ<3,而λ为正整数, ∴λ=1或λ=2. 20.(2010·株州模拟)已知二次函数f (x )=ax 2+bx +c (x ∈R),满足f (0)=f (12)=0,且f (x )的最小值是-18.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,S n )在函数f (x )的图象上.(1)求数列{a n }的通项公式;(2)通过b n =S n n +c 构造一个新的数列{b n },是否存在非零常数c ,使得{b n }为等差数列; (3)令c n =S n +n n,设数列{c n ·2c n }的前n 项和为T n ,求T n . 解:(1)因为f (0)=f (12)=0,所以f (x )的对称轴为x =0+122=14,又因为f (x )的最小值是-18,由二次函数图象的对称性可设f (x )=a (x -14)2-18. 又f (0)=0,所以a =2,所以f (x )=2(x -14)2-18=2x 2-x . 因为点(n ,S n )在函数f (x )的图象上,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=4n -3(n =1时也成立),所以a n =4n -3(n ∈N *).(2)因为b n =S n n +c =2n 2-n n +c =2n (n -12)n +c c =-12(c ≠0),即得b n =2n ,此时数列{b n }为等差数列,所以存在非零常数c =-12{b n }为等差数列. (3)c n =S n +n n =2n 2-n +n n=2n ,则c n ·2c n =2n ×22n =n ×22n +1. 所以T n =1×23+2×25+…+(n -1)22n -1+n ×22n +1,4T n =1×25+2×27+…+(n -1)22n +1+n ×22n +3,两式相减得:-3T n =23+25+…+22n +1-n ×22n +3=23(1-4n )1-4n ·22n +3, T n =23(1-4n )9+n ·22n +33=(3n -1)22n +3+89. 21.已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2n -1a n=8n 对任意的n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)问是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.解:(1)已知a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *)①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1)(n ∈N *)②①-②得2n -1a n =8,求得a n =24-n , 在①中令n =1,可得a 1=8=24-1, ∴a n =24-n (n ∈N *). 由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2, ∴数列{b n +1-b n }的公差为-2-(-4)=2, ∴b n +1-b n =-4+(n -1)×2=2n -6, 法一:迭代法得:b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).法二:可用累加法,即b n -b n -1=2n -8, b n -1-b n -2=2n -10, … b 3-b 2=-2, b 2-b 1=-4, b 1=8,相加得b n =8+(-4)+(-2)+…+(2n -8)=8+(n -1)(-4+2n -8)2=n 2-7n +14(n ∈N *). (2)∵b k -a k =k 2-7k +14-24-k , 设f (k )=k 2-7k +14-24-k .当k ≥4时,f (k )=(k -72)2+74-24-k 单调递增. 且f (4)=1, ∴当k ≥4时,f (k )=k 2-7k +14-24-k ≥1. 又f (1)=f (2)=f (3)=0, ∴不存在k ∈N *,使得(b k -a k )∈(0,1).22.等差数列{a n }的前n 项和为S n ,S 4=24,a 2=5,对每一个k ∈N *,在a k 与a k +1之间插入2k -1个1,得到新数列{b n },其前n 项和为T n .(1)求数列{a n }的通项公式; (2)试问a 11是数列{b n }的第几项;(3)是否存在正整数m ,使T m =2010?若存在,求出m 的值;若不存在,请说明理由. 解:(1)设{a n }的公差为d ,∵S 4=4a 1+4×32d =24,a 2=a 1+d =5, ∴a 1=3,d =2,a n =3+(n -1)×2=2n +1.(2)依题意,在a 11之前插入的1的总个数为1+2+22+…+29=1-2101-2=1023, 1023+11=1034,故a 11是数列{b n }的第1034项.(3)依题意,S n =na 1+n (n -1)2d =n 2+2n , a n 之前插入的1的总个数为1+2+22+…+2n -2=1-2n -11-2=2n -1-1, 故数列{b n }中,a n 及前面的所有项的和为n 2+2n +2n -1-1,∴数列{b n }中,a 11及前面的所有项的和为112+22+210-1=1166<2010, 而2010-1166=844,a 11与a 12之间的1的个数为210=1024个, 即在a 11后加844个1,其和为2010,故存在m =1034+844=1878,使T 1878=2010.。
专题6.2 等差数列及其前n项和(讲)(解析版)
专题6.2 等差数列及其前n 项和1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *). (2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项).知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【必会结论】等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .若m +n =2p (m ,n ,p ∈N *),则a m +a n =2a p .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d, 则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)等差数列{a n }的前n 项和为S n, 则S n ,S 2n -S n ,S 3n -S 2n 仍成等差数列,其公差为n 2d.考点一 等差数列基本量的运算 【典例1】【2019年高考全国I 卷理数】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =- B .310n a n =-C .228n S n n=- D .2122n S n n =-【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。
2017-2018学年北师大必修5《等差数列的前n项和》习题精选含答案
第1课时等差数列的前n项和课后篇巩固探究A组1.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设S n是等差数列{a n}的前n项和,S5=10,则a3的值为 ()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{a n}的前n项和为S n(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=-2,a1=20,∴S10=10a1+d=200-90=110.答案:1107.在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶-S奇=30-15=15,于是d=3.答案:39.若等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{a n}的首项a1和公差d;(2)求数列{a n}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=-2.(2)S10=10×a1+d=-10.10.导学号33194010已知数列{a n}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为S n,求S n的最大值;(3)当S n是正数时,求n的最大值.解(1)∵数列{a n}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得-<d<-,又d∈Z,∴d=-4.(2)∵d<0,∴{a n}是递减数列.又a6>0,a7<0,∴当n=6时,S n取得最大值,即S6=6×23+×(-4)=78.(3)S n=23n+×(-4)>0,整理得n(25-2n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11-S10=a11=0,a11=a1+10d=a1+10×(-2)=0,所以a1=20.答案:B2.(2019全国1高考)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3-②,得(21-15)d=24,即6d=24,所以d=4.答案:C3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{a n}的通项公式是a n=1-2n,其前n项和为S n,则数列的前11项和为() A.-45 B.-50 C.-55 D.-66解析:∵S n=,∴=-n,∴的前11项和为-(1+2+3+…+11)=-66.故选D.答案:D5.已知等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.解析:设等差数列{a n}的公差为d,则a n=1+(n-1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=-.又a4=1+3×,a k=1+(k-1)d,由a k+a4=0,得+1+(k-1)d=0,将d=-代入,可得k=10.答案:106.已知数列{a n}为等差数列,其前n项和为S n,且1+<0.若S n存在最大值,则满足S n>0的n的最大值为.解析:因为S n有最大值,所以数列{a n}单调递减,又<-1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足S n>0的n的最大值为19.答案:197.导学号33194012在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.解数列{a n}的公差d==3,∴a n=a1+(n-1)d=-60+(n-1)×3=3n-63.由a n<0得3n-63<0,解得n<21.∴数列{a n}的前20项是负数,第20项以后的项都为非负数.设S n,S n'分别表示数列{a n}和{|a n|}的前n项和,当n≤20时,S n'=-S n=-=-n2+n;当n>20时,S n'=-S20+(S n-S20)=S n-2S20=-60n+×3-2×n2-n+1 260.∴数列{|a n|}的前n项和S n'=8.导学号33194013设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{a n}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以a n=1+(n-1)×2=2n-1,S n=n×1+×2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=.若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.。
等差数列及其前n项和(解析版)
等差数列及其前n 项和一、学习目标1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 二、知识讲解知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 通项公式的推广:a n = (2)等差数列的前n 项和公式 S n =知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 三、例题辨析考点一 等差数列基本量的运算【典例1】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =-B .310n a n =-C .228n S n n=- D .2122n S n n =-【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。
等差数列的前n项和
四、解答题(每小题 10 分,共 20 分)
11.记 Sn 为公差不为零的等差数列{an} 的前 n 项和,已知 a21 =a29 ,S6=18. (1)求{an} 的通项公式;
(2)求 Sn 的最大值及对应 n 的大小.
【解析】(1)设{an} 的公差为 d,且 d≠0.
由 a21 =a29 ,得 a1+4d=0,
(2)|an |
-2n+5,n≤2 =
2n-5,n≥3
,记数列{|an|}
的前 n 项和为 Sn,当 n≤2 时,Sn=n3+52-2n
=-n2+4n;
当 n≥3 时,Sn=4+n-212+2n-5 =n2-4n+8,
-n2+4n,n≤2 综上,Sn=n2-4n+8,n≥3.
an=-5+(n-1)×2=2n=16.
答案:2n-7 16
10.设等差数列{an}的前 n 项和为 Sn,若 S3=9,S6=36,则 a7+a8+a9 等于________.
【解析】因为 a7+a8+a9=S9-S6,而由等差数列的性质可知,S3,S6-S3,S9-S6 构成等差数列,所以 S3+(S9-S6)=2(S6-S3),即 a7+a8+a9=S9-S6=2S6-3S3=2×36 -3×9=45. 答案:45
【解析】选 A.由数列{an}为等差数列,且 a1<a2<0,得 d=a2-a1>0,故数列{an}为递 增数列,且 a1<0,所以 Sn 有最小值,无最大值.
2.设 Sn 为等差数列{an} 的前 n 项和,已知 a1=1,S66 -S33 =3,则 a5=(
)
A.9 B.7 C.5 D.3
【解析】选 A.设等差数列{an} 的公差为 d,
等差数列的前n项和-概念解析
数学教育
等差数列的前n项和公式是数学 教育中的重要内容,是中学数学
课程中的必修知识点。
在物理领域的应用
物理学中的周期性现象
等差数列的前n项和公式可以用于描述物理学中的周期性现象,例如声音的振 动、波动等。
物理学中的序列问题
等差数列的前n项和公式可以用于解决物理学中的序列问题,例如在研究粒子运 动、流体动力学等领域中,可以通过等差数列的前n项和公式来描述一系列物理 量的变化规律。
解答
由于该等差数列是偶数项,所以它的前10项和等于中间两 项之和(第5项和第6项)乘以10除以2,即$(3 - 3) times 10 / 2 = 0$。
习题三:等差数列前n项和的实际应用问题
01 总结词
02 详细描述
03 应用1
04 应用2
05 应用3
掌握等差数列前n项和在实 际问题中的应用
等差数列前n项和在实际问 题中有着广泛的应用,如 计算存款、贷款、工资等 问题。
总结词
详细描述
公式
示例
解答
理解等差数列前n项和的 概念
等差数列的前n项和是指 从第一项到第n项的所有 项的和,可以通过公式 或递推关系式来求解。
$S_n = frac{n}{2} times (2a_1 + (n-1)d)$,其中 $a_1$是首项,$d$是公 差,$n$是项数。
求等差数列$1, 3, 5, 7, ldots$的前5项和。
等差数列前n项和的公式推导
等差数列前n项和的公式可以通过数学归 纳法进行推导。
化简得:$S_{k+1} = frac{(k+1)}{2}(2a_1 + kd)$,所以当n=k+1时,公式也成立。
等差数列的前n项和
等差数列的前n项和等差数列是一种常见的数列,其特点是每一项与前一项之差都相等。
求等差数列的前n项和是一个常见的数学问题。
本文将着重介绍等差数列的概念、求解前n项和的公式以及实际应用。
一、等差数列的概念等差数列又称为等差数列,是指数列中的每一项与前一项之差都相等的数列。
通常用字母a表示首项,字母d表示公差,n表示项数。
等差数列的通项公式为:an = a + (n-1)d其中an表示第n项,a表示首项,d表示公差。
举个例子,如果一个等差数列的首项为1,公差为2,那么该数列的前几项分别为1, 3, 5, 7, 9...二、等差数列前n项和的求解求解等差数列的前n项和是一个常见的数学问题。
对于首项为a、公差为d的等差数列,前n项和Sn可以通过以下公式来计算:Sn = (n/2)(a + an) = (n/2)(2a + (n-1)d)其中Sn表示前n项和,n表示项数,a表示首项,d表示公差。
例如,求解等差数列1, 3, 5, 7, 9的前3项和,可以使用上述公式进行计算:Sn = (3/2)(1 + 5) = 3*(6/2) = 9因此,等差数列1, 3, 5的前3项和为9。
三、等差数列前n项和的实际应用等差数列的前n项和在实际应用中有着广泛的用途。
以下是几个常见的应用场景:1. 金融投资:在金融投资中,等差数列的前n项和可以用来计算投资利息或回报。
假设每年的回报率为r%,首次投资金额为a元,那么第n年的总金额为Sn = a*(1+r)^n。
其中,(1+r)^n是一个公差为r的等比数列,可以将其转换为等差数列,并使用前n项和公式进行计算。
2. 资源分配:在资源分配问题中,等差数列的前n项和可以用来计算每个参与者的分配数量。
假设有n个参与者,资源总量为Sn,按比例进行分配,那么每个参与者的分配数量为an = Sn*(a1/a)。
其中a1为首项,a为总和。
3. 时间管理:在时间管理中,等差数列的前n项和可以用来计算每个任务的时间分配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的前n 项和作业解析
一、选择题
1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )
A .18
B .20
C .22
D .24
解析:由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20. 答案:B
2.已知数列{a n }中,a 3=2,a 7=1,若{
1a n +1
}为等差数列,则a 11=( ) A .0
B.12
C.23 D .2 解析:由已知可得1a 3+1=13,1a 7+1=12是等差数列{1a n +1
}的第3项和第7项,其公差d =12-137-3=124,由此可得1a 11+1=1a 7+1
+(11-7)d =12+4×124=23,解之得a 11=12. 答案:B
3.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )
A .公差为3的等差数列
B .公差为4的等差数列
C .公差为6的等差数列
D .公差为9的等差数列
解析:本题考查了定义法求等差数列的基本量.
法一:设数列{a n }的公差为d ,则由题意知,d =1.设c n =a 2n -1+2a 2n ,则由上式得c n +1=a 2n +1+2a 2n +2,c n +1-c n =a 2n +1+2a 2n +2-a 2n -1-2a 2n =6d =6.
法二:利用特殊数列.令a n =n ,则c n =a 2n -1+2a 2n =2n -1+2×2n =6n -1,∴c n -c n -1=6.
答案:C
4.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差为( )
A .-2
B .-3
C .-4
D .-6
解析:设a n =23+(n -1)d ,则
⎩⎪⎨⎪⎧ a 6>0,a 7<0即⎩⎪⎨⎪⎧
23+5d >0,23+6d <0解得-435<d <-356,
又因为d ∈Z ,所以d =-4.
答案:C
5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的取值为( )
A .5
B .6
C .4
D .7
解析:由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.
答案:A
二、填空题
6.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.
解析:a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,
S k =k +k (k -1)2
×2=k 2=9.又k ∈N *,故k =3. 答案:3
7.设等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若对任意自然数n 都有S n T n =2n -34n -3
,则a 9b 5+b 7+a 3b 8+b 4
的值为__________. 解析:∵{a n },{b n }为等差数列,
∴
a 9
b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=2a 62b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941
. 答案:1941
三、解答题
8.已知等差数列{a n }的前三项为a -1,4,2a ,记前n 项和为S n .
(1)设S k =2 550,求a 和k 的值;
(2)设b n =S n n ,求b 3+b 7+b 11+…+b 4n -1的值.
解:(1)由已知得a 1=a -1,a 2=4,a 3=2a ,
又a 1+a 3=2a 2,∴(a -1)+2a =8,即a =3.
∴a 1=2,公差d =a 2-a 1=2.
由S k =ka 1+k (k -1)2d ,得2k +k (k -1)2
×2=2 550,
即k 2+k -2 550=0,
解得k =50或k =-51(舍去).
∴a =3,k =50.
(2)由S n =na 1+n (n -1)2
d 得 S n =2n +n (n -1)2
×2=n 2+n . ∴b n =S n n =n +1,∴{b n }是等差数列,
则b 3+b 7+b 11+…+b 4n -1=(3+1)+(7+1)+(11+1)+…+(4n -1+1)=(4+4n )n 2
. ∴b 3+b 7+b 11+…+b 4n -1=2n 2+2n .
9.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.
(1)求证{a n }为等差数列;
(2)求{a n }的通项公式.
解:(1)证明:当n =1时,有2a 1=a 21+1-4,
即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).
当n ≥2时,有2S n -1=a 2n -1+n -5,
又2S n =a 2n +n -4,
两式相减得2a n =a 2n -a 2n -1+1,
即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,
因此a n -1=a n -1或a n -1=-a n -1.
若a n -1=-a n -1,则a n +a n -1=1,而a 1=3,
所以a 2=-2,这与数列{a n }的各项均为正数相矛盾,
所以a n -1=a n -1,即a n -a n -1=1,
因此{a n }为等差数列.
(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.
10.设等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n ,
(1)若a 11=0,S 14=98,求数列{a n }的通项公式;
(2)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式. 解:(1)由S 14=98得2a 1+13d =14,又a 11=a 1+10d =0,故解得d =-2,a 1=20. 因此{a n }的通项公式是a n =22-2n .
(2)由⎩⎪⎨⎪⎧ S 14≤77,a 11>0,
a 1≥6,得⎩⎪⎨⎪⎧ 2a 1+13d ≤11,a 1+10d >0,a 1≥6,
即⎩⎪⎨⎪⎧ 2a 1+13d ≤11 ①-2a 1-20d <0 ②
-2a 1≤-12 ③
由①+②得-7d <11,即d >-117
. 由①+③得13d ≤-1即d ≤-
113. 于是-117<d ≤-113
. 又d ∈Z ,故d =-1.
代入①②得10<a 1≤12. 又a 1∈Z ,
故a 1=11或a 1=12.
所以所有可能的数列{a n }的通项公式是a n =12-n 和a n =13-n .。