2018学年江苏省泰州市海陵区医药高新区七年级(上)数学期中试卷带参考答案

合集下载

海陵七年级数学期中试卷

海陵七年级数学期中试卷

一、选择题(每题3分,共30分)1. 下列数中,属于正整数的是()A. -3B. 0C. 1.5D. -2.52. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆3. 若a、b、c是三角形的三边,且a+b=c,则该三角形是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形4. 下列方程中,x=3是它的解的是()A. 2x+1=7B. 3x-5=4C. 4x-2=10D. 5x+1=165. 下列函数中,自变量x的取值范围是全体实数的是()A. y=2x+3B. y=√xC. y=x^2D. y=1/x6. 下列数中,最接近0的是()A. 0.1B. -0.1C. 0.01D. -0.017. 下列计算正确的是()A. (-3)×(-5)=-15B. 3^2=9C. 4^2=16D. 2^3=88. 下列分数中,分子大于分母的是()A. 3/2B. 5/4C. 7/6D. 8/79. 下列图形中,周长最小的是()A. 正方形B. 长方形C. 等腰三角形D. 圆10. 下列数中,不是质数的是()A. 11B. 12C. 13D. 14二、填空题(每题5分,共20分)11. 2的平方根是______,-3的立方根是______。

12. 如果一个数是6的倍数,那么这个数也是______的倍数。

13. 在数轴上,点A表示的数是-2,点B表示的数是4,那么AB之间的距离是______。

14. 下列等式中,正确的是______。

A. a^2+b^2=(a+b)^2B. (a+b)^2=a^2+2ab+b^2C. (a-b)^2=a^2-2ab+b^2D. (a+b)^2=a^2-b^215. 一个长方形的长是6cm,宽是4cm,它的周长是______cm。

三、解答题(每题10分,共30分)16. 解下列方程:(1)2x-5=13(2)3(x+2)=1217. 已知:a+b=7,a-b=3,求a和b的值。

海陵区七年级期中试卷数学

海陵区七年级期中试卷数学

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -3/5D. 2√32. 若a=3,b=-2,则a²-b²的值为()A. 5B. -5C. 1D. -13. 下列方程中,解集为全体实数的是()A. x²=0B. x²+1=0C. x²-1=0D. x²=14. 已知三角形ABC中,∠A=45°,∠B=60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°5. 下列函数中,是反比例函数的是()A. y=x²B. y=2xC. y=2/xD. y=x³6. 下列图形中,具有轴对称性的是()A. 等腰三角形B. 正方形C. 等边三角形D. 长方形7. 若|a|=5,|b|=3,则a+b的最大值为()A. 8B. 10C. 12D. 158. 下列不等式中,正确的是()A. 2x > 4B. 2x < 4C. 2x ≤ 4D. 2x ≥ 49. 若一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的体积为()A. 60cm³B. 120cm³C. 180cm³D. 240cm³10. 已知一次函数y=kx+b的图象经过点A(2,3)和B(4,7),则该函数的解析式为()A. y=2x+1B. y=3x+1C. y=2x-1D. y=3x-1二、填空题(每题5分,共25分)11. 若x=2,则x²-3x+2的值为______。

12. 在直角坐标系中,点P(3,4)关于x轴的对称点坐标为______。

13. 若a=-3,b=2,则|a-b|的值为______。

14. 一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为______cm。

江苏省泰州市 七年级(上)期中数学试卷

江苏省泰州市 七年级(上)期中数学试卷

七年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.-3的相反数是()A. −3B. −13C. 3D. 132.A地海拔高度是-6m,B地比A地高17m,B地的海拔高度是()A. −23mB. 23mC. 11 mD. −11m3.用代数式表示“m与n的差的平方”,正确的是()A. (m−n)2B. m−n2C. m2−nD. m2−n24.下列说法正确的是()A. 带负号的数一定是负数B. 方程x+2=1x是一元一次方程C. 单项式−2x2y的次数是3D. 单项式与单项式的和一定是多项式5.下面合并同类项正确的是()A. 3x+2x2=5x3B. 2a2b−a2b=1C. −ab−ab=0D. −y2x+xy2=06.如图,四边形的面积为9,五边形的面积为17,两个阴影部分的面积分别为a,b(a<b),则b-a的值为()A. 9B. 8C. 7D. 6二、填空题(本大题共10小题,共30.0分)7.计算:(-3)2=______.8.写出-2m3n的一个同类项______.9.比较大小:-89______-910.10.大于-43且小于3的所有整数的和为______.11.按照如图的操作步骤,若输入x的值为-1,则输出的值是______.12.某书店把一本新书按标价的八折出售,仍获利2元,若该书进价为20元,设标价为x元,则可列一元一次方程为______.13.已知代数式a2+a的值是1,则代数式2a2+2a+2016值是______.14.若关于x的一元一次方程x2+m3=x-4与12(x-16)=-6的解相同,那么m的值为______.15.数轴上有分别表示-7与2的两点A、B,若将数轴沿点B对折,使点A与数轴上的另一点C重合,则点C表示的数为______.16.设一列数a1、a2、a3、…、a2018中任意三个相邻数之和都是22,已知a3=2x,a19=13,a66=6-x,那么a2018=______.三、计算题(本大题共6小题,共54.0分)17.计算.(1)-2÷3×(-6)(2)-22×5-(-2)3×14+118.化简.(1)(4a2b2-2ab3)-(-3a2b2+ab3)(2)2(x2-5x)-3(12x-3)+119.解方程.(1)3(2x-1)=5-2(x+2)(2)x−52=1+2x+3320.先化简,再求值.(3x2-2xy)-12[x2-2(4x-4xy)],其中x=-2,y=1.21.有4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是______.(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是______.(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子______.(注:4个数字都必须用到且只能用一次.)22.已知A=x-2y,B=-x-4y+1.(1)求2(A+B)-(A-B);(结果用含x,y的代数式表示)(2)当|x+2|与(y-12)2互为相反数时,求(1)中代数式的值.四、解答题(本大题共6小题,共48.0分)23.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5,-|-1.5|,-(-52),0,(-2)2.用“<”把这些数连接起来:______.24.已知|a|=5|,|b|=2,且ab<0,求a+2b的值.解:因为|a|=5,所以a=______;因为|b|=2,所以b=______;又因为ab<0,所以当a=______时,b=______;或当a=______时,b=______,∴a+2b=______或______.25.我校图书馆上周借书记录(超过200册的部分记为正,少于200册的部分记为负)如表:(1)上星期四借出多少册书?(2)上星期借书最多的一天比借书最少的一天多借出图书多少册?(3)上星期平均每天借出多少册书?26.如图,若点A、B、C分别表示有理数a,b,c.(1)判断:a+b______0,c-b______0(填“>、<或=”);(2)化简:|a+b|-|c-b|-|c-a|27.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).规定:(a,b)★(c,d)=ad-bc.如:(1,2)★(3,4)=1×4-2×3=-2.根据上述规定解决下列问题:(1)有理数对(5,-3)★(3,2)=______;(2)若有理数对(-3,x-1)★(2,2x+1)=15,则x=______;(3)若有理数对(2,x-1)★(k,2x+k)的值与x的取值无关,求k的值.28.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a、b、30的箱子(其中a>b),准备采用如图①、②的两种打包方式,所用打包带的总长(不计接头处的长)分别记为l1、l2.(1)图①中打包带的总长l1=______.图②中打包带的总长l2=______.(2)试判断哪一种打包方式更节省材料,并说明理由.(提醒:先判断再说理,说理过程即为比较l1,l2的大小.)(3)若b=40且a为正整数,在数轴上表示数l1,l2的两点之间有且只有19个整数点,求a的值.答案和解析1.【答案】C【解析】解:-3的相反数是3,故选:C.根据一个数的相反数就是在这个数前面添上“-”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】C【解析】解:根据题意知B地的海拔高度为-6+17=11(m),故选:C.根据有理数的加法,可得答案.本题考查了有理数的加法运算:异号两数相加取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.3.【答案】A【解析】解:用代数式表示“m与n的差的平方”为(m-n)2,故选:A.先表示m与n的差为m-n,再整体平方即可得.本题考查列代数式,解题的关键是明确题意,列出相应的代数式.4.【答案】C【解析】解:A、带负号的数一定是负数,错误;B、方程x+2=是分式方程,故此选项错误;C、单项式-2x2y的次数是3,正确;D、单项式与单项式的和一定是多项式,错误.故选:C.直接利用单项式以及多项式和一元一次方程的定义分别分析得出答案.此题主要考查了单项式以及多项式和一元一次方程的定义,正确把握相关定义是解题关键.5.【答案】D【解析】解:3x+2x2不是同类项不能合并,2a2b-a2b=a2b,-ab-ab=-2ab,-y2x+x y2=0.故选:D.本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,几个常数项也是同类项,合并时系数相加减,字母与字母的指数不变.本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.注意当同类项的系数互为相反数时,合并的结果为0.6.【答案】B【解析】解:设重叠部分面积为c,b-a=(b+c)-(a+c)=17-9=8.故选:B.设重叠部分面积为c,(b-a)可理解为(b+c)-(a+c),即两个多边形面积的差.本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.7.【答案】9【解析】解:原式=9,故答案为:9原式利用乘方的意义计算即可得到结果.此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.【答案】3m3n(答案不唯一)【解析】解:3m3n(答案不唯一).根据同类项的定义可知,写出的同类项只要符合只含有m,n两个未知数,并且m的指数是3,n的指数是1即可.本题考查了是同类项的定义,解题的关键是掌握所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.9.【答案】>【解析】解:∵|-|==,|-|==,∴,∴->-.先求出它们的绝对值,再根据两个负数绝对值大的反而小的原则判断两个负数的大小.本题考查了两个负数大小比较的方法:两个负数,绝对值大的反而小.10.【答案】2【解析】解:∵大于-且小于3的整数为-1,0,1,2,∴它们的和为-1+0+1+2=2.故答案为:2.根据有理数大小比较得到大于-且小于3的整数为-1,0,1,2,然后根据有理数的加法法则计算它们的和.本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.11.【答案】-7【解析】解:把x=-1代入得:原式=3×(-1)2-10=3-10=-7.故答案为:-7把x=-1代入操作中计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【答案】0.8x-20=2【解析】解:设标价是x元,根据题意有:0.8x-20=2,故答案为:0.8x-20=2.根据题意,实际售价-进价=利润,八折即标价的80%,可得一元一次的等量关系式,可得答案.本题考查了由实际问题抽象出一元一次方程,关键在于找出题目中的等量关系,根据等量关系列出方程解答.13.【答案】2018【解析】解:∵代数式a2+a的值是1,∴a2+a=1.∴2a2+2a=2.∴2a2+2a+2016=2+2016=2018.故答案为:2018.依据题意得到a2+a=1,然后依据等式的性质得到2a2+2a=2,最后代入计算即可.本题主要考查的是求代数式的值,求得2a2+2a=2是解题的关键.14.【答案】-6【解析】解:方程(x-16)=-6,去分母得:x-16=-12,解得:x=4,把x=4代入第一个方程得:2+=0,解得:m=-6,故答案为:-6求出第二个方程的解,代入第一个方程计算即可求出m的值.此题考查了同解方程,同解方程即为方程的解都相同的方程.15.【答案】11【解析】解:设点C表示的数为x,∴|2-(-7)|=|x-2|,解得:x=11,或x=-7(不合题意,舍去)∴点C表示的数为11,故答案为:11.根据题意列方程即可得到结论.本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.16.【答案】5【解析】解:∵任意三个相邻数之和都是22,∴a1+a2+a3=a2+a3+a4=22,a2+a3+a4=a3+a4+a5=22,a3+a4+a5=a4+a5+a6=22,∴a1=a4,a2=a5,a3=a6,∴a1=a3n+1,a2=a3n+2,a3=a3n,∵19=3×6+1,a20=15,∴a19=a1=13;∵66=3×22,∴a66=a3,∵a3=2x,a66=6-x,∴6-x=2x,∴x=2,∴a3=4,∵a1+a2+a3=22,∴a2=22-13-4=5,∵2018=672×3+2,∴a2018=a2=5.故答案为5.首先根据任意三个相邻数之和都是22,推出a1=a4,a2=a5,a3=a6,总结规律为a1=a3n+1,a2=a3n+2,a3=a3n,即可推出a19=a1=13,a66=a3=6-x=2x,求出a3=4,即可推出a2=5,由a2018=a672×3+2,推出a2018=a2=5.此题考查数字的变化规律,掌握数字之间的运算规律,利用规律解决问题是解答此题的关键.17.【答案】解:(1)原式=2×13×6=4;(2)原式=-4×5+8×14+1=-20+2+1=-17.【解析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)原式=4a2b2-2ab3+3a2b2-ab3=7a2b2-3ab3;(2)原式=2x2-10x-32x+9+1=2x2-232x+10.【解析】(1)先去括号,再合并同类项即可得;(2)先去括号,再合并同类项即可得.本题主要考查整式的加减运算,关键在于通过正确的去括号和合并同类项对整式进行化简.19.【答案】解:(1)6x-3=5-2x-4,6x+2x=5-4+3,8x=4,x=12;(2)3(x-5)=6+2(2x+3),3x-15=6+4x+6,3x-4x=6+6+15,-x=27,x=-27.【解析】(1)根据解一元一次方程的步骤依次去括号、移项、合并同类项、系数化为1,据此计算可得;(2)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1,据此计算可得.本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.20.【答案】解:原式=3x2-2xy-12x2+4x-4xy=52x2-6xy+4x,当x=-2,y=1时,原式=52×(-2)2-6×(-2)×1+4×(-2)=52×4+12-8=10+4=14.【解析】将原式去括号,合并同类项化简,再将x,y的值代入计算可得.本题主要考查整式的加减-化简求值,熟练掌握整式的加减运算法则是解题的关键.21.【答案】10 -12 (-5-7)×(-2)×1【解析】解:(1)根据题意得:(-5)×(-2)=10;(2)根据题意得:-5-7=-12;(3)根据题意得:(-5-7)×(-2)×1.故答案为:(1)10;(2)-12;(3)(-5-7)×(-2)×1(1)根据题意列出算式,计算即可;(2)根据题意列出算式,计算即可;(3)根据题意列出算式即可.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)∵2(A+B)-(A-B)=2A+2B-A+B=A+3B,∴当A=x-2y,B=-x-4y+1时,原式=A+3B=x-2y+3(-x-4y+1)=x-2y-3x-12y+3=-2x-14y+3;(2)由题意知|x+2|+(y-12)2=0,∴x+2=0且y-12=0,则x=-2,y=12,∴原式=-2x-14y+3=-2×(-2)-14×12+3=4-7+3=0.【解析】(1)原式去括号整理后,将A与B代入计算即可求出值;(2)利用非负数的性质求出x与y的值,代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】-5<-|-1.5|<0<|-(-52)<(-2)2【解析】解:在数轴上表示数如下:用“<”把这些数连接起来如下:-5<-|-1.5|<0<|-(-)<(-2)2.故答案为:-5<-|-1.5|<0<|-(-)<(-2)2.把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由小到大的顺序“<”连接起来.此题考查了数轴和有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题.24.【答案】±5 ±2 5 -2 -5 2 1 -1【解析】解:因为|a|=5,所以a=±5;因为|b|=2,所以b=±2;又因为ab<0,所以当a=5时,b=-2;或当a=-5时,b=2,当a=5,b=-2时,a+2b=5+2×(-2)=1;当a=-5,b=2时,a+2b=-5+2×2=-1;∴a+2b=1或-1,故答案为:±5,±2,5,-2,-5,2,1,-1.先去绝对值符号,再根据ab<0得出a,b的对应值,进而可得出结论.本题考查的是有理数的乘法,根据题意判断出a,b的符号是解答此题的关键.25.【答案】解:(1)根据题意得:200-2=198(册).则星期四借出198册;(2)20-(-12)=32(册).则上星期借书最多的一天比借书最少的一天多32册;(3)根据题意得:200+(20-8+17-2-12)÷5=200+3=203(册).则上星期平均每天借出203册书.【解析】(1)根据表格中星期四对应的数字为-2以及少于200册的部分记为负,即可得到上星期四借出的册数;(2)根据题意求出表格中最大和最小的两个数的差即可;(3)用5天借出的总数除以5求出平均每天借出的册数即可.本题考查的是正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量,注意,解答时正确进行有理数的加减运算.26.【答案】<<【解析】解:观察数轴可知,a<c<0<b,|a|>|c|>|b|,则(1)a+b<0,c-b<0.故答案为:<,<;(2)|a+b|-|c-b|-|c-a|=-a-b+c-b-c+a=-2b.(1)根据有理数加减法计算法则计算即可求解;(2)先计算绝对值,再合并同类项即可求解.此题主要是考查学生对数轴和绝对值的理解,学生要对这些概念性的东西牢固掌握.27.【答案】19 -2【解析】解:(1)(5,-3)★(3,2)=5×2-(-3)×3=19;(2)(-3,x-1)★(2,2x+1)=-3(2x+1)-2(x-1)=15,解得:x=-2;(3)(2,x-1)★(k,2x+k)=2(2x+k)-k(x-1)=(4-k)x+3k,∵有理数对(2,x-1)★(k,2x+k)的值与x的取值无关,∴4-k=0,∴k=4.故答案为:19,-2.(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x的值;(3)原式利用题中的新定义计算,求出整数k的值即可.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.28.【答案】4a+2b+180 2a+4b+180【解析】解:图①中打包带的长有长方体的4个长、2个宽、6个高,∴l1=4a+2b+30×6=4a+2b+180;图②中打包带的长有长方体的2个长、4个宽、6个高,∴l2=2a+4b+30×6=2a+4b+180;故答案为:4a+2b+180,2a+4b+180;(2)第2种打包方式更节省材料,理由:∵l1-l2=4a+2b+180-(2a+4b+180)=2(a-b),∵a>b,∴2(a-b)>0,∴l1>l2,∴第2种打包方式更节省材料;(3)∵在数轴上表示数l1,l2的两点之间有且只有19个整数点,∴l1-l2=19+1,∴2(a-b)=20,∵b=40,∴a=50.(1)根据图形,不难看出:图①中打包带的长有长方体的四个长、2个宽、六个高,图②中打包带的长有长方体的2个长、4个宽、6个高,列代数式即可;(2)要想判断哪一种打包方式更节省材料,求l1与l2的差,即可得到结论;(3)根据题意列方程即可得到结论.本题考查了列代数式,解决问题的关键是读懂题意,本题注意运用长方体的对称性解答问题.。

最新-江苏省泰州市2018学年七年级数学上学期期中试题

最新-江苏省泰州市2018学年七年级数学上学期期中试题

姜堰四中2018—2018学年度第一学期期中考试2018级7A 数学试卷一、选择题:(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在表格相应位置上)1.我们知道-6+2的结果取负号,是因为 ( ▲ ) A. -6的绝对值大于2的绝对值 B. -6比2小C. -6和2两数中一正一负,是异号D. -6是负数2.下列运算错误的是 ( ▲ )A .2-7=(+2)+(-7)B .8-(-2)=8+2C .(-1)×(-4)=4D .()()()133393⎛⎫-÷-=-⨯-=- ⎪⎝⎭3.下列说法正确的是 ( ▲ )A. a -一定是负数B. 一个数的绝对值一定是正数C.212-表示-2与21的积 D. 212-表示-2与21的差4.下列方程的变形正确的个数有 ( ▲ )个(1)由3+x =5,得 x =5+3; (2)由7x = -4,得 x =47-;(3)由021=y ,得 y =2; (4)由3=x -2,得 x = -2-3;A.1B.2C.3D.05.如图是一个简单的数值运算程序,当输入的x 的值为-1时,则输出的值为( ▲ )x 输入输出A.1B. -5C.-1D.5 6.下列各式计算正确的是 ( ▲ )A .266a a a =+ B .2a +b =2ab C .222253ab a b ab -=- D .mn mn n m 22422=-7.已知单项式b a y x -y x ++4331321与是同类项,那么b a ,的值分别是 ( ▲ ) A .⎩⎨⎧==.1,2b a B .⎩⎨⎧-==.1,2b a C .⎩⎨⎧-=-=.1,2b a D .⎩⎨⎧=-=.1,2b a8.数轴上标出若干个整数点,每相邻两点相距一个单位,点M ,N ,P ,Q 分别表示整数m ,n ,p ,q ,且q -3m=15,则原点O 在点( ▲ )的位置。

2018学年第一学期七年级期中数学参考答案

2018学年第一学期七年级期中数学参考答案

2018-2019学年第一学期七年级期中测试数学试题卷参考答案及评分建议一、单选题(共 12 题,共 36 分)1.B2.A3.D4.B5.D6.C7.C8.C9.B10.B11.C12.C二、填空题(共 6 题,共 18 分)13.65.96910⨯14.1615.-216.7 17.1 18. ()4112n n --⨯三、解答题(共 8 题,共 66 分)19.(7分)正分数:①③⑥负有理数:④⑤⑦⑧无理数:⑨⑩非负数:①②③⑥⑨20.(7分)(1)原式=16(2)原式=2×(-1)+2×(-2)=-621.(7分)465【解析】试题分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得a 和b 的值,再化简3a 2b -[2ab 2-2(a 2b +2ab 2)]后代入求值.(1)∵x的算术平方根是3,∴1﹣a=9,即a=﹣8;(2)x,y都是同一个数的平方根,∴1﹣a=2a﹣5,或1﹣a+(2a﹣5)=0解得a=2,或a=4,(1﹣a)=(1﹣2)2=1,(1﹣a)=(1﹣4)2=9.答:这个数是1或923.(8分)①解:由数轴可知:b+c<0,b+a<0,a+c>0,∴原式=﹣(b+c)+(b+a)+(a+c)=﹣b﹣c+b+a+a+c=2a②解:|a|=4,得a=4或a=﹣4.=,c=16.4当a=4时a﹣b+c=4﹣3+16=17,当a=﹣4时a﹣b+c=﹣4﹣3+16=9 24.(8分)(1)51;1(1)111n n -+ (2)20172018(3)①原式11111111=(1)23355720152017⨯-+-+-+⋅⋅⋅+- 11122017⎛⎫=⨯- ⎪⎝⎭ 10082017=②原式1111111=+++2122323342016201720172018⎛⎫⨯--⋅⋅⋅- ⎪⨯⨯⨯⨯⨯⨯⎝⎭ 11121220172018⎛⎫=⨯- ⎪⨯⨯⎝⎭ 5087882035153=26.(12分)(1)表示A ,D 两点的距离(2)()2x --;2或-6; 23x -≤≤(3)由绝对值的几何意义可知:求1232018x x x x -+-+-+⋅⋅⋅+-的最小值, 就是在数轴上找出表示x 的点,使它到1,2,3,…,2018的点的距离之和最小, 如下图从 图 中 可 看 出 当x 大 于 等 于 1009,而 小 于 等 于 1010 时,1232018x x x x -+-+-+⋅⋅⋅+- 的值最小,把x =1009代入原式中得:原式= 10091|10092100931009201710092018-+-+-+⋅⋅⋅+-+-100810071006101210081009=+++⋅⋅⋅+++++⋅⋅⋅++()212310081009=+++⋅⋅⋅++=1018081。

2018年七年级上学期数学期中检测试卷(含答案和解释)-文档资料

2018年七年级上学期数学期中检测试卷(含答案和解释)-文档资料

2018年七年级上学期数学期中检测试卷(含答案和解释)又到了一年一度的期中考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2018年七年级上学期数学期中检测试卷,希望可以帮助到大家!一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018 ,0中,正数有()A. 1个B. 2个C. 3个D. 4个2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=93.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A. a1B. b1C. a﹣1D. b04.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 45.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 46.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=117.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是38.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a1 0.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是,的倒数为.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为米/秒.13.比较大小:﹣5 2,﹣﹣ .14.若3a2﹣a﹣2=0,则5+2a﹣6a2=.15.若|a|=8,|b|=5,且a+b0,那么a﹣b=.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + =(直接写出答案).18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为.三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有块,当黑砖n=2时,白砖有块,当黑砖n=3时,白砖有块.(2)第n个图案中,白色地砖共块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC(,),BD(,),C(+1,);(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a=;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018,0中,正数有()A. 1个B. 2个C. 3个D. 4个考点:正数和负数.分析:根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答:解:﹣(﹣ )= 是正数,﹣42是负数,﹣|﹣9|=﹣9是负数,是正数,(﹣1)2018=1是正数,0既不是正数也不是负数,2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=9 考点:有理数的乘方.分析:根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答:解:因为﹣32=﹣9;(﹣3)2=9;﹣32=﹣9;﹣(﹣3)2=﹣9,所以A、B、D都错误,正确的是C.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A.a1B. b1C. a﹣1D. b0考点:有理数大小比较;数轴.分析:首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答:解:根据数轴可以得到:a0A、a1,选项错误;B、b1,选项错误;C、a﹣1,故选项正确;4.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 4考点:实数.分析:先根据整数和分数统称有理数,找出有理数,再计算个数.解答:解:根据题意,﹣,0,是有理数,共2个.5.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 4考点:一元一次方程的定义.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值. 解答:解:根据题意,得,6.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=11考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答:解:把x=1代入方程6n+4x=7x﹣3m中7.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是3考点:单项式.专题:推理填空题.分析:根据单项式系数及次数的定义进行解答即可.解答:解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣ ;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.8.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.考点:同类项;单项式.专题:探究型.分析:根据同类项的定义对四个选项进行逐一解答即可. 解答:解:A、中,所含字母相同,相同字母的指数不相等,这两个单项式不是同类项,故本选项错误;B、∵0.5a2b与0.5a2c中,所含字母不相同,这两个单项式不是同类项,故本选项错误;C、∵3abc与3ab中,所含字母不相同,这两个单项式不是同类项,故本选项错误;D、∵ 中所含字母相同,相同字母的指数相等,9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a考点:列代数式.分析:用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是 5 ,的倒数为﹣ .考点:倒数;相反数.分析:根据相反数及倒数的定义,即可得出答案.解答:解:﹣5的相反数是5,﹣的倒数是﹣ .12.太阳光的速度是300 000 000米/秒,用科学记数法表示为 3108 米/秒.考点:科学记数法表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:将300 000 000用科学记数法表示为3108. 13.比较大小:﹣5 2,﹣﹣ .考点:有理数大小比较.分析:根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答:解:﹣52,14.若3a2﹣a﹣2=0,则5+2a﹣6a2= 1 .考点:代数式求值.专题:整体思想.分析:先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.解答:解;∵3a2﹣a﹣2=0,3a2﹣a=2,15.若|a|=8,|b|=5,且a+b0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,a=8,b=∵a+b0,a=8,b=5.当a=8,b=5时,a﹣b=3;16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.考点:列代数式;加权平均数.分析:根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + = 0 (直接写出答案).考点:有理数的加减混合运算.专题:新定义.分析:根据题中的新定义化简,计算即可得到结果.解答:解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为 1或﹣5 .考点:数轴.分析:根据数轴上到一点距离相等的点有两个,可得答案. 解答:解:|1﹣(﹣2)|=3|﹣5﹣(﹣2)|=3,三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.考点:有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答:解:(1)原式=﹣3+9+5=11;(2)原式=1(﹣48)﹣ (﹣48)+ (﹣48)=﹣48+8﹣36=﹣76;(3)原式=16(﹣8)﹣=﹣2﹣=﹣2 ;20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).考点:整式的加减.专题:计算题.分析:各式去括号合并即可得到结果.解答:解:(1)原式=3b+5a﹣2a+4b=3a+7b;21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .考点:解一元一次方程.专题:计算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4;(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有 10 块,当黑砖n=3时,白砖有 14 块.(2)第n个图案中,白色地砖共 4n+2 块.考点:规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(1﹣1)=6,第2个图里有白色地砖6+4(2﹣1)=10,第3个图里有白色地砖6+4(3﹣1)=14;(2)第n个图里有白色地砖6+4(n﹣1)=4n+2.解答:解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油? 考点:整式的加减.专题:计算题.分析: (1)便民超市中午过后一共卖出的食用油=原有的食用油﹣上午卖出的+中午休息时又购进的食用油﹣剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答:解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油; (2)当x=5时,6x2﹣18x=652﹣185=150﹣90=60(桶),25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?考点:正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答:解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油822=164升,26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC( +3 , +4 ),BD( +3 ,﹣2 ),C D (+1,﹣2 );(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.考点:有理数的加减混合运算;正数和负数;坐标确定位置. 分析: (1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答:解:(1)AC(+3,+4);BD(+3,﹣2);CD(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:AB表示为:(1,4),BC记为(2,0)CD 记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为 a与1﹣a ;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点:一元一次方程的应用;列代数式;整式的加减.分析: (1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a ﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.解答:解:(1)∵长为1,宽为a的长方形纸片(第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,1﹣a=2a﹣1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;②当1﹣a2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;这篇2018年七年级上学期数学期中检测试卷的内容,希望会对各位同学带来很大的帮助。

【数学】2017-2018年江苏省泰州市海陵学校七年级上学期数学期中试卷和解析答案PDF

【数学】2017-2018年江苏省泰州市海陵学校七年级上学期数学期中试卷和解析答案PDF

2017-2018学年江苏省泰州市海陵学校七年级(上)期中数学试卷一、选择题:(本题共6小题,每小题3分,共18分)1.(3分)下列是无理数的是()A.0.666…B.C.D.2.626 266 622.(3分)下列代数式中,不是单项式的是()A.B.﹣ C.t D.3a2b3.(3分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)24.(3分)下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2x2C.7y2﹣5y2=2 D.9a2b﹣4ba2=5a2b5.(3分)下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=56.(3分)已知单项式x a﹣1y3与3xy4+b是同类项,那么a、b的值分别是()A.B.C.D.二、填空题:(本题共10小题,每小题3分,共30分)7.(3分)的相反数是.8.(3分)用“>”或“<”填空:﹣﹣.9.(3分)钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4384000m2,将这个数据用科学记数法可表示为m2.10.(3分)单项式的系数与次数的积是.11.(3分)已知a、b互为倒数,c、d互为相反数,则代数式ab﹣c﹣d的值为.12.(3分)若|a+3|+(b﹣2)2=0,则|a﹣b|=.13.(3分)若a﹣2b=3,则9﹣2a+4b的值为.14.(3分)一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是.15.(3分)如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是.16.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.三、解答题:(本大题共10小题,共102分)17.(12分)计算:(1)﹣23+18﹣15+23(2)(﹣24)×();(3)﹣14÷(﹣5)2×(﹣)﹣|0.8﹣1|18.(8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,﹣3;按照从小到大的顺序排列为.19.(8分)化简:、(1)3y2﹣1﹣2y﹣5+3y﹣y2;(2)2(2x2﹣5x)﹣5(3x+5﹣x2)20.(8分)已知|x|=3,y2=4,且xy<0,求x﹣y的值.21.(10分)3(4mn﹣m2)﹣4mn﹣2(3mn﹣m2),其中m=﹣2,n=.22.(10分)解方程:(1)3x﹣2(2x﹣5)=5(x+3)﹣x;(2)1﹣.23.(10分)“*”是规定的一种运算法则:a*b=a2﹣b.(1)求5*(﹣1)的值;(2)若(﹣4)*x=2+x,求x的值.24.(10分)一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.25.(12分)已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)(1)若A与B的和中不含x2项,求a的值;(2)在(1)的条件下化简:B﹣2A.26.(14分)世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?2017-2018学年江苏省泰州市海陵学校七年级(上)期中数学试卷参考答案与试题解析一、选择题:(本题共6小题,每小题3分,共18分)1.(3分)下列是无理数的是()A.0.666…B.C.D.2.626 266 62【分析】根据无理数的三种形式求解.【解答】解:0.666…,,2.62626662是有理数,是无理数.故选:C.2.(3分)下列代数式中,不是单项式的是()A.B.﹣ C.t D.3a2b【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【解答】解:A、是分式,所以它不是单项式;符合题意;B、﹣是数字,是单项式;不符合题意;C、t是字母,所以它是单项式;不符合题意;D、3a2b是数字与字母的积的形式,所以它是单项式;不符合题意.故选:A.3.(3分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)2【分析】认真读题,表示出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平方,于是答案可得.【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选:A.4.(3分)下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2x2C.7y2﹣5y2=2 D.9a2b﹣4ba2=5a2b【分析】合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.【解答】解:A、2x和3y不是同类项,不能合并.故本选项错误;B、5x和3x是同类项,可以合并,但结果为2x,故本选项错误;C、7y2和5y2是同类项,可以合并,但结果为2y,故本选项错误;D、9a2b和4ba2是同类项,可以合并,结果为5a2b,故本选项正确.故选:D.5.(3分)下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5【分析】根据解一元一次方程的步骤计算,并判断.【解答】解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.6.(3分)已知单项式x a﹣1y3与3xy4+b是同类项,那么a、b的值分别是()A.B.C.D.【分析】根据同类项是字母相同且相同字母的指数也相同,可得二元一次方程组,根据解方程组,可得答案.【解答】解:单项式x a﹣1y3与3xy4+b是同类项,得,解得,故选:B.二、填空题:(本题共10小题,每小题3分,共30分)7.(3分)的相反数是.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是,故答案为:.8.(3分)用“>”或“<”填空:﹣>﹣.【分析】两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:﹣>﹣:故答案为:>.9.(3分)钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4384000m2,将这个数据用科学记数法可表示为 4.384×106m2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4384000有7位,所以可以确定n=7﹣1=6.【解答】解:4 384 000=4.384×106.故答案为:4.384×106.10.(3分)单项式的系数与次数的积是.【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数确定单项式的次数和系数,进而可得答案.【解答】解:单项式的系数是,次数是3,3=,故答案为:.11.(3分)已知a、b互为倒数,c、d互为相反数,则代数式ab﹣c﹣d的值为1.【分析】根据倒数与相反数的定义得到ab=1,c+d=0,原式变形为ab﹣(c+d),然后利用整体思想进行计算.【解答】解:∵a、b互为倒数,c、d互为相反数,∴ab=1,c+d=0,∴原式=ab﹣(c+d)=1﹣0=1.故答案为1.12.(3分)若|a+3|+(b﹣2)2=0,则|a﹣b|=5.【分析】根据非负数的性质列出算式,求出a、b的值,再代入计算即可.【解答】解:由题意得+3=0,b﹣2=0,解得a=﹣3,b=2,则|a﹣b|=5,故答案为:5.13.(3分)若a﹣2b=3,则9﹣2a+4b的值为3.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.14.(3分)一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2.【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【解答】解:设这个整式为M,则M=x2﹣1﹣(﹣3+x﹣2x2),=x2﹣1+3﹣x+2x2,=(1+2)x2﹣x+(﹣1+3),=3x2﹣x+2.故答案为:3x2﹣x+2.15.(3分)如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是﹣22.【分析】把x=﹣1代入计算程序中计算得到结果,判断与﹣5大小即可确定出最后输出结果.【解答】解:把x=﹣1代入计算程序中得:(﹣1)×6﹣(﹣2)=﹣6+2=﹣4>﹣5,把x=﹣4代入计算程序中得:(﹣4)×6﹣(﹣2)=﹣24+2=﹣22<﹣5,则最后输出的结果是﹣22,故答案为:﹣2216.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【分析】观察可得:按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4,故墨水涂掉的那一个数是20+6=26,或6﹣1=5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.三、解答题:(本大题共10小题,共102分)17.(12分)计算:(1)﹣23+18﹣15+23(2)(﹣24)×();(3)﹣14÷(﹣5)2×(﹣)﹣|0.8﹣1|【分析】(1)原式结合后,相加即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣38+41=3;(2)原式=18﹣4+15=29;(3)原式=﹣×(﹣)﹣0.2=﹣=﹣.18.(8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,﹣3;按照从小到大的顺序排列为﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).【分析】先在数轴上表示各个数,再比较即可.【解答】解:如图所示:,则﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).故答案是:﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).19.(8分)化简:、(1)3y2﹣1﹣2y﹣5+3y﹣y2;(2)2(2x2﹣5x)﹣5(3x+5﹣x2)【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2y2+y﹣6(2)原式=4x2﹣10x﹣15x﹣25+5x2=9x2﹣25x﹣2520.(8分)已知|x|=3,y2=4,且xy<0,求x﹣y的值.【分析】直接利用绝对值以及有理数乘方的意义得出x,y的值进而得出答案.【解答】解:∵|x|=3,∴x=±3,∵y2=4,∴y=±2,∵xy<0,∴x=﹣3,y=2或x=3,y=﹣2.∴当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=3,y=﹣2时,x﹣y=3﹣(﹣2)=5.21.(10分)3(4mn﹣m2)﹣4mn﹣2(3mn﹣m2),其中m=﹣2,n=.【分析】原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.【解答】解:原式=12mn﹣3m2﹣4mn﹣6mn+2m2=2mn﹣m2,当m=﹣2,n=时,原式=﹣2﹣4=﹣6.22.(10分)解方程:(1)3x﹣2(2x﹣5)=5(x+3)﹣x;(2)1﹣.【分析】(1)去括号,最后移项,化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)3x﹣4x+10=5x+15﹣x3x﹣4x﹣5x+x=15﹣10﹣5x=5x=﹣1(2)6﹣2(3﹣5x)=3(3x﹣5)6﹣6+10x=9x﹣1510x﹣9x=﹣15x=﹣15.23.(10分)“*”是规定的一种运算法则:a*b=a2﹣b.(1)求5*(﹣1)的值;(2)若(﹣4)*x=2+x,求x的值.【分析】根据规定的运算法则:a*b=a2﹣b.(1)a=5,b=﹣1,代入即可解题;(2)根据a=﹣4,b=x和(﹣4)*x=2+x,即可求得关于x的一元一次方程,解方程即可解题.【解答】解:(1)5*(﹣1)=52﹣(﹣1)=25+1=26,(4分)(2)a=﹣4,b=x,(﹣4)*x=2+x,则(﹣4)2﹣x=2+x,整理得:16﹣x=2+x,x=14,解得:x=6.(4分)24.(10分)一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.25.(12分)已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)(1)若A与B的和中不含x2项,求a的值;(2)在(1)的条件下化简:B﹣2A.【分析】(1)把A与B代入A+B中,去括号合并后根据结果不含二次项确定出a 的值即可;(2)把A与B代入B﹣2A中,去括号合并即可得到结果.【解答】解:(1)∵A=ax2+x﹣1,B=3x2﹣2x+1,∴A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x,由结果不含x2项,得到a+3=0,解得:a=﹣3;(2)由(1)得:A=﹣3x2+x﹣1,B=3x2﹣2x+1,则B﹣2A=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.26.(14分)世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次与球门线的距离,根据有理数的大小比较,可得答案;(3)根据有理数的大小比较,可得答案.【解答】解:(1)+10﹣2+5﹣6+12﹣9+4﹣14=0,答:守门员最后正好回到球门线上;(2)第一次10,第二次10﹣2=8,第三次8+5=13,第四次13﹣6=7,第五次7+12=19,第六次19﹣9=10,第七次10+4=14,第八次14﹣14=0,19>14>13>10>8>7,答:守门员离开球门线的最远距离达19米;(3)第一次10=10,第二次10﹣2=8<10,第三次8+5=13>10,第四次13﹣6=7<10,第五次7+12=19>10,第六次19﹣9=10,第七次10+4=14>10,第八次14﹣14=0,答:对方球员有三次挑射破门的机会.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

人教版七年级数学上海陵中学2018~2019学年度第一学期期中考试模拟测试

人教版七年级数学上海陵中学2018~2019学年度第一学期期中考试模拟测试

海陵中学2018~2019学年度第一学期期中考试模拟测试七 年 级 数 学 试 卷一.选择题(本题共10小题,每小题2分,共20分)1.12-的倒数是 ( )A .2B .-2C .21 D .21- 2.下列计算正确的是 ( )A .2(3)9-=- B .223333-+=- C .2(2)10-=- D .31128⎛⎫-=- ⎪⎝⎭3.下列各数中,互为相反数的是 ( ) A .-2与2-- B .2(4)-与24C .(25)--与25- D .a -与||a -4.下面的说法正确的是 ( )A .–2不是单项式B .a -表示负数C .335ab 的系数是 D .1ax x++不是多项式 5.1049.9保留两个有效数字的近似值是 ( )A .31.010⨯B .31.110⨯ C .10 D .11 6.下列说法不正确的是 ( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④两个数比较,绝对值大的反而小. A .①② B .③④ C .①②③ D .①②③④ 7.若3=a ,5=b ,则b a +的值为 ( )A .8B .2C .2或8D .±2或±8 8.表示x 、y 两数的点在数轴上的位置如图所示,则1x y x ---等于 ( ) A .1y - B .1y -C .1y +D .21x y --9.下列等式变形正确的是 ( )A .若a b =,则a b x x = B .若a bx x =,则a b = C .若47a b =,则74a b = D .若a b =则a c c b -=-10.如图,将一个长为a ,宽为b 的长方形沿虚线剪开,拼接成为一个缺角(也是一个小正方形)的大正方形,则缺少的这个小正方形的边长为 ( )A .2a b- B . a b - C .2a D .2b 二.填空题(本题共10小题,每空2分,共20分)11.昨天的最高温度是27°C ,今天最高气温比昨天下降t °C ,今天的最高气温是 ℃. 12.写出两个大于-103又小于-100的数 . 13.a 、b 两数的平方和,用代数式表示为 . 14.若1535a x y +与544y x 是同类项,则a =________. 15.关于x 方程5230kx k -+=是一元一次方程,则方程的解是__________.16.红星队在4场足球比赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负,红星队在4场比赛中总净胜球数是_________.17. 两个多项式的和是2545x x -+,其中一个多项式是224x x -+-,则另一个多项式是______________________.18.如图,根据图中的条件,钢管的体积可表示为______________. (结果保留π)19.如图所示的计算机程序,若开始输入的n 值为2, 则最后输出的结果是________.20. 观察下列顺序排列的等式:9×0+1=1, 9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41…… 猜想:第n 个等式(n 为正整数) 用n 表示,可以表示为 . 三.解答题(本题共2小题,共22分) 22.(本小题10分)(1))3()5(232---⨯-; (2)103(1)2(2)4-⨯+-÷.(3) 131312424864⎛⎫-+-⨯ ⎪⎝⎭; (4) ()()241110.5233⎡⎤---⨯⨯--⎣⎦.第19题图23.(本小题12分)(1)解方程:43(5)6x x --=; (2)解方程:91136x x +-=.(3) 12136x x x -+-=-; (4) 12110.30.7x x +--=三.解答题(本题共2小题,每小题4分,共8分) 24.(本小题3分) 化简:)3(2)2(322b ab ab a +--. 25.(本小题4分)先化简再求值:2221(2)2(4)2a a a a a +-++,其中12a =.四.解答题(本题共2小题,共11分) 26.(本小题5分)若83A m =-,34B m =+,且1032=-B A ,求m 的值. 27.(本小题5分)(2)某人买15千克的水果他应付多少钱?28.(本小题7分)观察与思考(1)比较下列六组中各组的大小关系,用“<”“>”或“=”填空:(2)(3)____23++++++,(2)(3)____23-+--+-,(2)(3)____23++-++-,(2)(3)____23-++-++,(2)0____20++++,(2)0____20-+-+;(2)根据(1)中的大小比较,请你总结出任意两个有理数a、b和的绝对值与其绝对值的和的大小关系.29.(本小题6分)某个体水果店经营香蕉,每千克进价2.60元,售价为3.40元,10月1日至10月6日经营(1)若9月30日晚库存为零,则10月1日晚库存为__________千克.(2)就10月3日这一天的经营情况看,当天是赚钱还是赔钱,规定赚钱为正,则当天赚__________元.(3)10月1日到10月6日这6天的经营情况该个体户共赚多少钱?(列式计算)30.(本小题8分)把一个面积为1的正方形等分成两个面积为12的长方形,再把其中一个面积为12的长方形等分成两个面积为14的正方形,再把其中一个面积为14的正方形等分成两个面积为18的长方形,如此继续等分下去,请自己动手操作探究,然后观察这个图形,试利用图形所揭示的规律(1)计算:234811111...22222+++++;(2)猜想:23411111...22222n+++++的结果.。

江苏省泰州市医药高新区2017_2018学年七年级数学上学期第二次月考(12月)试题(含答案)苏科版

江苏省泰州市医药高新区2017_2018学年七年级数学上学期第二次月考(12月)试题(含答案)苏科版

江苏省泰州市医药高新区2017-2018学年七年级数学上学期第二次月考(12月)试题一、选择题:(本大题共6小题,每小题3分,共18分)1.下列各对数中,互为相反数的是( ) A. -1.01和1.1 B.23和32C. -0.125和81D. -0.125和8 2.去括号后等于a-b+c 的是( ) A. a-(b+c)B. a+(b-c)C. a-(b-c ) D. a+(b+c ) 3.下列方程变形正确的是 ( ) A .方程3x ﹣2=2x ﹣1移项,得3x ﹣2x =﹣1﹣2 B .方程3﹣x =2﹣5(x ﹣1)去括号,得3﹣x =2﹣5x ﹣1 C .方程15.02.01=--xx 可化为3x =6 D .方程23x 32-=系数化为1,得x =﹣1 4.如图,∠AOC 和∠BOD 都是直角,如果∠AOB = 150º,那么∠COD =( ) A .30º B .40º C .50° D .60° 5.点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( ) A. AB=2AC B. AC+BC=AB C.AB BC 21=D.AC=BC 6.如图正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )二、填空题:(本大题共10小题,每小题3分,共30分)A .B .C .D .E CBAOD 7.-2的倒数是 ,单项式的次数是 .8.截止2016年5月初,受H7N9禽流感的影响,家禽养殖业遭受了巨大的冲击,最新数据显示,损失已超过4.1亿元,用科学记数法表示为 元.9.下列方程①x=4;②x﹣y=0;③2(y 2﹣y )=2y 2+4;④﹣2=0中,是一元一次方程的有 .(填序号)10.代数式12+a 与a 45-互为相反数,则=a .11.关于x 的方程||2(26)10m m x --+=是一元一次方程,则m = . 12.若m n 1-=-,则()2m n 2m 2n --+= .13.一块正方形铁皮,4个角截去4个一样的小正方形,折成底面边长是cm 40的无盖长方体盒子,其容积是24000cm 2.则原正方形铁皮的边长是 cm.14.有一个圆形钟面,在9点30分时,时针与分针所成角的大小为_________.15.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。

2018-2018初一数学上册期中试卷(带答案)

2018-2018初一数学上册期中试卷(带答案)

2018-2018初一数学上册期中试卷(带答案)第一篇:2018-2018初一数学上册期中试卷(带答案)2018-2018初一数学上册期中试卷(带答案)距离期中考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初一学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇2018-2018初一数学上册期中试卷吧!一、精心选一选(本大题共10小题,每题3分,共30分)1.方程5(x-1)=5的解是()A.x=1B.x=2C.x=3D.x=42.下列关于单项式一的说法中,正确的是()A.系数是-,次数是4B.系数是-,次数是3C.系数是-5,次数是4D.系数是-5,次数是33.甲、乙、丙三地的海拔高度分别为20m、-15m和-10m,那么最高的地方比最低的地方高()A.5m B.10m C.25m D.35m4.根据国家安排,今年江苏省保障性安居工程计划建设106800套,106800用科学记数学法可表示为()A.1068102B.10.68104C.1.068105D.0.10681065.两个数的商是正数,下面判断中正确的是()A.和是正数B.差是正数C.积是正数D.以上都不对6.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A与点D表示的数分别是()A.2,2B.4 , 1C.5 , 1D.6 , 27.若A、B都是五次多项式,则A-B一定是()A.四次多项式B.五次多项式C.十次多项式D.不高于五次的多项式 8.下列计算中正确的是()A.6a-5a=1B.5x-6x=11xC.m2-m=mD.x3+6x3=7x3.已知(x-1)3=ax3+bx2+cx+d.,则a+b+c+d的值为()A.1B.0C.1D.2 0.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右340m~380m之间树与灯的排列顺序是()二、细心填一填(本大题共9小题13空,每空2分,共26分)11.-2的绝对值是,相反数是12.当x= 时,代数式的值是0.已知多项式2x2-4x的值为10,则多项式x22x+6的值为.13.若4x4yn+ 1与-5xmy2的和仍为单项式,则m=,n=.14.方程x+a=2的解与方程2x+3=-5的解相同,则a=15.已知|a-2|+(b+1)2=0,则(a+b)2018=16.如图所示的运算程序中,若开始输入的x的值为10,我们发现第一次输出的结果为5,第二次输出的结果为8,则第10次输出的结果为17.请写出一个方程的解是2的一元一次方程:.18.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.19.已知a= |x5|+|x2|+ |x+3|,求当x= 时,a有最小值为三、认真答一答(本大题共7小题,共44分)20.计算:(本题共2小题,每题3分,共6分)(1)-23+(-37)-(-12)+45;(2)(-6)2.21.解方程:(本题共2小题,每题3分,共6分)(1)2(2x+1)=1-5(x-2);(2)-=122.(本题5分)已知,(1)求的值;(结果用x、y表示)(2)当与互为相反数时,求(1)中代数式的值.23.(本题5分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5-2-4+13-10+16-9(1)产量最多的一天比产量最少的一天多生产(2)根据记录可知前三天共生产(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?24.(本题7分)世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米.(1)若设展厅的正方形边长为x米,用含x的代数式表示核心筒的正方形边长为米.(2)若设核心筒的正方形边长为y 米,求该模型的平面图外框大正方形的周长及每个休息厅的图形周长.(用含y的代数式表示)(3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。

初中数学江苏省泰州市医药高新区七年级数学上学期期中考模拟试题考试卷及答案

初中数学江苏省泰州市医药高新区七年级数学上学期期中考模拟试题考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足+(c-7)2=0.(1) a= ,b= ,c= .(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.试题2:在左边的日历中,用一个正方形任意圈出二行二列四个数,评卷人得分如若在第二行第二列的那个数表示为,其余各数分别为,,.(1)分别用含的代数式表示,,这三个数.(2)求这四个数的和.(用含的代数式表示,要求合并同类项化简)(3)这四个数的和会等于51吗?如果会,请算出此时的值,如果不会,说明理由.试题3:有三种运算程序如图所示,按要求完成下列各题:(1)如图①,当输入数x=﹣1时,输出数y=__________;(2)如图②,第一个带?号的运算框内,应填__________;第二个带?号运算框内,应填__________;第三个带?号运算框内,应填__________.(3)如图③,当输入数为3时,则输出结果为__________.试题4:已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒0.5cm,请问蜗牛一共爬行了多少秒?试题5:已知:A=2a2+3ab-2a-1,B=-a2+ab-1(1)求4A-(3A-2B)的值;(2)若A+2B的值与a的取值无关,求b的值.试题6:有理数x,y在数轴上对应点如图所示:①试把x,y,0,-x,这五个数从小到大用“<”号连接,②化简:-+.试题7:“*”是规定的一种运算法则:.(1)求的值;(2)若,求的值.试题8:;试题9:;试题10:;试题11:试题12:先化简,再求值:,其中m=﹣1,n=2.试题13:﹣3a2+2ab﹣4ab+2a2试题14:(1+-2.75)×(-24)试题15:-22×7-(-3)×6+5试题16:5÷(-)×试题17:-10-(-16)+(-24);试题18:有规律地排列着这样一些单项式:,,,,,…,则第n个单项式(n≥l整数)可表示为 .试题19:已知当时,代数式的值为-9,那么当时,代数式的值为 . 试题20:多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= .试题21:已知单项式与是同类项,那么的值分别是 .试题22:若方程是一个一元一次方程,则等于 .试题23:a+3与互为倒数,那么a= .试题24:数轴上与表示-2的点距离3个长度单位的点所表示的数是 .试题25:若为整数,则代数式表示的实际意义 .试题26:请写出一个大于1小于4的无理数 .试题27:15000m用科学记数法表示为 m.试题28:式子|x﹣1|-3取最小值时,x等于()A.1 B.2 C.3 D.4 试题29:与a﹣(a﹣b+c)相等的式子是()A.a﹣b+c B.a+b﹣c C.b﹣c D.c﹣b试题30:单项式的次数是()A.6 B.7 C.5 D.2试题31:如果关于x的方程2x+k-4=0的解是x=-3.那么k的值是( )A.10 B.-10 C.2 D.-2试题32:下列说法中,正确的是 ( )A.正数和负数统称为有理数; B.互为相反数的两个数之和为零;C.如果两个数的绝对值相等,那么这两个数一定相等;D.0是最小的有理数;试题33:5的相反数是 ( )A.5 B. C.-5D.试题1答案:(1) a= -2,b=1,c=7 (3分)(2) 4 (2分)(3) AB=3t + 3,AC=5t + 9,BC=2t + 6 (6分)(4) 不变,始终为12试题2答案:(1)在第二行第二列的数为,则其余3个数分别是,,;(4分)(2)=;(4分)(3)假设这四个数的和等于51,由(2)知,解得.∵不是正整数,不合题意.故这四个数的和不会等于51 (4分)(1)﹣9;(2分)(2)( )2;×2;﹣5;(3分)(3)231(3分)试题4答案:(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(4分)(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷0.5=122秒.∴蜗牛一共爬行了122秒.(4分)试题5答案:(1)5ab-2a-3 (4分) (2)b的值为(4分)试题6答案:(1)略(3分) (2)①-x<y<0<<x(2分) ②y (3分)试题7答案:(1)26;(4分) (2) (4分)试题8答案:x=5试题9答案:试题10答案:试题11答案:x=2原式= =﹣m2-mn+2,原式=3.试题13答案:﹣a2﹣2ab试题14答案:31试题15答案:-5试题16答案:-试题17答案:-18试题18答案:试题19答案:9试题20答案:2试题21答案:3试题22答案:-3试题23答案:1试题24答案:-5 , 1试题25答案:连续三个整数的乘积试题26答案:(答案不唯一)试题27答案:1.5×104试题28答案:A试题29答案:C试题30答案:B试题31答案:A试题32答案:B试题33答案:C。

江苏省泰州市2017-2018学年七年级第一学期期中数学试卷

江苏省泰州市2017-2018学年七年级第一学期期中数学试卷

江苏省泰州市2017-2018学年七年级数学上学期期中试题 (考试时间:120分钟,满分150分) 成绩一、选择题:(本题共6小题,每小题3分,共18分)1.下列是无理数的是 ( )A .0.666…B .227 C .2π D .2.626 266 62 2. 下列代数式中,不是单项式的是 ( )A .1x B .-12 C .t D .3a 2b 3.用代数式表示“m 的3倍与n 的差的平方”,正确的是 ( )A .()23m n -;B .()23m n - ;C .23m n - ;D .()23m n - 4.下列各式的计算结果正确的是 ( )A. 235x y xy +=;B. 2532x x x -=;C. 22752y y -=;D. 222945a b ba a b -=; 5.下列选项中正确的是 ( )A .由7x=4x ﹣3移项得7x ﹣4x=3B .由=1+去分母得2(2x ﹣1)=1+3(x ﹣3)C .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x ﹣9=1D .由2(x+1)=x+7去括号、移项、合并同类项得x=56.已知单项式1312a x y -与43b xy +是同类项,那么a 、b 的值分别是 ( ) A .21a b =⎧⎨=⎩; B .21a b =⎧⎨=-⎩ ; C .21a b =-⎧⎨=-⎩ ; D .21a b =-⎧⎨=⎩; 二、填空题:(本题共10小题,每小题3分,共30分)7. -12的相反数是______ ; 8.用“>”或“<”填空:-34 -45; 9. 钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2; 10. 单项式的系数与次数的积是 ;11. 已知a ,b 互为倒数,c ,d 互为相反数,则代数式ab -c -d 的值为 ;12.若|a+3|+(b ﹣2)2=0,则 ;13.已知23a b -=,则924a b -+=__________;14.一个多项式加上﹣3+x ﹣2x 2得到x 2﹣1,这个多项式是 ;15.如下图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是 ;16.如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是 .三、解答题:(本大题共10小题,共102分)17. 计算:(每小题4分,共12分)(1)-23+18-15+23 (2)315(24)()468-⨯-+-; (3)﹣14÷(﹣5)2×(﹣)﹣|0.8﹣1|18.(本题满分8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.()213,2,0,5.1,1,3------;按照从小到大的顺序排列为 .19. (本题8分)化简:(1) 3y 2-1-2y -5+3y -y 2; (2) 2(2x 2-5x )-5(3x + 5-x 2)20.(本题8分)已知:a =3,24b =,0ab <,求a b -的值.21.(本题10分)先化简,再求值:3(4mn -m 2)-4mn -2(3mn -m 2),其中m =-2, n =12.。

2018苏版七年级(上册)数学期中试题和答案解析

2018苏版七年级(上册)数学期中试题和答案解析

2015-2016学年第一学期初一数学期中模拟试卷(分值:100分;考试用时:120分钟.)一、选择题:(本题共10小题,每小题2分,共20分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )BCDA .正数和负数统称为有理数;B .互为相反数的两个数之和为零;C .如果两个数的绝对值相等,那么这两个数一定相等;D .0是最小的有理数; 3.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .()a b c a b c -+=-+;B .()a b c a b c +-=--;C .()a b c a b c --=-+ ;D .()()a b c d a c b d -+-=+--;5.用代数式表示“m 的3倍与n 的差的平方”,正确的是………………………… ………………( ) A .()23m n -; B .()23m n - ; C .23m n - ; D .()23m n -6.下列说法正确的是……………………………………………………………………………… ( ) A .a -一定是负数; B .一个数的绝对值一定是正数; C .一个数的平方等于36,则这个数是6; D .平方等于本身的数是0和1;7.下列各式的计算结果正确的是……………………………………………………………………( )A. 235x y xy +=;B. 2532x x x -=;C. 22752y y -=;D. 222945a b ba a b -=;8.已知23a b -=,则924a b -+的值是……………………………………………………( ) A .0B .3C .6D .99.已知单项式1312a x y -与43b xy +是同类项,那么a 、b 的值分别是………………………… ( ) A .21a b =⎧⎨=⎩; B .21a b =⎧⎨=-⎩ ; C .21a b =-⎧⎨=-⎩ ; D .21a b =-⎧⎨=⎩;10.下列比较大小正确的是………………………………………………………………………( )班级 姓名 考试号 密封线内不要答题 ……………………………………………装………………………………订………………………………………线…………………………………………A .5465-<-;B .()()2121--<+-;C .1210823-->;D .227733⎛⎫--=-- ⎪⎝⎭;二、填空题:(本题共10小题,每小题2分,共20分)11. -212的相反数是_______,倒数是________. 12. 杨絮纤维的直径约为0.000 010 5m ,该直径用科学记数法表示为 m13. 若方程()2370a a x---=是一个一元一次方程,则a 等于 .14.若a 和b 互为相反数,c 和d 互为倒数,则20112010a b cd+-的值是 . 15.若3x y +=,4xy =-.则()32(43)x xy y +--=_________. 16.有理数a 、b 、c 在数轴上的位置如图所示, 则2a b a c ---=____ ___.17.如下图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是 .18.已知当1x =时,代数式35ax bx ++的值为-9,那么当1x =-时,代数式35ax bx ++的值为_______.19. 一副羽毛球拍按进价提高40%后标价,然后再打八折卖出,结果仍能获利15元,为求这副羽毛球拍的进价,设这幅羽毛球拍的进价为x 元,则依题意列出的方程为 .20.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2013的点与圆周上表示数字 的点重合. 三、解答题:(本大题共12小题,共60分)21. (本题满分4分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.()213,2,0,5.1,1,3------;按照从小到大的顺序排列为 .22.计算:(本题共4小题,每小题4分,共16分) (1))6()1()3()2(--+--+-;(2)315(24)()468-⨯-+-;(3)()252134211255⎛⎫⎛⎫-⨯--÷--- ⎪ ⎪⎝⎭⎝⎭;(4)()()()233131682234⎡⎤⨯-+--⨯-⨯÷-⎢⎥⎣⎦23.(本题满分4分)已知:a =3,24b =,0ab <,求a b -的值.24.化简或求值:(本题共2小题,每小题4分,共8分) (1))2(3)3(22222b a b a a ----;(2)已知:02)3(2=++-y x ,求代数式)2(2)22(222222y xy x y xy x x +--+--+的值.25.解方程:(本题共2小题,每小题4分,共8分) (1)()()322553x x x x --=+-;(2) 3535132x x ---=;26.(本题满分6分)“*”是规定的一种运算法则:2a b a b *=-. (1)求()51*-的值; (2)若()4423x x -*=+,求x 的值. 27. (本题满分6分)小黄同学做一道题“已知两个多项式A 、B ,计算2A B -”,小黄误将2A B -看作2A B +,求得结果是C .若2233B x x =+-,C = 2927x x -+,请你帮助小黄求出2A B -的正确答案.28. (本题6分)已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1⑴求4A -(3A -2B)的值; ⑵若A +2B 的值与a 的取值无关,求b 的值.29.(本题4分)观察下列算式: ①2132341⨯-=-=-; ②2243891⨯-=-=-; ③235415161⨯-=-=-;④_____________________;…………(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母n 的式子表示出来. .30.(本题满分8分)如图①所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于 ; (2)请用两种不同的方法列代数式表示图②中阴影部分的面积. 方法① .方法② ;(3)观察图②,你能写出()2m n +,()2m n -,mn 这三个代数式之间的等量关系吗? 答: .(4)根据(3)题中的等量关系,解决如下问题:若6a b +=,4ab =,则求()2a b -的值.31.(本题6分)A 、B 两地分别有水泥20吨和30吨,C 、D 两地分别需要水泥15吨和35吨;已知从A 、B 到C 、D 的运价如下表:⑴若从A 地运到C 地的水泥为x 吨,则用含x 的式子表示从A 地运到D 地的水泥为_________吨,从A 地将水泥运到D 地的运输费用为_________元.⑵用含x 的代数式表示从A 、B 两地运到C 、D 两地的总运输费,并化简该式子.⑶当总费用为545元时水泥该如何运输调配?32.(8分)在左边的日历中,用一个正方形任意圈出二行二列四个数,如若在第二行第二列的那个数表示为a,其余各数分别为b,c,d.如(1)分别用含a的代数式表示b,c,d这三个数.(2)求这四个数的和(用含a的代数式表示,要求合并同类项化简)(3)这四个数的和会等于51吗?如果会,请算出此时a的值,如果不会,说明理由.(要求列方程解答)参考答案11. 122,25-;12. 1.05×10-5;13.-3;14.-2011;15.27;16. a b c +-; 17.-9;18.19;19. ()140%0.815x x +⨯-=;20.0;三、解答题:21.画数轴略(2分);用“<”号连接:()132 1.50132-<--<-<<--<……2分; 22.计算:(1)原式=-2-3-1+6……(1分)=0……4分; (2)原式=315242424468⎛⎫-⨯--⨯+⨯ ⎪⎝⎭……1分 18415=-+……2分;29=……4分;(3)原式=()1645412254⎛⎫-⨯-⨯--- ⎪⎝⎭……1分; 16215=-++……3分; 125=……4分;(4)原式=()()131********⎡⎤⨯-+-⨯-⨯÷-⎢⎥⎣⎦……1分7=-……4分;23.解得3a =±,2b =±……1分;求得32a b =⎧⎨=-⎩或32a b =-⎧⎨=⎩……2分;解得5a b -=±……4分;24.(1)解:原式=22222336a a b a b -+-+……2分; 2257a b =-+ ……4分.(2)解得3x =,2y =-……1分;将代数式化简得222x y --……2分; 当3x =,2y =-时,原式=-17……4分.25.解方程:(1)解:3410515x x x x -+=+-……2分;55x -=……3分;1x =-…4分. (2)()()6235335x x --=-……1分;解得15x =-……3分.26.(1)26;(3分);(2)41623x x -=+(5分);6x =;(6分). 27.解:根据题意得:2A B C +=,即()222233927A x x x x ++-=-+, ∴25813A x x =-+……………………4分;则()()22222581323381929A B x x x x x x -=-+-+-=-+…………………………6分; 28.解:⑴4A -(3A -2B) ⑵若A +2B 的值与a 的取值无关, =A +2B …1/则5ab -2a +1与a 的取值无关. …4/∵A =2a 2+3ab -2a -1,B =-a 2+ab -1 即:(5b -2)a +1与a 的取值无关 ∴原式=A +2B ∴5b -2=0 …5/=2a 2+3ab -2a -1+2(-a 2+ab -1) ∴b =25=5ab -2a +1 ...3/ 答:b 的值为 25 . (6)/29. (1)24651⨯-=-……1分; (2)()22(1)1n n n +-+=-……4分;30.(1)m n -……2分;(2)()24m n mn +-……1分;()2m n -……1分; (3)()()224m n m n mn -=+-…2分; (4)()()22420a b a b ab -=+-=……2分;31.解:⑴ )20(x - , )20(12x - …2/⑵ )15(9)15(10)20(1215x x x x ++-+-+= 5252+x …4/⑶5455252=+x10=x …5/答:A 地运到C 地10吨,A 地运到D 地10吨,B 地运到C 地 5吨, B 地运到D 地25吨. (6)/32.(1)在第二行第二列的数为a ,则其余3个数分别是7b a =-,8c a =-,1d a =-;(3分) (2)a b c d +++=416a -;(2分) (3)假设这四个数的和等于51,由(2)知41651a -=,解得3164a =.∵3164不是正整数,不合题意.故这四个数的和不会等于51.(3分)。

江苏省泰州市医药高新2017_2018学年七年级数学上学期期中试题新人教版

江苏省泰州市医药高新2017_2018学年七年级数学上学期期中试题新人教版

江苏省泰州市医药高新区2017-2018学年七年级数学上学期期中试题(考试时间:120分钟 满分:150分)第一部分 选择题(共18分)一、选择题 (每小题3分,共18分) 1.5的相反数是 ( ▲ )A .5 B. 5 C .-5 D .152.下列说法中,正确的是 ( ▲ )A .正数和负数统称为有理数;B .互为相反数的两个数之和为零;C .如果两个数的绝对值相等,那么这两个数一定相等;D .0是最小的有理数;3.如果关于x 的方程2x +k -4=0的解是x =-3.那么k 的值是( ▲ )A .10B .-10C .2D .-2 4.单项式253x y π-的次数是( ▲ )A .6B .7C .5D .25.与a ﹣(a ﹣b +c )相等的式子是(▲ )A .a ﹣b +cB .a +b ﹣cC .b ﹣cD .c ﹣b6.式子|x ﹣1|-3取最小值时,x 等于( ▲ )A .1B .2C .3D .4第二部分 非选择题(132分)二、填空题(每空3分,共30分)7.15000m 用科学记数法表示为 ▲ m.8.请写出一个大于1小于4的无理数 ▲ .9.若n 为整数,则代数式(1)(2)n n n ++表示的实际意义 ▲ .10.数轴上与表示-2的点距离3个长度单位的点所表示的数是 ▲ .11.a +3与41互为倒数,那么a =▲ . 12.若方程()2370a a x---=是一个一元一次方程,则a 等于 ▲ . 13.已知单项式1312a x y --与23b xy -是同类项,那么a b -的值分别是 ▲ .14.多项式x 2﹣3kxy ﹣3y 2+6xy ﹣8不含xy 项,则k = ▲ .15.已知当1x =时,代数式35ax bx ++的值为-9,那么当1x =-时,代数式35ax bx ++的值为 ▲ .16.有规律地排列着这样一些单项式:2xy -,24x y ,36x y -,48x y ,510x y -,612x y …,则第n 个单项式(n ≥l 整数)可表示为 ▲ .三、解答题(共计102分)17.(本题12分)计算:(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)18.化简或求值:(本题共2小题,每小题4分,共8分)(1)﹣3a 2+2ab ﹣4ab +2a 2(2) 先化简,再求值:)23141(324322-+---mn m mn m ,其中m =﹣1,n =2.19. 解方程:(本题共4小题,每小题4分,共16分)(1) 4364x x -=-(2)()()322553x x x x --=+-; (3) 3535132x x ---=; (4) 2130.20.5x x -+-=;20.(8分)“*”是规定的一种运算法则:2a b a b *=-.(1)求()51*-的值; (2)若()4423x x -*=+,求x 的值.21.(8分)(1) 在数轴上分别画出表示下列3个数的点:-(-4),- 3.5-,+(-12),(2) 有理数x ,y 在数轴上对应点如图所示:①试把x ,y ,0,-x ,y 这五个数从小到大用“<”号连接,②化简:x y +-y x -+y .22.(8分)已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1(1)求4A -(3A -2B)的值; (2)若A +2B 的值与a 的取值无关,求b 的值.23.(8分)已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A 点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒0.5cm ,请问蜗牛一共爬行了多少秒?24.(8分)有三种运算程序如图所示,按要求完成下列各题:(1)如图①,当输入数x=﹣1时,输出数y=__________;(2)如图②,第一个带?号的运算框内,应填__________;第二个带?号运算框内,应填__________;第三个带?号运算框内,应填__________.(3)如图③,当输入数为3时,则输出结果为__________.25.(12分)在左边的日历中,用一个正方形任意圈出二行二列四个数,如若在第二行第二列的那个数表示为a,其余各数分别为b,c,d.(1)分别用含a的代数式表示b,c,d这三个数.(2)求这四个数的和.(用含a的代数式表示,要求合并同类项化简)(3)这四个数的和会等于51吗?如果会,请算出此时a的值,如果不会,说明理由.26.(14分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a= ,b= ,c= .(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示) (4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.数学参考答案一、选择题:CBABCA二、填空题: 7. 1.5×1048. π (答案不唯一) 9.连续三个整数的乘积 10. -5 , 1 11. 112. -3 13. 3 14. 2 15. 19 16. 2()n n x y- 三、解答题:17.(1)-18 (4分) (2)-1259 (4分) (3) -5 (4分) (4) 31 (4分)18. (1) ﹣a 2﹣2ab (4分) (2) 原式= =﹣m 2-mn+2,原式=3.(4分)19. (1)x=2 (4分) (2)1x =- (4分) (3)15x =- (4分) (4)x=5 (4分)20.(1)26;(4分) (2)6x = (4分)21. (1)略(3分) (2)①-x <y <0<y <x (2分) ② y (3分)22. (1)5ab -2a -3 (4分) (2)b 的值为 25(4分) 23. (1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(4分)(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷0.5=122秒.∴蜗牛一共爬行了122秒.(4分)24.(1)﹣9;(2分)(2)( )2;×2;﹣5;(3分)(3)231(3分)25.(1)在第二行第二列的数为a ,则其余3个数分别是7b a =-,8c a =-,1d a =-;(4分)(2) a b c d +++=416a -;(4分)(3) 假设这四个数的和等于51,由(2)知41651a -=,解得3164a =.∵3164不是正整数,不合题意.故这四个数的和不会等于51 (4分)26.(14分) (1) a = -2,b =1,c =7 (3分)(2) 4 (2分)(3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (6分)(4) 不变,始终为12 (3分).。

江苏省泰州市七年级(上)期中数学试卷

江苏省泰州市七年级(上)期中数学试卷

七年级(上)期中数学试卷一、选择题(本大题共6小题,共12.0分)1.-3的倒数是()A. 3B. −3C. 13D. −132.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A. 1个B. 2个C. 3个D. 4个3.已知方程x2k-1+k=0是关于x的一元一次方程,则方程的解等于()A. −1B. 1C. 12D. −124.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A. 4b+2cB. 0C. 2cD. 2a+2c5.a,b互为相反数,下列各数中,互为相反数的一组为()A. a2与b2B. a3与b5C. a2n与b2n(n为正整数)D. a2n+1与b2n+1(n为正整数)6.如果|x+y-3|=2x+2y,那么(x+y)3的值为()A. 1B. −27C. 1或−27D. 1或27二、填空题(本大题共10小题,共22.0分)7.人的大脑每天能记录大约86000000条信息,数据86000000用科学记数法表示为______.8.一组代数式:-a22,a35,-a410,a517…,观察规律,则第10个代数式是______.9.若某件商品的原价为a元,提价10%后,欲恢复原价,应降价______.10.如图是两个正方形组成的图形(不重叠无缝隙),用含字母a的整式表示出阴影部分的面积为______11.一个三位数百位数字是3,十位数字和个位数字组成的两位数字是b,用代数式表示这个三位数是______.12.多项式12x|m|−(m+2)x+7是关于x的二次三项式,则m=______.13.当x=______时,代数式x−13的值比x+12大-3.14.代数式axy2-12x与14x−bay2的和是单项式,则a、b的关系是______.15.如果a、b、c为非零的有理数,当x=a|a|+b|b|+c|c|-abc|abc|时,x3-2x+3=______.16.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x-3,点B表示的数为2x+1,点C表示的数为-7-x,若将△ABC向右滚动,则x的值等于______,数字2013对应的点将与△ABC的顶点______重合.三、计算题(本大题共6小题,共44.0分)17.计算题(1)(-3)+(-4)-(-19)(2)(23−112−415)×(-60)(3)-3.5÷78×(-87)×|-364|(4)-22-(1-0.5)×13×[3-(-3)2]18.化简或求值:(1)5x2-[2x-3(13x+2)+4x2](2)(2a2b+2ab2)-[2(a2b-1)+3ab2+2],其中a=2,b=-2.19.已知代数式A=2x2+3xy+2y-1,B=x2-xy(1)若(x+1)2+|y-2|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.已知x=3是方程3[(x3+1)+m(x−1)4]=2的解,n满足关系式|2n+m|=1,求m+n的值.21.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.22.已知有理数x,y,z满足①5(x-y+3)2+2|m-2|=0;②n3a2-y b5+z是一个三次单项式且系数为-1:(1)求m,n的值;(2)求代数式(x-y)m+1+(y-z)1-n+(z-x)5的值.四、解答题(本大题共3小题,共22.0分)23.解下列方程:(1)7(x-2)=5(3x-7);(2)x+13-2=2−3x5.24.已知y1=x+3,y2=2-x(1)当x取何值时,y1与y2的值相等?(2)当x取何值时,y1的值比y2的值的2倍大5?25.我们知道一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离原点(表示数0)的距离,x的绝对值表示为|x|,也可以写成|x-0|,比如|2|=|2-0|=2;在数轴上表示两个数x,y的点之间的距离可以表示为|x-y|,比如,表示3的点与-1的点之间的距离表示为|3-(-1)|=|3+1|=4;|x+2|+|x-1|可以表示点x与点1之间的距离跟点x与-2之间的距离的和,根据图示易知:当点x的位置在点A和点B之间(包含点A和点B)时,点x与点A的距离跟点x与点B的距离之和最小,且最小值为3,即|x+2|+|x-1|的最小值是3,且此时x 的值为-2≤x≤1请根据以上阅读,解答下列问题:(1)|x+2|+|x-2|的最小值是______;|x+1|+|x-2|=7,此时x的值为______;(2)|x+2|+|x|+|x-1|的最小值是______,此时x的值为______;(3)当|x+1|+|x|+|x-2|+|x-a|的最小值是4.5时,求出a的值及x的值.答案和解析1.【答案】D【解析】解:∵(-3)×(-)=1,∴-3的倒数是-.故选:D.直接根据倒数的定义进行解答即可.本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.【答案】B【解析】解:①a=-2时,a+1=-1是负数;②a=-1时,|a+1|=0不是正数;不论a取何值,都有|a|+1≥1、a2+1≥1;所以一定是正数的有③|a|+1,④a2+1;故选B.通过给a一数值,举反例,排除法求解.本题考查知识点为:一个数的绝对值和一个数的平方一定是非负数,所以加上一个正数后则一定是正数.3.【答案】A【解析】解:由一元一次方程的特点得,2k-1=1,解得:k=1,∴一元一次方程是:x+1=0解得:x=-1.故选:A.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).根据定义可列出关于k的方程,求解即可.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.【答案】A【解析】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a-2b>0,c+2b<0,∴原式=a+c-a+2b+c+2b=2c+4b.故选:A.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了数轴以及绝对值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.5.【答案】D【解析】解:A、a,b互为相反数,则a2=b2,故A错误;B、a,b互为相反数,则a3=-b3,故a3与b5不是互为相反数,故B错误;C、a,b互为相反数,则a2n=b2n,故C错误;D、a,b互为相反数,由于2n+1是奇数,则a2n+1与b2n+1互为相反数,故D正确;故选:D.依据相反数的定义以及有理数的乘方法则进行判断即可.本题考查了相反数和乘方的意义,明确只有符号不同的两个数叫做互为相反数,还要熟练掌握互为相反数的两个数的偶数次方相等,奇次方还是互为相反数.6.【答案】A【解析】解:∵|x+y-3|=2x+2y=2(x+y)≥0,∴x+y≥0,当x+y-3=2(x+y)时,x+y=-3(舍去),当x+y-3=-2(x+y)时,x+y=1,(符合题意),∴(x+y)3的值为1.故选:A.先根据|x+y-3|=2x+2y=2(x+y)≥0,得到x+y≥0,再根据绝对值的性质,分类讨论即可得出x+y的值.本题主要考查了绝对值的性质以及乘方的运用,解题时注意:任意一个有理数的绝对值是非负数.7.【答案】8.6×107【解析】解:将86000000用科学记数法表示为:8.6×107.故答案为:8.6×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】a11101【解析】解:∵-,,-,…,∴第10项分子为a10+1=a11,第10项分母为102+1=101,第10项符号为“+”,∴第10个代数式为.故答案为:.根据分子的变化规律可知,第10个代数式的分子为a11,分母为102+1,符号为正,可得结果.本题主要考查了单项式的变化规律,发现分子分母与项数的关系是解答此题的关键.9.【答案】111【解析】解:设应降价x.则:(1+10%)a•(1-x)=a,解得:x=.故答案为.提价10%后的价格为:(1+10%)a=1.1a,欲恢复原价是在1.1a的基础上降价.等量关系为:1.1a×(1-降价百分比)=原价.本题考查一元一次方程的应用,百分率问题等知识,解题的关键是学会构建一元一次方程,搞清楚售价、原价之间的关系,属于中考常考题型.10.【答案】12a2-3a+18.【解析】解:阴影部分的面积=a2+62-a2-(a+6)×6=a2+36-a2-3a-18=a2-3a+18,故答案为:a2-3a+18.根据面积的和差:两个正方形的面积和减去两个三角形的面积,可得答案.本题考查了代数式求值,利用面积的和差得出关系式是解题关键.11.【答案】300+b【解析】解:三位数百位数为3,所以表示为3×100,十位和个位组成的两位数为b,所以此三位数表示为300+b.三位数字的表示方法:百位数字×100+十位数字×10+个位数字,根据它的表示方法表示即可.本题考查的是列代数式.此类题注意有关数字问题的代数式的表示方法,解决问题的关键是读懂题意,找到所求的量的等量关系.12.【答案】2【解析】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但-(m+2)≠0,即m≠-2,综上所述,m=2,故填空答案:2.由于多项式是关于x的二次三项式,所以|m|=2,但-(m+2)≠0,根据以上两点可以确定m的值.本题解答时容易忽略条件-(m+2)≠0,从而误解为m=±2.13.【答案】134【解析】解:根据题意列方程得,=-3,去分母得:2(x-1)=6x+3-18,去括号得:2x-2=6x+3-18,移项得:2x-6x=3-18+2,合并同类项得:-4x=-13,系数化为1得:x=.本题比较简单,根据题意易知-=-3解此方程即可.本题列出方程不难,但是解方程要仔细.14.【答案】a=b【解析】解:axy2-x+x-bxy2=-x+(a-b)xy2,∵axy2-x与x-bxy2的和是单项式,∴a-b=0,即a=b,故答案为:a=b.根据题意得到两多项式合并为一个单项式,即可确定出a与b的关系.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.15.【答案】7或-1【解析】解:a、b、c三个数没有负数时,x=1+1+1-1=2,有1个负数时,x=1+1-1+1=2,有2个负数时,x=1-1-1-1=-2,3个负数时,x=-1-1-1+1=-2,当x=2时,x3-2x+3=23-2×2+3=8-4+3=7,当x=-2时,x3-2x+3=(-2)3-2×(-2)+3=-8+4+3=-1,综上所述,x3-2x+3=7或-1.故答案为:7或-1.分a、b、c三个数没有负数,有1个负数、2个负数、3个负数讨论求出x的值,然后代入代数式进行计算即可得解.本题考查了代数式求值,绝对值的性质,有理数的除法,难点在于分情况讨论求出x的值.16.【答案】-3 A【解析】解:由题意可得,(2x+1)-(x-3)=(-7-x)-(2x+1),解得,x=-3,∴AB=[2×(-3)+1]-(-3-3)=1,点A表示的数为:-6,点B表示的数为-5,点C表示的数为-4,∵[2013-(-6)]÷3=673,∴数字2013对应的点将与△ABC的顶点A重合,故答案为:-3,A.根据题意和数轴的特点可以求得x的值和数字2013对应的点将与△ABC的哪个顶点重合.本题考查数轴,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.17.【答案】解:(1)原式=-3-4+19=-7+19=12;(2)原式=23×(-60)-112×(-60)-415×(-60)=-40+5+16=-19;(3)原式=-72×87×(-87)×364=314;(4)原式=-4-12×13×(3-9)=-4-16×(-6)=-4+1=-3.【解析】(1)将减法转化为加法,再依据法则计算可得;(2)先利用乘法分配律展开,再依次计算乘法和加减可得;(3)除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律.18.【答案】解:(1)原式=5x2-2x+3(13x+2)-4x2=5x2-2x+x+6-4x2=x2-x+6;(2)原式=2a2b+2ab2-2(a2b-1)-3ab2-2=2a2b+2ab2-2a2b+2-3ab2-2=-ab2,当a=2,b=-2时,原式=-2×(-2)2=-2×4=-8.【解析】(1)原式去括号、合并同类项得到最简结果;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)由题意得,x+1=0,y-2=0,解得,x=-1,y=2,A-2B=2x2+3xy+2y-1-2(x2-xy)=2x2+3xy+2y-1-2x2+2xy=5xy+2y-1当x=-1,y=2时,原式=-10+4-1=-7;(2)∵A-2B的值与y的取值无关,∴5x+2=0,解得,x=-25.【解析】(1)根据非负数的性质分别求出x、y,根据整式的加减混合运算法则把原式化简,代入计算即可;(2)根据题意列出方程,解方程即可.本题考查的是整式的加减混合运算、非负数的性质,掌握整式的加减混合运算法则是解题的关键.20.【答案】解:把x=3代入方程3[(x3+1)+m(x−1)4]=2,得:3(2+m2)=2,解得:m=-83.把m=-83代入|2n+m|=1,得:|2n-83|=1得:①2n-83=1,②2n-83=-1.解①得,n=116,解②得,n=56.∴(1)当m=-83,n=116时,m+n=-56;(2)当m=-83,n=56时,m+n=-116.【解析】把x=3代入方程,求出m的值,把m的值代入关系式|2n+m|=1,求出n的值,进而求出m+n的值.本题求m、n的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.21.【答案】解:(1)当x=100时,方案一:100×200=20000(元);方案二:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,方案一:100×200+80(x-100)=80x+12000;方案二:(100×200+80x)×80%=64x+16000,答:方案一、方案二的费用为:(80x+12000)、(64x+16000)元;(3)当x=300时,①按方案一购买:100×200+80×200=36000(元);②按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),36000>35200>32800,则先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【解析】(1)当x=100时,分别求出两种方案的钱数,比较即可;(2)当x>100时,分别表示出两种方案的钱数,比较即可;(3)取x=300,分别求出各自的钱数,比较即可.此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)∵5(x-y+3)2+2|m-2|=0,(x-y+3)2≥0,m−2≥0,及n3a2-y b5+z是一个三次单项式且系数为-1.∴得:x−y+3=0m−2=0n3=−12−y+5+z=3∴x−y=−3y−z=4m=2n=−1(2)由(1)得x−y=−3y−z=4∴x-z=x-y+y-z=1∴z-x=-1∴原式=(-3)3+42+(-1)5=-12【解析】根据已知和所求问题,首先由5(x-y+3)2+2|m-2|=0,得出(x-y+3)2=0,=0,求出x-y和m.再由n3a2-y b5+z是一个三次单项式且系数为-1,得出n3=-1和2-y+5+z=3,求出y-z和n.最后,由x-y和y-z求出x-z.此题考查了学生整体代入法求代数式的值、非负数的性质、单项式等的理解与掌握.关键是根据已知有关性质列等式.23.【答案】解:(1)7(x-2)=5(3x-7),去括号得:7x-14=15x-35,移项得:7x-15x=-35+14,合并同类项得:-8x=-21,系数化为1得:x=218;(2)x+13-2=2−3x5,去分母得:5(x+1)-30=3(2-3x),去括号得:5x+5-30=6-9x,移项得:5x+9x=6-5+30,合并同类项得:14x=31,系数化为1得:x=3114.【解析】(1)去括号、移项、合并同类项、系数化为1可得出x的值;(2)先去分母,两边同时乘以3和5的最小公倍数15,注意每一项都要与15相乘,再去括号、移项、合并同类项、系数化为1可得出x的值.本题是解一元一次方程,熟练掌握解一元一次方程的一般步骤:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1,尤其要注意去分母时,根据分式的基本性质,两边同时乘以同一个数时,不要漏项.24.【答案】解:(1)当y1=y2时,即x+3=2-x,2x=2-3,∴x=-12;即当x=-12时,y1与y2的值相等;(2)当y1=2y2+5时,即x+3=2(2-x)+5,x+3=9-2x,∴x=2.当x=2时,y1的值比y2的值的2倍大5.【解析】根据题意先列出方程,再解方程求解即可.本题考查了一元一次方程的解法.理解题意,列出方程是解决本题的关键.25.【答案】4 -3或4 0 x=0【解析】解:(1)根据绝对值的几何意义可得,当-2≤x≤2时,|x+2|+|x-2|的最小值是4;当x<-1时,-x-1-x+2=7,解得x=-3,当-1≤x<2时,x+1+2-x=7,方程无解,当x≥2时,x+1+x-2=7,解得x=4,∴x的值为-3或4,故答案为:4,-3或4;(2)根据绝对值的几何意义可得,当x=0时,|x+2|+|x|+|x-1|的最小值是3,故答案为:3,x=0;(3)由图可得,只有当a=1.5且0≤x≤1.5或a=-1.5且-1≤x≤0时,|x+1|+|x|+|x-2|+|x-a|的最小值是4.5,∴当|x+1|+|x|+|x-2|+|x-a|的最小值是4.5时,a=1.5且0≤x≤1.5或a=-1.5且-1≤x≤0.(1)根据绝对值的几何意义,得出|x+2|+|x-2|的最小值;(2)根据绝对值的几何意义,得出|x+2|+|x|+|x-1|的最小值;(3)画出数轴,分两种情况进行讨论:当a=1.5且0≤x≤1.5或a=-1.5且-1≤x≤0时,|x+1|+|x|+|x-2|+|x-a|的最小值是4.5.本题主要考查了数轴以及绝对值的几何意义的运用,一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离远点(表示数0)的距离,x的绝对值表示为|x|.解题时注意分类思想的运用.。

江苏省泰州市七年级上学期数学期中试卷

江苏省泰州市七年级上学期数学期中试卷

江苏省泰州市七年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)﹣的相反数是()A . ﹣B .C .D . -2. (2分) (2019九上·长春期末) 下图中几何体的主视图是()A .B .C .D .3. (2分) (2019七下·余杭期末) 世界上最小的开花结果植物是澳大利亚的山水浮萍,它的果实像一粒微小的无花果,质量只有0.000 000 07克.数据0.000 000 07用科学记数法表示为()A . 0.7×10-7B . 7× 10-7C . 7× 10-8D . 7× 10-94. (2分)在+6.5,﹣1,0,,﹣100,2001中正数的个数是()A . 5B . 4C . 3D . 25. (2分)某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适。

A . 18℃~20℃B . 20℃~22℃C . 18℃~21℃D . 18℃~22℃6. (2分)下列去括号正确的是()A . a-(b-c)=a-b-cB . x2-[-(-x+y)]=x2-x+yC . m-2(p-q)=m-2p+qD . a+(b-c-2d)=a+b-c+2d7. (2分) (2020九下·郑州月考) 下列计算正确的是()A .B . (a﹣b)2=a2﹣b2C . a2+a3=a5D . (2a2b3)3=﹣6a6b38. (2分) (2016七上·射洪期中) 下列说法正确的是()A . x+y是一次单项式B . 多项式3πa3+4a2﹣8的次数是4C . x的系数和次数都是1D . 单项式4×104x2的系数是49. (2分) (2017七下·蒙阴期末) 若3x2a+by2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A . 0B . 1C . 2D . 310. (2分)下列运算中,正确的是()A . a2+a3=a5B . a6÷a3=a2C . (a4)2=a6D . a2•a3=a511. (2分) (2019七上·长沙月考) 若与互为相反数,则等于().A .B .C .D .12. (2分) (2019七上·川汇期中) 如图,是用规格相同的塑料棒拼成的一排六边形组成的图形.如果图形含有n个六边形,则至少需要这样的塑料棒多少根?()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017七上·宁河月考) 已知,,则 =________.14. (1分)计算21×3.14+79×3.14的结果为________ .15. (1分) (2016七上·南昌期末) 若代数式2x2﹣4x﹣5的值为7,则x2﹣2x﹣2的值为________.16. (1分)计算1+4+9+16+25+…的前29项的和是________.三、解答题 (共7题;共67分)17. (20分) (2018七上·和平期末) 计算:18. (10分) (2019七上·全州期中) 计算:(1)(2)19. (5分) (2020八上·郑州开学考) 化简求值已知,求的值.20. (5分)如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,请你画出它的主视图和左视图.21. (10分) (2019七上·绍兴期中) 某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次二三四五六人数下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?22. (10分) (2016七上·泰州期中) 如图,点A、B、C、D分别表示四个车站的位置.(1)用关于a、b的代数式表示A、C两站之间的距离是________(最后结果需化简)(2)若已知A、C两站之间的距离是12km,求C、D两站之间的距离.23. (7分) (2019七上·龙江期中) 综合与实践已知,,,… 都是不等于0的有理数,若,求的值.解:当时,;当时,,所以参照以上解答,试探究以下问题:(1)若,求的值(2)若,则的值为________;(3)由(1)、(2)试猜想,共有________个不同的值,在这些不同的值中,最大的值和最小的值的差等于________.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共67分)17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江苏省泰州市海陵区医药高新区七年级(上)期中数学试卷一、选择题(每小题3分,共18分)1.(3分)5的相反数是()A.5 B.|5|C.﹣5 D.2.(3分)下列说法中,正确的是()A.正数和负数统称为有理数B.互为相反数的两个数之和为零C.如果两个数的绝对值相等,那么这两个数一定相等D.0是最小的有理数3.(3分)如果关于x的方程2x+k﹣4=0的解x=﹣3,那么k的值是()A.10 B.﹣10 C.2 D.﹣24.(3分)单项式﹣3πx2y5的次数是()A.6 B.7 C.5 D.25.(3分)与a﹣(a﹣b+c)相等的式子是()A.a﹣b+c B.a+b﹣c C.b﹣c D.c﹣b6.(3分)式子|x﹣1|﹣3取最小值时,x等于()A.1 B.2 C.3 D.4二、填空题(每空3分,共30分)7.(3分)15 000用科学记数法可表示为.8.(3分)写出一个大于1且小于4的无理数.(答案不唯一)9.(3分)若n为整数,则代数式n(n+1)(n+2)表示的实际意义.10.(3分)数轴上与表示﹣2的点距离3个长度单位的点所表示的数是.11.(3分)a+3与互为倒数,那么a=.12.(3分)若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于.13.(3分)已知单项式﹣与3xy2﹣b是同类项,那么a﹣b的值分别是.14.(3分)多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.15.(3分)已知:当x=1时,代数式ax3+bx+5的值为﹣9,那么当x=﹣1时,代数式ax3+bx+5的值为.16.(3分)有规律地排列着这样一些单项式:﹣xy2,x2y4,﹣x3y6,x4y8,﹣x5y10,x6y12…,则第n个单项式(n≥l整数)可表示为.三、解答题(共计102分)17.(12分)计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(﹣)×(3)﹣22×7﹣(﹣3)×6+5(4)(1+﹣2.75)×(﹣24)18.(8分)化简或求值:(1)﹣3a2+2ab﹣4ab+2a2(2)先化简,再求值:﹣m2﹣mn﹣(m2+mn﹣2),其中m=﹣1,n=2.19.(16分)解方程:(1)4﹣3x=6﹣4x(2)3x﹣2(2x﹣5)=5(x+3)﹣x;(3)1﹣;(4).20.(8分)“*”是规定的一种运算法则:a*b=a2﹣b.(1)求5*(﹣1)的值;(2)若(﹣4)*x=2+x,求x的值.21.(8分)(1)在数轴上分别画出表示下列3个数的点:﹣(﹣4),﹣|﹣3.5|,+(﹣),(2)有理数x,y在数轴上对应点如图所示:①试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接;②化简:|x+y|﹣|y﹣x|+|y|.22.(8分)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1(1)求4A﹣(3A﹣2B)的值;(2)若A+2B的值与a的取值无关,求b的值.23.(8分)已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?24.(8分)有三种运算程序如图所示,按要求完成下列各题:(1)如图①,当输入数x=﹣1时,输出数y=;(2)如图②,第一个带?号的运算框内,应填;第二个带?号运算框内,应填;第三个带?号运算框内,应填.(3)如图③,当输入数为3时,则输出结果为.25.(12分)在左边的日历中,用一个正方形任意圈出二行二列四个数,如若在第二行第二列的那个数表示为a,其余各数分别为b,c,d.(1)分别用含a的代数式表示b,c,d这三个数.(2)求这四个数的和.(用含a的代数式表示,要求合并同类项化简)(3)这四个数的和会等于51吗?如果会,请算出此时a的值,如果不会,说明理由.26.(14分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2017-2018学年江苏省泰州市海陵区医药高新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)5的相反数是()A.5 B.|5|C.﹣5 D.【解答】解:5的相反数是﹣5,故选:C.2.(3分)下列说法中,正确的是()A.正数和负数统称为有理数B.互为相反数的两个数之和为零C.如果两个数的绝对值相等,那么这两个数一定相等D.0是最小的有理数【解答】解:A、根据整数和分数统称为有理数,故此选项错误;B、互为相反数的两个数之和为零,此选项正确;C、如果两个数的绝对值相等,那么这两个数可能相等也可能互为相反数,故此选项错误;D、有理数也可以是负数,故此选项错误.故选:B.3.(3分)如果关于x的方程2x+k﹣4=0的解x=﹣3,那么k的值是()A.10 B.﹣10 C.2 D.﹣2【解答】解:把x=﹣3代入方程2x+k﹣4=0,得:﹣6+k﹣4=0解得:k=10.故选:A.4.(3分)单项式﹣3πx2y5的次数是()A.6 B.7 C.5 D.2【解答】解:单项式﹣3πx2y5的次数是2+5=7.故选:B.5.(3分)与a﹣(a﹣b+c)相等的式子是()A.a﹣b+c B.a+b﹣c C.b﹣c D.c﹣b【解答】解:原式=a﹣a+b﹣c=b﹣c.故选:C.6.(3分)式子|x﹣1|﹣3取最小值时,x等于()A.1 B.2 C.3 D.4【解答】解:∵|x﹣1|≥0,∴当x﹣1=0,即x=1时,|x﹣1|﹣3取最小值.故选:A.二、填空题(每空3分,共30分)7.(3分)15 000用科学记数法可表示为 1.5×104.【解答】解:15 000=1.5×104,故答案为:1.5×104.8.(3分)写出一个大于1且小于4的无理数π.(答案不唯一)【解答】解:∵1=,4=,∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.9.(3分)若n为整数,则代数式n(n+1)(n+2)表示的实际意义连续三个整数的乘积.【解答】解:由于n为整数,所以n(n+1)(n+2)表示连续三个整数的乘积故答案为:连续三个整数的乘积10.(3分)数轴上与表示﹣2的点距离3个长度单位的点所表示的数是﹣5或1.【解答】解:当此点在﹣2的点的左侧时,此点表示的点为﹣2﹣3=﹣5;当此点在﹣2的点的右侧时,此点表示的点为﹣2+3=1.故答案为:﹣5或1.11.(3分)a+3与互为倒数,那么a=1.【解答】解:根据题意可知a+3=4,则a=1,故答案为:112.(3分)若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于﹣3.【解答】解:根据一元一次方程的特点可得,解得a=﹣3.13.(3分)已知单项式﹣与3xy2﹣b是同类项,那么a﹣b的值分别是3.【解答】解:∵单项式﹣与3xy2﹣b是同类项,∴a﹣1=1,2﹣b=3,解得:a=2,b=﹣1,则a﹣b=2﹣(﹣1)=3.故答案为:3.14.(3分)多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=2.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.15.(3分)已知:当x=1时,代数式ax3+bx+5的值为﹣9,那么当x=﹣1时,代数式ax3+bx+5的值为19.【解答】解:∵当x=1时,代数式ax3+bx+5的值为﹣9,∴a×13+b×1+5=﹣9,即a+b=﹣14,把x=﹣1代入代数式ax3+bx+5,得ax3+bx+5=a×(﹣1)3+b×(﹣1)+5=﹣(a+b)+5=14+5=19.故答案为19.16.(3分)有规律地排列着这样一些单项式:﹣xy2,x2y4,﹣x3y6,x4y8,﹣x5y10,x6y12…,则第n个单项式(n≥l整数)可表示为(﹣x)n y2n.【解答】解:由题意可知,第n个单项式为:(﹣x)n y2n.故答案为:(﹣x)n y2n.三、解答题(共计102分)17.(12分)计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(﹣)×(3)﹣22×7﹣(﹣3)×6+5(4)(1+﹣2.75)×(﹣24)【解答】解:(1)﹣10﹣(﹣16)+(﹣24)=﹣10+16﹣24=﹣18;(2)5÷(﹣)×=5×(﹣)×=﹣;(3)﹣22×7﹣(﹣3)×6+5=﹣4×7+18+5=﹣5;(4)(1+﹣2.75)×(﹣24)=×(﹣24)+×(﹣24)﹣×(﹣24)=﹣32﹣3+66=31.18.(8分)化简或求值:(1)﹣3a2+2ab﹣4ab+2a2(2)先化简,再求值:﹣m2﹣mn﹣(m2+mn﹣2),其中m=﹣1,n=2.【解答】解:(1)原式=﹣a2﹣2ab;(2)原式=﹣m2﹣mn﹣m2﹣mn+2═﹣m2﹣mn+2,当m=﹣1,n=2时,原式=3.19.(16分)解方程:(1)4﹣3x=6﹣4x(2)3x﹣2(2x﹣5)=5(x+3)﹣x;(3)1﹣;(4).【解答】解:(1)4﹣3x=6﹣4x,移项得,4x﹣3x=6﹣4,合并同类项得,x=2;(2)3x﹣2(2x﹣5)=5(x+3)﹣x;去括号,3x﹣4x+10=5x+15﹣x,移项,3x﹣4x﹣5x+x=15﹣10,合并同类项,﹣5x=5,将x系数化为1,x=﹣1;(3)1﹣,去分母后,6﹣6+10x=9x﹣15,移项,10x﹣9x=﹣15,将x系数化为1,x=﹣15;(4),去分母后,50x﹣100﹣20x﹣20=30,移项,50x﹣20x=30+100+20,合并同类项,30x=150,将x系数化为1,x=5.20.(8分)“*”是规定的一种运算法则:a*b=a2﹣b.(1)求5*(﹣1)的值;(2)若(﹣4)*x=2+x,求x的值.【解答】解:(1)5*(﹣1)=52﹣(﹣1)=25+1=26,(4分)(2)a=﹣4,b=x,(﹣4)*x=2+x,则(﹣4)2﹣x=2+x,整理得:16﹣x=2+x,x=14,解得:x=6.(4分)21.(8分)(1)在数轴上分别画出表示下列3个数的点:﹣(﹣4),﹣|﹣3.5|,+(﹣),(2)有理数x,y在数轴上对应点如图所示:①试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接;②化简:|x+y|﹣|y﹣x|+|y|.【解答】解:(1)﹣(﹣4)=4,﹣|﹣3.5|=﹣3.5,+(﹣)=﹣,如图所示:;(2)①由x,y在数轴上的位置可得:﹣x<y<0<|y|<x;②|x+y|﹣|y﹣x|+|y|=x+y+(y﹣x)﹣y=y.22.(8分)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1(1)求4A﹣(3A﹣2B)的值;(2)若A+2B的值与a的取值无关,求b的值.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴原式=4A﹣3A+2B=A+2B=2a2+3ab﹣2a﹣1﹣2a2+2ab﹣2=5ab﹣2a﹣3;(2)A+2B=5ab﹣2a﹣3=(5b﹣2)a﹣3,由结果与a的取值无关,得到5b﹣2=0,解得:b=.23.(8分)已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?【解答】解:(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122秒.∴蜗牛一共爬行了122秒.24.(8分)有三种运算程序如图所示,按要求完成下列各题:(1)如图①,当输入数x=﹣1时,输出数y=﹣9;(2)如图②,第一个带?号的运算框内,应填()2;第二个带?号运算框内,应填×2;第三个带?号运算框内,应填﹣5.(3)如图③,当输入数为3时,则输出结果为231.【解答】解:(1)如图1,当输入数x=﹣1时,输出数y=(﹣1)×4﹣5=﹣9;故答案为:﹣9;(2)第一个带?号的运算框内,应填()2;第二个带?号运算框内,应填:×2;第三个带?号运算框内,应填:﹣5;故答案为:()2;×2;﹣5;(3)∵n=3,∴==6,∴=21,∴输出结果为:=231,故答案为:231.25.(12分)在左边的日历中,用一个正方形任意圈出二行二列四个数,如若在第二行第二列的那个数表示为a,其余各数分别为b,c,d.(1)分别用含a的代数式表示b,c,d这三个数.(2)求这四个数的和.(用含a的代数式表示,要求合并同类项化简)(3)这四个数的和会等于51吗?如果会,请算出此时a的值,如果不会,说明理由.【解答】解:(1)观察日历表可知:右边的数比左边的数大1,下面的数比上面的数大7,∵在第二行第二列的那个数表示为a,则b=a﹣7,c=a﹣7﹣1=a﹣8,d=a﹣1.(2)这四个数的和为a+b+c+d=a+a﹣7+a﹣8+a﹣1=4a﹣16.(3)这四个数的和不会等于51,理由如下:假设这四个数的和等于51,由(2)知4a﹣16=51,解得:a=16,∵16不是正整数,∴假设不成立,∴这四个数的和不会等于51.26.(14分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=﹣2,b=1,c=7;(2)若将数轴折叠,使得A点与C点重合,则点B与数4表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=3t+3,AC=5t+9,BC=2t+6.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

相关文档
最新文档