2008年江苏省高考数学模拟试题
2008届全国百套高考数学模拟试题分类汇编-023函数解答题
又
∴b=1代入①得 ,∴
6、(陕西长安二中2008届高三第一学期第二次月考)为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形 上规划出一块长方形地面建造公园,公园一边落在CD上,但不得越过文物保护区 的EF.问如何设计才能使公园占地面积最大,并求这最大面积.(其中AB=200m,BC=160m,AE=60m,AF=40m.)
由于 ,所以 是“保三角形函数”. 3分
对于 ,3,3,5可作为一个三角形的三边长,但 ,所以不存在三角形以 为三边长,故 不是“保三角形函数”.4分
(II)设 为 的一个周期,由于其值域为 ,所以,存在 ,使得 ,
取正整数 ,可知 这三个数可作为一个三角形的三边长,但 , 不能作为任何一个三角形的三边长.故 不是“保三角形函数”.8分
设2a<x<3a,则0 <x2a<a,
∴f(x2a)= = > 0,∴f(x)< 0---------------------(10分)
设2a<x1<x2<3a,
则0 <x2x1<a,∴f(x1)<0f(x2)<0f(x2x1)> 0,
∴f(x1)f(x2)= > 0,∴f(x1)>f(x2),
∴f(x)在[2a,3a]上单调递减--------------------------------------------------(12分)
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利(盈利额为正值)
(3)使用若干年后,对机床的处理方案有两种:(Ⅰ)当年平均盈利额达到最大值时,以30万元价格处理该机床;(Ⅱ)当盈利额达到最大值时,以12万元价格处理该机床.
2008年江苏省高考数学试卷加详细解析
2008年江苏省高考数学试卷2008年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2008•江苏)若函数最小正周期为,则ω=_________.2.(5分)(2008•江苏)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是_________.3.(5分)(2008•江苏)若将复数表示为a+bi(a,b∈R,i是虚数单位)的形式,则a+b=_________.4.(5分)(2008•江苏)若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有_________个元素.5.(5分)(2008•江苏)已知向量和的夹角为120°,,则=_________.6.(5分)(2008•江苏)在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则所投点在E中的概率是_________.7.(5分)(2008•江苏)某地区为了解70﹣80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:序号i 分组(睡眠时间)组中值(G i)频数(人数)频率(F i)1 [4,5) 4.5 6 0.122 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8)7.5 10 0.205 [8,9]8.5 4 0.08在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为_________.8.(5分)(2008•江苏)设直线y=x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为_________.9.(5分)(2008•江苏)如图,在平面直角坐标系xoy中,设三角形ABC的顶点分别为A(0,a),B(b,0),C (c,0),点P(0,p)在线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线OE的方程为,请你完成直线OF 的方程:_________.10.(5分)(2008•江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为_________.11.(5分)(2008•江苏)设x,y,z为正实数,满足x﹣2y+3z=0,则的最小值是_________.12.(5分)(2008•江苏)在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a 为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为_________.13.(5分)(2008•江苏)满足条件AB=2,AC=BC的三角形ABC的面积的最大值是_________.14.(5分)(2008•江苏)f(x)=ax3﹣3x+1对于x∈[﹣1,1]总有f(x)≥0成立,则a=_________.二、解答题(共12小题,满分90分)15.(15分)(2008•江苏)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是,.(1)求tan(α+β)的值;(2)求α+2β的值.16.(15分)(2008•江苏)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.17.(15分)(2008•江苏)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.(1)按下列要求建立函数关系式:(i)设∠BAO=θ(rad),将y表示成θ的函数;(ii)设OP=x(km),将y表示成x的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短.18.(15分)(2008•江苏)在平面直角坐标系xOy中,记二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.经过三个交点的圆记为C.(1)求实数b的取值范围;(2)求圆C的方程;(3)问圆C是否经过定点(其坐标与b的无关)?请证明你的结论.19.(15分)(2008•江苏)(1)设a1,a2,…,a n是各项均不为零的n(n≥4)项等差数列,且公差d≠0,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i)当n=4时,求的数值;(ii)求n的所有可能值.(2)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,b n,其中任意三项(按原来的顺序)都不能组成等比数列.20.(15分)(2008•江苏)已知函数,(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);(2)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n﹣m)21.(2008•江苏)如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EB•EC.22.(2008•江苏)在平面直角坐标系xOy中,设椭圆4x2+y2=1在矩阵对应的变换作用下得到曲线F,求F的方程.23.(2008•江苏)在平面直角坐标系xOy中,点P(x,y)是椭圆上的一个动点,求S=x+y的最大值.24.(2008•江苏)设a,b,c为正实数,求证:.25.(2008•江苏)记动点P是棱长为1的正方体ABCD﹣A1B1C1D1的对角线BD1上一点,记.当∠APC 为钝角时,求λ的取值范围.26.(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).2008年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2008•江苏)若函数最小正周期为,则ω=10.考点:三角函数的周期性及其求法.专题:计算题.分析:根据三角函数的周期公式,即T=可直接得到答案.解答:解:.故答案为:10点评:本小题考查三角函数的周期公式,即T=.2.(5分)(2008•江苏)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是.考点:古典概型及其概率计算公式.专题:计算题.分析:分别求出基本事件数,“点数和为4”的种数,再根据概率公式解答即可.解答:解析:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故.故填:.点评:本小题考查古典概型及其概率计算公式,考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.(5分)(2008•江苏)若将复数表示为a+bi(a,b∈R,i是虚数单位)的形式,则a+b=1.考点:复数的基本概念;复数代数形式的乘除运算.专题:计算题.分析:利用复数除法的法则:分子分母同乘以分母的共轭复数.解答:解:.∵,∴a=0,b=1,因此a+b=1故答案为1点评:本小题考查复数的除法运算.4.(5分)(2008•江苏)若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有6个元素.考点:交集及其运算.分析:先化简集合A,即解一元二次不等式(x﹣1)2<3x+7,再与Z求交集.解答:解:由(x﹣1)2<3x+7得x2﹣5x﹣6<0,∴A=(﹣1,6),因此A∩Z={0,1,2,3,4,5},共有6个元素.故答案是6点评:本小题考查集合的运算和解一元二次不等式.5.(5分)(2008•江苏)已知向量和的夹角为120°,,则=7.考点:向量的模.专题:计算题.分析:根据向量的数量积运算公式得,化简后把已知条件代入求值.解答:解:由题意得,=,∴=7.故答案为:7.点评:本小题考查向量模的求法,即利用数量积运算公式“”进行求解.6.(5分)(2008•江苏)在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则所投点在E中的概率是.考点:古典概型及其概率计算公式.专题:计算题.分析:本题是一个几何概型,试验包含的所有事件是区域D表示边长为4的正方形的内部(含边界),满足条件的事件表示单位圆及其内部,根据几何概型概率公式得到结果.解答:解析:本小题是一个几何概型,∵试验包含的所有事件是区域D表示边长为4的正方形的内部(含边界),面积是42=16,满足条件的事件表示单位圆及其内部,面积是π×12根据几何概型概率公式得到∴故答案为:.点评:本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到,本题是通过两个图形的面积之比得到概率的值.本题可以以选择和填空形式出现.7.(5分)(2008•江苏)某地区为了解70﹣80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:序号i 分组(睡眠时间)组中值(G i)频数(人数)频率(F i)1 [4,5) 4.5 6 0.122 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8)7.5 10 0.205 [8,9]8.5 4 0.08在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为 6.42.考点:频率分布表;工序流程图(即统筹图).专题:图表型.分析:观察算法流程图知,此图包含一个循环结构,即求G1F1+G2F2+G3F3+G4F4+G5F5的值,再结合直方图中数据即可求解.解答:解:由流程图知:S=G1F1+G2F2+G3F3+G4F4+G5F5=4.5×0.12+5.5×0.20+6.5×0.40+7.5×0.2+8.5×0.08=6.42,故填:6.42.点评:本题考查读频率分布直方图、算法流程图的能力和利用统计图获取信息的能力.利用图表获取信息时,必须认真观察、分析、研究图表,才能作出正确的判断和解决问题.8.(5分)(2008•江苏)设直线y=x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为ln2﹣1.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:欲实数b的大小,只须求出切线方程即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率,最后求出切线方程与已知直线方程对照即可.解答:解:y′=(lnx)′=,令=得x=2,∴切点为(2,ln2),代入直线方程y=x+b,∴ln2=×2+b,∴b=ln2﹣1.故答案为:ln2﹣1点评:本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.9.(5分)(2008•江苏)如图,在平面直角坐标系xoy中,设三角形ABC的顶点分别为A(0,a),B(b,0),C (c,0),点P(0,p)在线段AO上的一点(异于端点),这里a,b,c,p均为非零实数,设直线BP,CP分别与边AC,AB交于点E,F,某同学已正确求得直线OE的方程为,请你完成直线OF 的方程:.考点:直线的一般式方程;归纳推理.专题:转化思想.分析:本题考查的知识点是类比推理,我们类比直线OE的方程为,分析A(0,a),B(b,0),C(c,0),P(0,p),我们可以类比推断出直线OF的方程为:.解答:解:由截距式可得直线AB:,直线CP:,两式相减得,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求直线OF的方程.故答案为:.点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).10.(5分)(2008•江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为.考点:归纳推理;等比数列的前n项和.专题:压轴题;规律型.分析:观察图例,我们可以得到每一行的数放在一起,是从一开始的连续的正整数,故n行的最后一个数,即为前n项数据的个数,故我们要判断第n行(n≥3)从左向右的第3个数,可先判断第n﹣1行的最后一个数,然后递推出最后一个数据.解答:解:本小题考查归纳推理和等差数列求和公式.前n﹣1行共有正整数1+2+…+(n﹣1)个,即个,因此第n行第3个数是全体正整数中第+3个,即为.点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).11.(5分)(2008•江苏)设x,y,z为正实数,满足x﹣2y+3z=0,则的最小值是3.考点:基本不等式.分析:由x﹣2y+3z=0可推出,代入中,消去y,再利用均值不等式求解即可.解答:解:∵x﹣2y+3z=0,∴,∴=,当且仅当x=3z时取“=”.故答案为3.点评:本小题考查了二元基本不等式,运用了消元的思想,是高考考查的重点内容.12.(5分)(2008•江苏)在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a 为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为.考点:椭圆的简单性质.专题:计算题;压轴题.分析:抓住△OAP是等腰直角三角形,建立a,c的关系,问题迎刃而解.解答:解:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故,解得,故答案为.点评:本题考查了椭圆的离心率,有助于提高学生分析问题的能力.13.(5分)(2008•江苏)满足条件AB=2,AC=BC的三角形ABC的面积的最大值是2.考点:三角形中的几何计算.专题:计算题;压轴题.分析:设BC=x,根据面积公式用x和sinB表示出三角形的面积,再根据余弦定理用x表示出sinB,代入三角形的面积表达式,进而得到关于x的三角形面积表达式,再根据x的范围求得三角形面积的最大值.解答:解:设BC=x,则AC=x,根据面积公式得S△ABC=AB•BCsinB=×2x,根据余弦定理得cosB===,代入上式得S△ABC=x=,由三角形三边关系有,解得2﹣2<x<2+2.故当x=2时,S△ABC取得最大值2.点评:本题主要考查了余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题.14.(5分)(2008•江苏)f(x)=ax3﹣3x+1对于x∈[﹣1,1]总有f(x)≥0成立,则a=4.考点:利用导数求闭区间上函数的最值.专题:计算题;压轴题.分析:这类不等式在某个区间上恒成立的问题,可转化为求函数最值的问题,本题要分三类:①x=0,②x>0,③x<0等三种情形,当x=0时,不论a取何值,f(x)≥0都成立;当x>0时有a≥,可构造函数g(x)=,然后利用导数求g(x)的最大值,只需要使a≥g(x)max,同理可得x<0时的a的范围,从而可得a的值.解答:解:若x=0,则不论a取何值,f(x)≥0都成立;当x>0即x∈(0,1]时,f(x)=ax3﹣3x+1≥0可化为:a≥设g(x)=,则g′(x)=,所以g(x)在区间(0,]上单调递增,在区间[,1]上单调递减,因此g(x)max=g()=4,从而a≥4;当x<0即x∈[﹣1,0)时,f(x)=ax3﹣3x+1≥0可化为:a≤,g(x)=在区间[﹣1,0)上单调递增,因此g(x)min=g(﹣1)=4,从而a≤4,综上a=4.答案为:4点评:本题考查的是含参数不等式的恒成立问题,考查分类讨论,转化与化归的思想方法,利用导数和函数的单调性求函数的最大值,最小值等知识与方法.在讨论时,容易漏掉x=0的情形,因此分类讨论时要特别注意该问题的解答.二、解答题(共12小题,满分90分)15.(15分)(2008•江苏)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是,.(1)求tan(α+β)的值;(2)求α+2β的值.考点:两角和与差的正切函数.分析:(1)先由已知条件得;再求sinα、sinβ进而求出tanα、tanβ;最后利用tan(α+β)=解之.(2)利用第一问把tan(α+2β)转化为tan[(α+β)+β]求之,再根据α+2β的范围确定角的值.解答:解:(1)由已知条件即三角函数的定义可知,因为α为锐角,则sinα>0,从而同理可得,因此.所以tan(α+β)=;(2)tan(α+2β)=tan[(α+β)+β]=,又,故,所以由tan(α+2β)=﹣1得.点评:本题主要考查正切的和角公式与转化思想.16.(15分)(2008•江苏)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:证明题.分析:(1)根据线面平行关系的判定定理,在面ACD内找一条直线和直线EF平行即可,根据中位线可知EF∥AD,EF⊄面ACD,AD⊂面ACD,满足定理条件;(2)需在其中一个平面内找一条直线和另一个面垂直,由线面垂直推出面面垂直,根据线面垂直的判定定理可知BD⊥面EFC,而BD⊂面BCD,满足定理所需条件.解答:证明:(1)∵E,F分别是AB,BD的中点.∴EF是△ABD的中位线,∴EF∥AD,∵EF⊄面ACD,AD⊂面ACD,∴直线EF∥面ACD;(2)∵AD⊥BD,EF∥AD,∴EF⊥BD,∵CB=CD,F是BD的中点,∴CF⊥BD又EF∩CF=F,∴BD⊥面EFC,∵BD⊂面BCD,∴面EFC⊥面BCD点评:本题主要考查线面平行的判定定理,以及面面垂直的判定定理.考查对基础知识的综合应用能力和基本定理的掌握能力.17.(15分)(2008•江苏)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.(1)按下列要求建立函数关系式:(i)设∠BAO=θ(rad),将y表示成θ的函数;(ii)设OP=x(km),将y表示成x的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短.考点:在实际问题中建立三角函数模型.分析:(1)(i)根据题意知PQ垂直平分AB,在直角三角形中由三角函数的关系可推得OP,从而得出y的函数关系式,注意最后要化为最简形式,确定自变量范围.(ii)已知OP,可得出OQ的表达式,由勾股定理推出OA,易得y的函数关系式.(2)欲确定污水处理厂的位置,使铺设的污水管道的总长度最短也就是最小值问题,(1)中已求出函数关系式,故可以利用导数求解最值,注意结果应与实际情况相符合.解答:解:(Ⅰ)①由条件知PQ垂直平分AB,若∠BAO=θ(rad),则,故,又OP=10﹣10tanθ,所以,所求函数关系式为②若OP=x(km),则OQ=10﹣x,所以OA=OB=所求函数关系式为(Ⅱ)选择函数模型①,令y′=0得sin,因为,所以θ=,当时,y′<0,y是θ的减函数;当时,y′>0,y是θ的增函数,所以当θ=时,.这时点P位于线段AB的中垂线上,在矩形区域内且距离AB边km处.点评:本小题主要考查函数最值的应用.①生活中的优化问题,往往涉及到函数的最值,求最值可利用单调性,也可直接利用导数求最值,要掌握求最值的方法和技巧.②在求实际问题中的最大值或最小值时,一般先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求解实际问题中的最大(小)值时,如果函数在区间内只有一个极值点,那么根据实际意义该极值点也就是最值点.18.(15分)(2008•江苏)在平面直角坐标系xOy中,记二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.经过三个交点的圆记为C.(1)求实数b的取值范围;(2)求圆C的方程;(3)问圆C是否经过定点(其坐标与b的无关)?请证明你的结论.考点:二次函数的图象;圆的标准方程.专题:计算题.分析:(1)由题意知,由抛物线与坐标轴有三个交点可知抛物线不过原点即b不等于0,然后抛物线与x轴有两个交点即令f(x)=0的根的判别式大于0即可求出b的范围;(2)设出圆的一般式方程,根据抛物线与坐标轴的交点坐标可知:令y=0得到与f(x)=0一样的方程;令x=0得到方程有一个根是b即可求出圆的方程;(3)设圆的方程过定点(x0,y0),将其代入圆的方程得x02+y02+2x0﹣y0+b(1﹣y0)=0,因为x0,y0不依赖于b得取值,所以得到1﹣y0=0即y0=1,代入x02+y02+2x0﹣y0=0中即可求出定点的坐标.解答:解:.(1)令x=0,得抛物线与y轴交点是(0,b);令f(x)=x2+2x+b=0,由题意b≠0且△>0,解得b<1且b≠0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0令y=0得x2+Dx+F=0这与x2+2x+b=0是同一个方程,故D=2,F=b.令x=0得y2+Ey+F=0,方程有一个根为b,代入得出E=﹣b﹣1.所以圆C的方程为x2+y2+2x﹣(b+1)y+b=0.(3)圆C必过定点,证明如下:假设圆C过定点(x0,y0)(x0,y0不依赖于b),将该点的坐标代入圆C的方程,并变形为x02+y02+2x0﹣y0+b(1﹣y0)=0(*)为使(*)式对所有满足b<1(b≠0)的b都成立,必须有1﹣y0=0,结合(*)式得x02+y02+2x0﹣y0=0,解得经检验知,(﹣2,1)均在圆C上,因此圆C过定点.点评:本小题主要考查二次函数图象与性质、圆的方程的求法.是一道综合题.19.(15分)(2008•江苏)(1)设a1,a2,…,a n是各项均不为零的n(n≥4)项等差数列,且公差d≠0,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i)当n=4时,求的数值;(ii)求n的所有可能值.(2)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,b n,其中任意三项(按原来的顺序)都不能组成等比数列.考点:等差数列的性质;等比关系的确定;等比数列的性质.专题:探究型;分类讨论;反证法.分析:(1)根据题意,对n=4,n=5时数列中各项的情况逐一讨论,利用反证法结合等差数列的性质进行论证,进而推广到n≥4的所有情况.(2)利用反证法结合等差数列的性质进行论证即可.解答:解:(1)①当n=4时,a1,a2,a3,a4中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.若删去a2,则a32=a1•a4,即(a1+2d)2=a1•(a1+3d)化简得a1+4d=0,得若删去a3,则a22=a1•a4,即(a1+d)2=a1•(a1+3d)化简得a1﹣d=0,得综上,得或.②当n=5时,a1,a2,a3,a4,a5中同样不可能删去a1,a2,a4,a5,否则出现连续三项.若删去a3,则a1•a5=a2•a4,即a1(a1+4d)=(a1+d)•(a1+3d)化简得3d2=0,因为d≠0,所以a3不能删去;当n≥6时,不存在这样的等差数列.事实上,在数列a1,a2,a3,…,a n﹣2,a n﹣1,a n中,由于不能删去首项或末项,若删去a2,则必有a1•a n=a3•a n﹣2,这与d≠0矛盾;同样若删去a n﹣1也有a1•a n=a3•a n﹣2,这与d≠0矛盾;若删去a3,,a n﹣2中任意一个,则必有a1•a n=a2•a n﹣1,这与d≠0矛盾.(或者说:当n≥6时,无论删去哪一项,剩余的项中必有连续的三项)综上所述,n=4.(2)假设对于某个正整数n,存在一个公差为d的n项等差数列b1,b2,b n,其中b x+1,b y+1,b z+1(0≤x <y<z≤n﹣1)为任意三项成等比数列,则b2y+1=b x+1•b z+1,即(b1+yd)2=(b1+xd)•(b1+zd),化简得(y2﹣xz)d2=(x+z﹣2y)b1d(*)由b1d≠0知,y2﹣xz与x+z﹣2y同时为0或同时不为0当y2﹣xz与x+z﹣2y同时为0时,有x=y=z与题设矛盾.故y2﹣xz与x+z﹣2y同时不为0,所以由(*)得因为0≤x<y<z≤n﹣1,且x、y、z为整数,所以上式右边为有理数,从而为有理数.于是,对于任意的正整数n(n≥4),只要为无理数,相应的数列就是满足题意要求的数列.例如n项数列1,,,,满足要求.点评:本题是一道探究性题目,考查了等差数列和等比数列的通项公式,以及学生的运算能力和推理论证能力.20.(15分)(2008•江苏)已知函数,(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);(2)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n﹣m)考点:指数函数综合题.专题:计算题;压轴题;分类讨论.分析:(1)根据题意,先证充分性:由f(x)的定义可知,f(x)=f1(x)对所有实数成立,等价于f1(x)≤f2(x)对所有实数x成立等价于,即对所有实数x均成立,分析容易得证;再证必要性:对所有实数x均成立等价于,即|p1﹣p2|≤log32,(2)分两种情形讨论:①当|p1﹣p2|≤log32时,由中值定理及函数的单调性得到函数f(x)在区间[a,b]上的单调增区间的长度;②当|p1﹣p2|>log32时,a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f (a)=f(b),根据图象和函数的单调性得到函数f(x)在区间[a,b]上的单调增区间的长度.解答:解:(1)由f(x)的定义可知,f(x)=f1(x)(对所有实数x)等价于f1(x)≤f2(x)(对所有实数x)这又等价于,即对所有实数x均成立.(*)由于|x﹣p1|﹣|x﹣p2|≤|(x﹣p1)﹣(x﹣p2)|=|p1﹣p2|(x∈R)的最大值为|p1﹣p2|,故(*)等价于,即|p1﹣p2|≤log32,这就是所求的充分必要条件(2)分两种情形讨论(i)当|p1﹣p2|≤log32时,由(1)知f(x)=f1(x)(对所有实数x∈[a,b])则由f(a)=f(b)及a<p1<b易知,再由的单调性可知,函数f(x)在区间[a,b]上的单调增区间的长度为(参见示意图)(ii)|p1﹣p2|>log32时,不妨设p1<p2,,则p2﹣p1>log32,于是当x≤p1时,有,从而f(x)=f1(x);当x≥p2时,有从而f(x)=f2(x);当p1<x<p2时,,及,由方程解得f1(x)与f2(x)图象交点的横坐标为(1)显然,这表明x0在p1与p2之间.由(1)易知综上可知,在区间[a,b]上,(参见示意图)故由函数f1(x)及f2(x)的单调性可知,f(x)在区间[a,b]上的单调增区间的长度之和为(x0﹣p1)+(b﹣p2),由于f(a)=f(b),即,得p1+p2=a+b+log32(2)故由(1)、(2)得综合(i)(ii)可知,f(x)在区间[a,b]上的单调增区间的长度和为.点评:考查学生理解充分必要条件的证明方法,用数形结合的数学思想解决问题的能力,以及充分必要条件的证明方法.21.(2008•江苏)如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EB•EC.考点:与圆有关的比例线段;二阶行列式与逆矩阵;简单曲线的极坐标方程;不等式的证明.分析:根据已知EA是圆的切线,AC为过切点A的弦得两个角相等,再结合角平分线条件,从而得到△EAD是等腰三角形,再根据切割线定理即可证得.解答:证明:因为EA是圆的切线,AC为过切点A的弦,所以∠CAE=∠CBA.又因为AD是ÐBAC的平分线,所以∠BAD=∠CAD所以∠DAE=∠DAC+∠EAC=∠BAD+∠CBA=∠ADE所以,△EAD是等腰三角形,所以EA=ED.又EA2=EC•EB,所以ED2=EB•EC.点评:此题主要是运用了弦切角定理的切割线定理.注意:切线长的平方应是EB和EC的乘积.22.(2008•江苏)在平面直角坐标系xOy中,设椭圆4x2+y2=1在矩阵对应的变换作用下得到曲线F,求F的方程.考点:圆的标准方程;矩阵变换的性质.专题:计算题.分析:由题意先设椭圆上任意一点P(x0,y0),根据矩阵与变换的公式求出对应的点P′(x0′,y0′),得到两点的关系式,再由点P在椭圆上代入化简.解答:解:设P(x0,y0)是椭圆上任意一点,则点P(x0,y0)在矩阵A对应的变换下变为点P′(x0′,y0′)则有,即,所以又因为点P在椭圆上,故4x02+y02=1,从而(x0′)2+(y0′)2=1所以,曲线F的方程是x2+y2=1点评:本题主要考查了矩阵与变换的运算,结合求轨迹方程得方法:代入法求解;是一个较综合的题目.23.(2008•江苏)在平面直角坐标系xOy中,点P(x,y)是椭圆上的一个动点,求S=x+y的最大值.考点:椭圆的参数方程.专题:计算题;转化思想.分析:先根据椭圆的标准方程进行三角代换表示椭圆上任意一点,然后利用三角函数的辅助角公式进行化简,即可求出所求.解答:解:因椭圆的参数方程为(ϕ为参数)故可设动点P的坐标为,其中0≤ϕ<2π.因此所以,当时,S取最大值2.点评:本题主要考查了椭圆的简单性质及参数方程的问题.考查了学生综合分析问题和解决问题的能力.24.(2008•江苏)设a,b,c 为正实数,求证:.考点:平均值不等式;不等式的证明.专题:证明题.分析:先根据平均值不等式证明,再证.解答:证明:因为a,b,c 为正实数,由平均不等式可得,即,所以,,而,所以,点评:本题考查平均值不等式的应用,n个正数的算术平均数大于或等于它们的几何平均数.25.(2008•江苏)记动点P是棱长为1的正方体ABCD﹣A1B1C1D1的对角线BD1上一点,记.当∠APC 为钝角时,求λ的取值范围.用空间向量求直线间的夹角、距离.考点:计算题;压轴题.专题:。
2008届全国百套高考数学模拟试题分类汇编-101概率与统计选择题
2008届全国百套高考数学模拟试题分类汇编10概率与统计一、选择题1、(江苏省启东中学2008年高三综合测试一)一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次射击命中的概率为( )A. 13B. 23C. 14D. 25答案:B2、(江苏省启东中学高三综合测试三)从2004名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率 A .不全相等 B .均不相等 C .都相等且为100225D .都相等且为140答案:C3、(江苏省启东中学高三综合测试四)口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,数列{}n a 满足:⎩⎨⎧-=次摸到白球,,第次摸到红球,第n n a n 1,1如果n S 为数列{}n a 的前n 项和,那么37=S 的概率为( )A .52573231⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛C B .52273132⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛CC .52573131⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛CD .52573232⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛C答案:B4、(安徽省蚌埠二中2008届高三8月月考)从1008名学生中抽取20人参加义务劳动。
规定采用下列方法选取:先用简单随机抽样的抽取方法从1008人剔除8人,剩下1000人再按系统抽样的方法抽取,那么在1008人中每个人入选的概率是 (A) 都相等且等于501 (B) 都相等且等于2525 (C) 不全相等 (D) 均不相等答案:B5、(安徽省蚌埠二中2008届高三8月月考)设ξ是离散型随机变量,32)(1==x p ξ,31)(2==x p ξ,且21x x <,现已知:34=ξE ,92=ξD ,则21x x +的值为(A)35 (B)37 (C) 3 (D) 311答案:C5、(安徽省蚌埠二中2008届高三8月月考)设随机变量ξ~B(2,p),η ~B(4,p),若95)1(=≥ξp ,则)2(≥ηp的值为 (A)8132 (B)2711 (C)8165 (D)8116答案:B6、(安徽省蚌埠二中2008届高三8月月考)设ξ的概率密度函数为2)1(221)(-=x ex f π,则下列结论错误的是(A) )1()1(>=<ξξp p (B) )11()11(<<-=≤≤-ξξp p (C) )(x f 的渐近线是0=x (D) 1-=ξη~)1,0(N 答案:C7、(安徽省蚌埠二中2008届高三8月月考)随机变量ξ~21,3(N ),则)11(≤<-ξp 等于 (A) 21)2(-Φ (B) )2()4(Φ-Φ (C) )2()4(2-Φ-Φ (D) 4()2(Φ-Φ答案:B8、(四川省巴蜀联盟2008届高三年级第二次联考)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h 的汽车数量为A .65辆B .76辆C .88辆D .95辆 答案:B9、(四川省巴蜀联盟2008届高三年级第二次联考)在长为10㎝的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm2与49 cm2之间的概率为A .51 B .52 C .54D .103答案:A10、(四川省成都市一诊)福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为 A .110B .15C .35D .45答案:C 111223115435C C C C C =.选C11、(四川省乐山市2008届第一次调研考试)某一随机变量ξ的概率分布如下表,且 1.5E ξ=,则2nm -的值为( )A.-0.2;B.0.2;C.0.1;D.-0.1 答案:B12、(四川省乐山市2008届第一次调研考试)已知函数1,4,3,2,1,y x x =-=----令,可得函数图象上的九个点,在这九个点中随机取出两个点1122(,),(,)P x y P x y ,则12,P P 两点在同一反比例函数图象上的概率是( )A.19;B.118;C.536;D.112;答案:D13、(四川省成都市新都一中高2008级12月月考)已知非空集合A 、B 满足A ≠⊂B ,给出以下四个命题: ①若任取x ∈A ,则x ∈B 是必然事件 ②若x ∉A ,则x ∈B 是不可能事件③若任取x ∈B ,则x ∈A 是随机事件 ④若x ∉B ,则x ∉A 是必然事件其中正确的个数是( ) A 、1 B 、2C 、3D 、4本题主要考查命题、随机事件等基本概念及其灵活运用. 解析:①③④正确,②错误. 答案:C14、(安徽省淮南市2008届高三第一次模拟考试)在圆周上有10个等分,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择了3个点,刚好构成直角三角形的概率是( ▲ )A.51 B. 41 C. 31 D. 21答案:C15、(北京市朝阳区2008年高三数学一模)某校高中研究性学习小组对本地区2006年至2008年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭( )A. 82万盒B. 83万盒C. 84万盒D. 85万盒答案:D16、(四川省成都市高2008届毕业班摸底测试)已知某人每天早晨乘坐的某一班次公共汽车的准时到站率为60%,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为 ( )A .12536 B .12554 C .12581 D .12527答案:C17、(东北区三省四市2008年第一次联合考试)在抽查产品的尺寸过程中,将尺寸分成若干组,[)b a ,是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则=-b aA .hmB .mh C .hm D .m h +答案:C18、(东北区三省四市2008年第一次联合考试)某市统考成绩大体上反映了全市学生的成绩状况,因此可以把统考成绩作为总体,设平均成绩480=μ,标准差100=σ,总体服从正态分布,若全市重点校录取率为40%,那么重点录取分数线可能划在(已知φ(0.25)=0.6)A .525分B .515分C .505分D .495分答案:C19、(东北师大附中高2008届第四次摸底考试)某校有学生4500人,其中高三学生1500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为( ) A .50 B .100 C .150 D .20 答案:B20、(福建省南靖一中2008年第四次月考)在正方体上任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A .17B .27C .37D .47答案:C21、(福建省泉州一中高2008届第一次模拟检测)甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格概率为54,乙及格概率为52,丙及格概率为32,则三人中至少有一人及格的概率为( )A .251 B .2524 C . 7516 D .7559答案:B22、(福建省漳州一中2008年上期期末考试)从集合{1, 2, 3, , 10} 中随机取出6个不同的数,在这些选法中,第二小的数为3的概率是 A.12B.13C.16D.160答案:B23、(甘肃省河西五市2008年高三第一次联考)某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为 ( ) A 10 B 9C 8D 7答案:A24、(广东省佛山市2008年高三教学质量检测一)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为( ).A .7.68B .16.32C .17.32D .8.68答案:B25、(湖北省黄冈市2007年秋季高三年级期末考试)从集合{1,2,3,4,0,1,2,3,4,5}----中,选出5个数组成子集,使得这5个数中的任何两个数之和不等于1,则取出这样的子集的概率为A5126B55126C5563D863答案:D26、(广东省揭阳市2008年高中毕业班高考调研测试)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、(0,1)c ∈),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为 A .148B .124C .112D .16答案:由已知得3202,a b c ++⨯=即322,a b +=211321326626a b ab a b +⎛⎫∴=⋅⋅≤= ⎪⎝⎭,故选D. 27、(广东省韶关市2008届高三第一次调研考试)一台机床有13的时间加工零件A, 其余时间加工零件B, 加工A 时,停机的概率是310,加工B 时,停机的概率是25, 则这台机床停机的概率为( )A.1130B.307 C. 107 D.101答案:A28、(广东省四校联合体第一次联考)甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:( )A .甲B .乙C .丙D .丁 答案:D29、(安徽省合肥市2008年高三年级第一次质检)集合{(,)||1|}A x y y x =≥-,集合{(,)|5}B x y y x =≤-+。
2008年江苏高考数学试题(含答案详解)
2008年普通高校招生统一考试江苏卷(数学)1. ()cos()6f x wx π=-的最小正周期为5π,其中0w >,则w = 。
【解析】本小题考查三角函数的周期公式。
2105T w w ππ==⇒=。
答案102.一个骰子连续投2次,点数和为4的概率为 。
【解析】本小题考查古典概型。
基本事件共66⨯个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯。
答案112 3.11i i-+表示为a bi +(,)a b R ∈,则a b += 。
【解析】本小题考查复数的除法运算, 1,0,11ii a b i-=∴==+ ,因此a b +=1。
答案14. {}2(1)37,A x x x =-<-则A Z 的元素个数为 。
【解析】本小题考查集合的运算和解一元二次不等式。
由2(1)37x x -<-得2580x x -+<因为0∆<,所以A φ=,因此A Z φ= ,元素的个数为0。
答案05.,a b 的夹角为0120,1,3a b == ,则5a b -= 。
【解析】本小题考查向量的线形运算。
因为1313()22a b ⋅=⨯⨯-=-,所以22225(5)2510a b a b a b a b -=-=+-⋅ =49。
因此5a b -=7。
答案76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。
【解析】本小题考查古典概型。
如图:区域D 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯。
答案16π7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
2008年江苏高考数学模拟卷
2008年江苏高考数学模拟卷一、选择题(每小题5分,共50分)1、在等差数列{}n a 中,若1001200S =,那么1091a a +的值是(A .12B .24C .16D .48 解析:对等差数列{}n a ,有100109111002450S a a a a +=+==,故选择B.2、右图中的算法输出的结果是 ( A .125 B .63 C .61 D .31 解析:由框图可知,当1i =时,1123S =+=; 当2i =时,121227S =++=; 当3i =时,123122215S =+++=;当4i =时,12341222231S =++++=; 当5i =时,1234512222263S =+++++=,故应选择B.3、数学中常用的证明方法中的直接证明方法包括综合法和分析法,在下面的两个流程图中 ( ) ① ……⇒……⇒ ……⇐……⇐A .①是综合法②是分析法B .①是分析法②是综合法C .①②都是综合法D .①②都是分析法解析:由条件入手逐步推出结论的方法是综合法;而由结论入手逐步追溯结论成立的条件,从而说明结论成立的方法是分析法,对照题中的两个流程图可知,应选择A.. 4、定义运算a b ad bc cd=-,则符合条件1142i zzi-=+的复数z 为 ( )A .3i -B .13i +C .3i +D .13i - 解析:,a b ad bc cd=-∴由1142i zzi-=+可得4242,1i zi z i z i++=+∴=+,故选A..5、函数),42sin(2)(π+=x x f 给出下列三个命题:( )①函数()f x 在区间5[,]28ππ上是减函数;②直线8x π=是函数()f x 的图象的一条对称轴; ③函数)(x f 的图象可以由函数x y 2sin 2=的图象向左平移4π得到,其中正确的是A .①③B .①②C .②③D .①②③解析:考虑命题③,由于函数x y 2sin 2=的图像向左平移4π得到的是函数2())42y x x ππ=+=+的图像,所以命题③不真,对照各选择支可知应选择B.6、无论k 取何值时,方程25542x x k x ⎛⎫-+=-⎪⎝⎭的实根个数是 ( )A .1个B .2个C .3个D .不确定解析:将题化归为:求函数254y x x =-+的图像与直线52y k x ⎛⎫=-⎪⎝⎭的交点个数。
2008年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版) (2)
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式: 样本数据1x ,2x , ,n x 的标准差s =其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= ▲ . 【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒=【答案】102.一个骰子连续投2 次,点数和为4 的概率 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 【答案】1123.11i i+-表示为a bi +(),a b R ∈,则a b +== ▲ . 锥体体积公式 13V Sh =其中S S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 【答案】14.A={()}2137x x x -<-,则A Z 的元素的个数 ▲ .【解析】本小题考查集合的运算和解一元二次不等式.由()}2137x x -<-得2580x x -+<,∵Δ<0,∴集合A 为∅ ,因此A Z 的元素不存在. 【答案】05.a ,b的夹角为120︒,1a = ,3b = 则5a b -= ▲ .【解析】本小题考查向量的线性运算.()2222552510a b a ba ab b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -= 7【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ . 【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯【答案】16π7.算法与统计的题目8.直线12y x b =+是曲线()ln 0y x x =>的一条切线,则实数b = ▲ . 【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.【答案】ln2-19在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P (0,p )在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE 的方程:11110x y c b p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭,请你求OF 的方程: ( ▲ )110x y p a ⎛⎫+-=⎪⎝⎭. 【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填11c b-.事实上,由截距式可得直线AB :1x y b a +=,直线CP :1x y c p += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程. 【答案】11b c- 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10. . . . . . .按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .【解析】本小题考查归纳推理和等差数列求和公式.前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.【答案】262n n -+11.已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 ▲ .【解析】本小题考查二元基本不等式的运用.由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xzxz xz+++≥=,当且仅当x =3z 时取“=”.【答案】312.在平面直角坐标系中,椭圆2222x y a b +=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = ▲ . ? ? 【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c=,解得c e a ==【答案】213.若BC ,则ABC S ∆的最大值 ▲ . ?【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC =x ,则AC, 根据面积公式得ABC S ∆=1sin 2AB BC B = 2222242cos 24AB BC AC x x B AB BC x +-+-== 244x x-=,代入上式得 ABC S ∆==由三角形三边关系有22x x +>+>⎪⎩解得22x <<,故当x =ABC S ∆最大值【答案】14.()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = ▲ .【解析】本小题考查函数单调性的综合运用.若x =0,则不论a 取何值,()f x ≥0显然成立;当x >0 即[]1,1x ∈-时,()331f x ax x =-+≥0可化为,2331a x x≥- 设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫==⎪⎝⎭,从而a ≥4; 当x <0 即[)1,0-时,()331f x ax x =-+≥0可化为a ≤2331x x-,()()'4312x g x x -=0> ()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而a ≤4,综上a =4【答案】4二、解答题:解答应写出文字说明,证明过程或演算步骤.15.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B的横坐标分别为105.(Ⅰ)求tan(αβ+)的值; (Ⅱ)求2αβ+的值.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.由条件的cos 105αβ==,因为α,β为锐角,所以sin α=,sin 105β= 因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)=tan tan 31tan tan αβαβ+=--(Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π16.在四面体ABCD 中,CB= CD, AD ⊥BD ,且E ,F 分别是AB,BD 的中点,求证:(Ⅰ)直线EF ∥面ACD ;(Ⅱ)面EFC ⊥面BCD .【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定. (Ⅰ)∵ E,F 分别是AB,BD 的中点, ∴EF 是△ABD 的中位线,∴EF ∥AD ,∵EF ⊄面ACD ,AD ⊂ 面ACD ,∴直线EF ∥面ACD . (Ⅱ)∵ AD ⊥BD ,EF ∥AD ,∴ EF ⊥BD. ∵CB=CD, F 是BD 的中点,∴CF ⊥BD.又EF CF=F ,∴BD ⊥面EFC .∵BD ⊂面BCD ,∴面EFC ⊥面BCD .17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD 的中点P 处,已知AB=20km, CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为y km .(Ⅰ)按下列要求写出函数关系式:①设∠BAO=θ(rad),将y 表示成θ的函数关系式; ②设OP x =(km) ,将y 表示成x x 的函数关系式. (Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短. 【解析】本小题主要考查函数最值的应用.(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10cos cos AQ OA θθ==, 故 CBPOAD10cos OB θ=,又OP =1010tan θ-10-10ta θ, 所以10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10cos y θθ-=+04πθ⎛⎫<< ⎪⎝⎭②若OP=x (km) ,则OQ =10-x ,所以=所求函数关系式为)010y x x =+<<(Ⅱ)选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----==令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π,当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10y =+。
2008年江苏省高考数学试卷及部分答案
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:样本数据1x ,2x ,,n x 的标准差锥体体积公式222121[()()()]n s x x x x x x n=-+-++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F )1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8) 7.5 10 0.20 5 [8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2008届全国百套高考数学模拟试题分类汇编-021函数选择题
A.-4B.4C.2D.-2
答案:D
53、(东北区三省四市2008年第一次联合考试)若函数 的反函数 ,则 的值为
A. B.
C. D.
答案:A
20、(陕西长安二中2008届高三第一学期第二次月考)已知 恒为正数,那么实数 的取值范围是( )
A. < B. < ≤ C. >1 D. < < 或 >1
答案:D
21、(陕西长安二中2008届高三第一学期第二次月考)定义在R上的奇函数 满足 ,若当x∈(0,3)时, ,则当x∈(- 6,-3)时, =( )
答案:B
6、(江西省五校2008届高三开学联考)若函数 的图象如图所示,则m的范围为
A.(-∞,-1)B.(-1,2)
C.(1,2)D.(0,2)
答案:C
7、(江西省五校2008届高三开学联考)设定义域为R的函数 都有反函数,且函数 和 图象关于直线 对称,若 ,则 (4)为
A.2002 B.2004 C.2007D.2008
A. B. C. D.
答案:C
40、(北京市东城区2008年高三综合练习一)“ ”是“函数 上是增函数”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
答案:A
41、(北京市东城区2008年高三综合练习二)已知函数 的值为()
A.2B.1C. D.
答案:B
42、(北京市东城区2008年高三综合练习二)若函数 上为减函数,且对任意的 ,则()
A.2B.3C.4D.5
答案:A
10、(四川省巴蜀联盟2008届高三年级第二次联考)函数f(x)=ax2+bx+6满足条件f(-1)=f(3),则f(2)的值为
2008年江苏省高考数学试卷及部分答案
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:样本数据1x ,2x ,,n x 的标准差锥体体积公式222121[()()()]n s x x x x x x n=-+-++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F )1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8) 7.5 10 0.20 5 [8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2008年江苏省高考数学试卷及部分答案
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数学参考公式:样本数据1x ,2x ,,n x 的标准差锥体体积公式其中x 为样本平均数其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径 一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.20 3 [6,7) 6.5 20 0.40 4 [7,8) 7.5 10 0.20 5 [8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是。
8.直线b x y+=21是曲线)0(ln >=x x y 的一条切线,则实数b=▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程:10.将全体正整数排成一个三角形数阵: 1 23 456 78910。
2008年江苏省高考数学试卷及答案详解
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据1x ,2x ,L ,n x 的标准差s =其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= ▲ .2.一个骰子连续投2 次,点数和为4 的概率 ▲ . 3.11ii+-表示为a bi +(),a b R ∈,则a b +== ▲ .4.A={()}2137x x x -<-,则A I Z 的元素的个数 ▲ .锥体体积公式13V Sh =其中S 为底面积,h 为高球的表面积、体积公式24S R π=,343V R π= 其中R 为球的半径5.a r ,b r 的夹角为120︒,1a =r,3b =r 则5a b -=r r ▲ .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 ▲ .7.某地区为了解70-80岁老人的日平均睡眠时间(单位:h ),随即选择了50为老人进行调查,下表是这50为老人日睡眠时间的频率分布表。
2008年江苏省普通高等学校招生全国统一考试模拟试题(2)(数学文理)
2008年江苏省普通高等学校招生全国统一考试2数学模拟试题 08.4说 明:本试卷分第Ⅰ卷(文理必答题)和第Ⅱ卷(理科选答题)两部分,第Ⅰ卷满分160分,考试时间120分钟。
第Ⅱ卷满分40分,考试时间30分钟. 注意事项:答题前,考生务必将学校、姓名、班级、学号写在答卷纸的密封线内,答案写在答卷纸上对应题目的 答案空格内,填空题答案不写在试卷上.考试结束,将答卷纸收回. 参考公式:1、用最小二乘法求线性回归方程系数公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.2、两个分类变量X 与Y 的独立性假设检验中22()()()()()n ad bc k a b c d a c b d -=++++其中n a b c d =+++210.828K >时,有0099.9的把握认为“X 与Y 有关系”27.879K >时,有0099.5的把握认为“X 与Y 有关系” 2 6.635K >时,有0099的把握认为“X 与Y 有关系” 2 2.706K ≤时,没有充分的证据显示“X 与Y 有关系”第Ⅰ卷:文理必答题一.填空题:(本大题共14小题,每小题5分,共70分) 1.2)11(ii +-= 2.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人.3.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设0H :“这种血清不能起到预防感冒的作用”,利用22⨯列联表计算得23.918χ≈,经查对临界值表知2( 3.841)0.05P χ≥≈.则下列结论中,正确结论的序号是 (1)有95%的把握认为“这种血清能起到预防感冒的作用”(2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒 (3)这种血清预防感冒的有效率为95% (4)这种血清预防感冒的有效率为5%4.右图程序运行结果是5.已知βα,、γ是三个互不重合的平面,l 是一条直线,给出下列四个命题:①若ββα⊥⊥l ,,则α//l ; ②若βα//,l l ⊥,则βα⊥; ③若l 上有两个点到α的距离相等,则α//l ; ④若γαβα//,⊥,则βγ⊥。
2008年江苏省高考数学试卷及答案
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷) 数 学参考公式:样本数据1x ,2x ,L ,n x 的标准差锥体体积公式222121[()()()]n s x x x x x x n=-+-++-L 13V Sh =其中x 为样本平均数其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径 一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z I 的元素的个数 5.b a ρϖ,的夹角为ο120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.20 3[6,7)6.5200.404 [7,8) 7.5 10 0.20 5 [8,9) 8.5 4 0.08的值是 。
8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10。
2008年江苏省高考数学真题(解析版)
2008 年普通高等学校招生全国统一考试(江苏卷)
数
注 意
学
事 项
考生在答题前请认真阅读本注意事项及各题答题要求 1、本试卷共 4 页,包含填空题(第 1 题~第 14 题) 、解答题(第 15 题~第 20 题)两部分。 本试卷满分 160 分,考试时间为 120 分钟。考试结束后,请将本试卷和答题卡一并交回。 2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的 0.5 毫米签字笔填写在试 卷及答题卡上。 3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。 4、作答非选择题必须用书写黑色字迹的 0.5 毫米签字笔写在答题卡上的指定位置,在其它 位置作答一律无效。作答选择题必须用 2B 铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,请用橡皮擦干净后,再选涂其它答案。 5、如有作图需要,可用 2B 铅笔作答,并请加黑加粗,描写清楚。 参考公式: 样本数据 x1 , x2 , , xn 的标准差 锥体体积公式
3 1 6 6 12 1 【答案】 12 1 i 3.若将复数 表示为 a bi (a , b R , i 是虚数单位)的形式,则 a b 1 i P
2
▲
.
1 i 1 i 【解析】本小题考查复数的除法运算.∵ i ,∴ a =0, b =1,因此 a b 1 1 i 2
16
1 2 3 4 5
i
组中值 ( Gi )
频数 (人数)
开始
频率 ( Fi )
5.5 6.5 7.5 8.5
4.5
6 10 20 10 4
0.12 0.20 0.40 0.20
S0 i1 输入 Gi,Fi i i+1 N S S+Gi·Fi i≥5 Y 输出 S 结束
2008年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式: 样本数据1x ,2x ,,n x 的标准差s =其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= ▲ . 【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒=【答案】102.一个骰子连续投2 次,点数和为4 的概率 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 【答案】112锥体体积公式 13V Sh =其中S S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=3.11ii+-表示为a bi +(),a b R ∈,则a b +== ▲ . 【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 【答案】14.A={()}2137x x x -<-,则AZ 的元素的个数 ▲ .【解析】本小题考查集合的运算和解一元二次不等式.由()}2137x x -<-得2580x x -+<,∵Δ<0,∴集合A 为∅ ,因此A Z 的元素不存在.【答案】05.a ,b 的夹角为120︒,1a =,3b = 则5a b -= ▲ . 【解析】本小题考查向量的线性运算.()2222552510a b a b a a b b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -=7 【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ . 【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯【答案】16π7.算法与统计的题目8.直线12y x b =+是曲线()ln 0y x x =>的一条切线,则实数b = ▲ . 【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.【答案】ln2-19在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P (0,p )在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE 的方程:11110x y c b p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭,请你求OF 的方程: ( ▲ )110x y p a ⎛⎫+-=⎪⎝⎭.【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填11c b-.事实上,由截距式可得直线AB :1x y b a +=,直线CP :1x y c p += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程. 【答案】11b c- 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10. . . . . . .按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .【解析】本小题考查归纳推理和等差数列求和公式.前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.【答案】262n n -+11.已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 ▲ .【解析】本小题考查二元基本不等式的运用.由230x y z -+=得32x z y +=,代入2y xz得229666344x z xz xz xzxz xz+++≥=,当且仅当x =3z 时取“=”.【答案】312.在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = ▲ . ? ?【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c =,解得c e a ==【答案】213.若,则ABC S ∆的最大值 ▲ . ?【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC =x ,则AC, 根据面积公式得ABC S ∆=1sin 2AB BC B = 2222242cos 24AB BC AC x x B AB BC x +-+-==244x x-=,代入上式得ABC S ∆==由三角形三边关系有22x x +>+>⎪⎩解得22x <<,故当x =ABCS ∆最大值【答案】14.()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = ▲ .【解析】本小题考查函数单调性的综合运用.若x =0,则不论a 取何值,()f x ≥0显然成立;当x >0 即[]1,1x ∈-时,()331f x ax x =-+≥0可化为,2331a x x ≥- 设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫== ⎪⎝⎭,从而a ≥4;当x <0 即[)1,0-时,()331f x ax x =-+≥0可化为a ≤2331x x -,()()'4312x g x x -=0> ()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而a ≤4,综上a =4【答案】4二、解答题:解答应写出文字说明,证明过程或演算步骤.15.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B的横坐标分别为105. (Ⅰ)求tan(αβ+)的值; (Ⅱ)求2αβ+的值.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.由条件的cos 105αβ==,因为α,β为锐角,所以sin α=,sin 105β=因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)=tan tan 31tan tan αβαβ+=--(Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π16.在四面体ABCD 中,CB= CD, AD ⊥BD ,且E ,F 分别是AB,BD 的中点,求证:(Ⅰ)直线EF ∥面ACD ;(Ⅱ)面EFC ⊥面BCD .【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定. (Ⅰ)∵ E,F 分别是AB,BD 的中点, ∴EF 是△ABD 的中位线,∴EF ∥AD ,∵EF ⊄面ACD ,AD ⊂ 面ACD ,∴直线EF ∥面ACD . (Ⅱ)∵ AD ⊥BD ,EF ∥AD ,∴ EF ⊥BD. ∵CB=CD, F 是BD 的中点,∴CF ⊥BD.又EF CF=F ,∴BD ⊥面EFC .∵BD ⊂面BCD ,∴面EFC ⊥面BCD .17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD 的中点P 处,已知AB=20km, CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为y km .(Ⅰ)按下列要求写出函数关系式:①设∠BAO=θ(rad),将y 表示成θ的函数关系式; ②设OP x =(km) ,将y 表示成x x 的函数关系式. (Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短. 【解析】本小题主要考查函数最值的应用.CBPOAD(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10cos cos AQ OA θθ==, 故 10cos OB θ=,又OP =1010tan θ-10-10ta θ, 所以10101010tan cos cos y OA OB OP θθθ=++=++-, 所求函数关系式为2010sin 10cos y θθ-=+04πθ⎛⎫<< ⎪⎝⎭②若OP=x (km) ,则OQ =10-x ,所以=所求函数关系式为)010y x x =+<< (Ⅱ)选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----==令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π,当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10y =+。
2008年江苏省高考数学模拟试题
侧视图第8题图正视图俯视图2008年江苏省高考数学模拟试题一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = __ . 2.复数ii4321+-在复平面上对应的点位于第 __ 象限.3.用如下方法从1004名工人中选取50代表:先用简单随机抽样从1004人中剔除4人,剩下的1000人再按系统抽样的方法选取50人.则工人甲被抽到的概率为 . 4.()04133340.06425 - - ⎛⎫⎡⎤--+-= ⎪⎣⎦⎝⎭__________.5.已知函数()y f x =的定义域为R ,(27)3f =,且对任意的实数12、x x ,恒有1212()()()f x x f x f x ⋅=⋅成立,写出满足条件的一个函数为 .6.给出下列关于互不相同的直线l n m ,,和平面βα,的四个命题,其中真命题是 (填序号) (1),,,m A A l m ∉=⊂点αα 则l 与m 不共面;(2)l 、m 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; (3)若ββαα//,//,,,m l A m l m l 点=⊂⊂ ,则βα// (4)若m l m l //,//,//,//则βαβα7.设31sin (), tan(),522πααππβ=<<-=则tan(2)αβ-的值等于__ .8.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如上(单位cm ),则该三棱柱的表面积为 cm 2.9.扇形OAB 半径为2,圆心角∠AOB =60°,点D 是弧AB 的中点,点C 在线段OA 上,且3=OC .则OB CD ⋅的值为 .10.下图中,(1)为相互成120°的三条线段,长度均为1,图(2)在第一张图的线段的前端作两条与该线段成120°的线段,长度为其一半,图(3)用图(2)的方法在每一线段前端生成两条线段,长度为其一半,重复前面的作法至第n 张图,设第n 个图形所有线段长之和为n a , 则n a = .(1) (2) (3)11.关于x 的不等式ax x x x ≥-++3922在]5,1[上恒成立,则实数a 的范围为 .12.若直线1+=kx y 与圆0422=-+++my kx y x 交于M 、N 两点,并且M 、N 关于直线0=+y x 对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0001y my kx y kx 表示的平面区域的面积是__ ▲13.考察下列一组不等式:3322252525+>⋅+⋅,4433252525+>⋅+⋅,5511222222252525+>⋅+⋅将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例, 则推广的不等式为 . 14.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =. 在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题:①函数)(x f y =的定义域是R ,值域是[0,21];②函数)(x f y =的图像关于直线2kx =(k ∈Z)对称;③函数)(x f y =是周期函数,最小正周期是1;④ 函数()y f x =在⎥⎦⎤⎢⎣⎡-21,21上是增函数; 则其中真命题是__ ▲二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算过程15.(本小题满分14分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .已知a+b =5,c =7,且.272cos 2sin 42=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积.16.(本小题满分14分)某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费200元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元?17.(本小题满分15分) 已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.(Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积18.(本小题满分15分)已知数列{}n a 的前n 项和是n S ,且满足21n n S a =- (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足21()n n a b n n N +⋅=-∈,求数列{}n b 的前n 项和T n (3) 请阅读如图所示的流程图,根据流程图判断该算法能否有确定 的结果输出?并说明理由。
2008年江苏高考数学试卷
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷) 数 学一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F )1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8) 7.5 10 0.20 5 [8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵:12 3 4 5 67 8 9 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
侧视图
第8题图
正视图
俯视图
2008年江苏省高考数学模拟试题
一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合{}11M =-,,11242x N x x +⎧⎫
=<<∈⎨⎬⎩⎭
Z ,,则M N = __ . 2.复数
i
i
4321+-在复平面上对应的点位于第 __ 象限.
3.用如下方法从1004名工人中选取50代表:先用简单随机抽样从1004人中剔除4人,剩下的1000人再按系统抽样的方法选取50人.则工人甲被抽到的概率为 . 4.()0
4
1333
40.064
25 - - ⎛⎫⎡⎤--+-= ⎪⎣⎦⎝⎭
__________.
5.已知函数()y f x =的定义域为R ,(27)3f =,且对任意的实数12、x x ,恒有1212()()()f x x f x f x ⋅=⋅成立,写出满足条件的一个函数为 .
6.给出下列关于互不相同的直线l n m ,,和平面βα,的四个命题,其中真命题是 (填序号) (1),,,m A A l m ∉=⊂点αα 则l 与m 不共面;
(2)l 、m 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; (3)若ββαα//,//,,,m l A m l m l 点=⊂⊂ ,则βα// (4)若m l m l //,//,//,//则βαβα
7.设31
sin (), tan(),522
πααππβ=<<-=
则tan(2)αβ-的值等于__ .
8.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图
及其尺寸如上(单位cm ),则该三棱柱的表面积为 cm 2
.
9.扇形OAB 半径为2,圆心角∠AOB =60°,点D 是弧AB 的中点,点C 在线段OA 上,且3=OC .则⋅的值为 .
10.下图中,(1)为相互成120°的三条线段,长度均为1,图(2)在第一张图的线段的前端作两条与该线段成120°的线段,长度为其一半,图(3)用图(2)的方法在每一线段前端生成两条线段,长度为其一半,重复前面的作法至第n 张图,设第n 个图形所有线段长之和为n a , 则n a = .
(1) (2) (3)
11.关于x 的不等式ax x x x ≥-++392
2在]5,1[上恒成立,则实数a 的范围为 .
12.若直线1+=kx y 与圆0422=-+++my kx y x 交于M 、N 两点,并且M 、N 关于直线0=+y x 对称,则不等式组⎪⎩
⎪
⎨⎧≥≤-≥+-0001y my kx y kx 表示的平面区域的面积是__ ▲ 13.考察下列一组不等式:
3
3
2
2
252525+>⋅+⋅,4
4
3
3
252525+>⋅+⋅,55112
222
22
252525+>⋅+⋅
将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例, 则推广的不等式为 . 14.给出定义:若11
22
m x m -
<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =. 在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题:
①函数)(x f y =的定义域是R ,值域是[0,2
1
];
②函数)(x f y =的图像关于直线2
k
x =(k ∈Z)对称;
③函数)(x f y =是周期函数,最小正周期是1;
④ 函数()y f x =在⎥⎦
⎤
⎢⎣⎡-
21,21上是增函数; 则其中真命题是__ ▲
二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算过程
15.(本小题满分14分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .已知a+b =5,c =7,
且.2
7
2cos 2sin 42
=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积.
16.(本小题满分14分)某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费200元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元?
17.(本小题满分15分) 已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.
(Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积
18.(本小题满分15分)已知数列{}
n a 的前n 项和是n S ,且满足21n n S a =- (1)求数列{}
n a 的通项公式;
(2)若数列{}
n b 满足21()n n a b n n N +⋅=-∈,求数列{}
n b 的前n 项和T n (3) 请阅读如图所示的流程图,根据流程图判断该算法能否有确定 的结果输出?并说明理由。
19.(本小题满分16分) 已知⊙),1,2(1:2
2
A y x O 和定点=+由⊙O 外一点P (a,b )向⊙O 引切线PQ ,切点为Q ,
且满足.||||PA PQ =
(1)求实数a,b 间满足的等量关系; (2)求线段PQ 长的最小值;
(3)若以P 为圆心所作的⊙P 与⊙O 有公共点,试求半径最小值时⊙P 的方程。
20.(本小题满分16分)已知2()ln ,()3f x x x g x x ax ==-+-. ⑴ 求函数()f x 在[,2](0)t t t +>上的最小值;
⑵ 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围; ⑶ 证明对一切(0,)x ∈+∞,都有12
ln x x e ex
>-成立.
数 学 试 题(加试)
(满分40分,答卷时间30分钟)
一、选做题:本大题共4小题,请从这4题中选做2小题,如果多做,则按所做的前两题记分.每小题10分,共20
分.解答时应写出文字说明、证明过程或演算步骤. 1.选修4-1:几何证明选讲
如图,在△ABC 中,∠A =60°,AB >AC ,点O 是外心,两条高 BE ,CF 交于H 点,点M ,N 分别在线段BH ,
FH 上,且满足BM =CN ,求MH +NH
OH
的值.
2.选修4-2:矩阵与变换
设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换. (1)求矩阵M 的特征值及相应的特征向量;
(2)求逆矩阵1
M -以及椭圆
22
149
x y +=在1M -的作用下的新曲线的方程.
3.选修4-4:坐标系与参数方程
已知A是曲线ρ=3cosθ上任意一点,求点A到直线ρcosθ=1距离的最大值和最小值.
4.选修4-5:不等式选讲
求函数f(x)=sin3x cos x的最大值.
二、必做题:本大题共2小题,每小题10分,共20分.解答时应写出文字说明、证明过程或演算步骤. 1.求由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积
2.已知从“神六”飞船带回的某种植物种子每粒成功发芽的概率都为
1
3
,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败。
若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值。
(1)求随机变量ξ的数学期望E(ξ);
(2)记“函数f (x )= x 2
-ξx -1在区间(2,3)上有且只有一个零点”为事件A ,
求事件A 发生的概率P (A ).江苏省如东高级中学 缪 林。