14.10八年级数学期中试卷
2024年全新八年级数学上册期中试卷及答案(人教版)
2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
八年级数学期中测试卷【含答案】
八年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在平面直角坐标系中,点A(2, -3)关于y轴的对称点坐标为?A. (-2, -3)B. (2, 3)C. (-2, 3)D. (3, -2)4. 一个等差数列的前三项分别为2,5,8,则该数列的第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则该圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个锐角互余。
()2. 一元二次方程ax^2 + bx + c = 0 (a ≠ 0)的解为x = [-b ± √(b^2 4ac)] / 2a。
()3. 对角线互相垂直平分的四边形一定是菱形。
()4. 在一次函数y = kx + b中,若k > 0,则函数从左到右上升。
()5. 两个相似三角形的对应边长之比等于它们的面积之比。
()三、填空题(每题1分,共5分)1. 若|a| = 3,则a的值为______。
2. 在直角坐标系中,点P(4, -2)关于原点对称的点的坐标为______。
3. 若一个等差数列的首项为2,公差为3,则该数列的第5项为______。
4. 一个圆的周长为31.4cm,则该圆的半径为______cm。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 解释什么是等腰三角形,并给出一个等腰三角形的例子。
人教版八年级上册数学期中考试试题带答案
人教版八年级上册数学期中考试试卷一、单选题1.在下列以线段a 、b 、c 的长为边,能构成三角形的是()A .a =3,b =4,c =8B .a =5,b =6,c =11C .a =6,b =8,c =9D .a =7.b =17,c =252.如果三角形的一个内角等于另两个内角之差,则这个三角形为()A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形3.如图,点D 是△ABC 边BC 延长线上的点,∠ACD =105°,∠A =70°,则∠B 等于A .35°B .40°C .45°D .50°4.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S △ABC 的面积为()A .52B .3C .72D .45.如图,ABC A B C ''△≌△,30BCB '∠=︒,则ACA '∠的度数为()A .30°B .45︒C .60︒D .110︒6.从十二边形的一个顶点出发,可引出对角线()条A .9条B .10条C .11条D .12条7.一个多边形的内角和等于1080°,则这个多边形的每个外角都等于()A.30°B.45°C.60°D.90°8.如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等9.如图所示,在△ABC中P为BC上一点,PR⊥BC,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP其中正确的是()A.①②B.②③C.①③D.①②③10.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°二、填空题11.已知三角形的两边长分别为1和4,第三边长为整数,则第三边长为______.12.一个六边形的内角和度数为_______.13.如图所示,△ABC≌△AED,∠E=55°,∠EAC=55°,∠C=45°,则∠DAC=______.14.如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD :CD =2:3,AD 、BE 交于点O ,若S △AOE ﹣S △BOD =1,则△ABC 的面积为_____.15.已知:如图,Rt ABC 中,AC BC =,D 为BC 上一点,CE AD ⊥于E ,若2CE =,则BEC S =△________.16.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.17.如图,在△ABC 中,∠B =30°,∠BAC =90°,AD ⊥BC ,CD =2,则BD =_.三、解答题18.已知一个正多边形的每个外角均为45°,则这个多边形的内角和是多少度.19.如图:111A B C △的面积为a ,分别延长111A B C △的三条边11B C 、11C A 、11A B 到点2B 、2C 、2A ,使得1211C B B C =,1211A C A C =,1211B A A B =,得到222A B C △:再分别延长222A B C △的三条边22B C 、22C A 、22A B 到点3B 、3C 、3A ,使得2322C B B C =,2322A C A C =,2322B A A B =,得到333A B C △:…….按照此规律作图得到n n n A B C ,求n n n A B C 的面积.20.如图,在ABC 中,AD 是高,AE 是角平分线,50BAC ∠=︒,60B ∠=︒.求DAC ∠和BEA ∠的度数.21.如图,已知AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,点E ,D 分别为垂足,CF CB =.求证:BE FD =.22.如图,△ABC为等边三角形,AE=CD,AD与BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求∠BPD的度数;(3)求AD的长.23.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,DE⊥AB 于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=12,求AC的长.24.如图,在△ABC中,AB=AC,点D,E.,F分别在AB、BC、AC边上,且BE=CF,BD=CE(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DFE的度数.25.如图,在△ABC 中,AC=BC ,点D 在边AB 上,AB=4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC=∠AEC=180°-∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为.26.(1)模型探究:如图1所示的“镖形”图中,请探究ADB ∠与A ∠、B Ð、C ∠的数量关系并给出证明;(2)模型应用:如图2,DE 平分ADB ∠,CE 平分ACB ∠,24A ∠=︒,66B ∠=︒,请直接写出E ∠的度数.参考答案1.C2.C3.A4.C5.A6.A7.B8.A9.A10.C11.4【分析】三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,根据三边关系可得第三边的范围,从而可得答案.【详解】解:设三角形的第三边为,x则41-<x <41+,即3<x <5,第三边长为整数,4,x ∴=故答案为:4.【点睛】本题考查的是三角形的三边关系,熟悉三角形的三边关系得到第三边的取值范围是解题的关键.12.720︒【分析】根据多边形的内角和公式()2180n -⋅o,其中n 为多边形的边数,进行计算即可.【详解】解:一个六边形的内角和等于()62180720-⨯=;故答案为:720°.【点睛】本题考查了多边形的内角和公式,熟悉多边形内角和公式是解题的关键.13.25°.【解析】【分析】根据全等三角形的性质得到∠D =∠C ,根据三角形内角和定理求出∠EAD ,结合图形计算,得到答案.【详解】∵△ABC ≌△AED ,∠C =45°,∴∠D =∠C =45°,∵∠E =55°,∴∠EAD =180°﹣∠E ﹣∠D =80°,∴∠DAC =∠EAD ﹣∠EAC =80°﹣55°=25°,故答案为:25°.14.10【分析】根据E 为AC 的中点可知,S △ABE =12S △ABC ,再由BD :CD =2:3可知,S △ABD =25S △ABC ,进而可得出结论.【详解】解:∵点E 为AC 的中点,∴S △ABE =12S △ABC .∵BD :CD =2:3,∴S △ABD =25S △ABC ,∵S △AOE ﹣S △BOD =1,S △AOE ﹣S △BOD=ABE ABD S S - ,∴12S △ABC ﹣25S △ABC =1,解得S △ABC =10.故答案为:10.15.2【分析】延长CE ,过B 点作BM CE ⊥于点M ,先证明()BMC CEA AAS ≌,即可得出2BM CE ==,运用三角形面积计算公式计算即可.【详解】解:延长CE ,过B 点作BM CE ⊥于点M ,,∵90MCB ACE ACE CAD ∠+∠=∠+∠=︒,∴MCB CAD ∠=∠,∵90BMC AEC ∠=∠=︒,AC BC =,∴()BMC CEA AAS ≌,∴2BMCE ==,∴1122222BECS CE BM=⨯=⨯⨯=,故答案为:2.【点睛】本题主要考查全等三角形的判定与性质,寻找BEC△EC边上的高作辅助线证明()BMC CEA AAS≌全等是解题的关键.16.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP、CP是∠ABC和∠ACB的平分线,∴PE=PF=PG,∴12×BC×PE+12×AB×PF+12×AC×PG=12×AB×AC,解得,PE=1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.6【解析】【分析】先在Rt ACD △中,利用直角三角形的性质、勾股定理求出AD 的长,再在Rt ABD △中,利用直角三角形的性质、勾股定理即可得.【详解】解: 在ABC 中,30,90B BAC ∠=︒∠=︒,9006B C ︒-∠∴=∠=︒,AD BC ⊥ ,9030CAD C ∴∠=︒-∠=︒,在Rt ACD △中,2CD =,24,AC CD AD ∴===,则在Rt ABD △中,26ABAD BD ====,故答案为:6.18.1080︒【分析】由已知,根据正多边形的外角和为360度可以得到正多边形的边数,再由正多边形内角和的计算方法可以得解.【详解】解:由360458︒÷︒=可以得知正多边形的边数为8,∴这个正多边形的内角和为()821801080-⨯︒=︒.19.17n a-【分析】连接A 1B 2,B 1C 2,C 1A 2,C 2A 3,B 2C 3,A 2B 3,根据中线的性质求出△A 1C 1B 2的面积,再求出B 2C 2C 1的面积,同理可求出△A 1A 2C 2、△B 1B 2A 2,故可得到222A B C △的面积,进而发现规律得到n n n A B C 的面积.【详解】如图,连接A 1B 2,C 1A 2,B 1C 2,C 2A 3,B 2C 3,A 2B 3,∵1211C B B C =,∴112A C B S =111A B C △S =a∴2212B C C S a= ∵1211A C A C =,1211B A A B =同理1222A A C S a = ,1222B B A S a = ∴2222227A B C S a a a a a =+++=△=7111A B C △S ∵2322C B B C =,∴223A C B S =222A B C S △=7a ∴33214B C C S a= ∵2322A C A C =,2322B A A B =同理23314A AC S a = ,23314B B A S a= 同理可得333222749A B C A B C S S a ==△△=72a ∴1111177n n n n n A B C A B C S S a --== .【点睛】此题主要考查三角形面积的规律探索,利用了底倍长,高相等,面积加倍,解题的关键是熟知中线的性质.20.20,95DAC BEA ∠=︒∠=︒【解析】【分析】因为AD 是高,所以90ADC ∠=︒,又因为50,60BAC B ∠=︒∠=︒,根据三角形内角和定理求出70C ∠=︒,即可求出DAC ∠度数;因为50BAC ∠=︒,且AE 是角平分线,所以25BAE ∠=︒,再利用三角形内角和定理即可求解.【详解】解:AD BC⊥ 90ADC ∴∠=︒50,60BAC B ∠=︒∠=︒ ,180506070C ∴∠=︒-︒-︒=︒;在Rt ADC 中,180180907020DAC ADC C ∴∠=︒-∠-∠=︒-︒-︒=︒,50BAC ∠=︒ 且AE 是角平分线,25BAE ∴∠=︒,180180602595BEA B BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,综上所述:20,95DAC BEA ∠=︒∠=︒.【点睛】本题考查了角平分线的性质、与高有关的角度计算、三角形内角和定理,解题的关键是找准角之间的等量关系,利用三角形内角和定理进行求解.21.见解析【解析】【分析】根据角平分线性质可得CD CE =,90CDF CEB ∠=∠=︒,然后证Rt CDF Rt CEB △≌△(HL )即可.【详解】证明:∵AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,CD CE ∴=,90CDF CEB ∠=∠=︒,在Rt △DFC 和Rt △EBC 中,CD CE CF CB =⎧⎨=⎩,Rt CDF Rt CEB∴△≌△(HL),DF BE∴=.【点睛】本题考查角平分线的性质,三角形全等判定与性质,掌握角平分线的性质,三角形全等判定与性质,是解题关键.22.(1)详见解析;(2)60°;(3)7.【解析】【分析】(1)根据SAS证明△ABE与△CAD全等即可;(2)根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;(3)根据含30°的直角三角形的性质解答即可.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,在△ABE与△CAD中,AB AC=⎧⎪⎨⎪⎩∠BAC=∠CAE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:由(1)得∠ABE=∠CAD AD=BE,∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;(3)解:∵BQ⊥AD,∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查全等三角形的性质及含30度角的直角三角形,解题突破口是根据全等三角形的性质得出∠ABE =∠CAD .23.(1)证明见解析;(2)6.【解析】【分析】(1)先根据垂直的定义、直角三角形的性质可得A BED ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得,12AC BE BC DB ===,再根据线段中点的定义可得162BE BC ==,由此即可得出答案.【详解】证明:(1)90ACB DBC ∠=∠=︒ ,DE AB ⊥,9090,BED ABC A ABC ∴∠+∠=︒∠+∠=︒,A BED ∴∠=∠,在ACB △和EBD △中,90ACB EBD A BED AB ED ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB EBD AAS ≅∴ ;(2)由(1)已证:ACB EBD ≅ ,,12AC BE BC DB ∴===,点E 是BC 的中点,24.(1)证明见解析;(2)证明见解析;(3)55︒.【分析】(1)先根据等腰三角形的性质可得B C ∠=∠,再根据三角形全等的判定定理证出DBE ECF ≅△△,然后根据全等三角形的性质可得DE EF =,最后根据等腰三角形的定义即可得证;(2)先根据全等三角形的性质可得BDE CEF ∠=∠,再根据三角形的外角性质即可得证;(3)先根据三角形的内角和定理可得70B ∠=︒,从而可得70∠︒=DEF ,再根据等腰三角形的性质即可得.【详解】证明:(1)AB AC = ,B C ∴∠=∠,在DBE 和ECF △中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE ECF SAS ∴≅ ,DE EF ∴=,DEF ∴ 是等腰三角形;(2)由(1)已证:DBE ECF ≅△△,BDE CEF ∴∠=∠,DEF CEF DEC B BDE ∠+∠=∠=∠+∠ ,B DEF ∴∠=∠;(3) 在ABC 中,40,A B C ∠=︒∠=∠,()1180702B C A ∴∠=∠=︒-∠=︒,由(2)已证:B DEF ∠=∠,70DEF ∴∠=︒,由(1)已证:DEF 是等腰三角形,()1180552DFE EDF DEF ∴∠=∠=︒-∠=︒.25.(1)①见解析;②全等,理由见解析;(2)3;(3)48【分析】(1)①连接BC ,由已知及∠AEC=180°-∠AED ,可得到∠ACB=∠AED .再证明∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②利用“ASA”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC=S △ECA ,所以S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,根据AB=4BD ,可得到S △DBC=14S △ABC=12,从而可得△ABC 的面积.【详解】解:(1)①∠FBC=∠ECA ,理由如下:∵∠BFC=∠AEC=180°-∠ACB ,且∠AEC=180°-∠AED ,∴∠ACB=∠AED .由外角定理可得∠AED=∠ACD+∠CAE ,又∠ACB=∠ACD+∠BCF ,∴∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,FBC ECA BC CA BCF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBC ≌△ECA (ASA );(2)由(1)中②可知,FC=AE=11,BF=CE ,又EF=8,∴CE=FC-EF=11-8=3,∴BF=3,故答案为:3;(3)由(1)中结论可知S △FBC=S △ECA ,∴S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,又AB=4BD ,∴S △DBC=14S △ABC=12,∴S △ABC=48.故答案为:48.26.(1)ADB ∠=A ∠+B Ð+C ∠,理由见详解;(2)21°【分析】(1)连接CD 并延长到点E ,利用三角形的外角的性质求解即可;(2)由(1)可知:∠ADB-∠C=∠A+∠B=90°,从而得∠EDO-∠BCO=12×90°=45°,结合∠EDO+∠E=∠BCO+∠B ,即可求解.【详解】解:(1)ADB ∠=A ∠+B Ð+C ∠,理由如下:连接CD 并延长到点E ,∵∠ADE =∠ACD +∠A ,∠BDE =∠BCD +∠B ,∴∠ADE +∠BDE =∠ACD +∠A +∠BCD +∠B ,∴ADB ∠=A ∠+B Ð+ACB ∠.(2)由第(1)题可得:ADB ∠=A ∠+B Ð+ACB ∠,∴∠ADB-∠ACB=∠A+∠B=66°+24°=90°,∵DE 平分ADB ∠,CE 平分ACB ∠,∴∠EDO-∠BCO=12(∠ADB-∠C )=12×90°=45°,∵∠DOE=∠BOC ,∴∠EDO+∠E=∠BCO+∠B ,∴∠B-∠E=∠EDO-∠BCO=45°,∴∠E=∠B-45°=66°-45°=21°.。
2023-2024学年第一学期期中八年级数学试题及答案
2023-2024学年第一学期期中八年级数学试题一.选择题(共8小题,每题3分,共24分)1.下列等式正确的是()A.B.C.D.2.下列条件中,不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=7:3:11B.∠A+∠B=∠CC.a:b:c=7:24:25D.a2=9,b2=1,c=3.已知点P在第四象限内,到x轴的距离等于3,到y轴的距离等于4,则点P坐标是()A.(3,﹣4)B.(3,4)C.(﹣4,3)D.(4,﹣3)4.在解关于x,y的二元一次方程组时,若①﹣②可直接消去一个未知数,则◎和☆的关系是()A.◎=☆B.◎+☆=0C.◎+☆=1D.◎×☆=15.下列函数中,是一次函数的是()A.y=3x2+1B.C.D.6.一组数据由5个正整数组成,其中位数是3.如果这组数据的唯一众数是4,那么这组数据的和为()A.13B.14C.15D.14或157.如图,根据图中的标注和作图痕迹可知,在数轴上的点A所表示的数为()A.﹣1﹣B.﹣1+C.D.18.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2024的坐标是()A.(2,0)B.(4,3)C.(2,4)D.(4,1)7题图8题图10.的算术平方根是的方程组,无论11题图13题图三.解答题(共13小题,共81分)14.(4分)计算:;15.(4分)解方程组:.16.(5分)如图,在Rt△ABC 中,∠ACB=90°,BC=8cm,AC=6cm,动点P 从点B 出发,沿射线BC 以2cm/s 的速度移动,设运动的时间为t(s).(1)求AB 边的长.(2)当∠BAP=90°时,求t 的值.17.(6分)平面直角坐标系中,△ABC 的三个顶点坐标分别为A(1,4),B(3,4),C(3,﹣1).(1)在平面直角坐标系中,画出△ABC,并求出△ABC 的面积.(2)若△A 1B 1C 1与△ABC 关于x 轴对称,请在坐标系中画出△A 1B 1C,写出A 1、B 1、C 1的坐标.21.(7分)如图,一次函数434+-=x y 数y=kx﹣4的图象与直线AB 交于点C(m,2)(1)求m 的值及点A、B 的坐标;(2)若点P 是x 轴上的一个动点,当22.(6分)如图,一辆小汽车在一条限速40km/h 的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A 的正前方60m 处的C 点,过了8s 后,测得小汽车所在的B 点与车速检测仪A 之间的距离为100m.(1)求B,C 间的距离.(2)这辆小汽车超速了吗?请说明理由.23.(6分)已知2a+7b+3立方根是3,3a+b﹣1的算术平方根是4,c 是的整数部分.求3a﹣b+c 的平方根.24.(6分)小丽和小明同时解一道关于x 、y 的方程组,其中a 、b 为常数.在解方程组的过程中,小丽看错常数“a ”,解得;小明看错常数“b ”,解得.(1)求a、b 的值;(2)求出原方程组正确的解.25.(7分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径是2米,长方形的另一条边长是2.3米.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少增加到多少?26.(10分)(1)问题发现:如图1,等腰直角AOB置于平面直角坐标系中,点A,B的坐标分别为(4,0),(0,4),D是AB 上一点,AD=OA,则点D的坐标为______.(2)问题探究:如图2,若点A,B的坐标分别为(16,0),(0,12),其余条件与(1)相同,求经过O,D两点的直线表达式.(3)问题解决:国庆前夕,大唐芙蓉园景区为了提高服务质量,想尽可能美化每一个角落,给游客美的享受.如图3,ABO是景区东门的广场一角,OA,OB两面墙互相垂直,景区管理部门设计将OA,OB墙面布置成历史人文宣传墙,AB边上用建筑隔板搭出AD段将该角落与广场其他区域隔开,AD段布置成长安八景图,剩余BD部分为广场角出入口,内部空间放置一些绿植和供游人休息的桌椅,考虑到出入安全,还需在靠近出入口的E处建一个安检点.已知16mAD OA==,12m∠,安检点E在BC与OD的交点处.求点E分别到OB,OB=,BC平分OBAOA墙面的距离.2023-2024学年第一学期期中八年级数学试题参考答案一.选择题(共7小题)1.A .2.A .3.D .4.A .5.B .6.B .7.A .8.D 二.填空题(共4小题)9.3或.10.3.11.x =1.12.7.13.三.解答题(共11小题)14.计算:解:(1)=﹣1﹣8×﹣3×=﹣1﹣1﹣1=﹣3;15.解方程组:解:原方程组可化为,①+②,得x =3,把x =3代入①,得y =,∴此方程组的解.16.解:(1)在Rt△ABC 中,∠ACB =90°,BC =8cm ,AC =6cm ,由勾股定理,得AB 2=BC 2+AC 2=82+62=100,∴AB =10cm ;(2)当∠BAP =90°时,CP =BP ﹣BC =(2t ﹣8)cm ,AC =6cm ,在Rt△ACP 中,AP 2=AC 2+CP 2=62+(2t ﹣8)2,在Rt△BAP 中,AP 2=BP 2﹣AB 2=(2t )2﹣102,则62+(2t ﹣8)2=(2t )2﹣102,解得:t =,所以当∠BAP =90°时,t 的值为.17.解:(1)如图所示,△ABC 的面积为:=5;(2)(图略)若△A 1B 1C 1与△ABC 关于x 轴对称,则A 1(1,﹣4)、B 1(3,﹣4)、C 1(3,1).18.解:(1)根据题意可知,甲组再次开始加工的时间为:(1500﹣300)÷300=4(小时),∴8﹣4﹣2=2(小时),∴甲组停产2小时;(2)乙组共加工疫苗试剂:200×(8﹣)+400=1300(百盒),∴乙组共加工了疫苗试剂1300百盒.(3)乙组提速前的加工速度为400÷(﹣1)=160(百盒/小时)甲组停工时,300=160(t﹣1),解得t=.甲组再次加工过程中,300+300(t﹣4)=400+200(t﹣),解得t=6.∴甲、乙两组工人加工的疫苗试剂数量相等时t的值或6.19.解:(1)设每名熟练工每月可以安装x辆电动汽车,每名新工人每月可以安装y辆电动汽车,依题意,得:,解得:.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=40.答:还需要招聘40名新工人才能完成一个月的生产计划.20.解:(1)a=7,b=7.5,c=50%;(2)我认为八年级学生掌握传统气节知识较好,理由如下:因为七年级、八年级学生知识竞答活动得平均分一样均为7,但是八年级的众数(8分)大于七年级的众数,因此我认为八年级学生掌握传统气节知识较好;(3)(人)答:估计参加此次测试活动成绩合格的学生人数大约是1480人.21.解:(1)一次函数y=﹣x+4的图象经过点C(m,2),得﹣m+4=2,解得m=,∵一次函数y=﹣x+4的图象分别与x轴,y轴的正半轴交于点A、B,∴当y=0时,﹣x+4=0,解得x=3,即A(3,0),当x=0时,y=4,即B(0,4),∴m=,A(3,0),B(0,4);(2)把点C(,2)一次函数y=kx﹣4,得2=k﹣4,解得k=4,∴y=4x﹣4,当y=0时,x=1,即D(1,0).∴AD=3﹣1=2,=×2×2=2;∴S△ACD∵点P是x轴上的一个动点,设P(x,0),∴PD=|x﹣1|,∵S=,△PCD∴|x﹣1|×2=2,∴x=2或0,∴点P的坐标为(2,0)或(0,0).22.解:(1)在Rt△ABC中,∵AC=60m,AB=100m,且AB为斜边,∴BC===80(m),答:B,C间的距离为80m;(2)这辆小汽车没有超速.理由:∵80÷8=10(m/s),平均速度为:10m/s,10m/s=36km/h,36<40,∴这辆小汽车没有超速.23.解:∵2a+7b+3立方根是3,3a+b﹣1的算术平方根是4,∴,解得:,∵9<14<16,∴3<<4,∴的整数部分是3,∴c=3,∴3a﹣b+c=3×5﹣2+3=15﹣2+3=16,∴3a﹣b+c的平方根是±4.24.解:(1)∵在解方程组的过程中,小丽看错常数“a”,解得,∴﹣1﹣3b=5,解得b=﹣2;∵在解方程组的过程中,小明看错常数“b”,解得,∴2a+1=3,解得a=1;∴a=1;b=﹣2;(2)由(1)知,由①﹣②得﹣y=﹣2,解得y=2,将y =2代入①得x =1,∴原方程组的解为.25.解:(1)能通过.理由如下:如图①所示,当桥洞中心线两边各为0.8米时,0.82+x 2=12,∴x=0.6∵2.5<2.3+6∴能通过(2)如图②所示,OA 2=1.22+(2.8-2.3)2=1.32,∴OA=1.3米∴桥洞的宽至少应为1.3×2=2.6米.。
2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)
20232024学年全国初中八年级上数学人教版期中考卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题3分,共15分)1. 下列选项中,哪个是勾股定理的逆定理?A. 直角三角形两直角边的平方和等于斜边的平方B. 任意三角形两边的平方和等于第三边的平方C. 直角三角形斜边的平方等于两直角边的平方和D. 任意三角形两边的平方和等于第三边的平方2. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是?A. P(2,3)B. P(2,3)C. P(2,3)D. P(2,3)3. 下列哪个是等差数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,254. 下列哪个是等比数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,255. 在一个等差数列中,首项为5,公差为3,第10项是多少?A. 32B. 35C. 38D. 406. 在一个等比数列中,首项为2,公比为3,第4项是多少?A. 18B. 27C. 36D. 457. 下列哪个是勾股数?A. 3,4,5B. 5,6,7C. 8,9,10D. 12,13,14二、填空题(每题4分,共20分)1. 下列数列中,第n项是__________。
2. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是__________。
3. 在一个等差数列中,首项为5,公差为3,第10项是__________。
4. 在一个等比数列中,首项为2,公比为3,第4项是__________。
5. 下列数列中,第n项是__________。
三、判断题(每题3分,共15分)1. 直角三角形两直角边的平方和等于斜边的平方是勾股定理。
()2. 任意三角形两边的平方和等于第三边的平方是勾股定理的逆定理。
()3. 等差数列的任意两项之差是常数。
2023-2024学年人教新版八年级上册数学期中复习试卷(含解析)
2023-2024学年人教新版八年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.已知三角形的两边长分别为3、5,则三角形第三边的长可能是( )A.2B.4C.8D.102.三角形的三条高在( )A.三角形的内部B.三角形的外部C.三角形的边上D.三角形的内部、外部或与边重合3.如图,为了测量池塘东西两边A、B之间的宽度,小明同学先从A点向南走到点O处,再继续向南走相同的距离到达点C,然后从点C开始向西走到与O、B两点共线的点D 处,测量C、D间的距离就是A,B间的距离.这里判断△OCD≌△OAB的直接依据是( )A.SSS B.SSA C.SAS D.ASA4.如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=( )A.35°B.45°C.55°D.无法计算5.已知△ABC≌△DCB,若BC=10,AB=6,AC=7,则CD=( )A.10B.7C.6D.6或76.如图,已知△ABC中,∠ABC=∠ACB,以点B为圆心,AB长为半径的弧分别交AC,BC 于点D,连接BD,ED,若∠CED=105°,求∠ABC的度数为( )A.80B.70C.60D.507.△ABC中,∠A=θ﹣α,∠B=θ,∠C=θ+α,0°<α<θ<90°.若∠BAC与∠BCA的平分线相交于P点,则∠APC=( )A.90°B.105°C.120°D.150°8.根据下列条件能唯一画出△ABC的是( )A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°9.如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为( )A.135°B.140°C.144°D.150°10.如图,E、F、G分别是正方形ABCD边AD、DC、AB的中点,BE交AF于H点,则下列结论:①BE=AF;②GH=GA;③CB=CH;④AE=2HE.其中结论正确的是( )A.①②③B.①②④C.②③④D.①②③④二.填空题(共8小题,满分24分,每小题3分)11.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BD 的平分线与∠A1CD的平分线交于点A2,若∠A=60°,则∠A2的度数为 .12.若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是 三角形.13.等腰三角形一腰上的中线把它的周长分为12:9两部分,等腰三角形的周长为21,则它的腰为 .14.把正五边形和正六边形按如图所示方式放置,则∠α= .15.一个长方形纸片ABCD,点E和F分别在AD和BC上,如图(1),∠DEF=25°,沿EF折叠得到图(2),DE与BF交于点G,则∠CFG的度数是: .16.如图,有两个长度相同的滑梯BC和EF,滑梯BC的高度AC等于滑梯EF在水平方向上的长度DF,则∠ABC+∠DFE= 度.17.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为48°,则∠BAC的度数为 .18.AM为△ABC中BC边上的中线,若AB=4,AC=6,则AM的取值范围是 .三.解答题(共8小题,满分66分)19.如图,在△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且∠BCD=∠ACB,∠CBE=∠ABC.求证:BE=CD.20.如图,在6×6的方格纸中,线段AB的两个端分别落在格点上,请按要求画图:(1)在图1中画一个格点四边形APBQ,且AB与PQ垂直.(2)在图2中画一个以AB为中位线的格点△DEF.21.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E,点F在射线CA上,且BD=FD.(1)当点F在线段CA上时.①求证:BE=CF;②若AC=6,AF=2,求CD的长;(2)若∠ADF=15°,求∠BAC的度数.22.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线与AB,AC分别相交于点M,N.若AB=5,AC=6,求△AMN的周长.23.如图,正三角形网格中,已知两个小三角形被涂黑.(1)再将图1中其余小三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的);(2)再将图2中其余小三角形涂黑两个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的).24.如图,△ABC中,∠ABC=30°,∠DAF=20°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠ACB的度数;(2)若BC的长为17,求△DAF的周长.25.如图,O,D两点在直线AB上,在AB的同侧作直角三角形DOE和射线OC,使∠DOE=90°,∠BOC=30°.(1)分别求∠BOC的余角和补角的度数;(2)将△DOE绕点O按每秒5°的速度逆时针方向旋转.①在旋转一周的过程中,第几秒时,直线OE恰好平分∠BOC,则此时直线OD是否平分∠AOC?请说明理由②在旋转一周的过程中,满足OE在∠AOC的内部,请探究此时∠AOD与∠COE之间的数量关系,请说明理由.26.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请写出DA、DB、DC之间的数量关系是 ,并写出证明过程;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC =90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为2cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的平方为多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:根据三角形的三边关系,得第三边大于:5﹣3=2,而小于:3+5=8.则此三角形的第三边可能是:4.故选:B.2.解:钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高的交点在三角形的内部;直角三角形的三条高的交点是三角形的直角顶点,故选:D.3.解:在△OCD与△OAB中,,∴△OCD≌△OAB(ASA),故选:D.4.解:∵△ABC≌△DEC,∠ACB=100°,∴∠ACB=∠DCE=100°,∵∠D=35°,∠E+∠DCE+∠D=180°,∴∠E=180°﹣∠DCE﹣∠D=180°﹣100°﹣35°=45°.故选:B.5.解:∵△ABC≌△DCB,AB=6,∴CD=AB=6,故选:C.6.解:设∠ABC=∠ACB=x,∵BA=BD=BE,∴∠BED=∠BDE=180°﹣∠CED=75°,∴∠DBE=180°﹣2×75°=30°,∴∠BAD=∠BDA=30°+x,∴180°﹣2x=30°+x,∴x=50,故选:D.7.解:∵∠A+∠B+∠C=180°,∠A=θ﹣α,∠B=θ,∠C=θ+α,∴(θ﹣α)+θ+(θ+α)=3θ=180°,∴θ=∠B=60°,∵∠BAC与∠BCA的平分线相交于P点,∴(∠A+∠C)=(180°﹣60°)=60°,∴∠APC=180°﹣(∠A+∠C)=180°﹣60°=120°,故选:C.8.解:A.3+4<8,不符合三角形三边关系定理,不能作出三角形,故本选项不符合题意;B.不符合全等三角形的判定定理,不能作出唯一的三角形,故本选项不符合题意;C.符合全等三角形的判定定理SAS,能作出唯一的三角形,故本选项符合题意;D.不符合全等三角形的判定定理,不能作出唯一的三角形,故本选项不符合题意;故选:C.9.解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°÷9=140°.故选:B.10.解:①正确;理由如下:∵四边形ABCD是正方形,∴AB=BC=CD=DA,AB∥CD,∠BAE=∠D=90°,∵E、F分别是正方形ABCD边AD、DC的中点,∴AE=DA,DF=CD,∴AE=DF,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴BE=AF;②正确;理由如下:∵△ABE≌△DAF,∴∠ABE=∠DAF,∵∠BAH+∠DAF=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°,即BE⊥AF,∵G是AB的中点,∴GH=AB=GA;③正确;理由如下:∵F、G分别是正方形ABCD边DC、AB的中点,∴GA=GB=AB,CF=CD,∴AG=CF,又∵AG∥CF,∴四边形AGCF是平行四边形,∴AF∥GC,∵BE⊥AF,∴BE⊥GC,∵GH=GA,∴GB=GH,∴GC是BH的垂直平分线,∴CB=CH;④不正确;理由如下:∵HE与CD不平行,∴HE≠DF,∴HE≠AE;正确的是①②③,故选:A.二.填空题(共8小题,满分24分,每小题3分)11.解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A,同理可得∠A2=∠A1=××60°=15°,故答案为15°.12.解:若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是直角三角形.故答案为直角.13.解:设腰长为x,底边长为y,则,或解得:,或,经检验,都符合三角形的三边关系.等腰三角形的腰长为6或8.故答案为:6或8.14.解:∵正六边形的内角和为(6﹣2)×180°=720°,正五边形的内角和为(5﹣2)×180°=540°,∴∠A=∠ACD=120°,∠BCD=108°.∴∠ACB=∠ACD﹣∠BCD=120°﹣108°=12°.∴α=180°﹣∠A﹣∠ACB=180°﹣120°﹣12°=48°故答案为:48°15.解:∵AD∥BC,∴∠BFE=∠DEF=25°,∴∠DGF=∠GEF+∠GFE=∠DEF+∠BFE=25°+25°=50°.又∵DG∥CF,∴∠CFG=180°﹣∠DGF=180°﹣50°=130°.故答案为:130°.16.解:∵BC=EF,AC=DF,∠CAB=∠EDF=90°,∴△ABC≌△EDF.∴∠ACB=∠DFE.∵∠ACB+∠ABC=90°,∴∠ABC+∠DFE=90°.故答案为:90.17.解:∵AB的垂直平分线与AC所在的直线相交所得到锐角为48°,∴∠DAE=90°﹣48°=42°,如图1,AB的垂直平分线与AC相交时,∠BAC=∠DAE=42°,如图2,AB的垂直平分线与CA的延长线相交时,∠BAC=180°﹣∠DAE=180°﹣42°=138°,综上所述,∠BAC的度数为42°或138°.故答案为:42°或138°.18.解:如图,延长AM到E,使ME=AM,∵AM是BC边上的中线,∴BM=CM,在△ABM和△ECM中,,∴△ABM≌△ECM(SAS),∴CE=AB,∵AB=4,AC=6,∴6﹣4<AE<6+4,即2<AE<10,∴1<AM<5.故答案为:1<AM<5.三.解答题(共8小题,满分66分)19.证明:∵AB=AC,∴∠ABC=∠ACB,∵∠BCD=∠ACB,∠CBE=∠ABC,∴∠BCD=∠CBE,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴BE=CD.20.解:(1)如图1中,四边形APBQ即为所求作(答案不唯一).(2)如图,△DEF即为所求作(答案不唯一).21.解:(1)①证明:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△FCD和Rt△BED中,,∴Rt△FCD≌Rt△BED(HL),∴BE=CF;②在Rt△ADC和Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AE=AC=6,由①得BE=CF=AC﹣AF=4,根据勾股定理,得BC==8,设CD=x,则BD=FD=BC﹣CD=8﹣x,在Rt△FCD中,根据勾股定理,得42+x2=(8﹣x)2,解得x=3,∴CD的长为3;(2)如图1,当点F在线段CA上时,设∠CAD=α,∵AD平分∠BAC,∴∠BAC=2α,∵Rt△FCD≌Rt△BED,∴∠B=∠CFD=∠CAD+∠ADF=α+15°,∵∠C=90°,∴∠BAC+∠B=90°,∴2α+α+15°=90°,解得α=25°,∴∠BAC=50°;如图2,当点F在CA延长线上时,∵AD平分∠BAC,∴∠BAC=2α,∵Rt△FCD≌Rt△BED,∴∠B=∠CFD=∠CAD﹣∠ADF=α﹣15°,∵∠C=90°,∴∠BAC+∠B=90°,∴2α+α﹣15°=90°,解得α=35°,∴∠BAC=70°;∴∠BAC的度数为50°或70°.22.解:∵MN//BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠MBO,∠ACO=∠OCB,∴∠MOB=∠MBO,∠NOC=∠ACO,∴MB=MO,NC=NO,∵AB=5,AC=6,∴C△AMN=AM+AN+MN=AM+AN+MO+ON=AM+AN+MB+NC=AB+AC=5+6=11,∴△AMN的周长为11.23.解:(1)如图1所示(答案不唯一).(2)如图2所示(答案不唯一).24.解:(1)∵DE、FG分别为AB、AC的垂直平分线,∴AD=BD,AF=CF,∴∠B=∠BAD=30°,∠C=∠CAF,∴∠B+∠BAD+∠DAF+∠CAF+∠C=180°,∴∠ACB=(180°﹣30°﹣30°﹣20°)=50°;(2)∵DE、FG分别为AB、AC的垂直平分线,∴AD=BD,AF=CF,∴△DAF的周长=AD+DF+AF=BD+DF+CF=BC=17.25.解:(1)∵∠BOC=30°,∴∠BOC的余角的度数是60°,补角的度数是150°;(2)①有两种情况:如图1,当OE在AB的下方时,∵OE恰好平分∠BOC,∠BOC=30°,∴∠BOE=15°,∴旋转角=90°﹣15°=75°,t=75÷5=15(秒),即在旋转一周的过程中,第15秒时,直线OE恰好平分∠BOC,∴∠AOD=75°,∵∠AOC=180°﹣30°=150°,∴OD平分∠AOC;当OE在AB的上方时,同理得旋转角:75°+180°=255°,t=255÷5=51(秒),即在旋转一周的过程中,第51秒时,直线OE恰好平分∠BOC,同理得直线OD平分∠AOC;综上,在旋转一周的过程中,第15秒或51秒时,直线OE恰好平分∠BOC,则此时直线OD平分∠AOC;②有两种情况:i)当OD在OA的下方时,有∠AOD+∠COE=60°,理由是:如图2,OE在∠AOC的内部,∴∠AOD=∠EOE',∵∠BOE'=90°,∴∠BOC+∠COE+∠EOE'=90°,∴∠COE=90°﹣30°﹣∠EOE'=60°﹣∠AOD,∴∠AOD+∠COE=60°.ii)当OD在OA的上方时,有∠COE﹣∠AOD=60°,理由是:如图3,OE在∠AOC的内部,∴∠AOE=90°﹣∠AOD∴∠COE=180°﹣∠BOC﹣∠AOE=180°﹣30°﹣(90°﹣∠AOD)=60°+∠AOD,∴∠COE﹣∠AOD=60°.26.解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE=60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=2,∠QMN=30°,∴QN=MN=1,∴MQ===,由(2)知PQ=QN+QM=1+,∴PQ==,∴PQ2=2+.。
八年级上数学期中测试卷(14.10)
八年级上数学期中模拟测试卷一、选择题(每小题3分,共36分)1.如右图,一座楔形台,高14米,底座长48米,一位自行车运动员要在5秒钟驶过楔形台斜面,则要达到_______的平均速度。
2.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2 B.a >2 C .a≠2 D.a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b28、下列说法错误的是 ( )A .在x 轴上的点的坐标纵坐标都是0,横坐标为任意数;B .坐标原点的横、纵坐标都是0;C .在y 轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0;D .坐标轴上的点不属于任何象限9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .14310.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1 D .ab b 11.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定12. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )A .600米B . 800米C . 1000米 D. 不能确定二、填空题(每小题2分,共16分) 13.23-的倒数是 。
湖南省长沙市2023-2024学年八年级上学期期中考试数学试卷(含答案)
八年级期中考试八年级数学试卷2023-2024学年第一学期时量:120分满分:120分一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.2.下列条件中,不能得到等边三角形的是()A.有两个外角相等的等腰三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个内角是60°的三角形3.下列计算正确的是()A.B.C.D.4.下列各式中,可以用平方差公式进行计算的是()A.B.C.D.5.若,,则的值为()A.8B.11C.15D.456.如图,,点在上,与相交于点,.则的度数为()A.30°B.40°C.60°D.75°7.如图,在的正方形方格中,每个小正方形方格的边长都为1,则和的关系是()A.B.C.D.8.如图,中,,,且,则()A.10B.6C.4D.39.如图,在中,的垂直平分线分别交、于点,,连接.若,的周长为24,则的周长为()A.16B.18C.20D.2210.如图,是的角平分线,的面积为12,长为6,,分别是,上的动点,则的最小值是()A.6B.4C.3D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.______.12.点关于轴对称的点的坐标是______.13.若,则的值为______.14.如图,在直角中,已知,边的垂直平分线交于点,交于点,且,,则的长为______.15.如图,将正方形放在平面直角坐标系中,为坐标原点,点的坐标为,则点的坐标为______.16.如图,是的角平分线,于点,的面积是,,,则______.三、解答题(本题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23每题9分,第24、25每题10分,共72分)17.计算:18.先化简,再求值:,其中.19.如图,点、、、在同一直线上,,,且,求证:(1);(2)20.如图在平面直角坐标系中,各顶点的坐标分别为,,.(1)在图中作,使和关于轴对称;(2)写出点,,的坐标;(3)求的面积.21.如图,点在的外部,点在边上,交于点,若,,.(1)求证:;(2)若,判断的形状,并说明理由.22.如图,等边三角形中,为边的中点,为的延长线上一点,过点作于点,并交于点,(1)求证:;(2)若,,求的长.23.如图,是等边三角形,点、分别在、的延长线上,且,连接并延长交于点,,交的延长线于点.(1)求证:;(2)求的度数;(3)当为等腰三角形时,求.24.完全平方公式:,适当的变形,可以解决很多的数学问题.例如:若,,求的值.解:因为,所以,即:,又因为,所以根据上面的解题思路与方法,解决下列问题:(1)若,,求的值;(2)若,求的值;(3)如图,是线段上的一点,以、为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.25.如图,在平面直角坐标系中,已知、分别为轴和轴上一点,且,满足,过点作于点,延长至点,使得,连接、.图1 图2(1)点的坐标为______,的度数为______;(2)如图1,若点在第一象限,试判断与的数量关系与位置关系,并说明理由;(3)如图2,若点的坐标为,连接,平分,与交于点.①求点的坐标;②试判断与的数量关系,并说明理由.八年级期中考试八年级数学参考答案2023-2024学年第一学期一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本题共10题,每小题3分,共30分)题号12345678910答案B A D B C D D C A B 二、填空题(本题共6小题,每小题3分,共18分)11.12.13.5 14.5 15.16.3三、解答题(共9个小题,第17,18,19题每小题6分,第20,21题每小题8分,第22,23题每小题9分,第24,25题每小题10分,共72分,解答应写出必要的文字说明或演算过程)17.(6分)解:原式.18.(6分)解:原式.当时,原式.19.(6分)解:(1)∵,∴.又∵,∴,,∴,在与中,,∴;(2)∵,∴.∴20.(8分)解:(1)如图,即为所求(2),,;(3).21.(8分)解:(1)∵,,,,∴,在和中,∴,∴.(2)是等边三角形.理由如下:∵,∴,∵,∴,,∴,∴∴,∴是等边三角形.22.(9分)解:(1)∵,是的中点,∴,∵,∴;(2)∵是等边三角形,边长为6,∴,,由(1)可知,,∴,,∴,∵,∴,又∵,∴,∴.23.(9分)解:(1)为等边三角形,∴,,∴,在和中,,∴;(2)∵,∴,∴;(3)当为等腰三角形时,∴,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴.∵在中,,,∴,,.24.(10分)解:(1)∵,,∴,∴;(2)∵∴;(3)设,,∵,∴,又∵,∴,由完全平方公式可得,,∴,∴,∴,答:阴影部分的面积为6.25.(10分)解:(1)∵,∴,,∴点的坐标为,点,∴,∵,∴,故答案为:,45°;(2)设与轴交于点,与交于点,∵,∴,在和中,,,∴,在和中,,∴,∴,,∴,即∴∴,即,;(3)①作轴交轴于点,轴交轴于点,∵点的坐标为,∴,,由(2)知,,∵,,∴,∵,∴,∴,,∴;②延长交于点,∵,,,∴,∴,∵平分,∴,∵,,∴,∴,即.。
人教版数学初二上学期期中试题与参考答案(2024年)
2024年人教版数学初二上学期期中复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:已知一个长方形的长为8cm,宽为5cm,求该长方形的对角线长度。
A. 6cmB. 10cmC. 12cmD. 13cm2、题目:一个班级有学生40人,其中男生人数是女生人数的1.5倍,求该班级男生和女生的人数。
A. 男生30人,女生10人B. 男生25人,女生15人C. 男生35人,女生5人D. 男生20人,女生20人3、若一个矩形的长是宽的3倍,且其周长为48厘米,则该矩形的面积是多少平方厘米?A. 64B. 108C. 128D. 1444、已知直角三角形的两个锐角之比为1∶2,那么这两个锐角分别是多少度?A. 30°, 60°B. 45°, 45°C. 60°, 30°D. 以上都不正确5、一个长方形的长是10厘米,宽是5厘米,它的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米6、一个正方形的周长是24厘米,那么它的边长是()A. 2厘米B. 4厘米C. 6厘米D. 8厘米7、已知一个正方形的边长为(a),如果它的边长增加到原来的1.5倍,则新正方形的面积与原正方形面积之比是多少?A.(1.5:1)B.(2.25:1)C.(3:1)D.(1.52:1)8、若一个等腰三角形的底角为(70∘),则顶角的度数是多少?A.(40∘)B.(50∘)C.(60∘)D.(70∘)9、若直角三角形的两条直角边长分别为3和4,则斜边的长度是()A. 5B. 7C. 8D. 10 10、一个长方形的长是10厘米,宽是8厘米,那么它的面积是()A. 80平方厘米B. 90平方厘米C. 100平方厘米D. 120平方厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(x−3=7),则(x=)______ 。
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 12. 已知函数f(x) = 2x + 3,那么f(1)的值为()A. 1B. 1C. 5D. 53. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 三角形4. 已知等差数列{an}的前三项分别为1,3,5,那么第10项的值为()A. 19B. 20C. 21D. 225. 下列哪个数是无理数()A. √2B. √4C. √9D. √16二、判断题5道(每题1分,共5分)1. 0是正数和负数的分界点。
()2. 两个负数相乘,结果是正数。
()3. 任何数乘以1都等于它本身。
()4. 两个数的和与它们的顺序无关。
()5. 任何数除以0都有意义。
()三、填空题5道(每题1分,共5分)1. 一个正数与它的相反数相加,结果是______。
2. 函数f(x) = 2x 3中,当x = 2时,f(x)的值为______。
3. 平行四边形的对边______且______。
4. 等差数列{an}的前n项和为______。
5. 两个无理数相乘,结果可能为______。
四、简答题5道(每题2分,共10分)1. 简述实数的分类。
2. 解释等差数列的通项公式。
3. 什么是函数,给出一个函数的例子。
4. 举例说明平行四边形与矩形的区别。
5. 简述勾股定理的内容。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:3x 5,其中x = 4。
2. 已知函数f(x) = x^2 2x + 1,求f(3)的值。
3. 一个等差数列的前3项分别为2,5,8,求第10项的值。
4. 在一个长方形中,长为8cm,宽为6cm,求其对角线的长度。
5. 已知一个正方形的面积为36cm^2,求其边长。
六、分析题:2道(每题5分,共10分)1. 已知一个等差数列的前5项分别为2,5,8,11,14,求该数列的通项公式。
初二数学期中考试试卷(含答案)精选全文
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
八年级期中数学试卷及答案
(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是4的平方根?()A.2B.-2C.4D.-4答案:B3.已知一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A.32cmB.36cmC.42cmD.26cm答案:C(更多选择题题目及答案省略)二、判断题(每题1分,共20分)1.两个负数相乘,其结果一定是正数。
()答案:√2.任何数与0相乘,其结果一定是0。
()答案:√3.若a>b,则a^2>b^2。
()答案:×(更多判断题题目及答案省略)三、填空题(每空1分,共10分)1.若x+3=7,则x=_______。
答案:42.若一个正方形的边长为a,则其面积为_______。
答案:a^23.若|x|=5,则x的值为_______或_______。
答案:5;-5(更多填空题题目及答案省略)四、简答题(每题10分,共10分)1.简述勾股定理及其应用。
答案:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
应用勾股定理可以解决与直角三角形相关的问题,如计算直角三角形的边长、判断一个三角形是否为直角三角形等。
(更多简答题题目及答案省略)五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知一个等差数列的首项为2,公差为3,求第10项的值。
答案:第10项的值为2+(101)3=2+27=29。
2.解方程:2(x3)+4=3x+1。
答案:2x6+4=3x+1,化简得x=9。
(更多综合题题目及答案省略)三、填空题(每空1分,共10分)4.若一个数的平方根是9,则这个数是_______。
答案:815.已知一个等边三角形的周长为24cm,则其边长为_______。
答案:8cm6.若a=3,b=-2,则a+b的值为_______。
2023-2024学年度上学期八年级期中测试题数学附详细答案
2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。
2023-2024学年北京市十四中八年级(下)期中数学试卷(含解析)
2023-2024学年北京十四中八年级(下)期中数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列二次根式中,最简二次根式是( )D. 1.5A. 12B. 2C. 132.如图,在平行四边形ABCD中,∠A+∠C=140°,则∠B的度数为( )A. 140°B. 120°C. 110°D. 100°3.下列计算,正确的是( )A. (−2)2=−2B. 8+2=10C. 32−2=3D. (−1)×(−1)=14.下列条件中,不能判定一个四边形是平行四边形的是( )A. 两组对边分别平行B. 两组对边分别相等C. 两组对角分别相等D. 一组对边平行且另一组对边相等5.在平面直角坐标系中,一次函数y=2x−3的图象是( )A. B.C. D.6.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠AOD=120°,BD=6.则AB的长为( )B. 3C. 23D. 3A. 327.如图,菱形ABCD中,点E,F分别是AC,DC的中点.若EF=3,则菱形ABCD的周长为( )A. 12B. 16C. 20D. 248.如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为( )A. 3B. 6C. 8D. 9二、填空题:本题共8小题,每小题3分,共24分。
9.函数y=x−3,自变量x的取值范围是.10.比较大小:234(填“>”,“<”或“=”).11.如图,在△ABC中,∠ACB=90°,∠A=40°,D为线段AB的中点,则∠BCD=°.12.若一次函数的图象过点(0,3),请写出一个符合条件的函数解析式.13.如图,正方形ABCD和正方形ECFG的边长分别为5cm和4cm,EF、CG相交于点O,则△BEO的面积为______cm2.14.如图,在矩形ABCD纸片中,E为AD上一点,将△CDE沿CE翻折至△CFE.若点F恰好落在AB上,AF=4,BC=10,则DE长度为______.15.如图,在菱形ADBC中,AC=3,AB=2,点P,E,F分别为线段AB,AD,DB上的动点,则PE+PF的最小值是______.16.如图,在平行四边形ABCD中,AB=6cm,AD=10cm.点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上以每秒4cm的速度从点C出发,在CB之间往返运动.两个动点同时出发,当点P到达点D时停止运动(同时点Q也停止运动).设运动时间为t(t>0)秒.当运动______秒时,以P,D,Q,B为顶点的四边形是平行四边形.三、解答题:本题共10小题,共62分。
2023-2024学年人教新版八年级上册数学期中复习试卷(含解析)
2023-2024学年人教新版八年级上册数学期中复习试卷一.选择题(共12小题,满分36分,每小题3分)1.下列图形中,是轴对称图形的是( )A.B.C.D.2.如果一个三角形的三边长分别为5,8,a.那么a的值可能是( )A.2B.9C.13D.153.下列运算中正确的是( )A.x2•x5=x10B.(a4)4=a8C.(xy2)2=xy4D.x8÷x2=x6 4.下列图形中,不具有稳定性的是( )A.等腰三角形B.平行四边形C.锐角三角形D.等边三角形5.若△ABC≌△DEF,且∠A=50°,∠B=60°,则∠F的度数为( )A.50°B.60°C.70°D.80°6.高为3,底边长为8的等腰三角形腰长为( )A.6B.5C.4D.37.若mx+6y与x﹣3y的乘积中不含有xy项,则m的值为( )A.0B.2C.3D.68.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( )A.8B.9C.10D.119.如图,在边长为3的等边△ABC中,过点C作垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )A.B.C.D.10.如图,在△ABC中,点D在BC上,AD=BD,∠B=40°,将△ABD沿着AD翻折得到△AED,则∠CDE的度数是( )A.20°B.25°C.30°D.35°11.合肥市2014年3月5日的温差为8℃,最高气温为t℃,则最低气温可表示为( )A.(8+t)℃B.(8﹣t)℃C.(t﹣8)℃D.(﹣t﹣8)℃12.如图,△ABC中,BD平分∠CBA,CE平分∠ACB的外角,AD垂直BD于D,AE垂直CE于E,AB=c,AC=b,BC=a,则DE=( )A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.若(x﹣10)0=1,则x的取值范围是 .14.如图,AB与CD相交于点O,OC=OD.若要得到△AOC≌△BOD,则应添加的条件是 .(写出一种情况即可)15.用直尺和圆规作一个已知角的角平分线.示意图如图,要说明∠AOC=∠BOC,需要证明△CON和△COM全等,则这两个三角形全等的依据是 .16.如图,在4×4的正方形网格中,求α+β= 度.17.如图,已知EF⊥CD,EF⊥AB,MN⊥AC,M是EF的中点,只需添加 ,就可使CM,AM分别为∠ACD和∠CAB的平分线.18.已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC 的对称点为点E.(1)如图1,连接AD,AE,DE,当BC=2BD时,根据边的关系,可判定△ADE的形状是 三角形;(2)如图2,当点D在BC延长线上时,连接AD,AE,CE,BE,延长AB到点G,使BG=CD,连接CG,交BE于点F,F为BE的中点,若AE=12,则CF的长为 .三.解答题(共8小题,满分66分)19.(1)图中所示为一家住房的结构图,若要将卫生间以外的部分都铺上木地板,木地板价格是a元/m2,那么购买所需木地板至少需要多少元?(2)已知房屋的高度为hm,现需要在卫生间和厨房的墙壁上贴瓷砖,瓷砖的价格是b 元/m2,那么购买所需瓷砖至少需要多少元?20.作图:如图,请按要求在8×8的正方形网格中作图(1)请在图1中画一个钝角△ABC,使它有一边与该边上的高线长度相等;(2)请在图2画一个五边形ABCDE,是轴对称图形,且∠ABC=90°.21.先化简,再求值:(a+3b)2﹣2(a+3b)(a﹣3b)+(a﹣3b)2,其中a=﹣,b=﹣.22.已知:如图,AC、BD相交于点E,AB=DC,∠B=∠C.求证:(1)△ABE≌△DCE;(2)∠BDA=∠CAD.23.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.24.如图,在Rt△ABC中,∠C=90°,DE⊥AB垂足为点D,BC=BD,求证:DE=CE.(提示:连接BE)25.如图,在△ABC中,AC=BC,∠ACB=90°.点D在线段AB上运动(不与A、B重合),连接CD,CE在CD右侧,且∠DCE=45°.当点E不与点A重合时,AE⊥AB.连接DE.(1)当点D是AB中点时,∠ACD的度数是 .(2)当∠ADE=45°时,探究DE与AC的位置关系,并证明.(3)线段BD、AE、DE三者之间在数量上满足怎样的等量关系?请证明.26.如图,△ABC中,∠B=60°,∠ACB=90°,BC=6,点D、E分别是边AB、BC上的一个动点,且BD=BE,过点D作DG⊥AB交射线BC于点G,交线段AC于点F,设BD=x.(1)如图1,当点G与点C重合时,求△DCE的面积;(2)如图2,设当点G在BC的延长线上时,FC=y,求y关于x的解析式,并写出定义域;(3)若△DEF为直角三角形,求x的值.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:A.是轴对称图形,故本选项符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项不符合题意.故选:A.2.解:根据三角形的三边关系,得3<a<13.9在第三边长的取值范围内.故选:B.3.解:A、x2•x5=x7,故此选项错误;B、(a4)4=a16,故此选项错误;C、(xy2)2=x2y4,故此选项错误;D、x8÷x2=x6,故此选项正确.故选:D.4.解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故B符合题意;故选:B.5.解:∵△ABC≌△DEF,∠A=50°,∠B=60°,∴∠D=∠A=50°,∠E=∠B=60°,∴∠F=180°﹣∠D﹣∠E=180°﹣50°﹣60°=70°,故选:C.6.解:如图,∵AD⊥BC,∴BD=CD,∵BC=8,∴BD=4,又∵AD=3,在Rt△ABD中,AB===5.故选:B.7.解:由题意得:(mx+6y)(x﹣3y)=mx2﹣3mxy+6xy﹣18y2=mx2+(﹣3m+6)xy﹣18y2,∵不含有xy项,∴﹣3m+6=0,解得:m=2.故选:B.8.解:1500÷180=8,则多边形的边数是8+1+2=11.故选:D.9.解:∵在边长为3的等边△ABC中,过点C作垂直于BC的直线交∠ABC的平分线于点P,∴BP交AC于点D,且BD⊥AD,AD=DC,∴BC=3,∠PBC=30°,∠PBC=90°,∠ACP=30°,∴BP=2,PC=,连接AP,则△BAP≌△BCP,∴∠PAC=∠PCB=90°,∴点P到边AB所在直线的距离为AP的长,又∵PC=,∴PA=PC=,故选:D.10.解:∵AD=BD,∴∠BAD=∠B=40°,∴∠ADC=∠B+∠BAD=40°+40°=80°,∴∠ADB=180°﹣80°=100°,由折叠的性质得:∠ADE=∠ADB=100°,∴∠CDE=∠ADE﹣∠ADC=100°﹣80°=20°,故选:A.11.解:∵肥市2014年3月5日的温差为8℃,最高气温为t℃,∴最低气温可表示为:(t﹣8)℃.故选:C.12.解:延长AE交BC的延长线于点M,延长AD交BC于F,∵CE⊥AE,CE平分∠ACM,∴∠AEC=∠MEC=90°,∠ACE=∠MCE,在△ACE和△MCE中,,∴△ACE和△MCE(ASA),∴AC=MC=b,AE=EM,同理,AB=BF=c,AD=DF,∴DE=FM,∵CF=BC﹣BF=a﹣c,∴FM=MC+CF=b+(a﹣c)=a+b﹣c.∴DE=(a+b﹣c).故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:由(x﹣10)0=1,得x﹣10≠0,解得x≠10.故答案为:x≠10.14.解:已知OC=OD,∠AOC=∠BOD,添加OA=OB,利用SAS可得△AOC≌△BOD,添加∠A=∠B,利用AAS可得△AOC≌△BOD,添加∠C=∠D,利用ASA可得△AOC≌△BOD,故答案为:OA=OB(或∠A=∠B或∠C=∠D).15.解:由作法可得,OM=ON,MC=NC,∵OC=OC,∴△CON≌△COM(SSS),∴∠AOC=∠BOC.故答案为:SSS.16.解:连接BC,∵AB=BC==,AC==,∴AB2+BC2=AC2,∴∠ABC=90°,∴∠BAC=∠ACB=45°,∵AB=BC=,AE=BD=1,BE=CD=2,∴△ABE≌△BCD,∴∠ACD=∠ABE=α,∵AE∥CD,∴∠DCA=∠CAE=β,∴α+β=∠BCA=45°,故答案为:45.17.解:添加MN=ME,理由如下:∵EF⊥CD,MN⊥AC,∴∠MEC=∠MNC=90°,在Rt△MEC和Rt△MNC中,,∴Rt△MEC≌Rt△MNC(HL),∴∠MCE=∠MCN,∴CM平分∠ACD,∵EF⊥AB,MN⊥AC,∴∠MFA=∠MNA=90°,∵M是EF的中点,∴ME=MF,∴MN=MF,在Rt△MFA和Rt△MNA中,,∴Rt△MFA≌Rt△MNA(HL),∴∠MAF=∠MAN,∴AM平分∠CAB,∴CM,AM分别为∠ACD和∠CAB的平分线,故答案为:ME=MN.18.解:(1)∵BC=2BD,∴BD=CD,∵△ABC是等边三角形,∴∠BAD=∠DAC=30°,∵点D关于直线AC的对称点为点E,∴AD=AE,∠DAC=∠EAC=30°,∴∠DAE=60°,∴△ADE是等边三角形.故答案为:等边;(2)∵点D关于直线AC的对称点为点E.∴△ACD≌△ACE,∴CE=CD,∠ACD=∠ACE,∵BG=CD,∴CE=BG,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=CB,∴∠ACD=∠GBC=120°,∴∠ACE=∠GBC=120°,∴△ACE≌△CBG(SAS),∴AE=CG,∵∠BCE=∠ACE﹣∠ACB=60°,∴∠BCE+∠BGC=180°,∴BG∥CE,∴∠G=∠FCE,∵F为BE的中点,∴BF=EF,∵∠BFG=∠CFE,∴△CEF≌△GBF(AAS),∴CF=GF,∴CF=CG=AE=6.故答案为:6.三.解答题(共8小题,满分66分)19.解:(1)由题意得,卫生间以外的部分为:x×2y+2x×2y+2x×4y=2xy+4xy+8xy=14xy(m2)∵木地板价格是a元/m2,∴购买所需木地板至少需要14xya元;(2)由题意得,需要贴瓷砖的面积为:(2x+2y+2x+4y)h=(4xh+6yh)(m2);瓷砖的价格是b元/m2,∴购买所需瓷砖至少需要(4xh+6yh)b=(4xhb+6yhb)(元).20.解:(1)(2)21.解:原式=a2+6ab+9b2﹣2a2+18b2+a2﹣6ab+9b2=18b2,当a=﹣,b=﹣时,原式=.22.(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS),(2)由(1)得:△ABE≌△DCE∴AE=DE,∴∠CAD=∠BDA.23.解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.24.证明:连接BE,如图,∵DE⊥AB,∴∠BDE=90°,在Rt△BDE和△BCE中,,∴Rt△BDE≌Rt△BCE(HL),∴DE=CE.25.解:(1)∵AC=BC,D是AB中点,∴∠ACD=∠BCD,∵∠ACB=90°,∴∠ACD=45°,故答案为:45°.(2)分两种情况:①如图1,当CE在CA左侧时,∵AC=BC,∠ACB=90°,∴∠B=∠CAB=45°,∵∠ADE=45°,∴∠CAB=∠ADE,∴DE∥AC;②如图2,当CE在CA右侧时,设DE与AC交于点G,∵∠ADE=45°,∠CAB=45°,∴∠AGD=180°﹣∠ADE﹣∠CAB=90°,∴DE⊥AC.综上所述,当∠ADE=45°时,DE∥AC或DE⊥AC.(3)分两种情况:①如图3,当CE在CA左侧时,过点C作CF⊥CE,交AB延长线于点F,∴∠ECF=∠ACB=90°,∴∠ACE=∠BCF,∵AE⊥AB,∴∠EAB=90°,∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=135°,在△CBF和△CAE中,,∴△CBF≌△CAE(ASA),∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°,在△DCE和△DCF中,,∴△DCE≌△DCF(SAS),∴DE=DF.∵BD+BF=DF,∴BD+AE=DE;②如图4,当CE在CA右侧时,过点C作CF⊥CE,交AB于点F,同①得:△CBF≌△CAE(ASA),△DCE≌△DCF(SAS),∴BF=AE,DE=DF.∵DF=BD﹣BF,∴BD﹣AE=DE;综上所述,当CE在CA左侧时,BD+AE=DE;当CE在CA右侧时,BD﹣AE=DE.26.解:(1)∵DG⊥AB,∴∠BDC=90°,∵∠B=60°,BC=6,∴∠BCD=90°﹣∠B=30°,∴BD=BC=3,∴CD===3,∵BE=BD=3,∴CE=BC﹣BE=3,∴BE=CE,∴△DCE的面积=△BCD的面积=×BD×CD=×3×3=;(2)∵DG⊥AB,∴∠BDG=90°,∵∠B=60°,∴∠G=90°﹣∠B=30°,∴BG=2BD=2x,∵∠ACB=90°,∴∠GCF=180°﹣∠ACB=90°,∴FG=2CF=2y,∴CG===y,∴BG=BC+CG=6+y,∴6+y=2x,∴y=x﹣2,∵点G在BC的延长线上,∴点G不与点C重合,∴x>3,∵点E是边BC上的一个动点,BE=BD=x,∴x≤6,∴3<x≤6,即y关于x的解析式为y=x﹣2(3<x≤6);(3)分两种情况:①当∠DFE=90°时,如图3所示:则EF⊥DG,∵DG⊥AB,∴EF∥AB,∴∠FEC=∠B=60°,∵∠ACB=90°,∴∠EFC=90°﹣∠FEC=30°,∴EF=2CE,∵BE=BD=x,∴CE=BC﹣BE=6﹣x,∴EF=2CE=2(6﹣x)=12﹣6x,∴CF===(6﹣x),由(2)得:CF=y=x﹣2,∴x﹣2=(6﹣x),解得:x=;②当∠DEF=90°时,如图4所示:∵BD=BE=x,∠B=60°,∴△BDE是等边三角形,∴∠BED=60°,∴∠FEC=180°﹣∠DEF﹣∠BED=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴EF=2CF,∴CE===CF,∴6﹣x=(x﹣2),解得:x=4;综上所述,若△DEF为直角三角形,x的值为或4.。
新疆维吾尔自治区喀什地区第十四中学2023-2024学年八年级下学期期中数学试题(解析版)
喀什市第十四中学数学学科期中模拟测试八年级数学一、单选题(共9题,每小题3分,共27分)1.有意义,则的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数≥0,即可得出结论.【详解】解:根据题意可得解得:故选D .【点睛】此题考查的是二次根式有意义的条件,掌握二次根式有意义的条件:被开方数≥0是解决此题的关键.2. 以下各数是最简二次根式的是( )A. B. C. D. 【答案】A 【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】的被开方数中含有能开方的因数,不是最简二次根式,故本选项不符合题意;的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;故选:A .【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键,满足以下两个条件的二次根式,叫最简二次根式:被开方数中的因数是整数,因式是整式,被开方数中不含有能开得尽方的因数和因式.3. 下列各组线段长度能构成直角三角形的一组是( )A. 5,12,13B. 6,7,8C. 3,4,6D. 7,12,15x 0x ≥0x ≤1x ≤-1x ≥-10x +≥1x ≥-A ①②【答案】A【解析】【分析】根据勾股定理的逆定理(看看两小边的平方和是否等于大边的平方)分别进行判断即可.【详解】A 、∵52+122=132,∴以5,12,13为边的三角形是直角三角形,故本选项符合题意;B 、∵62+72≠82,∴以6,7,8为边的三角形不是直角三角形,故本选项不符合题意;C 、∵32+42≠62,∴以3,4,6为边的三角形不是直角三角形,故本选项不符合题意;D 、∵72+122≠152,∴以7,12,15为边的三角形不是直角三角形,故本选项不符合题意;故选:A .【点睛】本题考查了勾股定理的逆定理的应用,解题的关键是能熟记定理.4. 下列计算正确的是( ).A. B. C. D. 【答案】C【解析】【分析】直接利用二次根式的混合运算法则计算得出答案.【详解】解:根据题意可知:A,故错误;B,故错误;C,故正确;D,故错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5. 下列说法错误是( )A. 平行四边形的对角线互相平分B. 矩形的对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 对角线互相垂直的四边形是菱形【答案】D【解析】的=2-==3=≠2≠=3=≠【分析】根据菱形的判定、矩形和平行四边形和直角三角形斜边上的中线性质进行判定即可.【详解】A 、平行四边形的对角线互相平分,说法正确,不符合题意;B 、矩形的对角线相等,说法正确,不符合题意;C 、直角三角形斜边上的中线等于斜边的一半,说法正确,不符合题意;D 、对角线互相垂直且平分的四边形是菱形,故错误,故选:D .【点睛】本题考查了平行四边形,矩形和菱形的性质,直角三角形的性质,熟练掌握判定和性质定理是解题的关键.6. 在菱形中,对角线,相交于点O ,下列说法错误的是( )A.B. C. D.【答案】D【解析】【分析】本题主要考查了菱形的性质,解题的关键是掌握菱形四边相等,对角线互相垂直平分,据此即可解答.【详解】解:∵四边形是菱形,∴,,,∴,而与不一定相等,故A 、B 、C 正确,不符合题意;D 不正确,符合题意.故选:D .7. 下列各命题的逆命题不成立的是( )A. 两直线平行,同旁内角互补B. 若两个数的绝对值相等,则这两个数也相等C. 对顶角相等D. 如果那么【答案】C【解析】【分析】首先写出各个命题的逆命题,再进一步判断真假.ABCD AC BD AB DC ∥DAO DCO ∠=∠AC BD ⊥DAO ODA ∠=∠ABCD AB DC ∥AC BD ⊥AD CD =DAO DCO ∠=∠DAO ∠ODA ∠22a b =,a b=【详解】A 、逆命题同旁内角互补,两直线平行,成立;B 、逆命题是如果两个数相等,那么这两个数的绝对值相等,成立;C 、逆命题是相等的角是对顶角,不成立;D 、逆命题是如果,那么,成立,故选C .点睛:本题考查的是逆命题8. 如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为( ).A. 16B. 12C. 10D. 8【答案】A【解析】【分析】根据三角形的中位线定理,判断出四边形ADEF 平行四边形,根据平行四边形的性质求出ADEF 的周长即可.【详解】解:∵点D ,E ,F 分别是AB ,BC ,AC 的中点,∴DE ∥AC ,EF ∥AB ,DE=AC=5,EF=AB=3,∴四边形ADEF 是平行四边形,∴AD=EF ,DE=AF ,∴四边形ADEF 的周长为2(DE+EF )=16,故选A .【点睛】本题考查了三角形中位线定理,利用中位线定理判断出四边形ADEF 为平行四边形是解题的关键.9. 如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB=6,BC=9,则BF 的长为( )是a b =22a b =1212A. 4B. 3C. 4.5D. 5【答案】A【解析】【分析】先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF ,在Rt △C′BF 中,运用勾股定理BF 2+BC′2=C′F 2求解.【详解】∵点C′是AB 边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9-BF )2,解得,BF=4,故选:A .【点睛】本题考查了翻折变换的性质、勾股定理的应用,解题的关键是找出线段的关系.二、填空题(共5题,每小题3分,共15分)10._____.【答案】2【解析】.故答案为:211.是同类二次根式,则的值为______.【答案】1【解析】【分析】根据最简二次根式和同类二次根式的定义可列出关于a 的等式,解出a 即可.【详解】由题意可知,解得:.故答案为:1.【点睛】本题考查最简二次根式和同类二次根式的定义.掌握化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式是解题关键.a 312a -=1a =12. 如图,要使平行四边形ABCD 是矩形,则应添加的条件是_____(添加一个条件即可).【答案】∠ABC=90°或AC=BD .【解析】【详解】解:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形,故添加条件:∠ABC=90°或AC=BD .故答案为∠ABC=90°或AC=BD .13.,则_________.【答案】3【解析】【分析】根据算术平方根的非负性和偶次方根的非负性即可求出x ,y 的值,进而可求答案,,,∴,,∴,故答案为:3.【点睛】本题考查的是算术平方根的非负性,偶次方的非负性,能够据此解答出x 、y 的值是解题的关键.14. 如图,点C 所表示的数是______.【答案】【解析】【分析】数轴上的数,就是离开原点的距离加性质符号,因为AC =ABOC =AC -AO ,C 表示的是负数,也就是-),去掉括号选C .2(5)0y +-+=x y +=2(5)0y +-+=0=()250y -+=2x =-5y =253x y +=-+=11+【详解】解:∵在Rt △ABO 中,AB,∴AC =AB∵OC =AC -AO∴OC,∴C 表示的数是-)故答案为:【点睛】本题考查数轴上的有理数,关键要了解有理数分两部分,一是性质符号,二是绝对值.三、解答题15.计算:(1);(2);【答案】(1);(2)【解析】【分析】(1)先化简各项,再合并同类二次根式即可;(2)先去括号,再合并同类二次根式即可;【详解】解:(1)原式==;(2)原式==【点睛】本题考查了二次根式的加减运算,解题的关键是利用二次根式的性质将各项化简成最简二次根式再运算.16.计算:(1);(2)【答案】(1==-+----(0202321--)22+-2(2)【解析】【分析】本题考查了实数的混合运算、二次根式的混合运算,熟练掌握运算法则是解此题的关键.(1)先计算零指数幂和化简绝对值,再计算加减即可;(2)先利用平方差公式和二次根式的乘除法化简,再计算加减即可.【小问1详解】解:;【小问2详解】解:.17. 已知,(1);(2【答案】(1)9(2)2【解析】【分析】(1)先将原式应用完全平方公式变形为,再代值计算即可;(2.【小问1详解】解:∵∴,,∴==;【小问2详解】2(0202311212--=-+-=-)222223432+=-=-+=a =+b =-22a ab b -+2()3a b ab +-a b ==-a b +=1ab =22a ab b -+2()3a b ab=+-231-⨯9.【点睛】本题的解题要点是由,,再将原式分别用“完全平方公式”变形后再代值计算,这样可使计算过程更简单.18.先化简,再求值:,其中.【答案】【解析】【分析】先计算括号内的加减法,再把除法转化为乘法,再约分可得结果,再把代入求值即可得到答案.【详解】解: ∴当x=4时,原式=【点睛】本题考查的是分式的化简求值,掌握分式的混合运算是解题的关键.=====2a b ==a b +=1ab =2443111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭4x =21,23----x x 4x =2443111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭22(2)31111x x x x x ⎛⎫--=÷- ⎪+++⎝⎭22(2)411x x x x --=÷++2(2)11(2)(2)x x x x x -+=⨯+--+22x x -=--22x x -=-+21.63-=-19. 如图,在四边形中,,,,,,求四边形的面积.【答案】36【解析】【分析】本题考查了求不规则图形面积,勾股定理及其逆定理;连接,由勾股定理得,再由勾股定理的逆定理得,即可求解;掌握定理,将不规则图形转化为规则图形是解题的关键.【详解】解:如图,连接,,,,,,;ABCD 3AB =4BC =12CD =13AD =90B Ð=°ABCDAC AC =AC =90ACD ∠︒AC 90B Ð=°AC ∴==5=22AC CD ∴+22512=+169=2213169AD == 222AC CD AD ∴+=90ACD ∴∠=︒ABC ACD ABCD S S S =+四边形△△.故四边形的面积为.20. 如图,在中,点、分别是、的中点. 求证:四边形是平行四边形.【答案】见解析【解析】【分析】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的性质定理和判定定理是解题的关键.在中,根据平行四边形的性质可得,,根据中点的定义得出,根据平行四边形的判定可证四边形是平行四边形.【详解】证明:在中,,.点,分别是,的中点,,,,四边形是平行四边形.21. 如图,菱形花坛ABCD 的一边长AB 为20m ,∠ABC =60°,沿着该菱形的对角线修建两条小路AC 和BD .(1)求AC 和BD 的长;(2)求菱形花坛ABCD的面积.1122AB BC AC CD =⋅+⋅113451222=⨯⨯+⨯⨯36=ABCD 36ABCD Y E F AB CD AECF ABCD Y AB CD =AB CD AE CF =AECF ABCD Y AB CD =AB CD E F AB CD 12CF CD ∴=12AE AB =AE CF ∴=∴AECF【答案】(1)AC =20m ;BD =(2)2【解析】【分析】(1)利用菱形的性质,得到30°的,算出AO ,BO ,即可算出两条小路长度(2)利用对角线长度算菱形面积【小问1详解】∵四边形ABCD是菱形∴AC ⊥BD ,AO=CO ,BO =DO ,∠ABD =∠ABC =30°,∴AO =AB =10m ,BO AO =cm ∴AC =20m ,BD =m【小问2详解】∵菱形花坛ABCD 的面积=∴菱形花坛ABCD 的面积=2【点睛】本题考查菱形的性质,特殊直角三角形,和用对角线求菱形面积;注意菱形性质的熟练记忆.22. 已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD .(1)求证:四边形AODE 是矩形;(2)若AB =6,∠BCD =120°,求四边形AODE 的面积.【答案】(1)见解析(2)【解析】【分析】(1)先判断出四边形是平行四边形,再根据菱形的对角线互相垂直可得,然后根据有一个角是直角的平行四边形是矩形证明;(2)根据两直线平行,同旁内角互补求出,判断出是等边三角形,然后根据等边三角形的性质求出、,然后得到,再根据矩形的面积公式列式计算即可得解.Rt AOB 121212AC BD ⋅12AODE AC BD ⊥60ABC ∠=︒ABC ∆OA OB OD小问1详解】证明:,,四边形是平行四边形,在菱形中,,,四边形是矩形;【小问2详解】解:,,,,等边三角形,,,四边形是菱形,,四边形的面积.【点睛】本题考查了菱形的性质,矩形的判定,平行四边形的判定,主要利用了有一个角是直角的平行四边形是矩形,熟练掌握矩形,菱形与平行四边形的关系是解题的关键.23. 如图,在平行四边形中,,作,CE 交AB 于点O ,交DA 的延长线于点E ,连接BE .(1)求证:四边形ACBE 是矩形;(2)连接O D .若,,求OD 的长.【答案】(1)见解析;(2)【解析】【是//DE AC //AE BD ∴AODE ABCD AC BD ⊥90AOD ∴∠=︒∴AODE 120BCD ∠=︒ //AB CD 18012060ABC ∴∠=︒-︒=︒AB BC = ABC ∴∆1632OA ∴=⨯=6OB ==ABCD OD OB ∴==∴AODE 3OA OD ==⨯= ABCD AC AD ⊥ECA ACD ∠=∠4AB =60ACD ∠=︒【分析】(1)先证明四边形ACBE 是平行四边形,然后根据有一个角是直角的平行四边形是矩形即可证明;(2)先证明∆AOC 为等边三角形,由各角之间的关系得出∠FAO =90°-60°=30°,根据含有30°角的直角三角形的性质及勾股定理进行求解即可得出结果.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AC ⊥AD ,∴∠EAC =∠DAC =90°,∵∠ECA =∠ACD ,∴∠AEC =∠ADC ,∴CE =CD ,∴AE =AD =BC ,∵AE ∥BC ,∴四边形ACBE 是平行四边形,∵∠EAC =90°,∴四边形ACBE 为矩形;【小问2详解】如图,过点O 作OF ⊥DE 于F ,由(1)可知,四边形ACBE 为矩形,∴对角线AB 与CE 相等且互相平分,AO=,∴OA =OC ,∵∠ACD =∠ACO =60°,∴∆AOC 为等边三角形,∴∠OAC =60°,∵∠EAC =90°,122AB∴∠FAO =90°-60°=30°,在Rt ∆AFO 中,OF =,,Rt ∆AEB 中,,AD=AE∴DF =AF +AD,∴OD.【点睛】题目主要考查矩形的判定和性质,平行四边形的性质,勾股定理,等边三角形的判定和性质,含有30°角的直角三角形的性质等,理解题意,熟练掌握运用这些知识点是解题关键.在112AO =AF =122BE AB =====。
2024-2025学年八年级上学期湘教版数学期中综合测试卷
2024-2025学年八年级上学期湘教版数学期中综合测试卷1.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.102.下列分式中最简分式是()A.B.C.D.3.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°4.4.如图,在框中解分式方程的4个步骤中,其中根据等式基本性质的有()解分式方程:.解:…①……②…③…④A.①②B.②④C.①③D.③④5.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D6.判断命题“如果,那么”是假命题,只需举出一个反例,反例中的n可以为()A.B.C.0D.7.如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是A.B.C.D.8.如图,边,的垂直平分线,相交于点O,M,N在边上,若,则的度数为()A.B.C.D.9.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A.B.C.D.10.如图,中,,沿将此三角形对折,又沿再一次对折,点C落在上的处,此时,则原三角形的的度数为()A.B.C.D.11.观察下面的变形规律:,,,,…回答问题:若,则的值为()A.100B.98C.1D.12.如图,在四边形中,,,,,则()°A.15B.18C.20D.2513.命题“如果,那么”,则它的逆命题是________命题(填“真”或“假”).14.化简:_____.15.将一副直角三角尺按图所示的位置放置,使含角的三角尺的一条直角边和含角的三角尺的一条直角边放在同一条直线上,则的度数是________°.16.若,则分式的值为_____.17.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_____.18.如图,与中,,,,交于D.给出下列结论:①;②;③;④.其中正确的结论是__________(填写所有正确结论的序号).19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.21.小明解答“先化简,再求值:,其中”的过程如下.请指出解答过程中错误步骤的序号,并写出正确的解答过程.解:当时,原式22.如图,在四边形中,,过点作,垂足为点,过点作,垂足为点,且.(1)求证:;(2)连接,且平分交于点.求证:是等腰三角形.23.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x-1,小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下:设则有故此解得所以=问题解决:(1)设,求A、B.(2)直接写出方程的解.24.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.26.(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
座位号:
1
密
封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
③
②
① 2014-2015学年凤尾中学上学期八年级期中测验
数学试卷
(满分:100
分
考试时间:120分钟)
一、选择题(每小题3分,共24分)
1.(3分)下列平面图形中,不是轴对称图形的是( )
2.(3分)(2014•郴州)﹣2的绝对值是( ) A . B . ﹣
C .
-2 D .
2 3.(3分)(2014•西宁)下列线段能构成三角形的是( ) A . 2,2,4 B . 3,4,5 C . 1,2,
3 D . 2,3,6 4.(3分)(2014•三明)一个多边形的内角和是外角和的2倍,则这个多边形是( ) A . 四边形 B . 五边形 C . 八边形 D . 六边形 5.(3分)8.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.
A .①
B .②
C .③
D .①和②
6.(3分)(2014•凤冈县二模)如图,AB ∥CD ,
AD 和BC 相
交于点O ,∠A=35°,∠AOB=75°,则∠C 的度数为( )
A . 35
B . 75
C . 70
D . 8 7.(3分)在我国南海某海域探明可燃冰储量约有194亿立方米,数字19 400 000 000用科学记数法表示正确的是( )
A . 1.94×1010
B . 0.194×1010
C . 19.4×109
D . 1.94×109
8.(3分)下列对应相等的条件不能判定两个三角形全等的是( ) A . 两角和一边(AAS ) B . 两边及夹角(SAS ) C . 三条边(SSS ) D . 两边及一边的夹
角(SSA ) 二、填空题(每小题3分,共18分) 9.(3分)如图, 已知D 、E 在△ABC 的边上,DE ∥BC , ∠B=60°,∠AED=40°,则∠A 的度数为_________ . 10.(3分)已知a 、b 、c 是△ABC 的三边,且满足+(b ﹣4)2
=0,则第三边c 的
取值范围是 _________ . 11.(3分)已知
,…,求第五个式子是 ________,第n 个式子是
_________ .
12.(3分)(2014•泰州)点P (﹣2,3)关于x 轴的对称点P ′的坐标为 _________ . 13.(3分)(2014•乌鲁木齐)等腰三角形的两边长分别为1和2,其周长为 _________ . 14.(3分)在Rt △ABC 中,∠C=90°,∠A=30°,AB=6cm ,则BC= _________ cm .
三、解答题(共58分)
15. (6分)已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式.
根据上图所示,一个四边形可以分成 _________ 个三角形;于是四边形的内角和为 _________ 度:一个五边形可以分成 _________ 个三角形,于是五边形的内角和为 _________ 度,…,按此规律,n 边形可以分成 _________ 个三角形,于是n 边形的内角和为 _________ 度. 16.(5分)(2013•惠安县质检)在△ABC 中,∠A=80°,∠C=75°,求∠B 的度数. 17.(6分)(2014•云南)如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD=BC ,∠DAB=∠CBA ,求证:AC=BD .
题 号
一 二 三 总 分 得 分
A B C D
2
18.(7分)如图,△ACB 中,∠ACB=90°,∠1=∠B . (1)试说明CD 是△ABC 的高;
(2)如果AC=8,BC=6,AB=10,求CD 的长.
19.(6分)(2014•大连)如图:点A 、B 、C 、D 在一条直线上,AB=CD ,AE ∥BF ,CE ∥DF .求证:AE=BF .
20.(7分)如图,D 是△ABC 中BC 边上一点,AB=AC=BD ,已知∠1=70°,求∠2的度数.
21.(6分)已知:A (1,0),B (0,﹣2),C (3,﹣2) (1)在右图的坐标系中画出△ABC ; (2)若将△ABC 向左平移两个单位, 再向上平移一个单位,
则平移后C 点的坐标为 _________ . (3)在右图的坐标系中画出△ABC 关于x 轴对称的图形△A ′B ′C ′,并写出对称图形的各顶点坐标.
22.(6分)(2014•昆明)某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图. 根据以上统计图提供的信息,回答下列问题:
(1)此次调查抽取的学生人数为a= _________ 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= _________ ; (2)补全条形统计图;
(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?
23.(9分)(2014•昆明)某校运动会需购买A ,B 两种奖品,若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元. (1)求A 、B 两种奖品的单价各是多少元?
(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,请写出所有购买方案.。