苏科版七年级上第二章有理数拓展提优试卷(有答案)-(数学)

合集下载

苏科版数学七年级数学上册第二章有理数培优单元测试试卷

苏科版数学七年级数学上册第二章有理数培优单元测试试卷

苏科版数学七年级数学上册第二章有理数培优单元测试试卷一、选择题1.在-,0,--,-,2,,-中负数的个数有A. 3B. 4C. 5D. 62.下列计算不正确的是( )A. B.C. D.3.下列各对数中,互为相反数的是( )A. 和2B. 和C. 和D. 和4.在数轴上表示a、b两数的点如图所示,则下列判断正确的是( )A. B. C. D.5.下列说法正确的是A. 一个数的绝对值一定比0大B. 绝对值等于它本身的数一定是正数C. 一个数的绝对值越大,表示它的点在数轴上越靠右D. 绝对值最小的数是06.用科学记数法表示中国的陆地面积约为:,原来的数是A. 9600000B. 96000000C. 960000D. 960007.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么的值是( )A. 1B. 4C. 7D. 98.下列数最大的是( )A. B. C. D.9.下列计算结果正确的是( )A. B.C. D.10.已知,,,,,,推测的个位数字是A. 1B. 3C. 7D. 9二、填空题11.比较大小:_______用“”“”或“”填空.12.计算下列各题直接写出答案:______________;______________;____________;_____________.13.若,则______________.14.已知:,.请根据以上等式的构成规律写出:_______________;计算:_______________.15.在数轴上,点A表示的数是1,若点B与点A之间距离是3,则点B表示的数是_________.16.若,则____________.17.到数轴上表示和表示10的两点距离相等的点表示的数是_________.18.已知,,且,则的值为______.19.下列说法:符号不同的两个数互为相反数;互为相反数的两个数绝对值相等;几个数的积的符号由负因数的个数决定;两个有理数的和大于它们的差;两数比较大小,绝对值大的反而小其中正确的有__________.20.观察下列算式:根据上述算式中的规律,你认为的末位数字是_________ .三、计算题21.计算:;22.计算题请写出计算步骤:;.四、解答题23.在所给的数轴上表示下列四个数:,0,,1;并把这四个数按从小到大的顺序,用“”号连接起来.用“”号连接起来:________________________________________.24.对男生进行引体向上的测试,规定能做10个及以上为达到标准测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示,刚好10个用0表示已知8名男生引体向上的测试结果如下:,,0,,,,,.这8名男生有百分之几达到标准?这8名男生共做了多少个引体向上?25.某出租车司机从赣东大道的汽车站出发在赣东大道将赣东大道看作一条直线上来回载客假定向南行驶的路程记为正数,向北行驶的路程记为负数,行驶的各段路程依次为单位::,,,,,,出租车最后是否回到出发点汽车站?出租车离汽车站最远是多少km?在行程中,如果每行驶4km载到一个顾客,则出租车一共载到多少顾客?26.有理数a、b、c在数轴上的位置如图所示:比较a、b、的大小用“”连接;若,求的值;若,,,且a、b、c对应的点分别为A、B、C,问在数轴上是否存在一点M,使M与B 的距离是M与A的距离的3倍,若存在,请求出M点对应的有理数;若不存在,请说明理由.。

苏科版七年级数学上册 第二章 有理数 单元检测试题(有答案)

苏科版七年级数学上册 第二章 有理数 单元检测试题(有答案)

第二章 有理数 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )1. 在227,π3,1.62,0四个数中,有理数的个数为( )A.4B.3C.2D.12. 2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为( )A.360×102B.36×103C.3.6×104D.0.36×1053. 有下列四个算式:①(−5)+(+3)=−8;②−(−2)3=6;③(+56)+(−16)=23;④−3÷(−13)=9. 其中,错误的有( )A.0个B.1个C.2个D.3个4. 不小于−4的非正整数有( )A.5个B.4个C.3个D.2个5. 小明玩“24点”游戏时抽到了以下四个4,要求用数学运算符号运算,结果为24,请判断下列算式正确的是( )A.(4+4)(4−√4)=24B.4+4×(4+4)=24C.(4+4)(4−4−1)=24D.(4+4)(4−40)=24 6. 下列算式中,运算结果为负数的是( )A.−|−1|B.−(−2)3C.−(−52)D.(−3)27. 下列实数中,不是无理数的是()3 D.−2A.√2B.πC.√38. 下列说法中①相反数等于本身的数是0,②绝对值等于本身的是正数,③倒数等于本身的数是±1,正确的个数为()A.3个B.2个C.1个D.0个二、填空题(本题共计12 小题,每题3 分,共计36分,)的整数的积等于________.9. 绝对值不大于51310. 如图,这两个圈分别表示正数集合和整数集合,则它们的重叠部分表示的是________集合.11. 如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是________.12. 比−3小5的数是________,比−3∘C高5∘C的温度是________.13. 数轴上A、B两点之间的距离为3,若点A表示数2,则B点表示的数为________.14. 平方和绝对值都是它本身的相反数的数是________.15. 绝对值小于4的所有整数的积是________ .绝对值不大于2的所有非正整数的和是________;16. 对于算式15−144÷(7+5)应先算________,再算________,最后算________.17. −(−13)是________的相反数.18. 已知|a|=3,|b|=4,且a >b ,则a ×b =________.19. +6+9−15+3=________+________+________-________.20. 已知a ,b ,c ,d 为有理数,且|2a +b +c +2d +1|=2a +b −c −2d −2,则(2a +b −12)(2c +4d +3)=________. 三、 解答题 (本题共计 8 小题 ,共计60分 , )21. −8×(+12)×(−7)×0.22. (−212)÷(−5)×(−313).23. (79−56+34+718)÷(−136).24. 已知|4−y|+|x +7|=0,求x−y xy 的值.25. 若|a+1|+|b−2|+(c+3)2=0,求(a−1)(b+2)(c−3)的值.26. 若a、b互为相反数,c、d互为倒数,m的绝对值为2,求:a+ba+b+c−cd+2m的值.27. 我们把从1开始的几个连续自然数的立方和记为S n,那么有:S1=13=12=[1×(1+1)2]2S2=13+23=(1+2)2=[2×(1+2)2]2S3=13+23+33=(1+2+3)2=[3×(1+3)2]2S4=13+23+33+43=(1+2+3+4)2=[4×(1+4)2]2…观察上面的规律,完成下面各题:(1)写出S5,S6的表达式;(2)探索写出S n的表达式;(3)求113+123+...+203的值.28. 已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b−3)2=0.(1)则a=________,b=________;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A,B两点的距离和为11,若点C在数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.(温馨提示:M,N之间距离记作|MN|,点M,N在数轴上对应的数分别为m,n,则|MN|=|m−n|.)参考答案一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】B【解答】解:在227,π3,1.62,0四个数中,有理数为227,1.62,0,共3个. 故选B .2.【答案】C【解答】36000=3.6×104,3.【答案】C【解答】解:①(−5)+(+3)=−2,原来的计算错误;②−(−2)3=8,原来的计算错误;③(+56)+(−16)=23,原来的计算正确; ④−3÷(−13)=9,原来的计算正确.错误的有2个.故选C .4.【答案】A【解答】解:不小于−4的非正整数有:0,−1,−2,−3,−4.共有5个.故选A .5.【答案】D【解答】解:A ,原式=8(4−√4)=32−8×2=16,此选项错误;B ,原式=4+4×8=36,此选项错误;C ,原式=8×(4−14)=30,此选项错误;D ,原式=8×(4−1)=24,此选项正确.故选D .6.【答案】A【解答】解:∵ −|−1|=−1,故选项A 符合题意,∵ −(−2)3=−(−8)=8,故选项B 不符合题意,∵ −(−52)=52,故选项C 不符合题意, ∵ (−3)2=9,故选项D 不符合题意,故选A .7.【答案】D【解答】解:无理数就是无限不循环小数,分析选项可得,A 、B 、C 都是无理数,故选项错误; D 是有理数,故选项正确.故选D .8.【答案】B【解答】①相反数等于本身的数是0,故①符合题意,②绝对值等于本身的是非负数,故②不符合题意,③倒数等于本身的数是±1,故③符合题意,二、 填空题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )9.【答案】【解答】绝对值不大于51的整数有:±5,±4;±3;±2;±1;0,3的所有整数的积为0.所以绝对值不大于51310.【答案】正整数【解答】解:正数集合和整数集合,则它们的重叠部分表示的是正整数,故答案为:正整数.11.【答案】2−2π【解答】∵ 半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∵ OA′之间的距离为圆的周长=2π,A′点在2的左边,∵ A′点对应的数是2−2π.12.【答案】−8,2∘C【解答】解:−3−5=−8;−3∘C+5∘C=2∘C.故答案为:−8;2∘C.13.【答案】−1或5【解答】当点B在点A的左边的时候,点B表示的数为2−3=−1;当点B在点A的右边的时候,点B表示的数为2+3=5;所以点B表示的数为−1或5,14.【答案】0和−1【解答】平方与绝对值都是它本身的相反数的数是:0和−1.15.【答案】0,−3【解答】解:绝对值小于4的所有整数为:−3,−2,−1,0,1,2,3,它们的积为:(−3)×(−2)×(−1)×0×1×2×3=0;绝对值不大于2的所有非正整数为:−2,−1,0,它们的和为:(−2)+(−1)+0=−3.故答案为:0;−3.16.【答案】括号,除法,加法【解答】解:先算括号,再算除法,最后算减法.故答案为:括号;除法;减法.17.【答案】−13【解答】解:−(−13)的相反数是−13,故答案为:−13.18.【答案】−12或12【解答】解:∵ |a|=3,|b|=4,∵ a=±3,b=±4,∵ a>b,∵ a=±3,b=−4,∵ a×b=3×(−4)=−12,或a×b=−3×(−4)=12.故答案为:−12或12.19.【答案】6,9,3,15【解答】解:原式=6+9+3−15.故答案为:6;9;3;15.20.【答案】【解答】∵ |2a +b +c +2d +1|=2a +b −c −2d −2,∵ 2a +b +c +2d +1=2a +b −c −2d −2或−2a −b −c −2d −1=2a +b −c −2d −2,∵ 2c +4d =−3或2a +b =12,∵ (2a +b −12)(2c +4d +3)=0, 三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 )21.【答案】解:−8×(+12)×(−7)×0=0.【解答】解:−8×(+12)×(−7)×0=0.22.【答案】解:(−212)÷(−5)×(−313), =−52×15×103, =−53.【解答】解:(−212)÷(−5)×(−313),=−52×15×103, =−53.23.【答案】解:原式=(79−56+34+718)×(−36)=−36×79+36×56−36×34−36×718=−28+30−27−14=−39.【解答】解:原式=(79−56+34+718)×(−36)=−36×79+36×56−36×34−36×718=−28+30−27−14=−39.24.【答案】解:由题意得,x+7=0,4−y=0,解得,x=−7,y=4,则x−yxy =−7−4−7×4=1128.【解答】解:由题意得,x+7=0,4−y=0,解得,x=−7,y=4,则x−yxy =−7−4−7×4=1128.25.【答案】解:由题意得:a+1=0, b−2=0, c+3=0,即a=−1, b=2, c=−3.∵ (a−1)(b+2)(c−3)=−2×4×(−6)=48.【解答】解:由题意得:a+1=0, b−2=0, c+3=0,即a=−1, b=2, c=−3.∵ (a−1)(b+2)(c−3)=−2×4×(−6)=48.26.【答案】解:∵ a、b互为相反数,c、d互为倒数,∵ a+b=0,cd=1,∵ m的绝对值为2,∵ m=±2,∵ 当m=2时,原式=−1+4=3;当m=−2时,原式=−1−4=−5.∵ 原代数式的值为3或−5.【解答】解:∵ a 、b 互为相反数,c 、d 互为倒数, ∵ a +b =0,cd =1, ∵ m 的绝对值为2, ∵ m =±2,∵ 当m =2时,原式=−1+4=3; 当m =−2时,原式=−1−4=−5. ∵ 原代数式的值为3或−5. 27. 【答案】解:(1)S 5=13+23+33+43+53=(1+2+3+4+5)2=【5×(1+5)2】2, S6=13+23+33+43+53+63=(1+2+3+4+5+6)2=【6×(1+6)2】2;(2)S n =[n(1+n)2]2(3)原式=S 20−S 10=【20×(1+20)2】2−【10×(1+10)2】2=41075.【解答】解:(1)S 5=13+23+33+43+53=(1+2+3+4+5)2=【5×(1+5)2】2, S6=13+23+33+43+53+63=(1+2+3+4+5+6)2=【6×(1+6)2】2;(2)S n =[n(1+n)2]2 (3)原式=S 20−S 10=【20×(1+20)2】2−【10×(1+10)2】2=41075.28.【答案】 −4,3(2)点C 在数轴上所对应的数为x , ∵ C 在B 点右边, ∵ x >3. 根据题意得x −3+x −(−4)=11, 解得x =5.即点C 在数轴上所对应的数为5;(3)当A在点B的左边时,2t−t=3−(−4)−4,解得t=3;当A在点B的右边时,2t−t=3−(−4)+4,解得t=11.故运动时间t的值为3秒或11秒.【解答】解:(1)∵ |a+4|+(b−3)2=0,∵ a+4=0,b−3=0,解得a=−4,b=3.点A,B表示在数轴上为:故答案为:−4;3.(2)点C在数轴上所对应的数为x,∵ C在B点右边,∵ x>3.根据题意得x−3+x−(−4)=11,解得x=5.即点C在数轴上所对应的数为5;(3)当A在点B的左边时,2t−t=3−(−4)−4,解得t=3;当A在点B的右边时,2t−t=3−(−4)+4,解得t=11.故运动时间t的值为3秒或11秒.。

苏教版七年级数学第二章《有理数》拓展提优练习(含答案解析)

苏教版七年级数学第二章《有理数》拓展提优练习(含答案解析)

七年级数学第二章《有理数》拓展提优一.填空题1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n与原点的距离不小于26,那么n的最小值是.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.已知a、b、c均是不等于0的有理数,则的值为.二.解答题5.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;<<<<<(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.6.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为,点B表示的数为.(2)用含t的代数式表示P到点A和点C的距离:P A=,PC=.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q 点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.7.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?8.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+6,﹣3,+11,﹣9,﹣7,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?9.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x =3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x =﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求的值.(3)若abcd≠0,直接写出+的值.10.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是,数轴上表示数x和3的两点之间的距离表示为;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是.11.已知a、b、c在数轴上的位置如图所示,回答下列问题:(1)化简:3|a﹣c|﹣2|﹣a﹣b|;(2)令y=|x﹣a|+|x﹣b|+|x﹣c|,x满足什么条件时,y有最小值,求最小值12.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=,已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数.(1)计算:a2=,a3=;(2)根据你发现的规律计算a2018的值.13.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.14.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1==()2(2)用含有n的式子表示上面的规律:.(3)用找到的规律解决下面的问题:计算:=.15.对于有理数,定义一种新运算“⊕”,观察下列各式:1⊕2=|1×4﹣2|=2,2⊕8=|2×4﹣8|=0,﹣3⊕4=|﹣3×4﹣4|=16(1)计算:(﹣4)⊕3=,a⊕b=.(2)若a≠b,则a⊕b b⊕a(填入“=”或“≠”)(3)若有理数a,b在数轴上的对应点如图所示且a⊕(﹣b)=5,求[(a+b)⊕(a+b)]⊕(a+b)的值.16.已知有理数a、b互为相反数且a≠0,c、d互为倒数,有理数m和﹣2在数轴上表示的点相距3个单位长度,求|m|﹣+﹣cd的值.17.若a,b互为相反数且都不为零,c,d互为倒数,m与最小的正整数在数轴上对应点间的距离为2,求(a+b)•+mcd+的值.18.定义☆运算,观察下列运算:(+5)☆(+14)=+19,(﹣13)☆(﹣7)=+20,(﹣2)☆(+15)=﹣17,(+18)☆(﹣7)=﹣25,0☆(﹣19)=+19,(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号,异号.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.(2)计算:(+17)☆[0☆(﹣16)]=.(3)若2×(2☆a)﹣1=3a,求a的值.19.定义一种新运算:观察下列各式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=24(﹣4)⊙(﹣3)=﹣4×4﹣3=﹣19完成下列题目(1)2⊙(﹣3)=,(﹣5)⊙(﹣2)=(2)计算并比较1⊙[(﹣2)⊙1]与(﹣1)⊙[1⊙(﹣2)]的大小(3)计算1⊙(﹣1)+2⊙(﹣2)+3⊙(﹣3)+…+16⊙(﹣16)的值.20.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数1表示的点与﹣1表示的点重合,则数轴上数﹣5表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为7(A在B的左侧),并且A、B两点经折叠后重合,则A、B两点表示的数分别是.③若数轴上C、D两点之间的距离为d,C在D的左侧并且C、D两点经折叠后重合,求C、D两点表示的数分别是多少?(用含d的代数式表示)21.阅读下列材料,回答提出的问题我们知道:一个数a的绝对值可以表示成|a|,它是一个非负数,|a|在数轴上含义是:表示a这个数的点到原点的距离(距离,当然不可能是负数),这样就把|a|与数轴上的点建立了一种联系(这正是绝对值的几何意义),比如说|2|的几何意义就是:数轴上表示2这个数的点到原点的距离,它是2,所以说|2|=2,|﹣2|表示﹣2这个数在数轴上所对应的点到原点的距离,它也是2,所以说|﹣2|=2,严格来说,在数轴上,一个数a在数轴上所对应的点到原点(原点对应的数为0)的距离应该表示为|a﹣0|,但平时我们都写成|a|,原因你明白.(1)若给定|x|=3,要找这样的x,请按照上面材料中的说法,解释它的几何意义并找出对应的x;(2)实际上,对于数轴上任意两个数x1,x2之间的距离我们也可以表示为|x1﹣x2|,反过来,|x1﹣x2|这个绝对值的几何意义就是:数轴上表示x1与x2这两个数的点之间的距离,你能结合上面的叙述,解释|5﹣2|=3的几何意义吗?请按你的理解说明:|5+2|=7呢?如果能解释这个,你了不起;(3)若|x﹣2019|=1,请直接写出x的值.22.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值.23.已知数轴上两点A,B对应的是﹣2和4,点P为数轴上一动点,(1)若点P到点A和点B的距离相等,求点P对应的数.(2)若点P在点A和点B之间,且将线段AB分成1:3两部分,求点P对应的数.(3)数轴上是否存在点P,使得点P到点A的距离与到点B的距离之比为1:2?若存在,求点P对应的数;若不存在,说明理由.24.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若两点之间的距离为2,那么x值为;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.答案与解析一.填空题(共4小题)1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是﹣1008.【分析】奇数次移动是左移,偶数次移动是右移,第n次移动n个单位.每左移右移各一次后,点A右移1个单位,故第2018次右移后,点A向右移动1×(2018÷2)个单位,第2019次左移2019个单位,故点A2019表示的数是1×(2018÷2)﹣2019×1+2.【解答】解:第n次移动n个单位,第2019次左移2019×1个单位,每左移右移各一次后,点A右移1个单位,所以A2019表示的数是1×(2018÷2)﹣2019×1+1=﹣1008.故答案为:﹣1008.【点评】本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n与原点的距离不小于26,那么n的最小值是17.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于26时,n的最小值是17.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,A14表示的数为19+3=22,A16表示的数为22+3=25,A18表示的数为25+3=28,所以点A n与原点的距离不小于26,那么n的最小值是17,故答案为:17.【点评】本题考查了规律型:认真观察、仔细思考,找出点表示的数的变化规律是解题关键.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是﹣2.【分析】设点C表示的数是x,利用AB=AC﹣BC=1,列出方程解答即可.【解答】解:设点C表示的数是x,则AC=x﹣(﹣9)=x+9,BC=4﹣x,∵AB=1,即AC﹣BC=x+9﹣(4﹣x)=2x+5=1,解得:x=﹣2,∴点C表示的数是﹣2.故答案为:﹣2.【点评】本题主要考查数轴,解决此题的关键是能利用数轴上两点间的距离公式用含x 的式子表示出线段的长度.4.已知a、b、c均是不等于0的有理数,则的值为7或﹣1.【分析】分a、b、c三个数都是正数,两个正数,一个正数,都是负数四种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【解答】解:①a、b、c三个数都是正数时,a>0,b>0,c>0,ab>0,ac>0,bc>0,abc>0,原式=1+1+1+1+1+1+1,=7;②a、b、c中有两个正数时,不妨设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,abc<0,原式=1+1﹣1+1﹣1﹣1﹣1,=﹣1;③a、b、c有一个正数时,不妨设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,abc>0,原式=1﹣1﹣1﹣1﹣1+1+1,=﹣1;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,abc<0,原式=﹣1﹣1﹣1+1+1+1+1﹣1,=﹣1;综上所述,原式的值为7或﹣1,故答案为:7或﹣1.【点评】本题考查了有理数的除法,绝对值的性质,难点在于根据三个数的正数的个数分情况讨论.二.解答题(共19小题)5.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;﹣4<﹣3<﹣1.5<0< 2.5<3(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.【分析】(1)根据数轴是表示数的一条直线,可把数在数轴上表示出来;(2)根据数轴上的点表示的数右边的总比左边的大,可得答案;(3)根据数轴上两点间的距离是大数减小数,可得答案【解答】解:(1)如图;,(2)由数轴上的点表示的数右边的总比左边的大,得﹣4<﹣3<﹣1.5<0<2.5<3,故答案为:﹣4,﹣3,﹣1.5,0,2.5,3,(3)对.﹣4与﹣3之间距离等于2.5与3之间距离都是0.5.或者﹣4与﹣1.5之间距离等于2.5与0之间距离是2.5.【点评】本题考查了有理数大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.6.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为﹣24,点B表示的数为﹣12.(2)用含t的代数式表示P到点A和点C的距离:P A=2t,PC=36﹣2t.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q 点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.【分析】(1)因为点A在原点左侧且到原点的距离为24个单位长度,所以点A表示数﹣24;点B在点A右侧且与点A的距离为12个单位长度,故点B表示:﹣24+12=﹣12.(2)因为点P从点A出发,以每秒运动2两个单位长度的速度向终点C运动,则t秒后点P表示数﹣24+2t(0≤t≤18,令﹣24+2t=12,则t=18时点P运动到点C),而点A 表示数﹣24,点C表示数12,所以P A=|﹣24+2t﹣(﹣24)|=2t,PC=|﹣24+2t﹣12|=36﹣2t.(3)以点Q作为参考,则点P可理解为从点B出发,设点Q运动了m秒,那么m秒后点Q表示的数是﹣24+4m,点P表示的数是﹣12+2m,再分两种情况讨论:①点Q运动到点C之前;②点Q运动到点C之后.【解答】解:(1)设A表示的数为x,设B表示的数是y.∵|x|=24,x<0∴x=﹣24又∵y﹣x=12∴y=﹣24+12=﹣12.故答案为:﹣24;﹣12.(2)由题意可知:∵t秒后点P表示的数是﹣24+2t(0≤t≤18),点A表示数﹣24,点C 表示数12∴P A=|﹣24+2t﹣(﹣24)|=2t,PC=|﹣24+2t﹣12|=36﹣2t.故答案为:2t;36﹣2t.(3)设点Q运动了m秒,则m秒后点P表示的数是﹣12+2m.①当m≤9,m秒后点Q表示的数是﹣24+4m,则PQ=|﹣24m+4m﹣(﹣12+2m)|=2,解得m=5或7,此时P表示的是﹣2或2;②当m>9时,m秒后点Q表示的数是12﹣4(m﹣9),则PQ=|12﹣4(m﹣9)﹣(﹣12+2m)|=2,解得m=,此时点P表示的数是.答:P、Q两点之间的距离能为2,此时点P点表示的数分别是﹣2,2,.【点评】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解.7.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【分析】(1)根据定义发现:奇点表示的数到{M,N}中,前面的点M是到后面的数N 的距离的3倍,从而得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知:分两种情况列式:①PB=3P A;②P A =3PB;可以得出结论.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)30﹣(﹣50)=80,80÷(3+1)=20,30﹣20=10,﹣50+20=﹣30,故P点运动到数轴上的﹣30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为:3;﹣1.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.8.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+6,﹣3,+11,﹣9,﹣7,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+6)+(﹣3)+(+11)+(﹣9)+(﹣7)+(+12)+(﹣10)=(6+11+12)﹣(3+9+7+10)=29﹣29=0答:守门员最后回到了球门线的位置.(2)由观察可知:6﹣3+11=14米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+6|+|﹣3|+|+11|+|﹣9|+|﹣7|+|+12|+|﹣10|=6+3+11+9+7+12+10=58米.答:守门员全部练习结束后,他共跑了58米.【点评】本题考查了有理数的加减混合运算.关键是根据题意,正确列出算式.9.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x =3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x =﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求的值.(3)若abcd≠0,直接写出+的值.【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【解答】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,=1+1+1=3;③a,b,c两负一正,=﹣1﹣1+1=﹣1;④a,b,c两正一负,=﹣1+1+1=1.故的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则+=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则+=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则+═﹣3+1=﹣2;④若a,b,c,d有四个负数,则+═﹣4;⑤若a,b,c,d有四个正数,则+═4;故+的值为:±2,±4,0.【点评】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意=±1(x>0,结果为1,x<0,结果为﹣1).10.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是2,数轴上表示数x和3的两点之间的距离表示为|x﹣3|或|3﹣x|;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:5,式子|x+3|+|x+2|的最小值是1.②请你在草稿纸上画出数轴,当x等于2时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是7.【分析】(1)根据数轴上A、B两点之间的距离AB=|a﹣b|=|b﹣a|的表达式计算出绝对值;(2)要去掉绝对值符号,需要抓住已知点在数轴上进行分段讨论,写出去绝对值后的表达式讨论计算即可.【解答】解:(1)根据题意知﹣3和﹣5的两点之间的距离可表示为:|﹣3﹣(﹣5)|=2;数x和3的两点之间的距离|x﹣3|或|3﹣x|;故答案为2,|x﹣3|或|3﹣x|;(2)①∵﹣3≤x≤2,∴x+3≥0,x﹣2≤0,∴|x+3|+|x﹣2|=x+3﹣(x﹣2)=5所以当﹣3≤x≤2时,|x+3|+|x﹣2|的值总是一个固定的值为5.|x+3|+|x+2|是表示x到A、C的距离之和,可观察下图.当﹣3≤x≤﹣2时,由①可知|x+3|+|x+2|=1当﹣2<x≤2时,|x+3|+|x+2|=|x+2|+1+|x+2|=2|x+2|+1>1∴当﹣3≤x≤﹣2时,式子|x+3|+|x+2|的最小值是1.故答案为5,1.②画出图形,则可知,|x﹣4|+|x+3|+|x﹣2|是表示x的点到A、B、C三点距离之和.如下图分区间来讨论,可以得出当﹣3≤x≤2时,|x﹣4|+|x+3|+|x﹣2|=﹣x+4+x+3﹣x+2=﹣x+9,可见x=2取得最小值,﹣x+9=7;当2≤x≤4时,|x﹣4|+|x+3|+|x﹣2|=﹣x+4+x+3+x﹣2=x+5,x=2时取得最小值,x+5=7.所以式|x﹣4|+|x+3|+|x﹣2|当x等于2时,最小值是7.故答案为2,7.【点评】本题考查的是数轴上两点之间的距离和数的绝对值计算之间的关系,去掉绝对值之后代数式的表达是解题的关键,解此类题目要学会分区间讨论和数形结合的思想方法.11.已知a、b、c在数轴上的位置如图所示,回答下列问题:(1)化简:3|a﹣c|﹣2|﹣a﹣b|;(2)令y=|x﹣a|+|x﹣b|+|x﹣c|,x满足什么条件时,y有最小值,求最小值【分析】(1)从数轴上的标示可知c<0<a<b,由此去掉绝对值符号化简即可;(2)分区间进行去绝对值化简比较即可.【解答】解:(1)根据数轴上的标示知,c<0<a<b,∴a﹣c>0,﹣a﹣b<0,∴原式=3(a﹣c)﹣2(a+b)=3a﹣3c﹣2a﹣2b=a﹣2b﹣3c.(2)①当x≤c时,y=﹣x+a﹣x+b﹣x+c=﹣3x+a+b+c,因为该函数为减函数,所以当且仅当x=c时最小,最小值为:a+b﹣2c,②当c≤x≤a时,y=﹣x+a﹣x+b+x﹣c=﹣x+a+a﹣c,因为该函数为减函数,所以当且仅当x=a时最小,最小值为:a﹣c,③当a≤x≤b时,y=x﹣a﹣x+b+x﹣c=x﹣a+b﹣c,因为该函数为增函数,所以当且仅当x=b时最小,最小值为:2b﹣a﹣c,④当x≥b时,y=x﹣a+x﹣b+x﹣c=3x﹣a﹣b﹣c,因为该函数为增函数,所以当且仅当x=b时最小,最小值为:2b﹣a﹣c,从以上讨论中可知,只有当c≤x≤a时y的值是a﹣c,小于其他最小值,所以当c≤x≤a时y有最小值是a﹣c.【点评】本题不仅考查了数轴上的点的正、负和大小的判定,更重要的是考查了含绝对值符号的一元一次函数的极值问题,运用分类讨论的方法和函数的增加性来得出函数的极值的解题能力.12.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=,已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数.(1)计算:a2=,a3=4;(2)根据你发现的规律计算a2018的值.【分析】(1)根据规定的运算方法,依次计算出a2、a3;(2)进一步计算出a4、a5,即可发现每3个数为一个周期依次循环,然后用2018除以3,根据规律,即可得出答案.【解答】解:(1)a2==,a3==4.故答案为,4;(2)∵a1=﹣,a2=,a3=4,a4==﹣,a5==,…∴这列数以﹣,,4三个数依次不断循环出现;2018÷3=672…2,a2018=a2=.【点评】此题考查数字的变化规律,利用规定的运算方法,得出数字之间的循环规律,利用规律解决问题.13.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=.14.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=64=(8)2(2)用含有n的式子表示上面的规律:n(n+2)+1=(n+1)2.(3)用找到的规律解决下面的问题:计算:=.【分析】(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=82;含有n的式子表示的规律.(3)由(1+)(1+)=×××知,+…+(1+)=,利用此规律计算.【解答】解:(1)7×9+1=64=82;(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.(3)原式==.故答案为:64,8;n(n+2)+1=(n+1)2;.【点评】本题考查了有理数的运算,是找规律题,找到+…+(1+)=××××××…××=是解题的关键.15.对于有理数,定义一种新运算“⊕”,观察下列各式:1⊕2=|1×4﹣2|=2,2⊕8=|2×4﹣8|=0,﹣3⊕4=|﹣3×4﹣4|=16(1)计算:(﹣4)⊕3=19,a⊕b=|4a﹣b|.(2)若a≠b,则a⊕b≠b⊕a(填入“=”或“≠”)(3)若有理数a,b在数轴上的对应点如图所示且a⊕(﹣b)=5,求[(a+b)⊕(a+b)]⊕(a+b)的值.【分析】(1)根据题目中的例子可以解答本题;(2)根据题目中的新定义和(1)中的结果,可以解答本题;(3)根据题意和题目中的式子可以求得所求式子的值.【解答】解:(1)(﹣4)⊕3=|(﹣4)×4﹣3|=19,a⊕b=|4a﹣b|,故答案为:19,|4a﹣b|;(2)∵a⊕b=|4a﹣b|,b⊕a=|4b﹣a|,a≠b,∴(4a﹣b)﹣(4b﹣a)=4a﹣b﹣4b+a=4(a﹣b)+(a﹣b)=5(a﹣b)≠0,∴a⊕b≠b⊕a,故答案为:≠;。

苏教版七年级上册数学 第二章 2.6 有理数的除法提优卷(第3课时 )

苏教版七年级上册数学  第二章 2.6 有理数的除法提优卷(第3课时 )

苏教版七年级上册数学 第二章 有理数2.6 有理数的乘法与除法第3课时 有理数的除法1. (扬州中考题)与-2的乘积为1的数是( ) A.2 B.-2 C.21 D.21- 2.(2019秋・邳州期中)如果1-=a a,那么a 是( )A.正数B.负数C.非负数D.非正数3.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( )A.一定相等B.一定互为倒数C.一定互为相反数D.相等或互为相反数4.化简: =-436____________ =--4914____________ =--1236____________ 5. 计算:(1)-18÷0.6=____________(2)(-56)÷(-14)=____________(3)0.25÷(___________)=32- (4)(_________)÷1411=-4 6.若被除数是27-,除数比被除数小23,则商是____________. 7.计算: (1))32(2-÷ (2))6(7624-÷-(3))41(855.2-⨯÷- (4))32()143()74(-÷-÷-(5)2)21(214⨯-÷⨯- (6))3()25.0()58()32(-⨯-÷-÷-8. 某同学在计算-16÷a 时,误将“÷”看成“+”结果是-12,则-16÷a 的正确结果是( )A.6B.-6C.4D.-49.我们把2÷2÷2记作2③,(-4)÷(-4)记作(-4)②,那么计算9×(-3)④的结果为( ) A.1 B.3 C.31 D.91 10.某冷冻厂的冷库温度是-4℃,现有一批食品必须在-28℃下冷藏,如果每小时能降温6℃,则至少应等待_________小时才能放入该食品.11.(2019秋・滨州期中)已知4=x ,21=y ,且xy<0,则y x 的值等于_____________. 12.小丽在电脑中设置了一个有理数的运算程序:输入数“a”和“*”,再输入“b”,就可以得到运算a *b =(a-2b)÷(2a -b)的结果.则(-3)*31的值为_____________. 13.计算: (1))14534(9)11936(-⨯÷- (2)()7)412(54)721(5÷-⨯⨯-÷-(3))3210(]83)83[(8-÷⨯-÷-14. (2019秋・莱西期中)数学老师布置了一道思考题:“计算:)6531()121(-÷-”.小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为6104)12()6531()121()6531(=+-=-⨯-=-÷-, 所以61)6531()121(=-÷-. (1)请你判断小明的解答是否正确,并说明理由;(2)请你运用小明的解法解答下面的问题.计算:)836131()241(+-÷-15计算:)13111171()139711197214(++÷++15. (2019秋・重庆沙坪坝区校级月考)阅读下列材料:⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,,,即当x <0时,1-=-=xx x x 。

苏科版七年级上第二章有理数周末提优训练(二)(有答案)

苏科版七年级上第二章有理数周末提优训练(二)(有答案)

七上第二章有理数周末提优训练(二)班级姓名得分一、选择题1.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,……根据这个规律,则21+22+23+24+…+22018的末尾数字是()A. 6B. 4C. 2D. 02.缸内红茶菌的面积每天长大一倍,若经过19天就能长满整个缸面,那么长满半个缸面要经过()A. 9天B. 10天C. 16天D. 18天3.下列结论:①若a<0 时,;②若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③若,b互为相反数,则;④若,则, b互为相反数;正确的说法的个数是()A. 1个B. 2个C. 3个D. 4个4.有四个有理数1,2,3,-5,把它们平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:A=|1+3|+|2-5|.已知,数轴上原点右侧从左到右有两个有理数m、n,再取这两个数的相反数,那么,所有A的和为()A. 4mB.C. 4nD.5.一只小球落在数轴上的某点P0处,第一次从P0处向右跳1个单位到P1处,第二次从P1向左跳2个单位到P2处,第三次从P2向右跳3个单位到P3处,第四次从P3向左跳4个单位到P4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P2n+3处所表示的数恰好是n-3,则这只小球的初始位置点P0所表示的数是( )A. B. C. D.6.若a、b都是不为零的数,则的结果为()A. 3或B. 3或C. 或1D. 3或或17.下列说法:不存在最大的负整数;两个数的和一定大于每个加数;若干个有理数相乘,如果负因数有奇数个,则乘积一定是负数;绝对值等于它相反数的数是负数。

其中正确的个数是A. 0个B. 1个C. 2个D. 3个8.若,,且>b,那么的值是()A. 4037B. 1C. 1或4037D. 或9.已知,a,b是整数,且a b=64,则满足条件的a,b的值共有()A. 4对B. 5对C. 6对D. 7对二、填空题10.若a是不为1的实数,我们把1﹣称为a的差倒数,设a1=﹣,若a2是a1的差倒数,a3是a2的差倒数,a4是a3是差倒数,…,依此类推,a2017的值是____.11.若a, b, c为整数,且,计算+的值是______.12.若将下方数轴折叠,使数轴折叠后两线重合,若折叠前点B、C表示的数分别为﹣2.5与1,若折叠后B表示的点与数4所表示的点重合,则C点与数___表示的点重合.13.如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是______ .14.数列:0,2,4,8,12,18,…是我国的大衍数列,它也是世界数学史上第一道数列题.该数列中的奇数项和偶数项分别用代数式,表示,如第1个数为,第2个数为,第3个数为,…数轴上现有一点P从原点出发,依次以大衍数列中的数为距离向左右来回跳跃.第1 秒时,点P在原点,记为P1;第2秒点P1向左跳2个单位,记为P2,此时点P2表示的数为;第3 秒点P2向右跳4个单位,记为P3,点P3表示的数为2;…按此规律跳跃,点P15表示的数为__________________________.15.观察下列等式的结果,31=3,32=9,33=27,34=81,35=243,36=729,……,那么31,32,33,34,……,这2017个数的末位数字之和应为 .16.将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x-3,B表示的数为2x-5,C表示的数为5-x,则x=__________.17.计算=__________三、解答题18.阅读下面的材料:如图,在数轴上点表示的数为,点表示的数为,则点到点的距离记为.线段的长可以用右边的数减去左边的数表示,即=2-(-1)=3.请用上面的知识解答下面的问题:如图2所示,已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是_____;(2)①设点P运动x秒,则P运动的路程表示为__________,它在数轴上表示的数表示为_____________(用含x的代数式表示).②另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多少时间追上点R?此时P在数轴上表示的数是多少?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.19.阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点.请根据下列题意解答问题:(1)如图1,数轴上点Q表示的数为−1,点P表示的数为0,点K表示的数为1,点R表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K是有序点对[Q,R]的好点,但点K不是有序点对[R,Q]的好点.同理可以判断:点P__________有序点对[Q,R]的好点,点R______________有序点对[P,K]的好点(填“是”或“不是”);(2)如图2,数轴上点M表示的数为,点N表示的数为5,若点X是有序点对[M,N]的好点,求点X所表示的数,并说明理由?(3)如图3,数轴上点A表示的数为−20,点B表示的数为10.现有一只电子蚂蚁C从点B出发,以每秒2个单位的速度向左运动秒.当点A、B、C中恰有一个点为其余两有序点对的好点,求的所有可能的值.21、如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0.(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动.设运动的时间为t(秒)①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.22、观察下列算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+…+19=________;(2)请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)=________;(3)请利用上题猜想结果,计算39+41+43+…+99的值(要有计算过程)23、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5,用含t的式子填空:BP=____________________,AQ=__________;(2)当t=2时,求PQ的值;(3)当时,求t的值.答案和解析1.【答案】A【解析】【分析】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末位数字.根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得的末位数字.【解答】解:∵ ,,,,,,…,∴2018÷4=504…2,∵(2+4+8+6)×504+2+4=10086,∴ 的末位数字是6.故选A.2.【答案】D【解析】【分析】此题考查了有理数的乘方在实际中的应用,掌握有理数乘方的意义是解题的关键.设缸内红茶菌的面积最初是1,则经过一天的面积是2,经过x天的面积是2x,经过19天的面积是219,即为整个缸面的面积,从而进一步求得长满缸面的一半需要的天数.【解答】解:设缸内红茶菌的面积最初是1.根据题意,得2x=×219,解得:x=18.故选D.3.【答案】A【解析】【分析】本题考查有理数的乘法,相反数的知识.熟练掌握各个知识点是解题的关键.【解答】解:①若a<0 时,;错误,∵ ,∴ ;②若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;错误,若干个非0有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③若a,b互为相反数,则;错误,a,b不为0时,才成立;④若,则a, b互为相反数;正确.故选A.4.【答案】C【解析】【分析】本题考查了数轴,相反数,绝对值及整式的加减.先根据数轴表示数的方法判断m,n的符号及大小,再表示出其相反数的符号及大小,列举出m,n,-m,-n的所有分组并根据绝对值的性质分别计算出A,再将所以A的值求和即可.【解答】解:数轴上原点右侧从左到右有两个有理数m、n,∴n>m>0,则其相反数为-m,-n,且-n<-m<0,若m,n为一组,则A=|m+n|+|-m-n|=2m+2n;若m,-m为一组,则A=|m-m|+|n-n|=0;若m,-n为一组,则A=|m-n|+|n-m|=2n-2m;那么,所有A的和为2m+2n+0+2n-2m=4n.故选C.5.【答案】B【解析】【分析】本题主要考查数字字母变化规律的知识,关键是知道规定向右为正数,向左为负数. 【解答】解:设点P0所表示的数是x,由题意,x+1-2+3-4+5-……+2n+3=n-3,即x+1+(-2+3)+(-4+5)+……+(-2n-2+2n+3)=n-3,整理得x+1+n+1=n-3,x=-5,所以这只小球的初始位置点P0所表示的数是-5 ,故选B.6.【答案】B【解析】【分析】本题主要考查绝对值及有理数的混合运算,根据绝对值的性质可分a,b都大于零;a,b都小于零;a>0,b<0,或a<0,b>0情况进行讨论计算即可求解.【解答】解:当a>0,b>0时,原式==1+1+1=3;当a<0,b<0时,原式==-1-1+1=-1;当a>0,b<0时,原式==1-1-1=-1;当a<0,b>0时,原式==-1+1-1=-1.故选B.7.【答案】A【解析】【分析】本题主要考查的是有理数的加法、乘法法则的应用,举反例法的应用是解题的关键,依据有理数的分类以及有理数的加法法则、乘法法则进行判断即可.【解答】解:①最大的负整数是-1,故①错误;②两个负数的和小于每一个加数,故②错误;③当其中一个因数为零时,积为零,故③错误;④0的绝对值等于它的相反数,但是它不是负数,故④错误.故选A.8.【答案】A【解析】【分析】此题考查数轴,以及循环的有关知识,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.圆每转动一周,A、B、C、D循环一次,-2019与1之间有2020个单位长度,即转动2020÷4=505(周),据此可得.【解答】解:1-(-2019)=2020,2020÷4=505(周),所以应该与字母A所对应的点重合.故选A.9.【答案】C【解析】【分析】此题主要考查了绝对值的性质,比较有理数的大小,有理数的减法.能够根据已知条件正确地判断出a、b的值是解答此题的关键,先根据绝对值的性质,判断出a、b的大致取值,然后根据a>b,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=2018,|b|=2019,∴a=±2018,b=±2019,∵a>b,∴a=±2018,b=-2019,当a=2018,b=-2019时,a-b=2018-(-2019)=4037;当a=-2018,b=-2019时,a-b=-2018-(-2019)=1.故选C.10.【答案】A【解析】【分析】此题考查有理数的乘方,利用有理数的乘方的运算法则计算即可.【解答】解:∵ ,,,,∴满足条件的a,b的值共有4对.故选A.11.【答案】【解析】【分析】此题考查了数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.根据差倒数的定义分别计算出a1,a2,a3,a4,…则得到从a1开始每3个值就循环,而2017=3×672+1,所以a2017=a1=-【解答】解:∵a1=-,a2==,a3==4,a4==-,∴每3个数为一周期循环,∵2017÷3=672…1,∴a2017=a1=-,故答案为-12.【答案】2【解析】【分析】考查了绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意分类思想的运用. 根据绝对值的性质和整数的性质分情况:①a-b=0,c-a=-1;②a-b=0,c-a=1;③a-b=-1,c-a=0;④a-b=1,c-a=0;进行讨论即可求解.【解答】解:∵a,b,c为整数,且|a-b|5002+|c-a|4003=1,∴①a-b=0,c-a=-1,则b-c=1,(c-a)2006+|a-b|+|b-c|375=1+0+1=2;②a-b=0,c-a=1,则b-c=-1,(c-a)2006+|a-b|+|b-c|375=1+0+1=2;③a-b=-1,c-a=0,则b-c=1,(c-a)2006+|a-b|+|b-c|375=0+1+1=2;④a-b=1,c-a=0,则b-c=-1,(c-a)2006+|a-b|+|b-c|375=0+1+1=2.故(c-a)2006+|a-b|+|b-c|375的值是2.故答案为2.13.【答案】0.5.【解析】【分析】此题综合考查了数轴上的点和数之间的对应关系以及中心对称的性质.注意:数轴上的点和数之间的对应关系,即左减右加.【解答】解:∵B表示的点与数4所表示的点重合,∴对称中心表示的数,∴与C点重合的数.故答案为0.5.14.【答案】±π【解析】【分析】此题考查了数轴,用到的知识点是数轴的特点及圆的周长公式,关键是掌握点的移动与点表示的数之间的关系.根据直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,得出AA′之间的距离,即可求出答案.【解答】解:∵直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,∴AA′之间的距离为圆的周长=π,∴A点对应的数是±π.故答案为±π.15.【答案】56【解析】【分析】此题考查数字的规律问题,依据题意列出关于数列的关系式是解题的关键.依据奇数项和偶数项分别用代数式,表示,代入进行运算即可求得P15跳的单位数,依据跳跃规律即可得解.【解答】解:由题意可知:∵第1 秒时,点P在原点,记为P1;第2秒点P1向左跳2个单位,记为P2,此时点P2表示的数为-2;第3 秒点P2向右跳4个单位,记为P3……,∴跳的单位数以此为0,2,4,8,12,18,……∵奇数项和偶数项分别用代数式,表示,∴P15跳的单位数为=112,∵P2,P4在数轴的左侧,P3,P5在数轴的左侧,∴P15为P14向右跳112个单位,∴P15表示的数为56.故答案为56.16.【答案】10083【解析】【分析】此题主要考查了尾数特征,数字变化规律,根据已知得出数字变化规律是解题关键.根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187...得出3+32+33+34 (32017)末位数字相当于:3+9+7+1+…+3,因四个数字一个循环,所以这2017个数的末位数字之和即为504×(3+9+7+1)+3.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2017÷4=504…1,∴3+32+33+34…+32017的末位数字之和相当于:3+9+7+1+…+3=(3+9+7+1)×504+3=10083.故末位数字是10083.17.【答案】3【解析】【分析】此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,根据等边三角形的边长相等得出(5-x)-(2x-5)=2x-5-(x-3),求出x即可.【解答】解:∵△ABC为等边三角形,设A表示的数为x-3,B表示的数为2x-5,C表示的数为5-x,∴(5-x)-(2x-5)=2x-5-(x-3),解得:x=3,故答案为3.18.【答案】-1.【解析】【分析】这是一道考查有理数的混合运算的题目,解题关键在于将每个分数进行拆分.【解答】解:原式=,.=-1.故答案为-1.19.【答案】解:(1)1(2)①6x;6-6x;②设点P运动x秒时,在点C处追上点R(如图)则:AC=6x,BC=4x,AB=10,∵AC-BC=AB∴ 6x-4x=10,解得,x=5∴点P运动5秒时,追上点R,此时点P表示的数是6-6×5=-24;(3)线段MN的长度不发生变化,理由如下:分两种情况:①点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5②点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5,综上所述,线段MN的长度不发生变化,其长度为5.【解析】【分析】本题主要考查了数轴与线段的和差,关键是熟练掌握数轴的性质及线段中点的定义. (1)根据点在数轴上的位置及运动速度可得结果;(2)①先根据时间与速度的关系得出路程,利用数轴表示即可;②根据线段的和差关系可得关于x的方程,解方程即可;(3)分两种情况进行讨论,画图并利用线段的中点定义和线段的和差关系即可得出结果.【解答】解:(1)根据题意可得AB=10,∴点P表示的数是1,故答案为1 ;(2)①根据运动速度可得路程为6x;,数轴上表示的数为6-6x;故答案为6x,6-6x;②见答案;(3)见答案.20.【答案】解:(1)不是,是;(PQ =PR,RP=2RK)(2)当点X在点M、N之间,由MN=5-(-1)=6,XM=2XN,所以XM=4,XN=2,即点X距离点M为4个单位,距离点N为2个单位,即点X所表示的数为3,当点X在点N的右边,由MN=5-(-1)=6,XM=2XN,所以XM=12,XN=6,即点X距离点M为12个单位,距离点N为6个单位,即点X所表示的数为11;(3)AB =10-(-20)=30,当点C在点A、B之间,①若点C为有序点对的好点,则CA=2CB,CB=10,t=5(秒)②若点C为有序点对的好点,即CB=2CA,CB=20, t=10(秒)③若点B为有序点对的好点或点A为有序点对的好点,即BA=2BC或AB=2AC,CB=15, t=7.5(秒)当点A在点C、B之间,④点A为有序点对的好点,即AB=2AC,CB=45,t=22.5(秒)②点C为有序点对的好点或点B为有序点对的好点,即CB=2CA或BC=2BA,CB=60,t=30(秒);③点A为有序点对的好点,即AC=2AB,CB=90, t=45∴当经过5秒或7.5或10秒或22.5秒或30秒或45秒时,A、B、C中恰有一个点为其余两有序点对的好点.【解析】本题主要考查数轴,难度一般。

苏科版七年级数学上第二章《有理数》解答题培优训练(有答案)

苏科版七年级数学上第二章《有理数》解答题培优训练(有答案)

苏科版七上第二章《有理数》解答题培优训练(一)班级:___________姓名:___________得分:___________一、解答题1.计算.(1)已知|a|=3,|b|=2,且|a+b|=−(a+b),则a+b的值(2)计算2−4+6−8+10−12+⋯−2016+2018.2.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a−b|.理解:(1)数轴上表示2和−3的两点之间的距离是______;(2)数轴上表示x和−5的两点A和B之间的距离是______;(3)当代数式|x−1|+|x+3|取最小值时,相应的x的取值范围是______;最小值是______.应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆数.3.阅读解答:(1)填空:21−20=2(),22−21=2(),23−22=2(),……(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立.(3)计算:20+21+22+23+⋯+210004.阅读理解,并解答问题:(1)观察下列各式:12=11×2=1−12,16=12×3=12−13,112=13×4=13−14,…(2)请利用上述规律计算(要求写出计算过程):①12+16+112+130+142+156;②11×3+13×5+15×7+17×9+19×11+111×13+113×15.5.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM−BM= OM,求AB的值.OM6.观察下列解题过程:计算:1+5+52+53+⋯+524+525的值.解:设S=1+5+52+53+⋯+524+525.(1)则5S=5+52+53+⋯+525+526(2)(2)−(1)得4S=526−1,S=52n−14通过阅读,你学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+34+⋯+39+310(2)1+x+x2+x3+⋯+x99+x100.7.平移和翻折是初中数学两种重要的图形变化,回答下列问题:(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方形移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果______A.(+3)+(+2)=+5B.(+3)+(−2)=+1C.(−3)−(+2)=−5D.(−3)+(+2)=−1②一个机器人从数轴上原点出发,并在数轴上移动2次(不改变方向),每次移动一个单位后到达B点,则B点表示的数是______.③该机器人又从原点O开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依次规律跳下去,当它跳2016次时,落在数轴上的点到原点的距离是______个单位.(2)翻折变换①若折叠纸条,表示−1的点与表示3的点重合,则表示4的点与表示______的点重合;②若数轴上A、B两点之间的距离为8(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示______,B点表示______.③若数轴上折叠重合的两点的数分别为a和b,折叠中间点表示的数为______.(用a,b的代数式表示)8.某灯具厂计划一天生产200盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入,下表是某周的生产情况(增产记为正、减产记为负):(1)求该厂本周实际生产景观灯的盏数;(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数;(3)该厂实行每日计件工资制,每生产一盏景观灯可得50元,若超额完成任务,则超过部分每盏另奖25元,若未能完成任务,则少生产一盏扣30元,那么该厂这一周应付工资总额是多少元?9.观察下列算式:①1×3−22=3−4=−1②2×4−32=8−9=−1③3×5−42=15−16=−1④______…(1)请你按照以上规律写出第④个算式;(2)设n是正整数,请把上述规律用含有n的等式表示出来______;(3)请说明(2)中所写的等式成立.10.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c−10)2=0,动点P从A出发,以每秒1个单位的速度向终点C 运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2−2ab+a.如:1☆3=1×32−2×1×3+1=4.(1)求(−2)☆5的值;☆3=8,求a的值;(2)若a+12(3)若m=4☆x,n=(1−2x)☆3(其中x为有理数),试比较m、n大小关系,并说明理由.12.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数−2,点B表示数1,下列各数−1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是______;(2)点A表示数−10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.答案和解析解:(1)∵|a|=3,|b|=2,且|a+b|=−(a+b),即a+b≤0,∴a=−3,b=−2或2,当a=−3,b=−2时,a+b=−3−2=−5;当a=−3,b=2时,a+b=−3+2=−1.故a+b的值为−5或−1;’(2)2−4+6−8+10−12+⋯−2016+2018=(2−4)+(6−8)+(10−12)+⋯+(2014−2016)+2018=−2−2−2+⋯−2+2018=−2×(2016÷2÷2)+2018=−2×504+2018=−1008+2018=1010.2.5 |x+5|−3≤x≤1 4解:(1)2和−3的两点之间的距离是|2−(−3)|=5,故答案为:5.(2)A和B之间的距离是|x−(−5)|=|x+5|,故答案为:|x+5|.(3)代数式|x−1|+|x+3|表示在数轴上到1和−3两点的距离的和,当x在−3和1之间时,代数式取得最小值,最小值是−3和1之间的距离|1−(−3)|=4.故当−3≤x≤1时,代数式取得最小值,最小值是4.故答案为:−3≤x≤1,4.应用:根据题意,共有5种调配方案,如下图所示:由上可知,调出的最小车辆数为:4+2+6=12辆.3.解:(1)0;1;2;(2)第n个等式,2n−2n−1=2n−1;理由:2n−2n−1=2n−1(2−1)=2n−1;(3)设S=2°+21+22+23+24+⋯+21000,则2S=21+22+23+24+⋯+21001,所以S=(21+22+23+24+⋯+21001)−(20+21+22+23+24+⋯+21000) =21001−1.解:(1)21−20=1=2(0)22−21=2=2(1)23−22=4=2(2),故答案为0;1;2;4.解:观察阅读材料可得:①原式=1−12+12−13+13−14+⋯+17−18=1−18=78;②原式=12(1−13+13−15+⋯+113−115)=12(1−115)=7155.解:(1)设点A在数轴上表示的数为a,点B在数轴上表示的数为b,则,b−a=16,∵点C是OA的中点,点D是BN的中点,∴点C在数轴上表示的数为a2,点D在数轴上表示的数为b+22,∴CD=b+22−a2=b−a+22=16+22=9,答:CD的长为9;(2)设运动的时间为t秒,点M表示的数为m则OC=t,BD=4t,即点C在数轴上表示的数为−t,点D在数轴上表示的数为b−4t,∴AC=−t−a,OD=b−4t,由OD=4AC得,b−4t=4(−t−a),即:b=−4a,①若点M在点B的右侧时,如图1所示:由AM−BM=OM得,m−a−(m−b)=m,即:m=b−a;∴ABOM =b−am=mm=1;②若点M在线段BO上时,如图2所示:由AM−BM=OM得,m−a−(b−m)=m,即:m=a+b;∴ABOM =b−am=b−aa+b=−4a−aa−4a=53;③若点M在线段OA上时,如图3所示:由AM−BM=OM得,m−a−(b−m)=−m,即:m=a+b3=a−4a3=−a;∵此时m<0,a<0,∴此种情况不符合题意舍去;④若点M在点A的左侧时,如图4所示:由AM−BM=OM得,a−m−(b−m)=−m,即:m=b−a;而m<0,b−a>0,因此,不符合题意舍去,综上所述,ABOM 的值为1或53.6.解:(1)设S=1+3+32+33+⋯+310,两边乘以3得:3S=3+32+33+⋯+311,两式相减得:3S−S=311−1,即S=12(311−1),(311−1).则原式=12(2)设S=1+x+x2+x3+⋯+x99+x100,则xS=x+x2+x3+⋯+x99+x100+x101,两式相减可得(x−1)S=x101−1,当x=1时,S=1+1+⋯+1=101;.当x≠1时,S=x101−1x−17.(1)①D,②2或−2,③−1008;(2)①−2,②−3,5,③a+b.2解:(1)①根据题意得:(−3)+(+2)=−1.②1+1=2或(−1)+(−1)=−2,则B点表示的数是2或−2,③设向右跳动为正,向左跳动为负,由题意可得(+1)+(−2)+(+3)+(−4)+⋯+ (−2016)=(1−2)+(3−4)+(5−6)+⋯+(2015−2016)=−1008;故答案为:D;2或−2;−1008,(2)①根据题意得:表示1的点为折叠点,即4对应的点为−2;②∵A、B两点之间的距离为8且折叠后重合,∴A点表示的数为:1−8÷2=1−4=−3.B点表示的数为:1+8÷2=1+4=5.③若数轴上折叠重合的两点的数分别为a和b,折叠中间点表示的数为a+b,2故答案为:−2;−3,5;a+b.28.解:(1)3−5−2+9−7+12−3=7(盏),200×7+7=1407(盏),答:该厂本周实际生产景观灯的盏数是2107盏;(2)12−(−7)=19盏,产量最多的一天比产量最少的一天多生产景观灯的盏数是19盏;(3)根据题意200×50+25×24−17×30=70000+90=70090(元)答:该厂这一周应付工资总额是70090元.9.4×6−52=24−25=−1n(n+2)−(n+1)2=−1解:(1)第4个算式为:4×6−52=24−25=−1;(2)用含字母n的式子表示出来为n(n+2)−(n+1)2=−1;(3)n(n+2)−(n+1)2=n2+2n−(n2+2n+1)=n2+2n−n2−2n−1=−1.故n(n+2)−(n+1)2=−1成立.故答案为:4×6−52=24−25=−1;n(n+2)−(n+1)2=−110.解:(1)∵|a+24|+|b+10|+(c−10)2=0∴a+24=0,b+10=0,c−10=0解得a=−24,b=−10,c=10(2)−10−(−24)=14,①点P在AB之间,AP=14×22+1=283,−24+283=−443,点P的对应的数是−443;②点P在AB的延长线上,AP=14×2=28,−24+28=4,点P的对应的数是4;(3)设在点Q开始运动后第a秒时,P、Q两点之间的距离为4,当P点在Q点的右侧,且Q点还没追上P点时,3a+4=14+a,解得a=5;当P在Q点左侧时,且Q点追上P点后,3a−4=14+a,解得a=9;当Q点到达C点后,当P点在Q点左侧时,14+a+4+3a−34=34,a=12.5;当Q点到达C点后,当P点在Q点右侧时,14+a−4+3a−34=34,解得a=14.5,综上所述:当Q点开始运动后第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.11.解:(1)根据题中的新定义得:原式=−2×25+20−2=−32;(2)根据题中新定义化简得:a+12×9−3(a+1)+a+12=8,去分母得:9a+9−6a−6+a+1=16,移项合并得:4a=12,解得:a=3;(3)根据题中的新定义得:m=4x2−8x+4,n=9(1−2x)−6(1−2x)+1−2x=9−18x−6+12x+1−2x=4−8x,∵m−n=4x2−8x+4−4+8x=4x2≥0,∴m≥n.12.C1或C3解:(1)∵点A表示数−2,点B表示数1,C1表示的数为−1,∴AC1=1,BC1=2,∴C1是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C2表示的数为2,∴AC2=4,BC1=1,∴C2不是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C3表示的数为4,∴AC3=6,BC3=3,∴C3是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C4表示的数为6,∴AC4=8,BC4=5,∴C4不是点A、B的“关联点”;故答案为:C1,C3;(2)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为x (Ⅰ)当点P在A的左侧时,则有:2PA=PB,即,2(−10−x)=15−x,解得,x=−35;(Ⅱ)当点P在A、B之间时,有2PA=PB或PA=2PB,即有,2(x+10)=15−x或x+10=2(15−x),解得,x =−53或x =203;因此点P 表示的数为−35或−53或203;②若点P 在点B 的右侧, (Ⅰ)若点P 是点A 、B 的“关联点”,则有,2PB =PA ,即2(x −15)=x +10,解得,x =40;(Ⅱ)若点B 是点A 、P 的“关联点”,则有,2AB =PB 或AB =2PB ,即2(15+10)=x −15或15+10=2(x −15),得,x =65或x =552;(Ⅲ)若点A 是点B 、P 的“关联点”,则有,2AB =PA ,即2(15+10)=x +10,解得,x =40;因此点P 表示的数为40或65或552;1、最困难的事就是认识自己。

苏科版七年级上册数学第二章有理数检测试卷(一)及答案

苏科版七年级上册数学第二章有理数检测试卷(一)及答案

第二章 有理数 检测试卷(一)一、选择题(每题3分,共30分) 1.下列说法中,不正确的是( )(A )0既不是正数,也不是负数 (B )0不是整数 (C )0的相反数是0 (D )0的绝对值是0 2.温度上升-3后,又下降2实际上就是 ( ) A. 上升1 B. 上升5 C.下降5 D. 下降-13.数轴上点A 表示-4,点B 表示2,则表示A 、B 两点间的距离的算式是( ) A. -4+2 B. -4-2 C. 2―(―4) D. 2-4 . 4.两个有理数的和为负数,那么这两个数一定( ) (A )都是负数 (B )至少有一个负数 (C )有一个是0 (D )绝对值不相等 5.如果|a|=7,|b|=5,试求a-b 的值为( ) (A )2(B )12(C )2和12(D )2;12;-12;-2 6.用计算器求25的值时,按键的顺序是( )7.如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a+b+m 2-cd 的值为( )A.3B.±3C.3±21D.4±218. 若0<a<1,则a ,) (,12从小到大排列正确的是a a A 、a 2<a<a 1 B 、a < a 1< a 2 C 、a 1<a< a 2 D 、a < a 2 <a19.学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( )A 、约104元;B 、1000元C 、100元D 、约21.4元 10计算(-2)2010+(-2)2011的结果是( )A 、-1B 、-2C 、-22011D 、-22010 二、填空题(每题3分,共30分)11.某种零件,标明要求是φ20±0.02(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,它 (“填合格” 或“不合格”).12.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在阳光的直接照射下,表面温度高达4270C ,夜晚则低至-1700C ,则水星表面昼夜的温差为____________. 13.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是14.一个水利勘察队,第一天沿江向下游走313km ,第二天又向下游走325km ,第三天向上游走517km ,第四天向上游走534km ,这时勘察队在出发点的上游 千米? 15.一口深井,井底有一只青蛙,这只青蛙白天沿着井壁向上爬3米,夜间又落下2米,到了第十天的下午,这只青蛙恰好爬到井口,则这口井的深度是 米。

七年级上册数学单元测试卷-第2章 有理数-苏科版(含答案)

七年级上册数学单元测试卷-第2章 有理数-苏科版(含答案)

七年级上册数学单元测试卷-第2章有理数-苏科版(含答案)一、单选题(共15题,共计45分)1、下列各式中,正确的是()A.2 3=8B. =2C. =﹣4D.2、下列说法中,正确的是()A.正数和负数统称有理数B.零是最小的有理数C.倒数等于它本身的有理数只有1D.互为相反数的两数之和为零3、若|a|=-a,则能使等式成立的条件是()A.a是正数B.a是负数C.a是0和正数D.a是0和负数4、下列各组数中:①﹣32与32;②(﹣3)2与32;③﹣(﹣2)与﹣(+2);④(﹣3)3与﹣33;⑤﹣23与32,其中互为相反数的共有()A.4对B.3对C.2对D.1对5、数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣26、计算(﹣1)×(﹣5)×(﹣)的结果是()A.-1B.1C.-D.-257、﹣5的绝对值是()A.﹣B.5C.﹣5D.±58、有理数a、b在数轴上对应位置如图所示,则a+b的值()A.大于 0B.小于0C.等于0D.大于a9、有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于B.小于C.小于D.大于10、下列说法中,正确的是()A.正数和负数互为相反数B.一个数的相反数一定比它本身小C.任何有理数都有相反数D.没有相反数等于它本身的数11、下列各数是有理数的是()A.﹣B.C.D.π12、如果a与3互为相反数,则是()A.3B.﹣3C.D.﹣13、下列运算中,正确的个数是()①(-4)+(-4)=0 ②(-8)+(-8)=-16③0-(-5)=-5 ④(+ )-(-0.25)=1⑤-(-)+(-5 )-(-5)=-10A.0个B.1个C.2个D.3个14、实数a在数轴上的位置如图所示,则|a-2.5|=()A.a-2.5B.2.5-aC.a+2.5D.-a-2.515、下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数就是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知a2-6a+9与|b-1|互为相反数,则式子÷(a+b)的值为________.17、计算:﹣3+2=________.18、的底数是________.19、写出一个比3大且比4小的无理数:________.20、若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.21、比较大小: ________2;________ ;________ (填“>”或“<”)22、某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=________.x …﹣2 ﹣1.5 ﹣1 ﹣0.5 0 0.5 1 1.5 2 …y … 2 0.75 0 ﹣0.25 0 ﹣0.25 0 m 2 …23、计算:=________.24、的倒数是________,的绝对值是________.25、12月30日,我市召开的全市经济工作会议预计徐州实现地区生产总值5750亿元,比去年增长8.5%.5750亿元用科学记数法可表示为________元.三、解答题(共5题,共计25分)26、计算:(﹣2)2+4×(﹣3)2﹣(﹣4)2÷(﹣2)27、“一个数,如果不是正数,那么一定就是负数”,这句话对吗?为什么?28、先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中(a+1)2+|b﹣2|=0.29、有一个水库某天8:00的水位为以警戒线为基准,记高于警戒线的水位为正在以后的6个时刻测得的水位升降情况如下记上升为正,单位::,,0,,,经过6次水位升降后,水库的水位超过警戒线了吗?30、观察下面三行数:-2, 4, -8, 16,-32, 64,…①0,6, -6, 18,-30, 66,…②-1, 2,-4, 8,-16, 32,…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行的第十个数,计算这三个数的和。

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、两个非零有理数的和为正数,那么这两个有理数为()A.都是正数B.至少有一个为正数C.正数大于负数D.正数大于负数的绝对值,或都为正数2、a表示有理数,则﹣a一定是()A.负数B.正数C.正数或负数D.以上都不对3、下列计算正确的是( )A. B. C. D.4、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③×(-)=-;④(-36)÷(-9)=-4.其中正确的个数是( )A.1个B.2个C.3个D.4个5、在下列各数中,最小的数是()A.1B.-1C.-3D.06、的倒数是( )A. B. C. D.7、一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米8、四个有理数其中最小的是()A.2B.1C.0D.-19、计算(﹣8)×3÷(﹣2)2得()A.-6B.6C.-12D.1210、计算﹣42的结果等于()A.﹣8B.﹣16C.16D.811、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12、地球的半径约为6370000m,用科学记数法表示正确的是()A. B. C. D.13、在﹣(﹣2),﹣[﹣(﹣3)],+(﹣),﹣|﹣2|这四个数中,负数的个数是()A.1个B.2个C.3个D.4个14、有理数在数轴上对应的点的位置如图所示,则下列式子正确的是( )A. B. C. D.15、温岭市冬季某天的最高气温是5℃,最低气温是-3℃,那么这天的最高气温与最低气温的差是()A.-2℃B.8℃C.– 8 ℃D.2℃二、填空题(共10题,共计30分)16、数学真奇妙,小慧同学研究有两个有理数a和b,若计算a+b,a-b,ab,的值,发现有三个结果恰好相同,小慧突发灵感,想考考大家,请你们求________17、 ________.18、白云湖是广州市政府便民利民的综合性水利工程,北部水系首期工程完工后,每天可以从珠江西航道引入1000000万立方米的活水进入白云湖,进而改善周边河涌的水质.将1000000用科学记数法可记为________.19、化简: =________20、如果a、b互为相反数,x、y互为倒数,那么(a+b)﹣2015xy=________.21、同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=________(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是________22、在正数范围内定义一种运算“△”,其规则是a△b= ,根据这一规则,方程x△(x+1)= 的解是________.23、 5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为________.24、若关于x的一元二次方程有实数根,则n的取值范围是________.25、在一条数轴上有A、B两点,点A表示数﹣4,点B表示数6,点P是该数轴上的一个动点(不与A、B重合)表示数x.点M、N分别是线段AP、BP的中点(1)如果点P在线段AB上,则点M表示的数是________,则点N表示的数是________(用含x的代数式表示),并计算线段MN的长;(2)如果点P在点B右侧,请你计算线段MN的长________.三、解答题(共5题,共计25分)26、27、已知 |a| = 5, |b| = 3,且ab >0,求a+b的值28、如图,数轴上的点A,B,C所对应的数分别为a,b,c,化简|2a|+|b+c|-|a-b-c|.29、已知a2+b2+2a﹣4b+5=0,求2a2+4b﹣3的值.30、11﹣(﹣9)﹣(+3).参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、B5、C7、C8、D9、A10、B11、A12、C13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

苏科版七年级数学上第二章《有理数》解答题培优训练(有答案)

苏科版七年级数学上第二章《有理数》解答题培优训练(有答案)

苏科版七上第二章《有理数》解答题培优训练(一)班级:___________姓名:___________得分:___________一、解答题1.计算.(1)已知|a|=3,|b|=2,且|a+b|=−(a+b),则a+b的值(2)计算2−4+6−8+10−12+⋯−2016+2018.2.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a−b|.理解:(1)数轴上表示2和−3的两点之间的距离是______;(2)数轴上表示x和−5的两点A和B之间的距离是______;(3)当代数式|x−1|+|x+3|取最小值时,相应的x的取值范围是______;最小值是______.应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆数.3.阅读解答:(1)填空:21−20=2(),22−21=2(),23−22=2(),……(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立.(3)计算:20+21+22+23+⋯+210004.阅读理解,并解答问题:(1)观察下列各式:12=11×2=1−12,16=12×3=12−13,112=13×4=13−14,…(2)请利用上述规律计算(要求写出计算过程):①12+16+112+130+142+156;②11×3+13×5+15×7+17×9+19×11+111×13+113×15.5.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM−BM= OM,求AB的值.OM6.观察下列解题过程:计算:1+5+52+53+⋯+524+525的值.解:设S=1+5+52+53+⋯+524+525.(1)则5S=5+52+53+⋯+525+526(2)(2)−(1)得4S=526−1,S=52n−14通过阅读,你学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+34+⋯+39+310(2)1+x+x2+x3+⋯+x99+x100.7.平移和翻折是初中数学两种重要的图形变化,回答下列问题:(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方形移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果______A.(+3)+(+2)=+5B.(+3)+(−2)=+1C.(−3)−(+2)=−5D.(−3)+(+2)=−1②一个机器人从数轴上原点出发,并在数轴上移动2次(不改变方向),每次移动一个单位后到达B点,则B点表示的数是______.③该机器人又从原点O开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依次规律跳下去,当它跳2016次时,落在数轴上的点到原点的距离是______个单位.(2)翻折变换①若折叠纸条,表示−1的点与表示3的点重合,则表示4的点与表示______的点重合;②若数轴上A、B两点之间的距离为8(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示______,B点表示______.③若数轴上折叠重合的两点的数分别为a和b,折叠中间点表示的数为______.(用a,b的代数式表示)8.某灯具厂计划一天生产200盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入,下表是某周的生产情况(增产记为正、减产记为负):(1)求该厂本周实际生产景观灯的盏数;(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数;(3)该厂实行每日计件工资制,每生产一盏景观灯可得50元,若超额完成任务,则超过部分每盏另奖25元,若未能完成任务,则少生产一盏扣30元,那么该厂这一周应付工资总额是多少元?9.观察下列算式:①1×3−22=3−4=−1②2×4−32=8−9=−1③3×5−42=15−16=−1④______…(1)请你按照以上规律写出第④个算式;(2)设n是正整数,请把上述规律用含有n的等式表示出来______;(3)请说明(2)中所写的等式成立.10.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c−10)2=0,动点P从A出发,以每秒1个单位的速度向终点C 运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2−2ab+a.如:1☆3=1×32−2×1×3+1=4.(1)求(−2)☆5的值;☆3=8,求a的值;(2)若a+12(3)若m=4☆x,n=(1−2x)☆3(其中x为有理数),试比较m、n大小关系,并说明理由.12.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数−2,点B表示数1,下列各数−1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是______;(2)点A表示数−10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.答案和解析解:(1)∵|a|=3,|b|=2,且|a+b|=−(a+b),即a+b≤0,∴a=−3,b=−2或2,当a=−3,b=−2时,a+b=−3−2=−5;当a=−3,b=2时,a+b=−3+2=−1.故a+b的值为−5或−1;’(2)2−4+6−8+10−12+⋯−2016+2018=(2−4)+(6−8)+(10−12)+⋯+(2014−2016)+2018=−2−2−2+⋯−2+2018=−2×(2016÷2÷2)+2018=−2×504+2018=−1008+2018=1010.2.5 |x+5|−3≤x≤1 4解:(1)2和−3的两点之间的距离是|2−(−3)|=5,故答案为:5.(2)A和B之间的距离是|x−(−5)|=|x+5|,故答案为:|x+5|.(3)代数式|x−1|+|x+3|表示在数轴上到1和−3两点的距离的和,当x在−3和1之间时,代数式取得最小值,最小值是−3和1之间的距离|1−(−3)|=4.故当−3≤x≤1时,代数式取得最小值,最小值是4.故答案为:−3≤x≤1,4.应用:根据题意,共有5种调配方案,如下图所示:由上可知,调出的最小车辆数为:4+2+6=12辆.3.解:(1)0;1;2;(2)第n个等式,2n−2n−1=2n−1;理由:2n−2n−1=2n−1(2−1)=2n−1;(3)设S=2°+21+22+23+24+⋯+21000,则2S=21+22+23+24+⋯+21001,所以S=(21+22+23+24+⋯+21001)−(20+21+22+23+24+⋯+21000) =21001−1.解:(1)21−20=1=2(0)22−21=2=2(1)23−22=4=2(2),故答案为0;1;2;4.解:观察阅读材料可得:①原式=1−12+12−13+13−14+⋯+17−18=1−18=78;②原式=12(1−13+13−15+⋯+113−115)=12(1−115)=7155.解:(1)设点A在数轴上表示的数为a,点B在数轴上表示的数为b,则,b−a=16,∵点C是OA的中点,点D是BN的中点,∴点C在数轴上表示的数为a2,点D在数轴上表示的数为b+22,∴CD=b+22−a2=b−a+22=16+22=9,答:CD的长为9;(2)设运动的时间为t秒,点M表示的数为m则OC=t,BD=4t,即点C在数轴上表示的数为−t,点D在数轴上表示的数为b−4t,∴AC=−t−a,OD=b−4t,由OD=4AC得,b−4t=4(−t−a),即:b=−4a,①若点M在点B的右侧时,如图1所示:由AM−BM=OM得,m−a−(m−b)=m,即:m=b−a;∴ABOM =b−am=mm=1;②若点M在线段BO上时,如图2所示:由AM−BM=OM得,m−a−(b−m)=m,即:m=a+b;∴ABOM =b−am=b−aa+b=−4a−aa−4a=53;③若点M在线段OA上时,如图3所示:由AM−BM=OM得,m−a−(b−m)=−m,即:m=a+b3=a−4a3=−a;∵此时m<0,a<0,∴此种情况不符合题意舍去;④若点M在点A的左侧时,如图4所示:由AM−BM=OM得,a−m−(b−m)=−m,即:m=b−a;而m<0,b−a>0,因此,不符合题意舍去,综上所述,ABOM 的值为1或53.6.解:(1)设S=1+3+32+33+⋯+310,两边乘以3得:3S=3+32+33+⋯+311,两式相减得:3S−S=311−1,即S=12(311−1),(311−1).则原式=12(2)设S=1+x+x2+x3+⋯+x99+x100,则xS=x+x2+x3+⋯+x99+x100+x101,两式相减可得(x−1)S=x101−1,当x=1时,S=1+1+⋯+1=101;.当x≠1时,S=x101−1x−17.(1)①D,②2或−2,③−1008;(2)①−2,②−3,5,③a+b.2解:(1)①根据题意得:(−3)+(+2)=−1.②1+1=2或(−1)+(−1)=−2,则B点表示的数是2或−2,③设向右跳动为正,向左跳动为负,由题意可得(+1)+(−2)+(+3)+(−4)+⋯+ (−2016)=(1−2)+(3−4)+(5−6)+⋯+(2015−2016)=−1008;故答案为:D;2或−2;−1008,(2)①根据题意得:表示1的点为折叠点,即4对应的点为−2;②∵A、B两点之间的距离为8且折叠后重合,∴A点表示的数为:1−8÷2=1−4=−3.B点表示的数为:1+8÷2=1+4=5.③若数轴上折叠重合的两点的数分别为a和b,折叠中间点表示的数为a+b,2故答案为:−2;−3,5;a+b.28.解:(1)3−5−2+9−7+12−3=7(盏),200×7+7=1407(盏),答:该厂本周实际生产景观灯的盏数是2107盏;(2)12−(−7)=19盏,产量最多的一天比产量最少的一天多生产景观灯的盏数是19盏;(3)根据题意200×50+25×24−17×30=70000+90=70090(元)答:该厂这一周应付工资总额是70090元.9.4×6−52=24−25=−1n(n+2)−(n+1)2=−1解:(1)第4个算式为:4×6−52=24−25=−1;(2)用含字母n的式子表示出来为n(n+2)−(n+1)2=−1;(3)n(n+2)−(n+1)2=n2+2n−(n2+2n+1)=n2+2n−n2−2n−1=−1.故n(n+2)−(n+1)2=−1成立.故答案为:4×6−52=24−25=−1;n(n+2)−(n+1)2=−110.解:(1)∵|a+24|+|b+10|+(c−10)2=0∴a+24=0,b+10=0,c−10=0解得a=−24,b=−10,c=10(2)−10−(−24)=14,①点P在AB之间,AP=14×22+1=283,−24+283=−443,点P的对应的数是−443;②点P在AB的延长线上,AP=14×2=28,−24+28=4,点P的对应的数是4;(3)设在点Q开始运动后第a秒时,P、Q两点之间的距离为4,当P点在Q点的右侧,且Q点还没追上P点时,3a+4=14+a,解得a=5;当P在Q点左侧时,且Q点追上P点后,3a−4=14+a,解得a=9;当Q点到达C点后,当P点在Q点左侧时,14+a+4+3a−34=34,a=12.5;当Q点到达C点后,当P点在Q点右侧时,14+a−4+3a−34=34,解得a=14.5,综上所述:当Q点开始运动后第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.11.解:(1)根据题中的新定义得:原式=−2×25+20−2=−32;(2)根据题中新定义化简得:a+12×9−3(a+1)+a+12=8,去分母得:9a+9−6a−6+a+1=16,移项合并得:4a=12,解得:a=3;(3)根据题中的新定义得:m=4x2−8x+4,n=9(1−2x)−6(1−2x)+1−2x=9−18x−6+12x+1−2x=4−8x,∵m−n=4x2−8x+4−4+8x=4x2≥0,∴m≥n.12.C1或C3解:(1)∵点A表示数−2,点B表示数1,C1表示的数为−1,∴AC1=1,BC1=2,∴C1是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C2表示的数为2,∴AC2=4,BC1=1,∴C2不是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C3表示的数为4,∴AC3=6,BC3=3,∴C3是点A、B的“关联点”;∵点A表示数−2,点B表示数1,C4表示的数为6,∴AC4=8,BC4=5,∴C4不是点A、B的“关联点”;故答案为:C1,C3;(2)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为x (Ⅰ)当点P在A的左侧时,则有:2PA=PB,即,2(−10−x)=15−x,解得,x=−35;(Ⅱ)当点P在A、B之间时,有2PA=PB或PA=2PB,即有,2(x+10)=15−x或x+10=2(15−x),解得,x =−53或x =203;因此点P 表示的数为−35或−53或203;②若点P 在点B 的右侧, (Ⅰ)若点P 是点A 、B 的“关联点”,则有,2PB =PA ,即2(x −15)=x +10,解得,x =40;(Ⅱ)若点B 是点A 、P 的“关联点”,则有,2AB =PB 或AB =2PB ,即2(15+10)=x −15或15+10=2(x −15),得,x =65或x =552;(Ⅲ)若点A 是点B 、P 的“关联点”,则有,2AB =PA ,即2(15+10)=x +10,解得,x =40;因此点P 表示的数为40或65或552;1、最困难的事就是认识自己。

苏科版七年级数学上册第二章有理数测试题及答案(6套)

苏科版七年级数学上册第二章有理数测试题及答案(6套)

苏科版七年级数学上册第二章有理数测试题及答案(6套)2.1 比零小的数◆知识平台 1.正数、负数的概念:大于0的数叫正数;在正数前面加“-”号的数叫负数. 2.有理数的分类(1)按整数、分数分:有理数(2)按数的正负分:有理数◆思维点击有理数的概念和分类:要求在理解基础上进行记忆.对负数的理解:在现实生活中,为了能表达具有相反意义的量,所以引进了负数,在正数前加上“-”就得负数.对有理数“0”的理解:①0既不是正数,也不是负数;②0 除了表示一个也没有外,还表示正数与负数的分界,在实际问题中有明确意义.◆考点浏览有理数的有关概念和有理数的分类,大多以填空、判断、选择题的形式出现.例1 把下列各数填在相应的集合内. 7,-5,-0.3,,0,- ,8.6,-1 ,151,-32 正数集合{ };负数集合{ };正整数集合{ } 整数集合{ };负整数集合{ };分数集合{ } 【解析】正数包括正整数、正分数,负数包括负整数、负分数.整数包括正整数、负整数以及零.分数包括正分数、负分数,小数属于分数.零既不是正数,也不是负数,零是整数、偶数、有理数.答案是:正数集合{7,,8.6,151…};•负数集合{-5,-0.3,- ,-1 ,-32…};正整数集合{7,151…};整数集合{7,-5,0,151,-32…};负整数集合{-5,-32…};分数集合{-0.3,,- ,8.6,-1 …}.例2 下列说法中正确的是() A.在有理数中,零的意义仅表示没有; B.一个数不是负数就是正数 C.正有理数和负有理数组成全体有理数;D.零是整数【解析】零的一个基本作用表示没有,零又是正负数的界限.答案是D.◆在线检测 1.如果零上8℃记作8℃,那么零下5℃记作__________. 2.如果温度上升2℃记作2℃,那么温度下降3℃记作_________. 3.如果向西走6米记作-6米,那么向东走10米记作_________. 4.如果产量减少5%记作-5%,那么20%表示_________. 5.判断题:(1)一个整数不是正数就是负数.()(2)最小的整数是零.()(3)负数中没有最大的数.()(4)自然数一定是正整数.()(5)有理数包括正有理数、零和负有理数.() 6.下列说法中正确的是() A.有最小的正数; B.有最大的负数;C.有最小的整数; D.有最小的正整数 7.零是() A.最小的正数 B.最大的负数 C.最小的有理数 D.整数 8.下列一组数:-8,2.6,-3 ,2 ,-5.7中负分数有() A.1个 B.2个 C.3个 D.4个 9.把下列各数填在相应的集合内. -3,7,- ,-0.86,0,,0.7523,-2.3536.整数集合{ …};负数集合{ …}. 10.在下表适当的空格里打上“∨”号.整数分数正数负数自然数有理数 1 0 -3.14 -12 11.一零件的长度在图纸上标为10±0.05(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少?最小不少于多少?实际生产时,测得一零件的长为9.9毫米,问此零件合格吗?12.在明尼苏达州的一个城市,1月1日上午6:00的温度是-30华氏度,•在接下来的8小时里,温度上升了38华氏度,在紧接之后的12小时里,温度下降了12•华氏度,最后4小时内,温度上升了15华氏度,那么在1月2日上午6:00的温度是多少?13.在美国有记载的最高温度是56.7℃(约合134F),发生在1913年7月10•日加利福尼亚的死亡之谷.有记载的最低温度是-62.2℃(约合-80F)是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少?(2)以华氏度为单位,有记录的最高温度和最低温度相差多少?答案 1.-5℃ 2.-3℃ 3.10米 4.增产20% 5.(1)× (2)× (3)∨ (4) × (5)∨ 6.D 7.D 8.B 9.略 10.略 11.10.05毫米 9.95毫米 • 12.11华氏度 13.118.9℃ 214F。

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上的点A所表示的数为a,化简|a|+|1﹣a|的结果为()A.1B.2a﹣1C.2a+1D.1﹣2a2、绝对值大于1而小于4的整数有()个A.1B.2C.3D.43、如图,数轴上A,B两点分别对应实数a,b,则下列结论错误的是( )A. B. C. D.4、下列说法中①是负数;②是二次单项式;③倒数等于它本身的数是;④若,则;⑤由变形成,正确个数是( )A.1个B.2个C.3个D.4个5、下列各式正确的是()A. B. C. D.6、根据如图所示的程序计算,若输入x的值为1,则输出y的值为().A.0B.2C.-2D.47、若x的相反数是2,│y│=3,则│x+y│的值为( )A.5B.-5C.-5或1D.以上都不对8、下列实数中,有理数是( ).A. B. C. D.3.141599、下列各数中,绝对值最大的是()A.2B.-1C.0D.-310、有理数a,b在数轴上的位置如图所示,下列结论中正确的是()A.-b>aB.-a<bC.b>aD.∣a∣>∣b∣11、下列说法正确的有()个①规定了原点,正方向和单位长度的直线叫数轴;②最小的整数是0;③正数,负数和零统称整数;④数轴上的点都表示有理数A.0B.1C.2D.312、下列四个运算中,结果最小的是()A.-1+(-2)B.1-(-2)C.1×(-2)D.1÷(-2)13、下列实数中,−、、、-3.14,、、0、0.3232232223…(相邻两个3之间依次增加一个2),无理数的个数是()A.1个B.2个C.3个D.4个14、在-1.732,,π, 3, 2+ ,3.212212221…,3.14这些数中,无理数的个数为( )A.5B.2C.3D.415、在下列各数中,你认为是无理数的是()A. B. C. D.二、填空题(共10题,共计30分)16、“*”是规定的一种运算法则:a*b=a2﹣2b.那么2*3的值为________ ;若(﹣3)*x=7,那么x=________17、a的相反数是一,则a的倒数是________.18、已知a,b互为相反数,c,d互为倒数,,则的值是________.19、太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是________℃.20、如图,四个有理数在数轴上的对应点分别为M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是________.21、有六张完全相同的卡片,其正面分别标有数字:﹣2,,π,0,,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是________.22、计算:﹣22﹣(﹣2)2=________23、小明的妈妈在超市买了一瓶消毒液,发现在瓶上印有这样一段文字:“净含量(750±5)ml”,这瓶消毒液至少有________mL.24、-(-4)= ________.25、﹣1的绝对值是________.三、解答题(共5题,共计25分)26、计算:-32×(5-3)-(-2)2÷l-4l27、根据试验测定,高度每增加100米,气温大约下降0.6 ,小王是一名登山运动员,他在攀登山峰的途中发回信息,报告他所在的位置的气温是-15 ,若此时地面温度为3 ,则小王所在位置离地面的高度是多少米?28、如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1小于2的有理数.请你在数轴上表示出一范围,使得这个范围同时满足以下三个条件:(1)至少有100对相反数和200对倒数;(2)有最大的负整数;(3)这个范围内最大的数与最小的数表示的点的距离大于4但小于5.29、规定一种新运算:=a-b+c, =-xz+(w-y)求 + 的值。

第二章 有理数 综合测试卷(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏科版)

第二章 有理数 综合测试卷(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏科版)

(苏科版)七年级上册数学《第二章有理数》综合测试卷时间:100分钟试卷满分:120分一、选择题(每小题3分,共10个小题,共30分)1.(2023春•望奎县期末)规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A.9吨记为﹣9吨B.12吨记为+2吨C.6吨记为﹣4吨D.+3吨表示重量为13吨2.(2022秋•佛山期末)四个有理数−12,﹣0.8,−14,0中,最小的数是()A.−12B.﹣0.8C.−14D.03.(2022秋•连山区期末)《葫芦岛市第七次全国人口普查公报》发布,全市常住人口约为271.4万人,271.4万用科学记教法表示为()A.271.4×104B.2.714×106C.2.714×107D.2.714×1084.(2023春•镇江期末)将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.65.(2022秋•丰都县期末)若m、n是有理数,满足|m|>|n|,且m>0,n<0,则下列选项中,正确的是()A.n<﹣m<m<﹣n B.﹣m<n<﹣n<m C.﹣n<﹣m<n<m D.﹣m<﹣n<n<m6.(2022秋•西安期中)一只蚂蚁沿数轴从点A 向一个方向移动了3个单位长度到达点B ,若点B 表示的数是﹣2,则点A 所表示的数是( ) A .1 B .﹣5 C .﹣1或5 D .1或﹣57.下列各对数中,互为相反数的是( ) A .﹣23与﹣32 B .(﹣2)3与﹣23C .(﹣3)2与﹣32D .−223与(23)28.(2023•贵阳模拟)有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .ab<09.(2023春•东湖区校级期末)若a ,b 为有理数,则下列说法中正确的是( ) A .若a ≠b ,则a 2≠b 2 B .若a >|b |,则a 2>b 2 C .若|a |>|b |,则a >b D .若a 2>b 2,则a >b10.(2022秋•龙岗区校级期末)2022减去它的12,再减去余下的13,再减去余下的14⋯⋯以此类推,一直减到余下的12022,则最后剩下的数是( )A .20212022B .0C .20222021D .1二、填空题(每小题3分,共8个小题,共24分)11.(2023•临沂模拟)﹣2023的绝对值是 .12.(2022秋•渌口区期末)有理数+3,7.5,﹣0.05,0,﹣2019,23中,非负数有 个.13.小超同学在计算30+A 时,误将“+”看成了“﹣”算出结果为12,则正确答案应该为 .14.(2022秋•南充期末)两个数的积是−29,其中一个是−16,则另一个是 .15.(2022秋•赣县区期末)草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是 千克.16.(2023春•南岗区校级月考)已知|a |=5,|b |=7,且|a +b |=a +b ,则a +b 的值为 .17.定义一种运算:|a c bd |=ad ﹣bc ,如:|1−3−20|=1×0﹣(﹣2)×(﹣3)=﹣6.那么当a =﹣12,b =(﹣2)2﹣1,c =﹣32+5,d =14−|−34|时,则|a cbd|的值是 .18.(2023春•惠阳区校级月考)已知x ,y ,z 都是有理数,x +y +z =0,xyz ≠0,则|x|y+z+|y|x+z+|z|x+y的值是 .三、解答题(共8个小题,共66分)19.(每小题4分,共8分)(2022秋•和平区校级期末)计算 ①(13−18+16)×24; ②(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.20.(8分)(2022秋•立山区期中)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.21.(8分)(2022秋•天门期中)已知有理数x、y满足|x|=9,|y|=5.(1)若x<0,y>0,求x+y的值;(2)若|x+y|=x+y,求x﹣y的值.22.(8分)(2022秋•潮安区期末)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2021+(﹣cd)2022的值.23.(8分)(2022秋•雁塔区校级期末)一架飞机进行特技表演,起飞后的高度变化如下表:高度变化上升4.5km下降3.2km上升1.1km下降1.5km上升0.8km 记作+4.5km﹣3.2km+1.1km﹣1.5km+0.8km (1)求此时飞机比起飞点高了多少千米?(2)若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这5个特技动作表演过程中,一共消耗多少升燃油?24.(8分)(2022秋•永川区期末)某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+15,﹣2,﹣6,+7,﹣18,+12,﹣4,﹣5,+24,﹣3.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,每升油7元,则这辆出租车这天下午耗油费用多少元?(3)若出租车起步价为10元,起步里程为3千米(包括3千米),超过部分每千米2.4元,问这天下午这辆出租车司机的营业额是多少元?25.(8分)(2022秋•东昌府区校级期末)观察下列等式:第一个等式:a1=11×3=12(1−13);第二个等式:a2=13×5=12(13−15);第三个等式:a3=15×7=12(15−17);第四个等式:a4=17×9=12(17−19);…回答下列问题:(1)按以上规律列出第6个等式:a6=.(2)若n是正整数,请用含n的代数式表示第n个等式,a n==.(3)a1+a2+a3+…+a2022+a2023.26.(10分)老王在上星期五以每股10元的价格买进某种股票1000股,该股票的涨跌情况如下表(单位:元)(注:每天的涨跌价是以上一天的收盘价为基础)星期一二三四五每股涨跌﹣0.19+0.16﹣0.18+0.25+0.06(1)星期五收盘时,每股是元;(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知股票卖出时需付成交额3‰的手续费和2‰的交易税,如果老王在星期五以收盘价将股票全部卖出,他的收益情况如何?。

苏科版七年级上第二章有理数拓展提优试卷(有答案)-(数学)

苏科版七年级上第二章有理数拓展提优试卷(有答案)-(数学)

苏科版七年级上第二章有理数拓展提优试卷(有答案)-(数学)第二章《有理数》拓展提优试卷【单元综合】1.下列说法正确的个数是()①一个有理数不是整数就是分数;②无限循环小数是无理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.42.已知n为正整数,则(1)2n(1)2n1()A.2B.1C.0D.23.1的相反数是()611A.B.C.6D.6664.下列等式成立的是()A.88B.(1)1C.1(3)1D.236355.某市为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止共有60000户家庭建立了“低碳节能减排家庭档案”,则60000用科学记数法可表示为()A.6010B.610C.610D.0.6106.数学家发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:ab1+b-.例如,把(3,2)放入其中,就会得到32(2)16.现将有理数对(1,3)放入其中,得到有理数m,再将有理数对(m,1)放入其中后,得到的有理数是()A.3B.6C.9D.127.观察图中正方形四个顶点所标的数字规律,可知数2017应标在()2464A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角8.0.2的倒数的绝对值是.9.在数轴上,大于2.5且小于3.2的整数有.10.小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示:输入12345输出1225310417526那么当输入的数据是8时,输出的数据是.11.如图所示,数轴的单位长度为1,P,A,B,Q是数轴上的4个点,其中点A,B表示的数互为相反数.(1)点P表示的数是,点Q表示的数是;(2)若点P向数轴的正方向运动到点B右侧,且以线段BP的长度为边长作正方形,当该正方形的周长为12时,点P在数轴上表示的数是;(3)若点A以每秒1个单位长度的速度向数轴的正方向运动,点B 也以每秒1个单位长度的速度向数轴的负方向运动,且两点同时开始运动.则当运动时间为秒时,A,B 两点之间的距离恰好为1.12.计算:(1)3()4(1)8()(2)(8)(23223232153)156121013.先化简,再在数轴上表示下列各数,并用“1243,02022,32,(2)3,(2),2814.小军在计算(42)6时,使用运算律解题过程如下:解:(42)6(42)6767671161164276667677他的解题过程是否正确如果不正确,请你帮他改正.15.小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A,B,C,D,学校位于小明家西150米,邮局位于小明家东100米,图书馆位于小明家西400米.(1)用数轴表示A,B,C,D(以小明家为原点);(2)一天小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了约8分钟,试问这时小明约在什么位置距图书馆和学校各约多少米16.某灯具厂计划一天生产300盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入.下表是某周的生产情况(增产记为正、减产记为负):星期一二三四五六日增减35297123(1)求该厂本周实际生产景观灯的盏数;(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数;(3)该厂实行每日计件工资制,每生产一盏景观灯可得60元,若超额完成任务,则超过部分每盏另奖20元,若未能完成任务,则少生产一盏扣25元,那么该厂工人这一周的工资总额是多少元【拓展训练】5,6))1.定义:f(a,b)(b,a),g(m,n)(m,n),例如f(2,3)(3,2),g(1,4)(1,4),则g(f(等于()A.(6,5)B.(5,6)C.(6,5)D.(5,6)2.一个容器装有1升水,按照如下要求把水倒出:第1次倒出111升水,第2次倒出的水量是升的,第32211113次倒出的水量是升的,第4次倒出的水量是升的按照这种倒水的方法,倒了10次后容3544器内剩余的水量是()A.1111升B.升C.升D.升8911103.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算89和78的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算79,左、右手依次伸出手指的个数是()A.2,3B.3,3C.2,4D.3,44.如图,已知在纸面上有一数轴.操作一:(1)折叠纸面,使表示1的点与表示1的点重合,则表示2的点与表示的点重合;操作二:(2)折叠纸面,使表示1的点与表示3的点重合,回答下列问题:①表示5的点与表示的点重合;②若数轴上A,B两点之间的距离为9(A在B的左侧),且折叠后A,B 两点重合,则点A表示的数为,点B表示的数为.5.小明在电脑上设计了一个有理数运算程序:输入a,按某键,再输入b,得到1a某bab[23(a1)b1(1)求2某()的值;3]a(的值b.)(2)小艳在运用此程序进行计算时,屏幕显示“该程序无法操作”,你猜小艳在输入数据时,可能是出现了什么情况为什么6.已知A,B在数轴上分别表示数a,b,给出如图所示的数轴.对照数轴填写下表:a23bA,B两点间的距离230323试用含a,b的式子表示A,B两点间的距离.【模拟精练】1.与2的和为0的数是()A.2B.11C.D.2222.计算36的结果为()A.9B.3C.3D.93.与ab互为相反数的是()A.abB.abC.baD.ba4.下列式子中成立的是()A.54B.33C.44D.5.555.下列关于1的说法中,错误的是()A.1的绝对值是1B.1的倒数是1C.1的相反数是1D.1是最小的正整数6.如图,数轴上有A,B,C,D四个点,其中绝对值为2的数对应的点是()A.点A与点CB.点A与点DC.点B与点CD.点B与点D7.检查4个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如8.如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个按此规律,则第6个图形中面积为1的正方形的个数为()A.20B.27C.35D.409.计算:(3)24.10.观察给出的一列数,按某种规律填上适当的数:1,2,4,8,,.11.在计一数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等,而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:0123456十进位制011011100101110二进位制将二进位制数10101010写成十进位制数为.12.把下列各数分别填入相应的集合里:4,环),0.202200220002(1)整数集合:{}(2)分数集合:{}(3)无理数集合:{}(4)有理数集合:{}13.画一条数轴,并在数轴上表示:3.5和它的相反数、和最小的正整数,并把这些数用“14.计算:(1)[422,0,,3.14,2022,(5),0.567(不循371和它的倒数、绝对值等于3的数、最大的负整数275125()]18126936(2)3[2(8)(0.125)](3)2(2)(3)()4415.现有一组有规律排列的数:1,1,2,2,3,3,1,1,2,2,3,3,,其中1,1,2,2,3,3这六个数按此规律重复出现.问:(1)第50个数是什么(2)把从第1个数开始的前2015个数相加,结果是多少(3)从第1个数起,把连续若干个数的平方相加,若和为510,则共有多少个数的平方相加【真题强化】1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收人100元记作100,那么80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.如果a与3互为倒数,那么a是()A.3B.3C.22223211D.333.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克4.在实数2,2,0,1中,最小的数是()A.2B.2C.0D.15.若等式011成立,则内的运算符号为()A.B.C.D.6.数轴上点A,B表示的数分别是5,3,它们之间的距离可以表示为()A.35B.35C.35D.357.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是18.如图.数轴上点P对应的数为p,则数轴上与数p对应的点是()2A.点AB.点BC.点CD.点D9.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.810B.2810C.2.810D.0.281010.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()3345。

苏科版七年级上数学第二章有理数压轴题(有答案)

苏科版七年级上数学第二章有理数压轴题(有答案)

七上第二章有理数压轴题班级姓名得分一、解答题1.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为______.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为______.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=______;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.2.在数轴上有A、B两点,所表示的数分别为n,,A点以每秒5个单位长度的速度向右运动,同时B点以每秒3个单位长度的速度也向右运动,设运动时间为t秒.当时,则______ ;当t为何值时,A、B两点重合;在上述运动的过程中,若P为线段AB的中点,数轴上点C所表示的数为是否存在t的值,使得线段,若存在,求t的值;若不存在,请说明理由.3.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5,用含t的式子填空:BP=____________________,AQ=__________;(2)当t=2时,求PQ的值;(3)当时,求t的值.4.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为-2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为______,当t=2秒时,AC的长为______.(2)用含有t的代数式表示AC的长为______.(3)当t=______秒时AC-BD=5,当t=______秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.5.已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA= ______ ,PC= ______ ;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.7.如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(0≤t≤10).(1)线段BA的长度为______ ;(2)当t=3时,点P所表示的数是______ ;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,若OP中点为Q,则QB的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t的代数式QB的长度.8.已知:b是最小的正整数,且a、b满足(c-6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a= ______ ,b= ______ ,c= ______(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P 在A、B之间运动时,请化简式子:|x+1|-|x-1|-2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n >0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.9.观察下面的变形规律:=1-,=-,=-,…解答下面的问题:(1)若n为正整数,请你猜想= ______ ;(2)证明你猜想的结论;(3)计算:+++…++.10.阅读下列材料并解决有关问题:我们知道,所以当x>0时,==1;当x<0时,==-1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+= ______ ;(2)已知a,b是有理数,当abc≠0时,++= ______ ;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++= ______ .11.阅读下列材料并解决有关问题:我们知道|x|=,>,,<,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别叫做|x+1|与|x-2|的零点值.)在有理数范围内,零点值x=-1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x≤2时,原式=x+1-(x-2)=3;(3)当x>2时,原式=x+1+x-2=2x-1.综上所述,原式=,<,,>.通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x-4|的零点值;(2)化简代数式|x+2|+|x-4|;(3)求方程:|x+2|+|x-4|=6的整数解;(4)|x+2|+|x-4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.12.如图所示,数轴上依次有三点A,O,B,点A位于原点O的左侧且相距40个单位长度,BO=30个单位长度,点P从A点出发以3个单位长度/秒的速度匀速向B点运动,点Q从B点出发,以a个单位长度/秒的速度匀速向A点运动,两点同时出发(P、Q只在线段AB上运动).若BO表示点O与点B之间的距离,PO表示点P与点O之间的距离,QO表示点Q与点O之间的距离.(1)2秒后点P与点Q的距离为______ ;(用含a的代数式表示)(2)当a=2时,求经过多少秒后PO=QO;(3)当a=且t≠时,的值随时间t的变化而改变吗?请说明理由.13.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×______=______.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n-2)+(2n-1)+2n=______.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).14.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足:|a+6|+(b-4)2=0(1)求线段AB的长;(2)如图1,点C在数轴上对应的数为x,且是方程x+1=x-5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM-BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断出正确的结论,并求出其值.15.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|;当A、B两都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(-b)=|a-b|;(2)回答下列问题:①数轴上表示2和5两点之间的距离是______ ,数轴上表示-2和-5的两点之间的距离是______ ,数轴上表示1和-3的两点之间的距离是______ ;②数轴上表示x和-1的两点A和B之间的距离是______ ,如果|AB|=2,那么x为______ ;③当代数式取|x+1|+|x-2|最小值时,相应的x的取值范围是______ ;④求|x-1|+|x-2|+|x-3|+…+|x-2015|的最小值.(提示:1+2+3+…+n=)16.求1+2+22+23+…+22016的值,令S=1+2+22+23+…+22016,则2S=2+22+23+…+22016+22017,因此2S-S=22017-1,S=22017-1.参照以上推理,计算5+52+53+…+52016的值.答案和解析1.【答案】(1)4;(2)①6或2 ;②ⅰ.;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,由题意可得方程:4-x-x=0,解得:x=,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.【解析】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4-2=6,∴A′表示的数为6,故答案为:6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=,∴x=4-=,同法可得:右移时,x=故答案为:;ⅱ.见答案.(1)利用面积÷OC可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;②i、首先根据面积可得OA′的长度,再用OA长减去OA′长可得x的值;ii、此题分两种情况:当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,再根据题意列出方程;当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.此题主要考查了一元一次方程的应用,数轴,关键是正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.2.【答案】解:(1)|2t-6|(2)根据题意得:5t+n=3t+n+6,解得:t=3.∴当t为3时,A、B两点重合.(3)∵P为线段AB的中点,∴点P表示的数为(5t+n+3t+n+6)÷2=4t+n+3,∵PC=4,∴|4t+n+3-n-10|=|4t-7|=4,解得:t=或t=.∴存在t的值,使得线段PC=4,此时t的值为或.【解析】【分析】本题考查了一元一次方程的应用、两点间的距离、数轴以及列代数式,解题的关键是:(1)找出点A、B表示的数;(2)根据两点重合列出关于t的一元一次方程;(3)根据PC列出关于t的含绝对值符号的一元一次方程.找出运动时间为t秒时,点A、B表示的数.(1)将n=1代入点A、B表示的数中,再根据两点间的距离公式即可得出结论;(2)根据点A、B重合即可得出关于t的一元一次方程,解之即可得出结论;(3)根据点A、B表示的数结合点P为线段AB的中点即可找出点P表示的数,根据PC=4即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:当运动时间为t秒时,点A表示的数为5t+n,点B表示的数为3t+n+6.(1)当n=1时,点A表示的数为5t+1,点B表示的数为3t+7,AB=|5t+1-(3t+7)|=|2t-6|.故答案为|2t-6|.(2)见答案;(3)见答案.3.【答案】解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,∴BP=OB-OP=OB-(OA+AP)=15-(10+t)=5-t,AQ=OA-AQ=10-2t;故答案为5-t,10-2t;(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,所以PQ=12-4=8;(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,∴PQ=|2t-(10+t)|=|t-10|,∵PQ=,∴|t-10|=2.5,解得t=12.5或7.5.【解析】本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,(3)中解方程时要注意分两种情况进行讨论.(1)先求出当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,再根据两点间的距离公式即可求出BP,AQ的长;(2)先求出当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,再根据两点间的距离公式即可求出PQ的长;(3)由于t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,根据两点间的距离公式得出PQ=|2t-(10+t)|=|t-10|,根据PQ=列出方程,解方程即可.4.【答案】解:(1)2;4;(2)t+2;(3)6;11;(4)假设能相等,则点A表示的数为2t-2,C表示的数为t,D表示的数为t+3,B表示的数为12,∴AC=|2t-2-t|=|t-2|,BD=|t+3-12|=|t-9|,∵AC=2BD,∴|t-2|=2|t-9|,解得t1=16,t2=.故在运动的过程中使得AC=2BD,此时运动的时间为16秒和秒.【解析】【分析】本题考查了数轴以及一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.(1)依据A、C两点间的距离=|a-b|求解即可;(2)t秒后点C运动的距离为t个单位长度,从而点C表示的数;根据A、C两点间的距离=|a-b|求解即可;(3)t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,从而可得到点C、点D表示的数;根据两点间的距离=|a-b|表示出AC、BD,.根据AC-BD=5和AC+BD=15得到关于t的含绝对值符号的一元一次方程,分别解方程即可得出结论;(4)假设能够相等,找出AC、BD,根据AC=2BD即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:(1)当t=0秒时,AC=|-2-0|=|-2|=2;当t=2秒时,移动后C表示的数为2,∴AC=|-2-2|=4.故答案为2;4;(2)点A表示的数为-2,点C表示的数为t;∴AC=|-2-t|=t+2.故答案为t+2;(3)∵t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12-(3+t)|,∵AC-BD=5,∴t+2-|12-(t+3)|=5.解得:t=6.∴当t=6秒时AC-BD=5;∵AC+BD=15,∴t+2+|12-(t+3)|=15,t=11;当t=11秒时AC+BD=15,故答案为6,11;(4)见答案.5.【答案】(1)t;34-t(2)点P表示的数为-4,-2,3,4.【解析】【分析】此题主要考查了一元一次方程的应用以及利用数轴确定点的位置,利用分类讨论得出是解题关键.(1)根据P点位置进而得出PA,PC的距离;(2)分别根据P点与Q点相遇前以及相遇后进而分别分析得出即可.【解答】解:(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t 秒,∴P到点A的距离为:PA=t,P到点C的距离为:PC=(24+10)-t=34-t;故答案为:t,34-t;(2)当P点在Q点右侧,且Q点还没有追上P点时,3(t-14)+2=t解得:t=20,∴此时点P表示的数为-4,当P点在Q点左侧,且Q点追上P点后,相距2个单位,3(t-14)-2=t解得:t=22,∴此时点P表示的数为-2,当Q点到达C点后,当P点在Q点左侧时,t+2+3(t-14)-34=34解得:t=27,∴此时点P表示的数为3,当Q点到达C点后,当P点在Q点右侧时,t-2+3(t-14)-34=34解得:t=28,∴此时点P表示的数为4,综上所述:点P表示的数为-4,-2,3,4.6.【答案】解:(1)∵a、b满足|a-3b|+(a+b-4)2=0,∴a-3b=0,且a+b-4=0,∴a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(20+t)×1,解得t=10;②当60<t<120时,3t-3×60+(20+t)×1=180°,解得t=85;③当120<t<160时,3t-360=t+20,解得t=190>160,(不合题意)综上所述,当t=10秒或85秒时,两灯的光束互相平行;(3)设A灯转动时间为t秒,∵∠CAN=180°-3t,∴∠BAC=45°-(180°-3t)=3t-135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°-3t=180°-2t,而∠ACD=90°,∴∠BCD=90°-∠BCA=90°-(180°-2t)=2t-90°,∴∠BAC:∠BCD=3:2,即2∠BAC=3∠BCD.【解析】本题主要考查了平行线的性质,非负数的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:若两个非负数的和为0,则这两个非负数均等于0.(1)根据|a-3b|+(a+b-4)2=0,可得a-3b=0,且a+b-4=0,进而得出a、b的值;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:①在灯A射线转到AN之前,②在灯A射线转到AN之后,分别求得t的值即可;(3)设灯A射线转动时间为t秒,根据∠BAC=45°-(180°-3t)=3t-135°,∠BCD=90°-∠BCA=90°-(180°-2t)=2t-90°,可得∠BAC与∠BCD的数量关系.7.【答案】(1)5;(2)6;(3)当0≤t≤5时,动点P所表示的数是2t,当5≤t≤10时,动点P所表示的数是20-2t;(4)QB的长度发生变化,当0≤t≤5时,QB=5-t,当5≤t≤10时,QB=5-(20-5t)=t-5.【解析】解:(1)∵B是线段OA的中点,∴BA=OA=5;故答案为:5;(2)当t=3时,点P所表示的数是2×3=6,故答案为:6;(3)见答案;(4)见答案.【分析】(1)根据B是线段OA的中点,即可得到结论;(2)根据已知条件即可得到结论;(3)当0≤t≤5时,当5≤t≤10时,即可得到结论;(4)当0≤t≤5时,当5≤t≤10时,根据线段的和差即可得到结论.此题主要考查了一元一次方程的应用以及数轴上点的位置关系,根据P点位置的不同得出等式方程求出是解题关键.8.【答案】(1)-1;1;6(2)由题意-1<x<1,∴|x+1|-|x-1|-2|x+5|=x+1+1-x-2(x+5)=2-2x-10=-2x-8.(3)由题意BC=5+5nt-2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC-AB=(5+3nt)-(2+3nt)=3,∴BC-AB的值不变,BC-AB=3.【解析】【分析】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长,属于中考常考题型.(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC-AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【解答】解:(1)∵b是最小的正整数,∴b=1,∵(c-6)2+|a+b|=0,(c-6)2≥0,|a+b|≥0,∴c=6,a=-1,b=1,故答案为-1,1,6.(2)由题意-1<x<1,∴x+1>0,x-1<0,x+5>0∴|x+1|-|x-1|-2|x+5|=x+1+1-x-2x-10=-2x-8.(3)由题意BC=5+5nt-2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC-AB=(5+3nt)-(2+3nt)=3,∴BC-AB的值不变,BC-AB=3.9.【答案】(1)-;(2)已知等式右边===左边,得证;(3)原式=1-+-+…+-=1-=.【解析】解:(1)=-;故答案为:-.(2)见答案;(3)见答案.(1)观察已知等式,写出猜想即可;(2)原式通分并利用同分母分式的减法法则计算,即可得证;(3)原式利用拆项法变形后,抵消合并即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.【答案】(1)±2或0;(2)±1或±3;(3)-1.【解析】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=-1-1=-2,②a>0,b>0,+=1+1=2,③a、b异号,+=0,故答案为:±2或0;(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=-1-1-1=-3,②a>0,b>0,c>0,++=1+1+1=3,③a、b、c两负一正,++=-1-1+1=-1,④a、b、c两正一负,++=-1+1+1=1,故答案为:±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,则++═---=1-1-1=-1,故答案为:-1.【分析】(1)分3种情况讨论即可求解;(2)分4种情况讨论即可求解;(3)根据已知得到b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,进一步计算即可求解.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.11.【答案】解:(1)∵|x+2|和|x-4|的零点值,可令x+2=0和x-4=0,解得x=-2和x=4,∴-2,4分别为|x+2|和|x-4|的零点值.(2)当x<-2时,|x+2|+|x-4|=-2x+2;当-2≤x<4时,|x+2|+|x-4|=6;当x≥4时,|x+2|+|x-4|=2x-2;(3)∵|x+2|+|x-4|=6,∴-2≤x≤4,∴整数解为:-2,-1,0,1,2,3,4.(4)|x+2|+|x-4|有最小值,∵当x=-2时,|x+2|+|x-4|=6,当x=4时,|x+2|+|x-4|=6,∴|x+2|+|x-4|的最小值是6.【解析】本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答.(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;(3)由|x+2|+|x-4|=6,得到-2≤x≤4,于是得到结果;(4)|x+2|+|x-4|有最小值,通过x的取值范围即可得到结果.12.【答案】(1)|64-2a|;(2)设t秒后,PO=QO,当a=2时,点P表示数-40+3t,点Q表示30-2t,根据题意知,|-40+3t|=|30-2t|,解得:t=14或t=10,答:经过10秒或14秒后PO=QO;(3)当a=时,点P表示数-40+3t,点Q表示数30-t,则PO=|-40+3t|、QO=|30-t|,∵t≠,∴==,故当a=且t≠时,的值不随时间t的变化而改变.【解析】解:(1)2秒后点P表示数-40+2×3=-34,点Q表示数30-2a,则PQ=|30-2a-(-34)|=|64-2a|,故答案为:|64-2a|;(2)见答案;(3)见答案.(1)先表示出2秒后P、Q两点所表示的数,再根据两点间的距离公式可得;(2)设t秒后,PO=QO,表示出a=2时,P、Q两点所表示的数,继而由PO=QO列出关于t的方程,解之可得;(3)表示出a=且t≠时PO、QO的长,由==可得答案.本题主要考查数轴、两点间的距离公式及一元一次方程的应用,根据两点间的距离公式表示出所需线段的长度是解题的关键.13.【答案】(1)50 5050 (2)n(2n+1)(3)a+(a+b)+(a+2b)+(a+3b)+…+(a+99b),=(a+a+99b)+(a+b+a+98b)+…+(a+49b+a+50b),=(2a+99b)×50,=100a+4950b.【解析】解:(1)1+2+3+4+5+ (100)=(1+100)+(2+99)+(3+98)+…+(50+51),=101×50,=5050.故答案为:50;5050.(2)∵1+2n=2+(2n-1)=3+(2n-2)=…=n+n+1=2n+1,∴1+2+3+4+5+6+…+(2n-2)+(2n-1)+2n,=(2n+1)+(2n+1)+…+(2n+1),=n(2n+1).故答案为:n(2n+1).(3)见答案【分析】(1)根据数的个数可找出总共有50个101,由此即可得出结论;(2)仿照(1)找出规律,由此即可求出结论;(3)仿照(1)找出规律,由此即可求出结论.本题考查了规律型中数字的变化类,观察数列,找出“首尾相加=第二项+倒数第二项=…”是解题的关键.14.【答案】解:(1)∵|a+6|+(b-4)2=0,∴a+6=0,b-4=0,∴a=-6,b=4,∴AB=|-6-4|=10.答:AB的长为10;(2)存在,∵2x+1=x-5,∴x=-8,∴BC=12.设点P在数轴上对应的数是m,∵PA+PB=BC+AB,∴|m+6|+|m-4|=×12+3,令m+6=0,m-4=0,∴m=-6或m=4.①当m≤-6时,-m-6+4-m=13,m=-7.5;②当-6<m≤4时,m+6+4-m=13,(舍去);③当m>4时,m+6+m-4=13,m=5.5.∴当点P表示的数为-7.5或5.5时,PA+PB=BC+AB;(3)设P点所表示的数为n,∴PA=n+6,PB=n-4.∵PA的中点为M,∴PM=PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n-4),∴①PM-BN=×-×=(不变),②PM+BN=+×=n+1(随点P的变化而变化),即正确的结论为①PM-BN的值不变,其值为.【解析】(1)利用非负数的性质求出a与b的值,即可确定出AB的长;(2)求出已知方程的解确定出x,得到C表示的点,设点P在数轴上对应的数是m,由PA+PB=BC+AB确定出P位置,即可做出判断;(3)设P点所表示的数为n,就有PA=n+6,PB=n-4,根据条件就可以表示出PM=,BN=×(n-4),再分别代入①PM-BN和②PM+BN求出其值即可.本题考查了一元一次方程的运用,分段函数的运用,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.15.【答案】(1)3;3;4;(2)|x+1|;-3或1;(3)-1≤x≤2; (4)1015056【解析】解:①数轴上表示2和5两点之间的距离是:|2-5|=3,数轴上表示-2和-5的两点之间的距离是:|-2+5|=3,数轴上表示1和-3的两点之间的距离是:|1+3|=4,②数轴上表示x和-1的两点A和B之间的距离是:|x+1|,当|AB|=2,即|x+1|=2,解得x=-3或1.③若|x+1|+|x-2|取最小值,那么表示x的点在-1和2之间的线段上,所以-1≤x≤2.④解:当时,|x-1|+|x-2|+|x-3|+…+|x-2015|最小,最小值为1+2+3+…+1007+0+1+2+3+…+1007=(1+2+3+…+1007)×2==1015056.故答案为:3,3,4;|x+1|,-3或1;-1≤x≤2;1015056①根据两点间的距离公式即可求解;②根据两点间的距离公式可求数轴上表示x和-1的两点A和B之间的距离,再根据两点间的距离公式列出方程可求x;③求|x+1|+|x-2|的最小值,意思是x到-1的距离之和与到2的距离之和最小,那么x应在-1和2之间的线段上;④根据提示列出算式计算即可求解.本题考查了数轴,涉及的知识点为:数轴上两点间的距离=两个数之差的绝对值.绝对值是正数的数有2个.16.【答案】解:设S=5+52+53+...+52016,则5S=52+53+ (52017)∴5S-S=52+53+…+52017-(5+52+53+…+52016)=52017-5,∴S=.【解析】仿照例题可设S=5+52+53+…+52016,从而得出5S=52+53+…+52017,二者做差后即可得出结论.本题考查了规律型中数字的变化类以及有理数的混合运算,仿照例题找出4S=52017-5是解题的关键.。

苏科版七年级数学上第二章 有理数加减乘除训练题(有答案)

苏科版七年级数学上第二章 有理数加减乘除训练题(有答案)

第二章有理数加减乘除测试题班级姓名得分一、选择题1.计算(+5)+(-2)的结果是()A. 7B.C. 3D.2.下列说法中正确的是()A.不是分数B.是整数C. 数轴上与原点的距离是2个单位的点表示的数是2D. 两个有理数的和一定大于任何一个加数3.比1小2的数是()A. B. C. D. 04.若()-(-5)=-3,则括号内的数是()A. B. C. 2 D. 85.一天早晨的气温是-7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A. B. C. D.6.将6+(-4)+(+5)+(-3)写成省略加号的和式为()A. B. C. D.7.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A. 1个或3个B. 1个或2个C. 2个或4个D. 3个或4个8.计算,结果正确的是()A. B. 100 C. 1 D.9.下列各组的两个数中,运算后结果相等的是()A.和 B. 和 C. 和D. 和10.如果|a+2|+(b-1)2=0,那么(a+b)2017的值等于()A. B. C. 1 D. 201711.定义新运算:对任意有理数a,b,c,d都有,则的值是()A. 2B.C.D. 11二、填空题12.比3大-10的数是______.13.计算;①1-2= ______ ;②-2×(-3)= ______ ;③(-2)3= ______ ;④(-1)100= ______ .14.某市2016年元旦的最低气温为-2℃,最高气温为8℃,这一天的最高气温比最低气温高__________℃15.学习了有理数的运算后,老师出了一道题:计算-5-3的值,小罗同学是这样做的:-5-3=-5+(-3)=-8,他的理由是:减去一个数等于加上这个数的相反数.聪明的你还有什么方法计算此题?请写出你的计算过程:______,你这样计算的理由是:______.16.用“△”定义新运算:对于任意有理数a,b,当a≤b时,都有;当a>b时,都有.那么,2△6 = ______,△=_______.17.商场某件大衣的标价为60元,为了提高销量商家打七五折销售,现售价为_________元.18.在-(-2),-|-3|,0,(-2)3这四个数中,结果为正数的是______ .19.若(m+3)2+|n-2|=0,则-m n=______20.对于有理数a,b,定义⊕运算如下:,则4⊕6=________.21.有一个数值转换器,其工作原理如图所示,若输入,则输出的结果是______ .三、解答题22.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c的值.23.为了有效遏制酒后驾车行为,县交警大队的一辆警车在城区华阳路上巡逻,如果规定向东为正,向西为负,在某段时间内,这辆警车从出发点开始所走的路程为:+3,-2,+2,+1,-2,+2,-1,-2(单位:千米)(1)此时,这辆警车在出发点的什么位置?(2)如果每千米耗油0.2升,在这段时间内的巡逻共耗油多少升?24.定义:若两个数,y满足等式,则称数对(,)为“二维数对”.如:称数对(2,4)是“二维数对”.(1)下列数对中是“二维数对”的是().A .(4,)B.(,)C.(,)(2)若(,)是“二维数对”,则(,)“二维数对”(填“是”或“不是”);(3)若(,)是“二维数对”,求的值.25.已知:|m|=2,a、b互为相反数,且都不为0,c、d互为倒数,求2(a+b)+(-3cd)-m的值.26.已知m是最大的负整数,n是绝对值最小的有理数,d的相反数是-.求m2015+2016n-2018d的值.27.我们发现:,,,……,(1)利用上述发现计算:+…+.(2)现有咸度较低的盐水a克,其中含盐b克,若再往该盐水中加m克盐(加入的盐均能溶解),生活经验告诉我们盐水会更咸.①请你用两个代数式的大小关系来表达这一现象,并通过分式运算说明结论的正确性;②应用上述原理说明对于任意正整数n,算式+…+的值都小于.答案和解析1.【答案】C【解析】【分析】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5)+(-2)=+(5-2)=3.故选C.2.【答案】B【解析】解:A、3.14是分数,故选项错误;B、-2是整数,故选项正确;C、数轴上与原点的距离是2个单位的点表示的数是±2,故选项错误;D、两个有理数的和不一定大于每一个加数,故选项错误.故选B.各项利用有理数的加法法则,有理数的定义判断即可.此题考查了有理数的加法,以及有理数,熟练掌握运算法则是解本题的关键.3.【答案】C【解析】解:1-2=-1.故选:C.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.4.【答案】B【解析】解:括号内的数=(-3)+(-5),=-(3+5),=-8.故选:B.根据被减数等于差加减数列式计算即可得解.本题考查了有理数减法,理解被减数、减数、差三者之间的关系是解题的关键.5.【答案】A【解析】解:-7+11-9=-7+11+(-9)=-5.故选:A.根据题意列出算式进行计算即可.本题主要考查的是有理数的加减,根据题意列出算式是解题的关键.6.【答案】D【解析】解:原式=6-4+5-3.故选择D.根据去括号法则去掉括号即可.本题主要考查有理数的加减混合运算,去括号法则,关键在于熟练运用去括号法则去掉括号即可.7.【答案】A【解析】解:4个有理数相乘,积的符号是负号,则这4个有理数中,负数有1个或3个.故选A.根据多个数字相乘积为负数,得到负因式个数为奇数个,即可确定出结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】【分析】本题主要考查的是有理数的乘除运算,掌握有理数的乘法和除法法则是解题的关键.按照有理数的运算顺序和运算法则计算即可.【解答】解:原式=.故选D.9.【答案】B【解析】解:A、23=8,32=9,故本选项错误;B、-23=-8,(-2)3=-8,故本选项正确;C、-42=-16,(-4)2=16,故本选项错误;D、(-)3=-,-=-,故本选项错误.故选B.根据有理数的乘方的定义对各选项计算,然后利用排除法求解即可.本题考查了有理数的乘方,熟记概念是解题的关键.10.【答案】A【解析】解:∵|a+2|+(b-1)2=0,∴a=-2,b=1,∴(a+b)2017=(-1)2017=-1.故选:A.直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.11.【答案】B【解析】【分析】本题主要考查了有理数的定义新运算.根据新运算公式,得:1×4-2×3=-2.【解答】解:∵,∴1×4-2×3=-2,故选B.12.【答案】-7【解析】【分析】根据题意列出算式,利用加法法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.【解答】解:根据题意得:3+(-10)=-7.故答案为:-7.13.【答案】-1;6;-8;1【解析】解:①1-2=-1;②-2×(-3)=6;③(-2)3=-8;④(-1)100=1,故答案为:①-1;②6;③-8;④1原式利用有理数的减法,乘法,以及乘方的意义计算即可得到结果.此题考查了有理数的乘方,有理数的减法,以及有理数的乘法,熟练掌握运算法则是解本题的关键.14.【答案】10【解析】解:8-(-2)=10(℃),∴这一天的最高气温比最低气温高10℃.故答案为:10.用某市2016年元旦的最高气温减去最低气温,求出这一天的最高气温比最低气温高多少即可.此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.15.【答案】-5-3=-(5+3)=-8;(1)添上前面带有“-”号的括号时,括号内各数的符号都要改变.(2)同号的两数相加,符号不变,并把两个加数的绝对值相加.(答案不唯一)【解析】解:计算过程:-5-3=-(5+3)=-8;理由:(1)添上前面带有“-”号的括号时,括号内各数的符号都要改变.(2)同号的两数相加,符号不变,并把两个加数的绝对值相加.(答案不唯一).故答案为:-5-3=-(5+3)=-8;(1)添上前面带有“-”号的括号时,括号内各数的符号都要改变.(2)同号的两数相加,符号不变,并把两个加数的绝对值相加.(答案不唯一).直接利用有理数的混合运算法则计算得出答案.此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.16.【答案】24 -6【解析】【分析】此题主要考查了有理数相关计算。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版七年级上第二章有理数拓展提优试卷(有答案)-(数学)第二章《有理数》拓展提优试卷【单元综合】1.下列说法正确的个数是( ) ①一个有理数不是整数就是分数; ②无限循环小数是无理数; ③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C. 3D. 4 2.已知n 为正整数,则221(1)(1)nn ( ) A.2 B.1 C.0D.23.16的相反数是()A.16B.16C.6D.64.下列等式成立的是()A.88B.(1)1C.11(3)3D.2365.某市为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000用科学记数法可表示为( ) A. 46010 B. 5610C. 4610D. 60.6106.数学家发明了一个魔术盒,当任意有理数对(,)a b 进入其中时,会得到一个新的有理数:21ab + b -.例如,把(3,2)放入其中,就会得到23(2)16.现将有理数对(1,3)放入其中,得到有理数m ,再将有理数对(,1)m 放入其中后,得到的有理数是()A.3B.6C.9D.127.观察图中正方形四个顶点所标的数字规律,可知数2 017应标在( )A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角8.0.2的倒数的绝对值是.9.在数轴上,大于2.5且小于3. 2的整数有. 10.小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示:输入… 1 2 3 4 5 …输出…1225310417526…那么当输入的数据是8时,输出的数据是.11.如图所示,数轴的单位长度为1,,,,P A B Q 是数轴上的4个点,其中点,A B 表示的数互为相反数.(1)点P 表示的数是,点Q 表示的数是;(2)若点P 向数轴的正方向运动到点B 右侧,且以线段BP 的长度为边长作正方形,当该正方形的周长为12时,点P 在数轴上表示的数是; (3)若点A 以每秒1个单位长度的速度向数轴的正方向运动,点B 也以每秒1个单位长度的速度向数轴的负方向运动,且两点同时开始运动.则当运动时间为秒时,,A B 两点之间的距离恰好为1.12.计算:(1)222223()4(1)8()333(2)153(8)()156121013.先化简,再在数轴上表示下列各数,并用“<”号连接起来.2017231243,0,3,(2),(2),2814.小军在计算6(42)67时,使用运算律解题过程如下:解:66116116(42)6(42)427677667677他的解题过程是否正确?如果不正确,请你帮他改正.15.小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为,,,A B C D ,学校位于小明家西150米,邮局位于小明家东100米,图书馆位于小明家西400米.(1)用数轴表示,,,A B C D (以小明家为原点);(2)一天小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了约8分钟,试问这时小明约在什么位置?距图书馆和学校各约多少米?16.某灯具厂计划一天生产300盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入.下表是某周的生产情况(增产记为正、减产记为负):星期一二三四五六日增减35297123(1)求该厂本周实际生产景观灯的盏数;(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数; (3)该厂实行每日计件工资制,每生产一盏景观灯可得60元,若超额完成任务,则超过部分每盏另奖20元,若未能完成任务,则少生产一盏扣25元,那么该厂工人这一周的工资总额是多少元? 【拓展训练】1.定义:(,)(,)f a b b a ,(,)(,)g m n m n ,例如(2,3)(3,2)f ,(1,4)(1,4)g ,则((5,6))g f 等于( )A.(6,5)B.(5,6)C.(6,5)D.(5,6)2.一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15……按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A.18升 B.19升 C.110升 D.111升3.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算89和78的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算79,左、右手依次伸出手指的个数是( )A.2,3B. 3 ,3C. 2 ,4D. 3 ,44.如图,已知在纸面上有一数轴.操作一:(1)折叠纸面,使表示1的点与表示1的点重合,则表示2的点与表示的点重合;操作二:(2)折叠纸面,使表示1的点与表示3的点重合,回答下列问题:①表示5的点与表示的点重合;②若数轴上,A B两点之间的距离为9(A在B的左侧),且折叠后,A B两点重合,则点A表示的数为,点B表示的数为.5.小明在电脑上设计了一个有理数运算程序:输入a,按*键,再输入b,得到31*[2(1)]() a b a b a a bb的值.(1)求12*()3的值;(2)小艳在运用此程序进行计算时,屏幕显示“该程序无法操作”,你猜小艳在输入数据时,可能是出现了什么情况?为什么?6.已知,A B在数轴上分别表示数,a b,给出如图所示的数轴.对照数轴填写下表:a2202b3333,A B两点间的距离试用含,a b的式子表示,A B两点间的距离.【模拟精练】1.与2的和为0的数是( )A.2B.12C.12D.22.计算36的结果为( )A.9B.3C.3D.93.与a b互为相反数的是( )A.a bB.a bC.b aD.b a4.下列式子中成立的是( )A.54B.33C.44D. 5.555.下列关于1的说法中,错误的是( )A.1的绝对值是 1B.1的倒数是 1C.1的相反数是 1D.1是最小的正整数6.如图,数轴上有,,,A B C D四个点,其中绝对值为2的数对应的点是( )A.点A与点CB.点A与点DC.点B与点CD.点B与点D7.检查4个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:篮球的编号1234与标准质量的差/克4553则质量较好的篮球的编号是( )A.1B. 2C. 3D.48.如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个……按此规律,则第6个图形中面积为1的正方形的个数为( )A.20B.27C.35D.409.计算:(3)24.10.观察给出的一列数,按某种规律填上适当的数:1,2,4,8,,.11.在计一数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等,而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制0 1 2 3 4 5 6 …二进位制0 1 10 11 100 101 110 …将二进位制数10101010写成十进位制数为.12.把下列各数分别填入相应的集合里:4224,,0,, 3.14,2017,(5),0.56737…(不循环),0.202200220002…(1)整数集合:{ …} (2)分数集合:{ …} (3)无理数集合:{ …} (4)有理数集合:{ …}13.画一条数轴,并在数轴上表示:3. 5和它的相反数、12和它的倒数、绝对值等于3的数、最大的负整数和最小的正整数,并把这些数用“<”号连接起来.14.计算:(1)75125 [()]18126936(2)3[2(8)(0.125)](3)222222(2)(3)()44315.现有一组有规律排列的数: 1,1,2,2,3,3,1,1,2,2,3,3,…,其中1,1,2,2,3,3这六个数按此规律重复出现.问:(1)第50个数是什么?(2)把从第1个数开始的前 2 015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,若和为510,则共有多少个数的平方相加?【真题强化】1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收人100元记作100,那么80元表示( ) A.支出20元 B.收入20元 C.支出80元 D.收入80元2.如果a 与3互为倒数,那么a 是( )A.3B.3C.13D.133.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A.19.7千克B. 19. 9千克C.20.1千克D. 20. 3千克4.在实数2,2,0,1中,最小的数是( )A. 2B. 2C. 0D. 15.若等式011成立,则内的运算符号为( ) A. B. C. D. 6.数轴上点,A B 表示的数分别是5,3,它们之间的距离可以表示为( )A.35 B.35C.35D.357.下列说法正确的是( ) A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是 1 8.如图.数轴上点P 对应的数为p ,则数轴上与数2p 对应的点是( )A.点AB.点BC.点CD.点D9.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里,将28 000用科学记数法表示应为( )A.32.810 B.32810 C.42.810 D.50.281010.如图,四个有理数在数轴上的对应点,,,M P N Q ,若点,M N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点MB.点NC.点PD.点Q 11.若有理数,m n 满足22(2014)0m n ,则m n. 12.按照如图所示的操作步骤,若输入的值为3,则输出的值为.13.定义一种新运算2*x y x yx,如:2212*122,则(4*2)*(1).14.观察下列各式:32113321233332123633332123410猜想333312310….15.甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1,2,3,4,接着甲报5,乙报6……后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为. 16.计算:2122(3)17.计算:3423(5)18.请你参考黑板中老师的讲解,用运算律简便计算:(1)999(15)(2)413999118999()99918555参考答案【单元综合】1.B 2.C 3.A4.A5.C6.C7.D8. 59. -2,-1,0,1,2,3 10.86511.(1)-4 5 (2)6 (3)52或7212.(1)2203(2)3413.在数轴上表示如下用“<”号连接为22017312433(2)(2)2814.不正确.正解: 61(42)6777÷15.(1)如图所示:(2)小明从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,走的路程约为50×8 = 400(米),由图知,C,D 之间相距500米,此时小明在学校与图书馆之间,距图书馆约100米,距学校约150米.16. (1)(3-5-2 +9-7+12-3 ) + 300×7=2 107(盏).(2)产量最多的一天生产景观灯300+12=312(盏),产量最少的一天生产景观灯300-7=293(盏),312-293=19(盏).产量最多的一天比产量最少的一天多生产景观灯19盏(3) 2 107×60+(3+9+12)×20-(5+2+7+3)×25 = 126 475(元). 该厂工人这一周的工资总额是126 475元.【拓展训练】1.A 2.D 3.C4.(1)2(2)①-3 ②-3. 5 5.55.(1)20421(2)有两种可能,输入的数据有0b 或ab 的情况,此时分母或除数为0.6.(1)表中从左到右依次填:1,5,3,1.对照数轴,表示2,3的点均在原点的右侧,距原点的距离分别为22,33,因为321,所以当2,3a b 时,A,B 两点间的距离为1.同理可求得其他对应的数值依次为5,3,1.(2)由(1)知,113223,53(2)23,30330,12(3)3(2)所以用含,a b 的式子表示A,B 两点间的距离为a b 或b a .【模拟精练】1.D 2.A 3.D 4.B5.C6.B7.D8.B9. -210. 16 -32 11. 17012.(1)整数集合:{4,0,2017,(5),}(2)分数集合:{ 422,, 3.14,37}(3)无理数集合:{ 0.567(不循环),0.202200220002…, …}(4)有理数集合:{4224,,0,, 3.14,2017,(5),37…}13. 3. 5的相反数是-3.5,12的倒数是-2,绝对值等于3的数是+3和-3, 最大的负整数是-1,最小的正整数是 1.画出数轴,表示出题中各数如图所示:把这些数用“<”号连接起来为13.532113 3.5214.(1)-3 (2)0 (3)-1815. (1)因为50÷6 =8……2,所以第50个数是-1.(2)因为2 015÷6=335……5,1+(-1) +2+(-2) +3+(-3) =0,1+(-1)+2+(-2) +3=3,所以从第1个数开始的前 2 015个数的和是 3.(3)因为12+(-1)2+22+(-2)2 +32 +(-3)2=28,510÷28=18……6,且12+(-1)2+22 =6,18×6+3=111,所以共有111个数的平方相加.【真题强化】1.C 2.D 3.C 4.A 5.B6.D7.D8.C9.C 10.C11. 201612. 5513. 014. 55215. 416. 1717. -318. (1)-14985 (2)99900。

相关文档
最新文档