三角函数图象的平移和伸缩
三角函数的平移与伸缩变换_整理
函数)sin(A ϕω+=x y 的图像(1)物理意义:sin()y A x ωϕ=+(A >0,ω>0),x ∈[0,+ ∞)表示一个振动量时,A 称为振幅,T =ωπ2,1f T=称为频率,x ωϕ+称为相位,ϕ称为初相。
(2)函数sin()y A x k ωϕ=++的图像与sin y x =图像间的关系:① 函数sin y x =的图像纵坐标不变,横坐标向左(ϕ>0)或向右(ϕ<0)平移||ϕ个单位得()sin y x ϕ=+的图像;② 函数()sin y x ϕ=+图像的纵坐标不变,横坐标变为原来的1ω,得到函数()sin y x ωϕ=+的图像;③ 函数()sin y x ωϕ=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ωϕ=+的图像;④ 函数sin()y A x ωϕ=+图像的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ωϕ=++的图像。
要特别注意,若由()sin y x ω=得到()sin y x ωϕ=+的图像,则向左或向右平移应平移||ϕω个单位。
ϕ对)sin(ϕ+=x y 图像的影响一般地,函数)sin(ϕ+=x y 的图像可以看做是把正弦函数曲线上所有的点向____(当ϕ〉0时)或向______(当ϕ〈0时)平移ϕ个单位长度得到的 注意:左右平移时可以简述成“______________”ω对x y ωsin =图像的影响函数x y ωsin =)10(≠>∈ωω且R x ,的图像可以看成是把正弦函数上所有的点的横坐标______)1(>ω或_______)10(<<ω到原来的ω1倍(纵坐标不变)。
A 对x y sin A =的影响函数x y sin A =,)1A 0A (≠>∈且R x 的图像可以看成是把正弦函数上所有的点的纵坐标_______)1A (>或_______)1A 0(<<到原来的A 倍得到的由x y sin =到)sin(A ϕω+=x y 的图像变换 先平移后伸缩:先伸缩后平移:【典型例题】例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.练习:将x y cos =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.例2、把)342cos(3π+=x y 作如下变换: (1)向右平移2π个单位长度; (2)纵坐标不变,横坐标变为原来的31;(3)横坐标不变,纵坐标变为原来的43;(4)向上平移1。
三角函数中的平移与伸缩变换
三角函数中的平移与伸缩变换三角函数是数学中的重要概念之一,通过平移和伸缩变换可以对三角函数图像进行调整和变化。
本文将探讨三角函数中的平移与伸缩变换,并说明它们对函数图像的影响。
一、平移变换平移变换是指将函数图像沿着坐标轴平行移动的过程。
在三角函数中,平移变换会改变函数的水平位置。
具体而言,对于三角函数y = f(x),平移变换可以表示为y = f(x ± b),其中b为平移量。
1. 正弦函数的平移变换正弦函数y = sin(x)在平移变换下,可以写作y = sin(x ± b)。
当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
2. 余弦函数的平移变换余弦函数y = cos(x)的平移变换形式为y = cos(x ± b)。
与正弦函数类似,当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
3. 正切函数的平移变换正切函数y = tan(x)在平移变换下,可以写作y = tan(x ± b)。
与正弦函数和余弦函数不同,正切函数的平移变换会导致图像的水平拉伸与压缩。
当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
二、伸缩变换伸缩变换是指将函数图像在x轴或y轴上进行拉伸或压缩的过程。
在三角函数中,伸缩变换会改变函数图像的形状和振幅。
具体而言,对于三角函数y = f(x),伸缩变换可以表示为y = af(bx),其中a为纵向伸缩因子,b为横向伸缩因子。
1. 正弦函数的伸缩变换正弦函数y = sin(x)在伸缩变换下,可以写作y = a sin(bx)。
纵向伸缩因子a决定了函数图像的振幅,a越大,则振幅越大;a越小,则振幅越小。
横向伸缩因子b决定了函数图像的周期,b越大,则周期越短;b越小,则周期越长。
2. 余弦函数的伸缩变换余弦函数y = cos(x)的伸缩变换形式为y = a cos(bx)。
三角函数图象的平移和伸缩
3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。
三角函数图像的变换与特征
三角函数图像的变换与特征三角函数图像的变换是数学中一个重要的概念,它描述了三角函数图像相对于原始函数图像的位置、形状和特征的变化。
在本文中,我们将探讨三角函数的变换和它们的特征。
一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动的操作。
对于三角函数而言,平移的规律如下:1. 正弦函数(Sine Function)的平移:a. 沿横轴平移:f(x) = sin(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + sin(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
2. 余弦函数(Cosine Function)的平移:a. 沿横轴平移:f(x) = cos(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。
b. 沿纵轴平移:f(x) = a + cos(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。
二、伸缩变换伸缩是指对函数图像进行拉伸或压缩的操作。
对于三角函数而言,伸缩的规律如下:1. 正弦函数的伸缩:a. 沿横轴伸缩:f(x) = sin(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * sin(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
2. 余弦函数的伸缩:a. 沿横轴伸缩:f(x) = cos(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。
b. 沿纵轴伸缩:f(x) = a * cos(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。
三角函数的变换与性质
三角函数的变换与性质三角函数是数学中常见的一类函数,它们在数学和物理等领域有着重要的应用。
本文将介绍三角函数的变换与性质,以帮助读者更好地理解和应用这些函数。
一、正弦函数的变换与性质正弦函数可以表示为f(x) = sin(x),其图像是一个周期性的波形。
正弦函数的变换包括平移、伸缩和翻转等操作。
1. 平移:当正弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = sin(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当正弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当正弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = sin(-x)的图像将关于y轴对称。
正弦函数的性质有:1. 周期性:正弦函数的图像以x轴为对称轴,其周期为2π。
即sin(x + 2π) = sin(x)。
2. 奇偶性:正弦函数是一个奇函数,即f(-x) = - f(x)。
这意味着正弦函数的图像关于原点对称。
二、余弦函数的变换与性质余弦函数可以表示为f(x) = cos(x),它与正弦函数是相互关联的。
余弦函数的变换与正弦函数类似,也包括平移、伸缩和翻转等操作。
1. 平移:当余弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。
例如,f(x) = cos(x + π/2)的图像将向左平移π/2个单位。
2. 伸缩:当余弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。
若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。
3. 翻转:当余弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。
即f(x) = cos(-x)的图像将关于y轴对称。
余弦函数的性质有:1. 周期性:余弦函数的图像以x轴为对称轴,其周期为2π。
即cos(x + 2π) = cos(x)。
三角函数的伸缩变换与平移变换
三角函数的伸缩变换与平移变换1. 引言嘿,大家好!今天我们来聊聊一个有趣的话题,那就是三角函数的伸缩变换和平移变换。
听起来是不是有点晦涩,但别担心,咱们慢慢来,轻松讲解。
想象一下,三角函数就像是一个调皮的小孩,它总是喜欢玩各种变形游戏,不信你看看,正弦、余弦、正切,它们都能搞出不少花样来。
咱们先来看看这些变换都是什么吧,别着急,咱们一步一步来。
2. 伸缩变换2.1 什么是伸缩变换首先,咱们得了解什么是伸缩变换。
简单来说,就是把图像放大或缩小。
这就像你在照镜子时,调节镜子的位置,让自己变得更高或更矮。
比如说,如果你有一个正弦函数 ( y = sin(x) ),如果把它的幅度加大,比如变成 ( y = 2sin(x) ),那么它的波峰就高了,波谷也低了,整个图像就像是喝了兴奋剂一样,蹭蹭往上蹿,变得活泼多了。
2.2 伸缩的感觉再说个例子,如果把它的幅度缩小,比如变成 ( y = 0.5sin(x) ),那么图像就像是被压扁了一样,波峰和波谷都不那么明显,感觉像是被子弹压得没有了气息。
不过,虽然看起来不那么张扬,但其实它的性格依然在,只是低调了很多。
所以啊,伸缩变换就像是给三角函数穿上了不同风格的衣服,让它在不同场合下都能发挥自己的魅力。
3. 平移变换3.1 平移的魔法接下来,我们再来说说平移变换。
这一招就像是把图像往左或往右移动,简直是个魔法师!比如,把正弦函数 ( y = sin(x) ) 往右移动 ( frac{pi{2 ) 的话,就变成了 ( y =sin(x frac{pi{2) ),这时候它就变成了余弦函数 ( y = cos(x) )。
是不是很神奇?就像是给小孩换了个地方玩耍,结果发现他变得更开心了。
3.2 左右平移的感受而且,平移不仅可以往右移动,也可以往左移动。
比如,往左移动 ( frac{pi{2 ),那么就是 ( y = sin(x + frac{pi{2) ),这又是一番风味。
三角函数的平移与伸缩
三角函数的平移与伸缩三角函数在数学中占据着重要的地位,其在几何、物理、工程等各个领域都有广泛的应用。
而三角函数的平移与伸缩是对原本的函数图像进行操作,使其在坐标系中发生移动和变形。
本文将探讨三角函数的平移与伸缩,以及其对函数图像的影响。
1. 平移变换平移是指将函数图像沿着坐标系的横轴或纵轴方向进行移动。
对于正弦函数y = sin(x)和余弦函数y = cos(x),平移操作可以通过改变自变量x发生。
如果横轴上的平移量为a,那么正弦函数的平移变换可以表示为y = sin(x - a),余弦函数的平移变换可以表示为y = cos(x - a)。
这样,原本位于x轴上的函数图像将平移至新的位置。
2. 伸缩变换伸缩是指通过改变函数图像在坐标系中的大小和形状来实现。
伸缩操作可以通过改变函数的自变量或因变量进行。
对于正弦函数和余弦函数,分别称为sine函数和cosine函数,它们的伸缩变换形式可以表示为y = A*sin(Bx)和y = A*cos(Bx)。
其中,A和B分别代表着振幅和周期。
振幅A决定了函数图像在纵向上的幅度,而周期B则决定了函数图像在横向上的重复性。
当A增大时,函数图像的“峰”和“谷”之间的距离增大,振幅变大;反之,当A 减小时,振幅变小。
当B增大时,函数图像在横轴方向上的周期变长,每个周期内包含更多的“峰”和“谷”;反之,当B减小时,周期变短,每个周期内的“峰”和“谷”减少。
综合平移和伸缩,我们可以得到更加复杂的三角函数的变换。
例如对于正弦函数y = sin(x)进行平移和伸缩的组合操作,可以表示为y =A*sin(B(x - C)) + D。
其中C为平移量,A为伸缩因子,D为上下方向的平移量。
同样地,对于余弦函数也可以进行类似的操作。
三角函数的平移与伸缩在实际应用中起到了重要的作用。
它们能够改变函数图像在坐标系中的位置和形状,进而影响到相关问题的解决。
例如在物理学中,正弦函数和余弦函数可以用来描述周期性现象,如电磁波的传播及机械振动等。
三角函数的平移伸缩变换
三角函数的平移伸缩变换
三角函数可以通过平移、伸缩来进行变换。
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。
伸缩指的是将函数图像沿着横轴或纵轴方向拉伸或缩小。
以正弦函数为例,设其图像为y=sin(x),则有以下几种变换:
1. 平移
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。
这种变换可以用一个参数来表示,记为h和k。
其中h表示横向平移的距离,k表示纵向平移的距离。
平移后的函数为y=sin(x-h)+k。
2. 垂直伸缩
垂直伸缩指的是将函数图像沿着纵轴方向拉伸或缩小。
这种变换可以用一个参数来表示,记为a。
垂直伸缩后的函数为y=a*sin(x)。
当a>1时,函数图像沿着纵轴方向被拉伸,函数的振幅增大;当0<a<1时,函
数图像沿着纵轴方向被缩小,函数的振幅减小。
3. 水平伸缩
水平伸缩指的是将函数图像沿着横轴方向拉伸或缩小。
这种变换可以用一个参数来表示,记为b。
水平伸缩后的函数为y=sin(b*x)。
当b>1时,函数图像沿着横轴方向被缩短,函数的周期变小;当0<b<1时,函数图像沿着横轴方向被拉长,函数的周期变大。
4. 综合变换
完整的三角函数平移伸缩变换包含了垂直伸缩、水平伸缩、横向平移、纵向平移四种变换。
对于正弦函数而言,其综合变换的表达式为:
y=a*sin(b*(x-h))+k
其中,a表示垂直伸缩的参数,b表示水平伸缩的参数,h和k表示横向和纵向平移的参数。
§1.5三角函数的图象和性质-图象平移伸缩及对称性
高一数学必修四第一章 三角函数图象的平移和伸缩 2019-4-3函数s i n ()y A x k ωϕ=++的图象与函数s i n y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x=的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x=的图象(1)(0A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x=的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.三角函数图象的对称性三角函数图象的对称性教材中并没有进行专门的讨论,但在以往的统考和高考中却经常出现有关对称性的题目,所以我们有必要把这个问题搞清楚. 一、结论1.函数sin cos y x y x ==,的图象既是中心对称图形(关于某点对称),又是轴对称图形(关于某直线对称),sin y x =的对称中心是(π0)k ,,k ∈Z ,对称轴为ππ2x k k =+∈Z ,.特殊地,原点是其一个对称中心.cos y x =的对称中心是ππ02k ⎛⎫+ ⎪⎝⎭,,k ∈Z ,对称轴为πx k =,k ∈Z .特殊地,y 轴是其一条对称轴.2.函数tan y x =的图象是中心对称图形,不是轴对称图形,其对称中心为π02k ⎛⎫⎪⎝⎭,k ∈Z .二、应用1.正向应用所谓正向应用即直接告诉我们函数解析式,求函数的对称轴方程或对称中心坐标,或利用对称性解决其他问题.例1 函数 π3sin 23y x ⎛⎫=+ ⎪⎝⎭的对称轴方程是( )A.ππ212k x k =+∈Z , B.π2π12x k k =-∈Z ,C.ππ3x k k =+∈Z ,D.π2π3x k k =-∈Z ,解:令ππ2π32x k +=+,得ππ212k x k =+∈Z ,.故选(A).说明:对于函数sin()(00)y A x A ωϕω=+≠>,的对称性,可令x μωϕ=+,转化为函数sin y A μ=的对称性求解.例2 由函数2sin3y x =,π5π66x ⎛⎫⎪⎝⎭≤≤与函数2y x =∈R ,的图象围成一个封闭图形,求这个封闭图形的面积.解:如图,根据对称性,所围成封闭图形的面积等价于矩形ABCD 的面积,所以封闭图形的面积5ππ4π2663S ⎛⎫=-⨯=⎪⎝⎭. 说明:此题所求面积的图形不是常见规则图形,根据图象对称性转化为常见图形———矩形,既熟悉又易求,体现了数形结合,等价转化等数学思想.2.逆向应用所谓逆向应用即知道函数的对称性,求函数解析式中的参数的取值. 例3 函数()cos(3)f x x x ϕ=+∈R ,的图象关于原点中心对称,则ϕ=( )A.π3B.ππ2k k +∈Z , C.πk k ∈Z , D.π2π2k k -∈Z ,解:∵函数图象关于原点中心对称,且x ∈R ,∴函数图象过原点,即(0)0f =.cos 0ϕ∴=,即ππ2k k ϕ=+∈Z ,.故选(B).3.综合运用例4 已知函数()sin()(00π)f x x ωϕωϕ=+>,≤≤是R 上的偶函数,其图象关于点3π04M ⎛⎫ ⎪⎝⎭,对称,且在区间π02⎡⎤⎢⎥⎣⎦,上是单调函数,求ω和ϕ的值. 解:()f x 是偶函数,y ∴轴是其对称轴,即y 轴经过函数图象的波峰或波谷,(0)sin 1f ϕ∴==±,又0πϕ≤≤,π2ϕ∴=. 由()f x 的图象关于点3π04M ⎛⎫⎪⎝⎭,对称,3π04f ⎛⎫∴= ⎪⎝⎭,即3ππ3πsin cos 0424ωω⎛⎫+== ⎪⎝⎭,又0ω>,3πππ01242k k ω∴=+=,,,….2(21),0,1,2,3k k ω∴=+= 当0k =时,23ω=,2π2()sin cos 323f x x x ⎛⎫=+= ⎪⎝⎭在π02⎡⎤⎢⎥⎣⎦,上是减函数;当1k =时,2ω=,π()sin 2cos 22f x x x ⎛⎫=+= ⎪⎝⎭在π02⎡⎤⎢⎥⎣⎦,上是减函数;当2k ≥时,103ω≥,π()sin cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭在 π02⎡⎤⎢⎥⎣⎦,上不是单调函数. 综上所述,23ω=或π22ωϕ==,.说明:本题综合考察函数的单调性、奇偶性及图象的对称性.()f x 的图象关于点M 对称亦可转化为3π3π44f x f x ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,再令0x =得到3π3π44f f ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭,再得到3π04f ⎛⎫= ⎪⎝⎭.。
高考数学复习点拨:三角函数图象的平移和伸缩
三角函数图象的平移和伸缩河北 张军红函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A kωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x=的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x=的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x=的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。
三角函数图象的平移和伸缩
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.练习 1、要得到函数y=2cos (x+)sin (﹣x )﹣1的图象,只需将函数y=sin2x+cos2x 的图象( )A 、向左平移个单位B 、向右平移个单位C 、向右平移个单位D 、向左平移个单位 2、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象F 2关于直线对称,则θ的一个可能取值是( ) A 、 B 、 C 、 D 、3、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( ) A 、 B 、C 、D 、sin (2x )+3 4、把函数y=(cos3x ﹣sin3x )的图象适当变化就可以得到y=﹣sin3x 的图象,这个变化可以是( )A 、沿x 轴方向向右平移B 、沿x 轴方向向左平移C 、沿x 轴方向向右平移D 、沿x 轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度B、向右平移个单位长度C、向左平移个单位长度D、向左平移个单位长度6、把函数y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),然后把图象向左平移个单位,则所得到图象对应的函数解析式为()A、 B、C、 D、1、D2、A3、D.4、D.5、A.6、D。
三角函数图像变换总结
三角函数图像变换总结三角函数是数学中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。
三角函数的图像变换是三角函数研究中的一个重要内容,通过对三角函数图像的变换,可以更直观地理解三角函数的性质和特点。
本文将对三角函数图像的平移、垂直伸缩和水平伸缩等变换进行总结,希望能够帮助读者更好地理解三角函数图像的变换规律。
1. 平移变换。
平移是指将函数图像沿着坐标轴的方向进行平移。
对于三角函数图像而言,平移包括水平平移和垂直平移两种情况。
水平平移是指将函数图像沿着横坐标轴的方向进行平移,而垂直平移则是指将函数图像沿着纵坐标轴的方向进行平移。
对于三角函数y=sin(x)而言,将其图像沿着横坐标轴平移a个单位,则新的函数图像为y=sin(x-a);将其图像沿着纵坐标轴平移b个单位,则新的函数图像为y=sin(x)+b。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像平移变换。
2. 垂直伸缩变换。
垂直伸缩是指将函数图像沿着纵坐标轴的方向进行伸缩。
对于三角函数图像而言,垂直伸缩可以分为垂直方向的拉伸和压缩两种情况。
对于三角函数y=sin(x)而言,将其图像沿着纵坐标轴方向进行拉伸k倍,则新的函数图像为y=ksin(x);将其图像沿着纵坐标轴方向进行压缩k倍,则新的函数图像为y=(1/k)sin(x)。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像垂直伸缩变换。
3. 水平伸缩变换。
水平伸缩是指将函数图像沿着横坐标轴的方向进行伸缩。
对于三角函数图像而言,水平伸缩可以分为水平方向的拉伸和压缩两种情况。
对于三角函数y=sin(x)而言,将其图像沿着横坐标轴方向进行拉伸k倍,则新的函数图像为y=sin(kx);将其图像沿着横坐标轴方向进行压缩k倍,则新的函数图像为y=sin(x/k)。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像水平伸缩变换。
通过以上对三角函数图像变换的总结,我们可以发现三角函数图像的变换规律其实并不复杂。
三角函数图象的平移和伸缩
三角函数图象的平移和伸缩函数 y Asi n ( x) k的图象与函数 y sin x 的图象之间可以通过变化 A,,,k来相互转化. A,影响图象的形状,,k影响图象与x 轴交点的位置.由 A 引起的变换称振幅变换,由引起的变换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩y sin x 的图象向左 ( >0) 或向右 (0)平移个单位长度得 y sin( x) 的图象横坐标伸长 (0<<1) 或缩短 ( >1)到原来的1(纵坐标不变 )得 y sin(x) 的图象纵坐标伸长 ( A 1) 或缩短 (0< A <1)为原来的 A倍 (横坐标不变 )得 y Asin(x) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 y Asin( x) k 的图象.y sin x纵坐标不变横坐标向左平移π/3个单位纵坐标不变横坐标缩短为原来的 1/2横坐标不变纵坐标伸长为原来的 3倍先伸缩后平移y sin x 的图象纵坐标伸长 ( A 1)或缩短 (0 A 1)为原来的 A倍( 横坐标不变 )y sin(x)3y sin(2x)3y 3sin(2x)3得 yAsin x 的图象 横坐标伸长 (0 1) 或缩短 ( 1)到原来的 1(纵坐标不变 )得 yAsin( x) 的图象向左 ( 0)或向右 ( 0)平移个单位得 yAsin x( x ) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 yA sin( x ) k 的图象.纵坐标不变y sin x横坐标缩短为原来的 1/2纵坐标不变横坐标向左平移π /6个单位横坐标不变纵坐标伸长为原来的 3倍y sin 2xy sin(2x)3y 3sin(2x ) 3例 1 将 y sin x 的图象怎样变换得到函数y 2sin2 xπ1 的图象.4解:(方法一)①把y sin x 的图象沿 x 轴向左平移π个单位长度,得y sin xπ的图象;②将所得44图象的横坐标缩小到原来的1,得 y sin 2xπ的图象;③将所得图象的纵坐标伸长到原来的2 倍,得24y 2sin 2xπ的图象;④最后把所得图象沿y 轴向上平移 1 个单位长度得到y2sin 2xπ 1 的图象.44(方法二)①把 ysin x 的图象的纵坐标伸长到原来的2 倍,得 y 2sin x 的图象;②将所得图象的横坐标缩小到原来的1,得 y 2sin2 x 的图象; ③将所得图象沿 x 轴向左平移 π个单位长度得 y 2sin 2 x π 的 2 88 图象;④最后把图象沿 y 轴向上平移 1 个单位长度得到 y π 1 的图象.2sin 2 x4说明: 无论哪种变换都是针对字母x 而言的.由 ysin 2x 的图象向左平移π个单位长度得到的函数图象8的解析式是 y sin 2xπ而不是 ysin 2 xπ ,把 ysin xπ的图象的横坐标缩小到原来的1,得到884 2的函数图象的解析式是y sin 2xπ而不是y sin 2 x π .44 对于复杂的变换,可引进参数求解.例 2将 y sin 2 x 的图象怎样变换得到函数y cos 2 xπ的图象.4分析:应先通过诱导公式化为同名三角函数.解: y sin 2 x cos π2x cos 2x π ,22在 y cos 2xπ中以 x a 代 x ,有 y cos 2( x a)πcos 2x2a π .222 根据题意,有 2 x 2a π 2x π,得 a π.2 4 8所以将 y sin 2 x 的图象向左平移π个单位长度可得到函数y cos 2xπ 的图象.84。
高一三角函数图象的平移和伸缩
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 分析:应先通过诱导公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭, 在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 练习1、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象F 2关于直线对称,则θ的一个可能取值是( )A 、B 、C 、D 、 2、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( )A 、B 、C 、D 、sin (2x )+3 3、要得到函数y=cos()24x π-的图象,只需将y=sin 2x 的图象( ) A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位 4、若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1y= sinx 2的图象则y=f(x)是( ) A . 1y=sin(2)122x π++ B. 1y=sin(2)122x π-+ C. 1y=sin(2)124x π++ D. 1sin(2)124y x π=-+ 5.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位6.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位C .向左平移π3个单位 D .向左平移π6个单位7.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度8.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度C 向左平移4π个单位长度 D 向右平移4π个单位长度9.把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是(C ) A .(1-y )sin x +2y -3=0 B .(y -1)sin x +2y -3=0 C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0。
三角函数变换法则
三角函数变换法则引言三角函数是数学中常见的一类函数,它们在几何和物理等领域中具有重要的应用。
三角函数变换法则是指通过一些变换操作,可以将一个三角函数的图像转换为另一个三角函数的图像,从而更好地理解和分析问题。
本文将介绍三角函数变换法则的基本概念和应用。
一、平移变换平移是三角函数图像变换中最常见的操作之一。
平移可以将函数图像沿着横轴或纵轴方向移动一定的距离。
对于正弦函数和余弦函数来说,平移可以用以下的式子表示:y = f(x ± a)其中f(x)表示原始函数的表达式,a表示平移的距离。
当a为正数时,函数图像沿着横轴正方向平移;当a为负数时,函数图像沿着横轴负方向平移。
二、伸缩变换伸缩是指通过改变函数图像在横轴或纵轴方向上的比例关系来改变函数图像的形状。
对于正弦函数和余弦函数来说,伸缩可以用以下的式子表示:y = a * f(bx)其中f(x)表示原始函数的表达式,a和b分别表示纵轴和横轴方向上的伸缩因子。
当a大于1时,函数图像在纵轴方向上被拉伸;当a小于1时,函数图像在纵轴方向上被压缩。
当b大于1时,函数图像在横轴方向上被压缩;当b小于1时,函数图像在横轴方向上被拉伸。
三、反射变换反射是指将函数图像关于横轴或纵轴进行翻转。
对于正弦函数和余弦函数来说,反射可以用以下的式子表示:y = -f(x) 或 y = f(-x)其中f(x)表示原始函数的表达式。
当对称轴为横轴时,函数图像在纵轴方向上进行翻转;当对称轴为纵轴时,函数图像在横轴方向上进行翻转。
四、综合变换在实际应用中,我们可以将平移、伸缩和反射等变换操作进行组合,从而得到更复杂的函数图像。
例如,我们可以将平移和伸缩结合起来,将函数图像沿着横轴平移并在纵轴方向上进行拉伸或压缩。
这样的综合变换可以用以下的式子表示:y = a * f(b(x ± c))其中f(x)表示原始函数的表达式,a、b和c分别表示纵轴方向上的伸缩因子、横轴方向上的伸缩因子和平移的距离。
三角函数图象的平移和伸缩
三角函数图象的平移和伸缩河北 张军红函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。
三角函数的变换
三角函数的变换三角函数是数学中非常重要的概念之一,它在几何学、物理学和工程学等领域中有着广泛的应用。
在这篇文章中,我们将讨论一些与三角函数相关的变换,包括平移、伸缩和反转等。
首先,让我们来了解一下正弦函数的平移。
正弦函数通常表示为y= sin(x),其中x是自变量,y是因变量。
当我们对正弦函数进行平移时,我们会添加一个常数C到自变量x中,如y = sin(x + C)。
平移通常沿x轴的方向进行,可以将整个函数向左或向右移动。
下一种变换是正弦函数的伸缩。
当我们对正弦函数进行伸缩时,我们会将自变量x除以一个常数A,如y = sin(x/A)。
伸缩可以使曲线变得更陡峭或更平缓。
当A大于1时,曲线会变得更陡峭;当A小于1时,曲线会变得更平缓。
另一个常见的三角函数变换是反转。
当我们对正弦函数进行反转时,我们会将自变量x替换为-x,如y = sin(-x)。
这将使曲线关于y轴对称。
类似地,我们也可以对余弦函数和正切函数进行反转。
除了正弦函数的变换,余弦函数也可以进行相似的变换。
余弦函数表示为y = cos(x),它的变换方式与正弦函数类似。
当我们对余弦函数进行平移、伸缩或反转时,我们可以得到不同形状的曲线。
最后,让我们来讨论一下正切函数的变换。
正切函数表示为y =tan(x),它与正弦函数和余弦函数在形状上有很大的区别。
正切函数在某些点上会无穷大,这些点称为函数的奇点。
当我们对正切函数进行平移、伸缩或反转时,同样可以得到不同形状的曲线。
总结起来,三角函数的变换包括平移、伸缩和反转。
通过对自变量进行加减、除以常数以及取反操作,我们可以改变三角函数的形状和位置。
这些变换在数学和科学的研究中起着重要的作用,能够帮助我们更好地理解和分析各种现象和问题。
希望通过这篇文章的介绍,你能够对三角函数的变换有更深入的了解,并且能够在实际应用中灵活运用它们。
三角函数的变换是数学的基础知识,也是其他更高级的数学概念和技巧的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数图象的平移和
伸缩
-CAL-FENGHAI.-(YICAI)-Company One1
三角函数图象的平移和伸缩
函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由
ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换
称上下平移变换,它们都是平移变换.
既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度
得sin()y x ϕ=+的图象()
ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ϕ=++的图象.
x
y sin =)
3sin(π
+=x y )
3
2sin(π
+=x y )
3
2sin(3π
+=x y 纵坐标不变 横坐标向左平移π/3 个单位
纵坐标不变 横坐标缩短为原来的1/2 横坐标不变 纵坐标伸长为原来的3倍
先伸缩后平移
sin y x =的图象(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得sin y A x =的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象
(0)(0)
ϕϕϕω
><−−−−−−−→向左或向右平移
个单位
得sin ()y A x x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ωϕ=++的图象.
例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫
=++ ⎪⎝
⎭
的图象.
解:(方法一)①把sin y x =的图象沿x 轴向左平移π
4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝
⎭
的图
象;②将所得图象的横坐标缩小到原来的1
2,得πsin 24y x ⎛⎫=+ ⎪⎝
⎭
的图象;③将所得图象的纵坐标
伸长到原来的2倍,得π2sin 24y x ⎛⎫
=+ ⎪⎝
⎭
的图象;④最后把所得图象沿y 轴向上平移1个单位长
度得到π2sin 214y x ⎛⎫=++ ⎪⎝
⎭
的图象.
)
3
2sin(3π
+=x y x
y sin =x
y 2sin =)
3
2sin(π
+=x y 纵坐标不变 横坐标缩短为原来的1/2 纵坐标不变 横坐标向左平移π/6 个单位
横坐标不变 纵坐标伸长为原来的3倍
(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的1
2,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8
个单位
长度得π2sin 28y x ⎛⎫
=+ ⎪⎝
⎭
的图象;④最后把图象沿y 轴向上平移1个单位长度得到
π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π
8
个单位长度得
到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝
⎭
而不是πsin 28y x ⎛⎫=+ ⎪⎝
⎭
,把πsin 4y x ⎛
⎫=+ ⎪⎝
⎭
的图象的横坐标
缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝
⎭
而不是πsin 24y x ⎛⎫=+ ⎪⎝
⎭
.
对于复杂的变换,可引进参数求解.
例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫
=- ⎪⎝
⎭
的图象.
分析:应先通过诱导公式化为同名三角函数.
解:ππsin 2cos 2cos 22
2y x x x ⎛⎫⎛
⎫==-=- ⎪ ⎪⎝⎭
⎝
⎭
,
在πcos 22y x ⎛⎫=- ⎪⎝
⎭
中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥
⎣
⎦
⎝
⎭
. 根据题意,有π
π22224x a x --=-,得π8
a =-.
所以将sin 2y x =的图象向左平移π
8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝
⎭
的图象.。