高考数学难点突破_难点18__不等式的证明策略

合集下载

高考数学科目的备考策略技巧

高考数学科目的备考策略技巧

高考数学科目的备考策略技巧最新高考数学科目的备考策略技巧高考所有的考生们,你们在备考数学的时候有运用备考的技巧吗?使用备考技巧更能提高大家的水平。

下面是小编为大家整理的关于高考数学科目的备考策略技巧,欢迎大家来阅读。

高考数学的备考策略1、掌握多种解法一道数学题往往有多种解法,有时方法不同,解题时的难易、繁简程度差异很大。

解答数学题首先要掌握常规解法,它的优点是即使做不到底,解答题做出部分也能得些分,缺点是运算有时麻烦,甚至难以算到底,或计算过程中容易出错。

巧妙解法的优点是解答过程简单,省时省力,但是不容易想到,如果想偏了,思路不对,就几乎得不到分。

因此,要辩证地看待数学常规解法和巧妙解法。

我们提倡在掌握常规解法的基础上,努力追求巧妙解法。

值得指出的是,不掌握常规解法一味追求巧妙解法无异于舍本逐末,而不追求巧妙解法只会用常规方法解题则无助于能力提高。

2、数学学习和做题要养成良好习惯一些学生平时解题只注意结果,不注意规范书写,这儿扣一分,那儿扣两分,尽管答案正确,总分却不高。

解答题有些学生书写潦草,难以辨认。

这些细节都要引起足够重视。

一些学生数学课堂上只满足于听懂,不动手演算。

其实,只听懂是远远不够的,它离掌握知识、形成能力还有很远的距离,真懂、假懂或懂到什么程度只有在动手算的时候才能得到检验。

数学审题错误或计算错误是导致会而不对或对而不全的主要原因,平时总认为是粗心,其实还是习惯不好造成的。

有时一个符号就会丢掉十几分,要在学习过程中自觉养成严谨的学风,对现在学习有利,对以后做事也有利。

高考数学复习备考方法一、分类记忆法遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。

例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。

求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。

重难点专题18 三角函数中w取值范围问题八大题型汇总(原卷版) 备战2024年高考数学重难点突破

重难点专题18 三角函数中w取值范围问题八大题型汇总(原卷版) 备战2024年高考数学重难点突破

题型8新定义 (9)已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2-x 1≤12T =πω,求得0<ω≤πx 2-x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[―π2+2kπ,π2+2kπ],解得ω的范围;第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围.结合图象平移求ω的取值范围1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数=平移后的函数.2、平移后与新图象重合:平移后的函数=新的函数.3、平移后的函数与原图象关于轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于轴对称:平移前的函数=平移后的函数-;5、平移后过定点:将定点坐标代入平移后的函数中。

()f x ()g x ()f x ()g x y x ()f x ()g x三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T,相邻的对称轴和对2,也就是说,我们可以根据三角函数的对称性来研究其周期称中心之间的“水平间隔”为T4性,进而可以研究ω的取值。

三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.已知三角函数的零点个数问题求ω的取值范围对于区间长度为定值的动区间,若区间上至少含有k个零点,需要确定含有k个零点的区间长度,一般和周期相关,若在在区间至多含有k个零点,需要确定包含k+1个零点的区间长度的最小值.三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.ππ。

高考数学中常规的不等式证明思路及技巧

高考数学中常规的不等式证明思路及技巧

高考数学中常规的不等式证明思路及技巧数学是高考中必不可少的一门科目,而数学中的不等式证明题目更是高考难点之一。

不等式证明题目考察的是学生的推理能力、逻辑思维能力和精准计算能力。

本文将介绍常见的不等式证明思路及技巧,以帮助高中生更好地应对高考数学中的不等式证明题目。

一、利用已知条件推出结论在不等式证明题目中,往往会给出一些已知条件,利用这些条件我们可以推出某个结论,从而间接证明不等式的正确性。

在做题时,我们应该把题目中的已知条件先作出标注,理清思路后再进行推导。

例如:给定实数 $x$,$y$,$z$,满足 $x^2+y^2+z^2=1$,求证:$x+y+z\leq \sqrt{3}$。

解析:首先,我们可以根据均值不等式得出 $x+y+z\leq\sqrt{3(x^2+y^2+z^2)}$。

接下来,根据题目中的条件$x^2+y^2+z^2=1$,我们可以将被开方量化简为 $\sqrt{3}$,从而得到 $x+y+z\leq \sqrt{3}$。

因此,我们成功地证明了该不等式的正确性。

二、借助已知不等式证明目标不等式借助已知不等式间接证明目标不等式的正确性是不等式证明中最常用的方法之一。

这种方法需要对不等式理解深入,需要对不等式的性质有全面认知。

可以通过加、减、乘、除等运算方式进行变形,或者通过引理证明的方式来证明目标不等式的正确性。

例如:已知 $ab+bc+ca=1$,证明$\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\geq\dfrac{3\sqrt{3}}{4}$。

解析:首先,我们可以通过柯西不等式将原不等式中的多项式化成分数进行求解。

具体而言,我们有:$$\begin{aligned}&\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\\ &\geq\dfrac{(a+b+c)^2}{a+ab^2+b+b^2c+c+c^2a+a^2}\\ &\geq\dfrac{3}{\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}+1}\\ &\geq\dfrac{3}{\sqrt[4]{\dfrac{abc}{abc}}+1}\\ &=\dfrac{3}{2}\end{aligned}$$由此,我们可以通过制定合适的策略,借助已知不等式成功证明了目标不等式的正确性。

高考数学难点突破_难点18__不等式的证明策略

高考数学难点突破_难点18__不等式的证明策略
∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥
证法三:∵∴a2+b2+c2≥
∴a2+b2+c2≥
证法四:设a=+α,b=+β,c=+γ.
∵a+b+c=1,∴α+β+γ=0
∴a2+b2+c2=(+α)2+(+β)2+(+γ)2
=+ (α+β+γ)+α2+β2+γ2
(1+n)m=1+Cn+Cn2+...+Cnm,
由(1)知miA>niA (1<i≤m,而C=
∴miCin>niCim(1<m<n
∴m0C=n0C=1,mC=nC=m·n,m2C>n2C,...,
mmC>nmC,mm+1C>0,...,mnC>0,
∴1+Cm+Cm2+...+Cmn>1+Cn+C2mn2+...+Cnm,
技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max;若 a≤f(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.
故x′2≤,x′∈[-,],x∈[0,],同理y,z∈[0,]
证法三:设x、y、z三数中若有负数,不妨设x<0,则x2>0,=x2+y2+z2≥x2+>,矛盾.

不等式的证明技巧

不等式的证明技巧

不等式的证明技巧不等式是数学中常见的一种重要的数学关系。

证明一个不等式一般有以下几种常用的技巧:1.分析前提条件:首先,我们需要对不等式中的前提条件进行仔细的分析,了解这些条件约束下的数学性质。

在证明过程中,有时可以通过对前提条件的适当利用来简化证明过程,或者削弱不等式的限制,使得问题更容易处理。

2.求导和函数分析:对于一些关于函数的不等式,我们可以通过函数的导数来进行分析。

在求导的过程中,我们可以得到函数的最大值、最小值以及增减性质等重要的信息。

根据这些信息,我们可以判断函数的取值范围和不等式的成立条件。

3.数学归纳法:对于一些具有递推性质的不等式,可以使用数学归纳法进行证明。

首先,我们可以验证当n=1时不等式的成立,然后假设对于一些n成立,即不等式成立,再通过证明当n+1时也成立来得出结论。

4.分割法:对于一些含有多个变量的不等式,我们可以通过分割法将问题转化为多个单变量的不等式进行分析。

通过分析这些单变量的不等式,可以帮助我们更好地理解原始不等式的性质和结论。

5.套用已知不等式:在证明过程中,我们可以尝试将一些已知的不等式进行变形运用。

通过套用已知的不等式,可以简化证明过程,加快解题速度。

尤其是一些经典的不等式如均值不等式、柯西-施瓦茨不等式等,它们已经被广泛研究和应用,具有较强的普适性。

6.代入与化简:有时我们可以通过代入一些特殊的数值或者特定的变量取值,使得不等式变得更简单。

这样可以进一步分析不等式的性质,加深对问题本质的理解,从而得出证明结论。

7.反证法:给定一个不等式,我们假设其不成立,然后通过一系列逻辑推导和推理来推导出矛盾的结论。

这时我们可以得出原不等式的成立。

总之,证明不等式需要深入理解数学性质和灵活的数学思维。

结合前述的证明技巧,可以帮助我们更好地解决不等式问题。

最重要的是,需要积极锻炼数学证明的能力,通过练习和实践才能够提高。

高中数学不等式的证明

高中数学不等式的证明

高中数学不等式的证明高中数学中,不等式是一种重要的课程内容,也是数学证明的一个重要方向。

在本文中,我将对高中数学不等式的证明进行详细讨论。

不等式证明的一般步骤如下:1.提取已知条件:将不等式中的已知条件提取出来,以得到更清晰的表达式。

2.化简和变形:根据不等式的性质,对不等式进行适当的化简和变形操作,以便于进一步的证明。

3.应用不等式性质:应用已知的不等式性质、定理和公式,将给定的不等式与这些知识相结合,引入新的变量或不等式形式。

4.利用已知条件和定理进行推导:根据已知条件和定理,进行推导,从当前推导出的结论重新应用已知条件和定理。

5.逆向思考和反证法:如果直接的推导困难,可以尝试使用逆向思考或反证法来换一种证明的角度。

下面,我将通过实际的例子,对高中数学不等式的证明进行详细解释。

例子1:证明对于任意正实数a、b,有(a+b)² ≥ 4ab。

解:要证明这个不等式,我们可以根据一般的证明步骤来进行推导。

1.提取已知条件:已知条件为a、b是正实数。

2. 化简和变形:将不等式进行展开和化简得到a² + 2ab + b² ≥4ab。

3. 应用不等式性质:根据已知条件和定理,我们可以将不等式右边的4ab化简成2ab + 2ab,即得到a² + 2ab + b² ≥ 2ab + 2ab。

4. 利用已知条件和定理进行推导:我们可以继续推导,将左边的a² + b²进行分解成(a + b)² - 2ab,得到(a + b)² - 2ab ≥ 2ab + 2ab。

5. 逆向思考和反证法:我们可以将不等式进行变形,得到(a + b)² ≥ 4ab,即相当于证明了(a + b)² - 4ab ≥ 0。

由于(a + b)² - 4ab = (a - b)² ≥ 0,这是显然成立的,因为平方数是非负的。

黄冈中学高考数学典型例题18---不等式的证明策略

黄冈中学高考数学典型例题18---不等式的证明策略

黄冈中学高考数学典型例题详解不等式的证明每临大事,必有静气;静则神明,疑难冰释;积极准备,坦然面对;最佳发挥,舍我其谁敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好体会绝妙解题思路建立强大数学模型感受数学思想魅力品味学习数学快乐不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场(★★★★)已知a >0,b >0,且a +b =1. 求证:(a +a 1)(b +b1)≥425.●案例探究[例1]证明不等式n n2131211<++++Λ(n ∈N *)命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.知识依托:本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.错解分析:此题易出现下列放缩错误:这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.技巧与方法:本题证法一采用数学归纳法从n =k 到n =k +1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立;(2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++Λ<2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k Λ则∴当n =k +1时,不等式成立. 综合(1)、(2)得:当n ∈N *时,都有1+n13121+++Λ<2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k ΘΘΘ又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n nk k k k k k k =--++-+-+<++++--=-+<+=ΛΛ因此证法三:设f (n )=),131211(2nn ++++-Λ那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n <++++Λ[例2]求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值.命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.知识依托:该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.错解分析:本题解法三利用三角换元后确定a 的取值范围,此时我们习惯是将x 、y 与cos θ、sin θ来对应进行换元,即令x =cos θ,y =sin θ(0<θ<2π),这样也得a ≥sin θ+cos θ,但是这种换元是错误的.其原因是:(1)缩小了x 、y 的范围;(2)这样换元相当于本题又增加了“x 、y =1”这样一个条件,显然这是不对的.技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a 满足不等关系,a ≥f (x ),则a min =f (x )max ;若 a ≤f (x ),则a max =f (x )min ,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立. 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立), ∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx+1≤a 1+yx,设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2.●锦囊妙计1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练 一、填空题1.(★★★★★)已知x 、y 是正变数,a 、b 是正常数,且ybxa +=1,x +y 的最小值为__________.2.(★★★★)设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是__________.3.(★★★★)若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________.二、解答题4.(★★★★★)已知a ,b ,c 为正实数,a +b +c =1. 求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤65.(★★★★★)已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]6.(★★★★★)证明下列不等式: (1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则zy x y x z x z y +++++≥2(z y x 111++)7.(★★★★★)已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m8.(★★★★★)若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1.参考答案 难点磁场证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a显然当且仅当t =0,即a =b =21时,等号成立. 证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵ a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得αααααααααααααααααΘ 2歼灭难点训练一、1.解析:令xa =cos 2θ,yb =sin 2θ,则x =a sec 2θ,y =bc s c 2θ,∴x +y =a sec 2θ+b csc 2θ=a +b +a tan 2θ+b co t 2θ≥a +b +2ab b a b a 2cot tan 22++=θ⋅θ.答案:a +b +2ab2.解析:由0≤|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔(a +b )2-4ad <(b +c )2-4bc∵a +d =b +c ,∴-4ad <-4bc ,故ad >bc . 答案:ad >bc3.解析:把p 、q 看成变量,则m <p <n ,m <q <n . 答案:m <p <q <n二、4.(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ] =31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31 证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++ ∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ. ∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一Θ ∴原不等式成立.证法二:3)23()23()23(3232323+++++≤+++++c b a c b a 336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.5.证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32] 同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0, 于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2 =31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32]0)()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy z y x y x z x z y z y x zx yz xy z cb a y b ac x a c b x ac z c a z c b y b c y b a x a b zx x ac z c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明Θ ∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i ≤m ,且A im =m ·…·(m -i +1),n i n n n n n n m i m m m m m m iim i im 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅=ΛΛ同理, 由于m <n ,对于整数k =1,2,…,i -1,有mk m n k n ->-, 所以im i in i i im i in n m m n A A ,A A >>即 (2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C n n m n ,(1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m i A i n >n i A i m (1<i ≤m),而C i m =!A C ,!A i i i n i n i m = ∴m i C i n >n i C i m (1<m <n ) ∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…,m m C m n >n m C m m ,mm +1C 1+m n >0,…,m n C nn >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.8.证法一:因a >0,b >0,a 3+b 3=2,所以(a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n b a m , 因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0① 因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =m m 3232- ②将②代入①得m 2-4(mm 3232-)≥0, 即m m 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2, 由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n ,即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3= (a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+ 8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a + 因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +, ∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a+b>2,则a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)。

【技巧题型】不等式题目的七种证明方法

【技巧题型】不等式题目的七种证明方法

【技巧题型】不等式题目的七种证明方法高考的题目中,有80%都是中低档难度,也就是说,要想脱颖而出成为佼佼者,压轴题是无论如何都要攻克的难关!压轴题目一般是开放型的题目,每年都是会变化。

但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。

今天,我就来总结一下不等式的证明方法。

1比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。

前者为作差法,后者为作商法。

但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。

2分析法和综合这两个方法我们一般会一起使用。

分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。

如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。

我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。

当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。

3反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。

这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。

反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4)肯定原来命题的结论是正确的。

4放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。

高考数学中不等式的证明方法和技巧有哪些

高考数学中不等式的证明方法和技巧有哪些

高考数学中不等式的证明方法和技巧有哪些在高考数学中,不等式的证明是一个重要的考点,也是很多同学感到头疼的问题。

不等式的证明方法多种多样,需要我们灵活运用数学知识和思维方法。

下面,我们就来详细探讨一下高考数学中不等式的证明的一些常见方法和技巧。

一、比较法比较法是证明不等式最基本的方法之一,分为作差比较法和作商比较法。

作差比较法的基本步骤是:将两个式子作差,然后对差进行变形,判断差的正负性。

如果差大于零,则被减数大于减数;如果差小于零,则被减数小于减数。

例如,要证明 a > b ,我们可以计算 a b ,然后通过因式分解、配方等方法将其变形为易于判断正负的形式。

作商比较法适用于两个正数比较大小。

将两个正数作商,然后与 1比较大小。

如果商大于 1,则被除数大于除数;如果商小于 1,则被除数小于除数。

比如,要证明 a > b (a、b 均为正数),计算 a/b ,若 a/b > 1 ,则 a > b 。

二、综合法综合法是从已知条件出发,利用已知的定理、公式、性质等,经过逐步的逻辑推理,最后推导出所要证明的不等式。

例如,已知 a > 0 ,b > 0 ,且 a + b = 1 ,要证明 a^2 +b^2 ≥1/2 。

因为 a + b = 1 ,所以(a + b)^2 = 1 ,即 a^2 + 2ab + b^2 =1 。

又因为2ab ≤ a^2 + b^2 ,所以 a^2 + b^2 +2ab ≤ 2(a^2 + b^2) ,即1 ≤ 2(a^2 + b^2) ,从而得出 a^2 +b^2 ≥ 1/2 。

三、分析法分析法是从要证明的不等式出发,逐步寻求使不等式成立的充分条件,直到所需条件为已知条件或明显成立的事实。

比如,要证明√a +√b <√(a + b) (a > 0 ,b > 0 )。

先将不等式移项得到√a +√b √(a + b) < 0 ,然后对其进行分析,逐步转化为易于证明的形式。

分析法的书写格式通常是“要证……,只需证……”。

高考数学冲刺攻略不等式的解法与证明

高考数学冲刺攻略不等式的解法与证明

高考数学冲刺攻略不等式的解法与证明高考数学冲刺攻略:不等式的解法与证明高考数学中,不等式是一个重要的考点,其解法与证明在解题中常常发挥关键作用。

在高考冲刺阶段,掌握不等式的解法与证明技巧,对于提高数学成绩至关重要。

一、不等式的基本性质在学习不等式的解法之前,我们先来回顾一下不等式的基本性质:1、对称性:若 a > b,则 b < a 。

2、传递性:若 a > b 且 b > c ,则 a > c 。

3、加法性质:若 a > b,则 a + c > b + c 。

4、乘法性质:若 a > b 且 c > 0 ,则 ac > bc ;若 a > b 且 c <0 ,则 ac < bc 。

这些基本性质是我们解决不等式问题的基础,必须牢记于心。

二、一元一次不等式的解法一元一次不等式的一般形式为 ax + b > 0 或 ax + b < 0 (其中 a ≠ 0 )。

解一元一次不等式的步骤与解一元一次方程类似,但需要注意不等式两边乘以或除以负数时,不等号方向要改变。

例如,解不等式 2x 5 > 7 ,首先将常数项移到右边得到 2x > 12 ,然后两边同时除以 2 ,得到 x > 6 。

再比如,解不等式-3x + 4 < 10 ,先移项得到-3x < 6 ,由于系数-3 为负数,所以两边同时除以-3 时,不等号方向改变,得到 x >-2 。

三、一元二次不等式的解法一元二次不等式的一般形式为 ax²+ bx + c > 0 或 ax²+ bx + c< 0 (其中a ≠ 0 )。

解一元二次不等式的关键是求出对应的一元二次方程 ax²+ bx + c= 0 的根。

我们可以通过判别式Δ = b² 4ac 来判断方程根的情况:当Δ > 0 时,方程有两个不同的实根 x₁和 x₂,此时不等式的解集在“两根之外”或“两根之间”,具体取决于不等式的符号。

当Δ = 0 时,方程有一个重根 x₀,不等式的解集为x ≠ x₀。

高考数学一轮复习第十八章不等式选讲不等式的证明课件

高考数学一轮复习第十八章不等式选讲不等式的证明课件

8 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.已知 a>2,b>2,则 a+b 与 ab 的大小关系是_a_+__b_<_a_b_. 解析 ∵ab-(a+b)=(a-1)(b-1)-1>0.∴ab>a+b.故填 a+b<ab.
9 撬点·基础点 重难点
11 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
[解] (1)①因为 f(x+2)=m-|x|,
所以 f(x+2)≥0 等价于|x|≤m,
由|x|≤m 有解,得 m≥0,且其解集为 {x|-m≤x≤m}.
又 f(x+2)≥0 的解集为[-1,1],故 m=1.
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
[考法综述] 不等式的各种证明方法:比较法、综合法、分析法、反证法、放缩法、柯西不等式法 等.在应用柯西不等式时,注意常数的巧拆、结构的巧变、巧设数等.
命题法 不等式的证明 典例 (1)已知函数 f(x)=m-|x-2|,m∈R,且 f(x+2)≥0 的解集为[-1,1]. ①求 m 的值; ②若 a,b,c∈R+,且1a+21b+31c=m,求证:a+2b+3c≥9. (2)已知实数 x,y 满足:|x+y|<13,|2x-y|<16,求证:|y|<158.
5 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理

高考数学难点突破难点(三角形中的三角函数式-不等式的证明策略)

高考数学难点突破难点(三角形中的三角函数式-不等式的证明策略)

4
1 cos
cos B ,
2 2.
2 cos2 3
4
整理得 4 2 cos2α+2cosα-3 2 =0(M)
(2cosα- 2 )(2 2 cosα+3)=0,∵2 2 cosα+3≠0,
AC 2
∴2cosα- 2 =0.从而得 cos
.
22
解法二:由题设条件知 B=60°,A+C=120°
7.解:由 a、b、3c 成等比数列,得:b2=3ac
∴sin2B=3sinC·sinA=3(- 1 )[cos(A+C)-cos(A-C)] 2
∵B=π-(A+C).∴sin2(A+C)=- 3 [cos(A+C)-cos ]
2
2
即 1-cos2(A+C)=- 3 cos(A+C),解得 cos(A+C)=- 1 .
∠APB=180°-∠ABP-∠BAP=120°-θ,
●歼灭难点训练
一、选择题
1.(★★★★★)给出四个命题:(1)若 sin2A=sin2B,则△ABC 为等腰三角形;(2)若 sinA=cosB,则△ABC 为直角三角形;(3)若 sin2A+sin2B+sin2C<2,则△ABC 为钝角三角形;
(4)若 cos(A-B)cos(B-C)cos(C-A)=1,则△ABC 为正三角形.以上正确命题的个数是( )
三、解答题
4.(★★★★)已知圆内接四边形 ABCD 的边长分别为 AB=2,BC=6,CD=DA=4,求四边
形 ABCD 的面积.
5.(★★★★★)如右图,在半径为 R 的圆桌的正中央上空挂一盏电灯,

高中不等式的证明方法

高中不等式的证明方法

高中不等式的证明方法在高中数学学习中,不等式是一个非常重要的内容。

在解决不等式问题的过程中,常常需要使用一些证明方法。

下面我将介绍一些高中不等式的证明方法。

一、计算法对于一般的不等式,我们可以通过计算来证明。

该方法常常适用于直接证明不等式的正确性。

示例:对于不等式a + b ≥ 2√(ab),我们可以对其两边进行平方运算,化简得到(a + b)² ≥ 4ab,继续化简得到a² + 2ab + b² ≥ 4ab,最后得到a² + b² ≥ 2ab。

由于a²,b²为非负数,所以a² + b² ≥ 2ab成立,从而不等式得到证明。

二、数轴法数轴法是一种简便的证明不等式的方法。

示例:对于不等式x+1>2,我们可以画出数轴,将不等式变形为x>1,即x的取值范围在1的右侧。

通过观察数轴即可发现x的取值大于1,所以不等式成立。

三、加减法对于含有多个项,且项之间存在加减关系的不等式,我们可以通过加减法将不等式转化为一个已知不等式来证明。

示例:对于不等式a+b+c>3,我们可以将不等式两边都减去c,得到a+b>3-c。

由于c是一定的,所以不等式a+b>3-c成立,即不等式得到证明。

四、乘法当不等式中存在连续的乘法关系时,我们可以通过乘法来证明不等式。

示例:对于不等式(x+1)(x+2)>0,我们可以使用因式分解法将不等式化简为(x+1)(x+2)≠0。

由于(x+1)(x+2)的乘积肯定不为0,所以不等式成立。

五、数学归纳法对于有一定规律的不等式,我们可以使用数学归纳法来证明。

示例:对于不等式2ⁿ>n²,我们首先验证n=1时不等式成立,然后假设对于一些自然数k,不等式成立。

即2ᵏ>k²。

然后再证明当n=k+1时,也成立。

即2^(k+1)>(k+1)²。

数列不等式证明大题解题技巧

数列不等式证明大题解题技巧

数列不等式证明大题解题技巧
1. 把数列的不等式转化为数学归纳法或数列递推公式证明:通过利用归纳假设或递推公式,将数列的不等式转化为一系列数学运算的等式或不等式,从而证明原始的数列不等式。

2. 利用数列的性质进行变形:通过对数列进行一系列变形,利用数列的性质,等式性质或不等式性质,将原始的数列不等式转化为更容易证明的形式。

3. 利用基本不等式或数学不等式进行转化:通过利用已知的基本不等式或数学不等式,对不等式进行转化或放缩,从而证明原始的数列不等式。

4. 利用函数性质进行推理:如果数列具有某种特定的性质,可以将数列不等式化为函数不等式,然后根据函数性质进行推理和证明。

5. 利用数列的特殊性质进行归纳:如果数列具有某种特殊的性质,可以通过归纳法证明数列的不等式。

总之,数列不等式的证明需要将数列不等式转化为一些更易于证明的形式,利用数列的特性、基本不等式、数学不等式、函数性质等进行推理和证明。

熟练掌握这些解题技巧,并结合具体题目的特点进行灵活应用,可以帮助解决数列不等式的证明大题。

高三数学 不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲

高三数学  不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲

高三数学不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲(一)不等式的证明1. 实数大小的性质(1)a b a b ->⇔>0;(2)a b a b -=⇔=0;(3)a b a b -<⇔<0。

2. 比较法证明的步骤(1)求差比较法步骤:作差——变形——判别差的符号,在运用求差比较法证明时其关键是变形,通常变形方法是分解因式、配方、利用判别式及把差化为若干个非负数的和。

(不能分解时证明有恒定符号可配方)(2)求商比较法步骤:作商——变形——判别商与1的大小,在运用求商比较法证明不等式时要根据已知条件灵活采用函数的单调性及基本不等式进行放缩。

3. 基本不等式定理1:如果a b R ,∈,那么a b ab 222+≥(当且仅当a b =时取等号)。

定理2:如果a b c R ,,∈+,那么a b c abc 3333++≥(当且仅当a b c ==时取等号)。

推论1:如果a b R ,∈+,那么a b ab +≥2(当且仅当a b =时取“=”号)。

推论2:如果a b c R ,,∈+,那么a b c abc ++≥33(当且仅当a b c ==时取“=”号)。

4. 综合法:利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所要求证的不等式,这种证明方法叫做综合法。

综合法的证明思路是:由因导果,也就是从一个(组)已知的不等式出发,不断地用必要条件替代前面的不等式,直到推导出要证的不等式。

5. 分析法:从求证的不等式出发分析这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

这种证明方法叫做分析法。

分析法的证明思路是:“执果索因”,即从求证的不等式出发,不断地用充分条件来代替前面的不等式,直至找到已知不等式为止。

用分析法证明不等式要把握以下三点:(1)寻找使不等式成立的充分条件时,往往是先寻找使不等式成立的必要条件,再考虑这个必要条件是否充分。

不等式的性质与证明方法

不等式的性质与证明方法

不等式的性质与证明方法不等式是数学中常见的一种数值关系表达方式,它描述了数值之间的大小关系。

在数学的研究中,不等式具有重要的意义,它在许多领域中都得到了广泛的应用。

本文将介绍不等式的性质和证明方法,希望能够帮助读者更好地理解和应用不等式。

一、不等式的基本性质1. 传递性:如果 a > b,b > c,那么可以得出 a > c。

这是不等式的一种基本性质,也是比较大小关系的基础。

2. 对称性:如果 a > b,则有 b < a。

不等式的对称性使得我们可以在不改变大小关系的前提下,对不等式进行变换和操作。

3. 相加性:如果 a > b,则对任意的 c,a + c > b + c。

不等式的相加性允许我们在不等式的两边同时加上一个相同的数,不改变大小关系。

4. 相乘性:如果 a > b,且 c > 0,则有 ac > bc。

不等式的相乘性使我们能够在不等式的两边同时乘以一个正数,仍然保持大小关系不变。

二、不等式的常见证明方法1. 直接证明法:通过逐步推导和运算,从已知条件出发,逐步推导出要证明的不等式,直至推导出所要证明的结论。

这是一种简单直接的证明方法,常用于证明不等式的基本性质。

例子:证明对任意正整数 n,都有 n^2 + n > 2n。

证明:对于任意正整数 n,我们有n^2 + n = n(n + 1)。

由于 n 是正整数,所以 n + 1 > 1,因此 n(n + 1) > n。

又因为对于任意正整数 n,n > 2,所以 n > 2n。

因此,n(n + 1) > n > 2n,即 n^2 + n > 2n。

2. 反证法:假设要证明的不等式不成立,即假设不等式的否定成立,然后通过推导得到矛盾,从而推断出假设的不等式成立。

这是一种常用的证明方法,适用于复杂的不等式证明。

例子:证明当 x > 0 时,有 x^2 + 1 > 2x。

高考数学热点难点突破技巧第04讲导数中不等式的证明问题的处理

高考数学热点难点突破技巧第04讲导数中不等式的证明问题的处理

第04讲:导数中不等式的证明问题的处理【知识要点】导数中不等式的证明,是历年高考的热点、重点和难点,但是还是有章可循的.常用的方法有:直接求函数的最值、构造函数求函数的最值、构造函数不等式、比较两边函数最值等. 【方法讲评】方法一直接求函数的最值使用情景恒成立或恒成立解题步骤一般先求函数最小(大)值,再证明或. 【例1】已知函数.(Ⅰ)讨论函数的极值点的个数;(Ⅱ)若有两个极值点,证明:.(ⅰ)时,,所以取得极小值,是的一个极小值点.(ⅱ)时,即时,令,得显然,,所以在取得极小值,有一个极小值点.(ⅲ)时,时,即时,,在是减函数,无极值点.当时,,令,得当和时,时,,所以在取得极小值,在取得极大值,所以有两个极值点.综上可知:(ⅰ)时,仅有一个极值点;(ⅱ)当时,无极值点;(ⅲ)当时,有两个极值点.设,所以时,是减函数,,则所以得证.【点评】本题的第(2)问就是证明,所以要构造函,,再利用导数求函数的单调性和最小值即可.【例2】(2016年全国Ⅱ高考)(Ⅰ)讨论函数的单调性,并证明当时,;(Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.【解析】⑴证明:∵当时,∴在上单调递增∴时,∴∴.【点评】(1)本题第一问证明不等式,要证明函数,不是很方便.要注意观察,当时,,所以可以把不等式的两边同时除以,得,即证明函数.(2)我们在解答题目时,要注意观察题目,寻找它们之间的内部联系,从而找到解题途径.【反馈检测1】【2017课标3,文21】已知函数(1)讨论的单调性;(2)当a﹤0时,证明.【反馈检测2】(2016年全国高考III卷)设函数.(I)讨论的单调性;(II)证明当时,;(III)设,证明当时,.方法二构造函数求最值使用情景恒成立或恒成立解题步骤转化成证明【例3】已知是自然对数的底数,.(1)求曲线在点处的切线方程;(2)当时, 求证:.(2)设,则.设,则在内单调递增,当时,. 即,时,.当时, 在内单调递增. 当,时,, 即【点评】(1)本题第2问证明,不能理解为左边函数的最小值不大于右边函数的最大值,因为不等式两边的自变量都是,所以它表示当两个函数取相同的自变量时,总是有.(2)这种问题,只好构造函数,求函数的单调性,求函数的最小值,再证明. (3)在本质上,这种方法和第一种方法是一样的,都是转化成函数的最值.【反馈检测3】已知函数,其中为常数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:无论实数取什么值都有.【反馈检测4】已知函数.(Ⅰ)讨论的单调性;(Ⅱ)设,证明:当时,;(Ⅲ)设是的两个零点,证明.方法三构造函数不等式使用情景一般与数列求和和数列不等式证明有关.解题步骤一般先观察证明的不等式和已知或前面的结论,构造一个函数不等式,再给赋值,得到一个与有关的不等式,再把这个不等式作为通项,对不等式求和,再分析解答.【例4】已知函数.(1)讨论的单调性与极值点;(2)若,证明:当时,的图象恒在的图象上方;(3)证明:.【解析】(1),当时,在上恒成立,所以在单调递增,此时无极值点.当时,,在上的变化情况如下表:1+ - +递增极大值递减极小值递增由此表可知在和上单调递增,在上单调递减.为极大值点,为极小值点.(3)由(2)知,即,∵,∴,令,则,∴∴∴不等式成立.【点评】(1)本题如果利用第二种方法,构造函数求最值,比较困难,不是很适宜,因为这个函数很复杂. (2)注意观察左边函数是数列的求和,只能把左边数列的通项先进行放缩,才能求和. 怎么放缩,只能利用前面的条件构造一个恰当的不等式,再给赋值把数列的通项进行放缩,再对不等式求和,从而达到解题目标.【反馈检测5】设,曲线在点处的切线与直线垂直.(Ⅰ)求的值;(Ⅱ)若对于任意的,恒成立,求的取值范围;(Ⅲ)求证:.【反馈检测6】已知函数(1)当时,求的单调递减区间;(2)若当时,恒成立,求的取值范围;(3)求证:方法四比较两边函数的最值使用情景或,但是不宜按照方法二构造函数求最值.解题步骤证明【例5】已知函数.(1)判断函数的单调性;(2)求证:当时,.【解析】(1)由题得,.令,则.当时,,在区间上单调递增;当时,,在区间上单调递减.∴在处取得唯一的极小值,即为最小值.即,∴,∵,∴.∴,即在区间上是减函数.∴时,.∴,即.【点评】本题就是证明,因为证明比较困难.到底选方法二还是方法四,需要大家自己去观察分析,熟练生巧.【反馈检测7】已知.(Ⅰ)对一切恒成立,求实数的取值范围;(Ⅱ)当时,求函数在区间上的最值;(Ⅲ)证明:对一切,都有成立.高考数学热点难点突破技巧第04讲:导数中不等式的证明问题的处理参考答案(1)当时,在单调递增;当时,在【反馈检测1答案】单调递增,在单调递减;(2)详见解析.(2)由(1)知,当a<0时,在取得最大值,最大值为.所以等价于,即设,则当x∈(0,1)时,;当x∈(1,+)时,.所以在(0,1)单调递增,在(1,+)单调递减.故当x=1时,取得最大值,最大值为g(1)=0.所以当x>0时,≤0,.从而当a<0时,,即. 【反馈检测2答案】(I)见解析;(2)见解析;(3)见解析.【反馈检测2详细解析】(1)由题设,的定义域为,令当时,,单调递增;当时,,单调递减. (2)由(1)知,在处取得最大值,最大值为. 所以当时,.故当(3)由题设,设,则.当时,,单调递增;当时,,单调递减.由(2)知,,故,又,故当时,. 所以当时,.【反馈检测3详细解析】(1)函数的定义域为.记,判别式.①当即时,恒成立,,所以在区间上单调递增.②当时,方程有两个不同的实数根,记,,显然.(ⅰ)若,图象的对称轴,. 两根在区间上,可知当时函数单调递增,,所以,所以在区间上递增.(ⅱ)若,则图象的对称轴,.,所以,当时,,所以,所以在上单调递减.当或时,,所以,所以在上单调递增.综上,当时,在区间上单调递增;当时,在上单调递减,在,上单调递增.(2)由(1)知当时,没有极值点,当时,有两个极值点,且,记所以在时单调递增,所以,所以.【反馈检测4详细解析】(Ⅰ)的定义域为,求导数,得,若,则,此时在上单调递增,若,则由得,当时,,当时,,此时在上单调递减,在上单调递增.(Ⅱ)令,则.求导数,得,当时,,在上是减函数. 而,,故当时,由(Ⅱ)得,从而,于是,由(Ⅰ)知,.【反馈检测5答案】(Ⅰ)(Ⅱ)(Ⅲ)详见解析.【反馈检测5详细解析】(Ⅰ)由题设,∴.(Ⅱ),,,即设,即.①若,,这与题设矛盾②若当,单调递增,,与题设矛盾.③若当,单调递减,,即不等式成立综上所述, .(Ⅲ)由(Ⅱ)知,当时, 时,成立.不妨令所以,…………累加可得【反馈检测6答案】(1),(2)(3)详见解析.(3)由(2)知,取得,即即.【反馈检测7答案】(Ⅰ);(Ⅱ)时,,当时,;(Ⅲ)证明见解析.【反馈检测7详细解析】(Ⅰ)对一切恒成立,即恒成立. 也就是在上恒成立.令,则. 时,,时,. 因此在处取极小值,也是最小值,即,所以.当时,,因此在上单调递增,故,.(Ⅲ)问题等价于证明,. 由(Ⅱ)知时,的最小值是,当且仅当时取等号. 设,则,易知,当且仅当时取到. 从而可知对一切,都有.。

2018年高考秘籍-破解导数压轴题策略:5.导数不等式的证明-多元不等式策略(2)

2018年高考秘籍-破解导数压轴题策略:5.导数不等式的证明-多元不等式策略(2)

导数中的不等式证明【考点点睛】放缩法证明不等式在历年高考数学中是永恒的话题,但它常考常新,学生却常考常怕。

不等式的应用体现了一定的综合性,灵活多样性,多出现在压轴题的位置。

数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻体现数学的基本特点。

尽管如此,只要我们深入去探索,总有方法规律可循,总会有“拨得云开见日出”的时刻! 放缩法的合理运用,往往能起到事半功倍的效果,有时能令人拍案叫绝;但其缺点也是显而易见,如果使用放缩法证题时没有注意放和缩的“度”,容易造成不能同向传递,即放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,所以要熟练地驾驭它是件不容易的事。

命题角度1 构造函数 命题角度2 放缩法 命题角度3 切线法命题角度4 二元或多元不等式的证明思路 命题角度5 函数凹凸性的应用在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界.命题角度4 二元或多元不等式的解证思路【典例7】(2018年安庆市二模)已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, ……﹝找到结构对等式﹞两式相减,得1212ln ln 1x x m x x -+=-, ……﹝含ln x 时两式相减,含x e 时两式相比﹞1212ln ln 1x x F m x x -'=+=-,要证明0F '<,只需证1212ln ln x x x x -<-. ……﹝运用分析法,将待证式变形﹞ 思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. ……﹝运用换元法,构造函数﹞令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t-'=--=-<,所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法.思路二:因为120x x <<,只需证12ln ln 0x x ->, 设())22ln ln 0Q x x x x x =-<<,则 ……﹝变多元为一元,构造函数﹞ ()22110Q x xx '====<,所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln lnx x ->由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.思路三:要证明0F '<,只需证1212ln ln x x x x -<-.即证1212ln ln x x x x ->-.【规律总结】极值点偏移问题中,如果等式含有参数,则消参,有指数的则两边取对数,转化为对数式,通过恒等变换转化为对数平均问题,利用对数平均不等式求解,此乃对数平均法.【知识拓展】对于0,0,a b a b >>?,则2ln ln a b b ab a+->>-ln ln b ab a--称之为对数平均数.简证如下:不妨设()1b ax x =>,只需证明112ln x x x+->>即()21ln 1x x x -<<+(下略).【典例8】(A10联盟2018年高考最后一卷)已知函数()()2,,,xf x eg x ax bx a b R ==+∈.(1)当0b =时,方程()()0f x g x +=在区间()0,+∞上有两个不同的实数根,求a 的取值范围;(2)当0a b =>时,设12,x x 是函数()()()F x f x g x =-两个不同的极值点,证明:()12ln 22x x a +<. 【解析】(1)因为()()0f x g x +=,所以20xe ax +=,即2xe a x-=,设()()20xe h x x x =>,则()()32xx e h x x -'=, ………﹝变量分离,转化为函数性质的研究﹞ 所以()h x 在()0,2上单调递减,在()2,+∞上单调递增,()()224e h x h ≥=,当0x →时,()h x →+∞,当x →+∞时,()h x →+∞,要使方程()()0f x g x +=在区间()0,+∞上有两个不同的实数根,则24e a ->,解得24e a <-,故a 的取值范围是2,4e ⎛⎫-∞- ⎪⎝⎭;【一题多解】本题也可以变形为x e ax x =-,转化为过原点的直线y ax =与函数xe y x=-图象有两个交点问题,应用数形结合思想求解,直线与曲线相切对应所求范围的界点.(2)由题意,()2x F x e ax ax =--,()2x F x e ax a '=--, 因为12,x x 是函数()()()F x f x g x =-两个不同的极值点,不妨设12x x <,()()120,0F x F x ''==,即121220,20x x e ax a e ax a --=--=,两式相减得12122x x e e a x x -=-. ………﹝剖析结构特点,灵活变形﹞要证()12ln 22x x a +<,即证明1222x x e a +<, ………﹝分析法是证明问题的重要方法﹞ 只需证1212212x x x x e e e x x +-<-,即12122121x x x x e e x x ---<-,亦即()121221210x x x x x x e e ----+>. 令1202x x t -=<,只需证当0t <时,不等式2210t t te e -+>恒成立, 设()()2210t t Q t te e t =-+<,则 ……﹝灵活换元,构造函数﹞()()()221221t t t t Q t t e e e t e '=+-=+-,易证()10t t e t +<<,所以()0Q t '<,所以()Q t 在(),0-∞上单调递减,()()00Q t Q >=,即2210t t te e -+>. 综上所述,()12ln 22x x a +<成立. 【审题点津】函数的拐点偏移问题的证明思路可以根据类似的结构特征,适当变形为两个变量之差(或比值)的关系,整体换元,构造函数,借助于导数的应用解决问题.【典例9】(2018届合肥三模)已知函数()212x f x e x ax =--有两个极值点12x x , (e 为自然对数的底数).(1)求实数a 的取值范围; (2)求证:()()122f x f x +>.解析:(1)由于()212x f x e x ax =--,则()xf x e x a '=--,设()()x g x f x e x a '==--,则()1xg x e '=-.令()10x g x e '=-=,解得0x =.所以当() 0x ∈-∞,时,()0g x '<;当()0,x ∈+∞时,()0g x '>.所以()()min 01g x g a ==-.①当1a ≤时,()()0g x f x '=≥,所以函数()f x 单调递增,没有极值点;②当1a >时,()m i n 10g x a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞.此时,()()xg x f x e x a '==--有两个零点12x x ,,不妨设12x x <,则120x x <<,所以函数()212x f x e x ax =--有两个极值点时,实数a 的取值范围是()1,+∞;【答案速得】函数()f x 有两个极值点实质上就是其导数()f x '有两个零点,亦即函数x y e =与直线y x a =+有两个交点,如图所示,显然实数a 的取值范围是()1,+∞.(2)由(1)知,12x x ,为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=. ……﹝应用数形结合,挖掘拐点不等关系﹞ 由于()2220xg x e x a =--=,得22xa e x =-,所以()2222222x x x g x e x a e e x ---=+-=-+.设()()20xx h x ee x x -=-+>,则()120xx h x e e'=--+<, 所以()h x 在()0 +∞,上单调递减,所以()()00h x h <=,()()220h x g x =-<,所以120x x <-<. 由于函数()f x 在()1 0x ,上也单调递减,所以()()12f x f x >-. 要证()()122f x f x +>,只需证()()222f x f x -+>, 即证222220xx e ex -+-->. ……﹝利用单调性放缩,化多元为一元﹞设函数()()220xxk x e ex x -=+--∈+∞,,,则()2x x k x e e x -'=--.设()()2xxx k x e ex -'ϕ==--,则()20x x x e e -'ϕ=+->,所以()x ϕ在()0+∞,上单调递增,()()00x ϕ>ϕ=,即()0k x '>.所以()k x 在()0+∞,上单调递增,()()00k x k >=. 故当()0x ∈+∞,时,220xxe ex -+-->,则222220x x e e x -+-->,所以()()222f x f x -+>,亦即()()122f x f x +>. 【规律总结】本题是极值点偏移问题的泛化,是拐点的偏移,依然可以使用极值点偏移问题的有关方法来解决.只不过需要挖掘出拐点偏移中隐含的拐点的不等关系,如本题中的120x x <-<,如果“脑中有‘形’”,如图所示,并不难得出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点18 不等式的证明策略不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场(★★★★)已知a >0,b >0,且a +b =1.求证:(a +a 1)(b +b 1)≥425.●案例探究[例1]证明不等式n n2131211<++++(n ∈N *)命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.知识依托:本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.错解分析:此题易出现下列放缩错误:这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.技巧与方法:本题证法一采用数学归纳法从n =k 到n =k +1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立;(2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k , ,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立. 综合(1)、(2)得:当n ∈N *时,都有1+n13121+++<2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k 又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n n k k k k k k k=--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N *都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0,∴.2131211n n<++++ [例2]求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值.命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.知识依托:该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.错解分析:本题解法三利用三角换元后确定a 的取值范围,此时我们习惯是将x 、y 与cos θ、sin θ来对应进行换元,即令x =cos θ,y =sin θ(0<θ<2π),这样也得a ≥sinθ+cos θ,但是这种换元是错误的.其原因是:(1)缩小了x 、y 的范围;(2)这样换元相当于本题又增加了“x 、y =1”这样一个条件,显然这是不对的.技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a 满足不等关系,a ≥f (x ),则a min =f (x )max ;若 a ≤f (x ),则a max =f (x )min ,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.解法一:由于a 的值为正数,将已知不等式两边平方,得:x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ), ① ∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立.比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2.解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立),∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为y x+1≤a 1+yx, 设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π), ③又∵sin(θ+4π)的最大值为1(此时θ=4π).由③式可知a 的最小值为2.●锦囊妙计1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练 一、填空题1.(★★★★★)已知x 、y 是正变数,a 、b 是正常数,且ybx a +=1,x +y 的最小值为__________.2.(★★★★)设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是__________.3.(★★★★)若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________.二、解答题4.(★★★★★)已知a ,b ,c 为正实数,a +b +c =1.求证:(1)a 2+b 2+c 2≥31 (2)232323+++++c b a ≤65.(★★★★★)已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32] 6.(★★★★★)证明下列不等式: (1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(zy x 111++) 7.(★★★★★)已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ;(2)证明:(1+m )n >(1+n )m8.(★★★★★)若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1.参考答案难点磁场证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2. ∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.42541625423162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立. 证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41 425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵ a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π).425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα 2歼灭难点训练 一、1.解析:令xa=cos 2θ,y b =sin 2θ,则x =a sec 2θ,y =bc s c 2θ,∴x +y =a sec 2θ+b csc 2θ=a +b +a tan 2θ+b co t 2θ≥a +b +2ab b a b a 2cot tan 22++=θ⋅θ.答案:a +b +2ab2.解析:由0≤|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔(a +b )2-4ad <(b +c )2-4bc∵a +d =b +c ,∴-4ad <-4bc ,故ad >bc . 答案:ad >bc3.解析:把p 、q 看成变量,则m <p <n ,m <q <n . 答案:m <p <q <n二、4.(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1) =31[3a 2+3b 2+3c 2-(a +b +c )2] =31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ] =31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31 证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++∴a 2+b 2+c 2≥31 证法四:设a =31+α,b =31+β,c =31+γ.∵a +b +c =1,∴α+β+γ=0 ∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2 =31+32(α+β+γ)+α2+β2+γ 2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一 ∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.5.证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0 ∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32]同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0,于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2=31+x ′2+y ′2+z ′2+32(x ′+y ′+z ′) =31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾. x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32])()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy zyx y x z x z y z y x zx yz xy z cb a y b ac x a c b x a c z c a z c b y b c y b a x a b zx x a cz c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m m i i m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C n n m n, (1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m iA i n>n iA i m(1<i ≤m ),而C i m=!A C ,!A i i i ni n i m = ∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0,∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m,即(1+m )n >(1+n )m 成立.8.证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n ba m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0①因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =mm 3232- ②将②代入①得m 2-4(mm 3232-)≥0, 即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n , 即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3= (a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+ 8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0,所以对任意非负实数a 、b ,有233b a +≥3)2(b a +因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。

相关文档
最新文档