物理选修选修3-3---3-5知识点(全)

合集下载

(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)

(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)

影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单
位体积内的分子数(体积)
三、物态和物态变化
9、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异

非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向
同性
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点
《高中物理选修 3-4 、3-5 知识点》
Ⅰ 选修 3-4 部分
一、简谐运动 简谐运动的表达式和图象 Ⅰ
1、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零 . ②阻力很小 . 使振动物体回到平衡位置的
力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
⑶周期 T:振动物体完成一次余振动所经历的时间叫做周期。 所谓全振动是指物体从
某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次
全振动。
⑷频率 f :振动物体单位时间内完成全振动的次数。
⑸角频率 ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这
个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,
②这两种方式改变系统的内能是等效的
③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或
物体的不同部分)之间内能的转移
14、热力学第一定律
①表达式 u W Q


W
Q
u

外界对3;
做功
吸热

15、能量 律
系统对外界 做功
系统向外界 放热

高中物理选修3-3-3-5知识点整理复习进程

高中物理选修3-3-3-5知识点整理复习进程

选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:molA M m N =b.分子体积:mol AV v N = c.分子数量:A A A A mol mol mol molM v M vn N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。

但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。

分子间同时存在引力和斥力,两种力的合力又叫做分子力。

在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。

当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。

当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。

高中物理选修3-4、3-5知识点总结

高中物理选修3-4、3-5知识点总结

高中物理选修3-4知识点总结1.波的特征量及其关系(1)波长:波动过程中,对平衡位置的位移总相等的两相邻质点的距离叫波长;(2)频率:波的频率由波源的振动频率决定,在任何介质中,频率保持不变;(3)机械振动在介质中的传播的距离和所用时间的比值叫波速,波速由介质本身的性质所决定(若光还和光的频率有关),在不同介质中波速是不同的。

(v =λ/T )2.介质中质点运动的特征:(1)每个质点都在自己平衡位置附近作振动,并不随波迁移;(2)后振动的质点振动情况总是落后于相邻的先振动的质点的振动3.波动图象(1)规定用横坐标x表示在波的传播方向上各个质点的平衡位置,纵坐标y表示某一时刻各个质...点.偏离平衡位置的位移,连结各质点位移量末端得到的曲线叫做该时刻波的图象(2)用“同侧法”判断波动图像中质点的速度方向,用作切线判断振动图像中质点的速度方向(3)在一个周期内质点沿y轴振动通过路程4A,1/4个周期不一定是A;波沿x轴匀速传播λ,1/4个周期一定是λ/44、波长、波速和频率(周期)的关系:v =△x/△t=λf=λ/ T。

5、波绕过障碍物的现象叫做波的衍射,能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波..长小..,或者跟波长相差不多。

d≤λ(超声波(它是机械波非电磁波)定位原理:频率大,波长小不易衍射,直线传播性好)6、产生干涉的必要条件是:两列波源的频率必须相同,干涉区域内某点是振动最强点还是振动最弱点的充要条件:(1)最强:该点到两个波源的路程之差是波长的整数倍,即δ=nλ;(2)最弱:该点到两个波源的路程之差是半波长的奇数倍δ= ;,即。

根据以上分析,在稳定的干涉区域内,振动加强点始终加强....。

(振动加强的点还是做简谐运动,某....;振动减弱点始终减弱时刻位移可能为零)7、声波是纵波,能在空气、液体、固体中传播.声波在固体中波速大于液体大于气体.现象叫多普勒效应。

当波源与观察者相互靠近....。

物理选修3-3知识点归纳

物理选修3-3知识点归纳

物理选修3-3知识点归纳物理选修3-3知识点归纳1. 光的衍射和干涉:光的衍射是波的现象,当光经过狭缝或者物体时,光的传播方向发生了改变,从而出现了衍射现象。

光的干涉是波的相互作用现象,当两束或多束光相遇时,它们会产生干涉现象。

其中,干涉分为等厚干涉和薄膜干涉。

2. 光的偏振:光的偏振是指光在传播过程中,电场振动方向只在一个平面上的现象。

光的偏振分为自然光、线偏振光、圆偏振光。

3. 阿贝理论:阿贝理论是描述物体成像的基本原理,包括物距、像距、焦距、入射角、折射率和像的放大率等概念,并且明确了成像必须在小孔和透镜的共同作用下才能实现。

4. 光的波动性:光的波动性是指光可以按照波的形式传播的性质。

其中,光的波长和频率是光波性最本质的特征,光速是不变量,它永远保持在光在真空中的速度。

5. 光的粒子性:光的粒子性是指光具有量子化的局面性质,光量子也就是光子是其基本单元。

德布罗意-玻尔原子模型和费米-狄拉克粒子模型属于光的粒子特性的应用。

6. 等离子体:等离子体是一种起源于高温、高压等条件下电离气体物理学现象而引起的物质基态。

等离子体有很多应用,如等离子体喷涂技术、等离子体清洗技术等。

7. 低温等离子体:低温等离子体是指温度低于标准条件(25℃,1 atm)的等离子体,通常是在大气压附近的条件下产生的等离子体。

低温等离子体的应用包括低温等离子体照明、低温等离子体药物等。

8. 电流通量和磁通量:电流通量和磁通量是指比例系数电动势和磁动势。

其中,安培环路定理与法拉第电磁感应定律分别建立了电流通量和磁通量的关系。

9. 电磁波的性质:电磁波是一种具有电场和磁场的场值传播现象,具有介质通性和电磁波的反射、折射特性等。

根据波长可分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

以上为物理选修3-3知识点的归纳总结,对于学习本课程有很好的指导作用。

物理选修知识点(通用3篇)

物理选修知识点(通用3篇)

物理选修知识点〔通用3篇〕篇1:物理选修知识点物理选修知识点(一)一、电动势(1)定义:在电内部,非静电力所做的功W与被移送的电荷q的比值叫电的电动势。

(2)定义式:E=W/q(3)单位:伏(V)(4)物理意义:表示电把其它形式的能(非静电力做功)转化为电能的本领大小。

电动势越大,电路中每通过1C电量时,电将其它形式的能转化成电能的数值就越多。

二、电(池)的几个重要参数(1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。

(2)内阻(r):电内部的电阻。

(3)容量:电池放电时能输出的总电荷量。

其单位是:A·h,mA·h.(二)一、导体的电阻(1)定义:导体两端电压与通过导体电流的比值,叫做这段导体的电阻。

(2)公式:R=U/I(定义式)说明:A、对于给定导体,R一定,不存在R与U成正比,与I 成反比的关系,R只跟导体本身的性质有关。

B、这个式子(定义)给出了测量电阻的方法——伏安法。

C、电阻反映导体对电流的阻碍作用二、欧姆定律(1)定律内容:导体中电流强度跟它两端电压成正比,跟它的电阻成反比。

(2)公式:I=U/R(3)适应范围:一是局部电路,二是金属导体、电解质溶液。

三、导体的伏安特性曲线(1)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。

(2)线性元件和非线性元件线性元件:伏安特性曲线是通过原点的直线的电学元件。

非线性元件:伏安特性曲线是曲线,即电流与电压不成正比的电学元件。

四、导体中的电流与导体两端电压的关系(1)对同一导体,导体中的电流跟它两端的电压成正比。

(2)在一样电压下,U/I大的导体中电流小,U/I小的导体中电流大。

所以U/I反映了导体阻碍电流的性质,叫做电阻(R)(3)在一样电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。

(三)一、电功和电功率(一)导体中的自由电荷在电场力作用下定向挪动,电场力所做的功称为电功。

高中物理选修3-5知识归纳

高中物理选修3-5知识归纳

高中物理选修3-5知识归纳物理选修3-5知识点一、动量;动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P=mv。

单位是。

动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的'。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。

高中物理选修3-5重要知识点总结

高中物理选修3-5重要知识点总结

选修3-5知识汇总一、动量1.动量:p =mv {方向与速度方向相同}2.冲量:I =Ft {方向由F 决定}3.动量定理:I =Δp 或Ft =mv t –mv o {Δp:动量变化Δp =mv t –mv o ,是矢量式}4.动量守恒定律:p 前总=p 后总或p =p ’也可以是/22/112211v m v m v m v m +=+ 5.(1)弹性碰撞: 系统的动量和动能均守恒'2'1221121v m v m v m v m +=+ ① 2'222'1122221121212121v m v m v m v m +=+ ② 1211'22v m m m v +=其中:当2v =0时,为一动一静碰撞,此时 (2)非弹性碰撞:系统的动量守恒,动能有损失'2'1221121v m v m v m v m +=+(3)完全非弹性碰撞:碰后连在一起成一整体 共v m m v m v m )(212211+=+,且动能损失最多6. 人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv1 = MV2 (注意:几何关系) 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加; 思考1:利用动量定理和动量守恒定律解题的步骤是什么? 思考2:动量变化Δp 为正值,动量一定增大吗?(不一定) 思考3:两个物体组成的系统动量守恒,其中一个物体的动量增大,另一个物体的动量一定减小吗?动能呢?(不一定)思考4:两个物体碰撞过程遵循的三条规律分别是什么?思考5:一动一静两个小球正碰撞,入射球和被撞球的速度范围怎样计算?思考6:有哪些模型可视为一动一静弹性碰撞?有哪些模型可视为人船模型?人船模型存在哪些特殊规律? 思考7:同样是动量守恒,碰撞,爆炸,反冲三者有何不同?(有弹簧的弹性势能或火药的化学能,或者人体内的化学能转化为动能的情况下,总动能增大) 二、波粒二象性1、1900年普朗克能量子假说,电磁波的发射和吸收是不连续的,而是一份一份的E=hv2、赫兹发现了光电效应,1905年,爱因斯坦量解释了光电效应,提出光子说及光电效应方程3、光电效应① 每种金属都有对应的c ν和W 0,入射光的频率必须大于这种金属极限频率才能发生光电效应 ② 光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大(0W h E Km -=ν)。

(完整word版)高中物理人教版选修3-5-知识点总结,推荐文档

(完整word版)高中物理人教版选修3-5-知识点总结,推荐文档

选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。

②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。

3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。

②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。

③到1925年左右,量子力学最终建立。

4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。

②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。

③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。

量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。

(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。

物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。

辐射和吸收的能量恰相等时称为热平衡。

此时温度恒定不变。

实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。

2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。

高二物理选修3-5知识点清单

高二物理选修3-5知识点清单

高二物理选修3-5知识点(一)1.黑体能全部吸收各种波长的电磁波而不发生反射的物体称为绝对黑体,简称黑体.不透明的材料制成带小孔空腔,可近似地看作黑体,研究黑体辐射的规律是了解一般物体热辐射性质的基础。

2.黑体辐射的实验规律黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。

黑体辐射规律如图所示。

3.普朗克的能量量子化假说辐射黑体分子、原子的振动可看做谐振子,这些谐振子可以发射和吸收辐射能,但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不像经典物理学所允许的可具有任意值,相应的能量是某一最小能量ε(称为能量子)的整数倍,即ε、1ε、2ε、3ε、……nε,n为正整数,称为量子数。

对于频率为v的谐振子的最小能量为ε=hν。

这个最小能量值叫做能量子。

4.光电效应a.光电效应⑴光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。

所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。

⑵光电效应的实验规律:装置:如图。

①当一定频率的光照射到金属表面时,真空管内几乎立刻出现光电子,很快形成光电流。

即光电效应是瞬时的,驰豫时间不超过10-9秒。

②当光源频率和外加电压固定时,饱和光电流与入射光强度成正比。

“饱和光电流”指的是光电流的最大值(亦称饱和值),因为光电流未达到最大值之前,其值大小不仅与入射光的强度有关,还有光电管两极间的电压有关,只有在光电流达到最大以后,才和入射光的强度成正比。

③当入射光频率v一定时,光电子定向运动形成的光电流随着正向电压的减小而减小,当正向电压为零时,仍有光电流,只有当电压为某个反向电压值时,其电流才为零,这个反向电压称为遏制电压。

这说明光电子动能有一限度,,v光电子最大初速度,实验表明,最大初动能与入射光强无关,随入射光频率的增大而增大。

④任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

高中物理3-3热学知识点归纳(全面、很好)

高中物理3-3热学知识点归纳(全面、很好)

选修3-3热学知识点归纳一、分子运动论1. 物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是(2)分子质量分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:设微观量为:分子体积V 0、分子直径d 、分子质量m ;宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积:(对气体,V 0应为气体分子平均占据的空间大小)分子直径: 球体模型: V d N =3A )2(34π 303A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1A 1A A N V V N V M N V N Mn ====ρμρμ2. 分子永不停息地做无规则热运动(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种微粒肉眼是看不到的,必须借助于显微镜。

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结

高中物理选修3-5总结一、动量定理的理解与应用1.容易混淆的几个物理量的区别(1)动量与冲量的区别:2.动量定理的应用(1)应用I=Δp求变力的冲量。

如果物体受到变力作用,则不能直接用I=F·t求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。

(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化。

曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。

如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。

(3)用动量定理解释现象。

用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,分析力与作用时间的关系;另一类是作用力一定,分析力作用时间与动量变化间的关系。

分析问题时,要把哪个量一定、哪个量变化搞清楚。

(4)处理连续流体问题(变质量问题)。

通常选取流体为研究对象,对流体应用动量定理列式求解。

3.应用动量定理解题的步骤(1)选取研究对象。

(2)确定所研究的物理过程及其始、末状态。

(3)分析研究对象在所研究的物理过程中的受力情况。

(4)规定正方向,根据动量定理列方程式。

(5)解方程,统一单位,求解结果。

4.动量守恒定律与机械能守恒定律的比较①系统(或某方向)不受外力作用时,系统(或某方向)动量守恒;②系统(或某方向)受外力但所受外力之和为零,则系统(或某方向)动量守恒;③系统(或某方向)所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统(或某方向)的动量可看成近似守恒;④系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒。

但是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒。

例1、如图所示,在光滑水平面上放置A、B两个物体,其中B物体与一个质量不计的弹簧相连且静止在水平面上,A物体质量是m,以速度v0逼近物体B,并开始压缩弹簧,在弹簧被压缩过程中( )A.在任意时刻,A、B组成的系统动量相等,都是mv0B.任意一段时间内,两物体所受冲量大小相等.C.在把弹簧压缩到最短过程中,A物体动量减少,B物体动量增加.D.当弹簧压缩量最大时,A、B两物体的速度大小相等例2、有一质量为m=20kg的物体,以水平速度v=5m/s的速度滑上静止在光滑水平面上的小车,小车质量为M=80kg,物体在小车上滑行距离ΔL =4m后相对小车静止。

高中物理选修3-3知识点归纳

高中物理选修3-3知识点归纳

高中物理选修3-3知识点归纳选修3-3物理知识1、晶体与非晶体晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。

非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。

①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。

②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。

2、单晶体、多晶体如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。

如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。

3、晶体的微观结构:固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。

晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。

4、表面张力当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。

(1)作用:液体的表面张力使液面具有收缩的趋势。

(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。

(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。

5、液晶分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性。

各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。

6、饱和汽;湿度(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.(3)饱和汽压①定义:饱和汽所具有的压强。

②特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。

(4)湿度①定义:空气的干湿程度。

②描述湿度的物理量a.绝对湿度:空气中所含水蒸气的压强。

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结
1、能量守恒定律:能量守恒是指能量在转化和传递过程中,总量保持不变。

能量守恒定律是自然界中最基本的定律之一,也是高中物理中的一个重要知识点。

2、动力学:动力学是研究物体运动状态变化的原因和规律的科学。

在高中
物理选修3-5中,主要包括牛顿运动定律、动量定理、动量守恒定律、机械能守恒定律等知识点。

3、振动与波:振动与波是自然界中常见的现象,也是高中物理选修3-5中的重要知识点。

主要包括简谐振动、机械波、电磁波等知识点。

4、光学:光学是研究光的现象和性质的科学。

在高中物理选修3-5中,主要包括光的折射、反射、干涉、衍射等知识点。

5、量子物理:量子物理是研究微观领域内原子、分子等物质的运动和变化
的科学。

在高中物理选修3-5中,主要包括量子力学的基本概念和原理,如波粒二象性、不确定性原理等。

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:molAM m N =b.分子体积:molAV v N =c.分子数量:A A A A mol mol mol molM v M vn N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。

但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。

分子间同时存在引力和斥力,两种力的合力又叫做分子力。

在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。

当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。

当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。

高中物理选修3-5知识点归纳

高中物理选修3-5知识点归纳

高中物理选修3-5知识点归纳第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。

2.动量物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。

3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。

4.动量守恒定律成立的条件系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。

5.动量定理系统所受合外力的冲量等于动量的变化;I=mv末-mv初。

6.反冲在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。

7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。

8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。

9.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。

第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。

2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。

3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。

4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。

5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量ε的整数倍,这个不可再分的最小能量值ε叫做能量子;并且ε=hν,ν是电磁波的频率,h为普朗克常量,h=6.63⨯1034-J·s;光子的能量为hν。

6.光电效应照射到金属表面的光使金属中的电子从表面逸出的现象;逸出的电子称为光电子;电子脱离某种金属所做功的最小值叫逸出功;光电子的最大初动能E k =h ν-W ;每种金属都有发生光电效应的极限频率和相应的红线波长;光电子的最大初动能随入射光频率的增大而增大。

高中物理选修3-4、3-5知识点总结

高中物理选修3-4、3-5知识点总结

高中物理选修3-4、3-5知识点总结1.电磁波的基本概念电磁波是由振荡的电场和磁场相互作用而产生的一种波动现象,它既具有波动性质又具有粒子性质。

电磁波的传播速度为光速,即xxxxxxxx8m/s,在真空中传播时速度不变。

2.电磁波的分类电磁波根据频率的不同可分为不同的种类,其中频率从低到高分别为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

3.电磁波的特征量及其关系1)波长:电磁波的波长λ和频率f之间有着确定的关系,即λ=c/f,其中c为光速。

2)频率:电磁波的频率f和波长λ之间有着确定的关系,即f=c/λ。

3)振幅:电磁波的振幅表示电场和磁场的最大值。

4)功率密度:电磁波的功率密度表示单位面积内电磁波传输的能量。

4.电磁波的传播特性1)直线传播:在同一介质中,电磁波呈直线传播。

2)折射:当电磁波从一种介质进入另一种介质时,由于介质折射率的不同,电磁波的传播方向会发生改变。

3)反射:当电磁波遇到介质界面时,会发生反射现象。

4)衍射:电磁波在遇到障碍物或孔时,会产生衍射现象。

5.电磁波的应用电磁波在生活中有着广泛的应用,如无线电通讯、卫星通讯、雷达、医学影像、光通信等。

1.图像特点:中央条纹宽且亮,两侧为间隔不等的明暗相间的条纹(白光入射时为彩色条纹)。

例如,数学家XXX推算出在圆板阴影的中心应有一个亮斑(即著名的泊松亮斑),后被实验证实,说明泊松亮斑是由光的衍射形成的。

2.光的偏振:光是一种横波,也是一种电磁波,因此会出现偏振现象。

自然光是在光波传播方向垂直的平面内,光振动沿各个方向振动强度都相同的光,例如太阳和电灯发出的光。

而偏振光则只在光波传播方向的垂直平面内沿特定方向振动的光。

例如,自然光经过偏振片后会变成偏振光。

另外,当自然光射到两介质分界面时,会同时发生反射和折射,而反射光线和折射光线是光振动方向互相垂直的偏振光。

偏振现象在液晶显示、观看3D电影等方面有广泛的应用。

相机前面的偏振镜可以减弱玻璃表面反射光的影响,使相片更加清晰。

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结

物理选修3-3 知识点汇总一、宏观量与微观量及相互关系微观量:分子体积V0、分子直径d 、分子质量宏观量:物体的体积V 、摩尔体积V m ,物体的质量m 、摩尔质量M 、物体的密度ρ. 1. 分子的大小:分子直径数量级:-1010m. 2.油膜法测分子直径:d =VS单分子油膜,V 是油滴的体积,S 是水面上形成的 单分子油膜 的面积.3. 宏观量与微观量及相互关系(1)分子数 N =nN A =mMN A4. 宏观量与微观量及相互关系 (2)分子质量的估算方法:每个分子的质量为:m 0=M N A(3)分子体积(所占空间)的估算方法:V 0=V m N A =M ρN A其中ρ是液体或固体的密度 (4)分子直径的估算方法:把固体、液体分子看成球形,则V 0=16πd 3.分子直径d =36V 0π ;把固体、液体分子看成立方体,则d =3V 0. 5. 气体分子微观量的估算方法(1)摩尔数n =V 22.4,V 为气体在标况下的体积.(标况是指0摄氏度、一个标准大气压的条件,V 的单位为升L ,如果 3m )注意:同质量的同一气体,在不同状态下的体积有很大差别,不像液体、固体体积差别不大,所以求气体分子间的距离应说明实际状态.二、分子的热运动1.扩散现象和布朗运动:扩散现象和布朗运动都说明分子做无规则运动.(1)扩散现象:不同物质相互接触时彼此进入对方的现象.温度越高,扩散越快. (2)布朗运动:a.定义:悬浮在液体中的 小颗粒 所做的无规则运动. b .特点 :永不停息;无规则运动;颗粒越小,运动越 剧烈 ;温度越高,运动越 剧烈 ;运动轨迹不确定;肉眼看不到. c .产生的原因:由各个方向的液体分子对微粒碰撞的不平衡引起的.d .布朗颗粒:布朗颗粒用肉眼直接看不到,但在显微镜下能看到,因此用肉眼看到的颗粒所做的运动不能叫做布朗运动.布朗颗粒大小约为10-6 m(包含约1021个分子),而分子直径约为10-10m .布朗颗粒的运动是分子热运动的间接反映。

物理选修3-5-知识点总结

物理选修3-5-知识点总结

高中物理选修3—5知识点梳理一、动量动量守恒定律1、动量:P = mv。

单位是。

动量是矢量,其向就是瞬时速度的向。

因为速度是相对的,所以动量也是相对的.冲量:冲量是矢量,在作用时间力的向不变时,冲量的向与力的向相同;如果力的向是变化的,则冲量的向与相应时间物体动量变化量的向相同。

若力为同一向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。

同一向上动量的变化量=这一向上各力的冲量和.动量定理:动量与力的关系:物体动量的变化率等于它所受的力.2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

(适用于目前物理学研究的一切领域。

)动量守恒定律成立的条件:①系统不受外力作用。

②系统虽受到了外力的作用,但所受合外力为零。

③系统所受的外力远远小于系统各物体间的力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲).④系统所受的合外力不为零,但在某一向上合外力为零,则系统在该向上动量守恒。

⑤系统受外力,但在某一向上力远大于外力,也可认为在这一向上系统的动量守恒。

常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等.②在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平向具有共同的速度,物体到达斜面顶端时,在竖直向上的分速度等于零。

③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位移为木块位移与木块厚度之和。

二、验证动量守恒定律(实验、探究)Ⅰ【注意事项】1.“水平"和“正碰"是操作中应尽量予以满足的前提条件.2.入射球的质量应大于被碰球的质量.3.入射球每次都必须从斜槽上同一位置由静止开始滚下.法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球.4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理选修3-5知识点 、相关练习一、动量守恒定律1、 动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。

理解:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。

内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。

2、动量守恒定律的表达式 m 1v 1+m 2v 2=m 1v 1/+m 2v 2/ (规定正方向) △p 1=—△p 23、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒, ;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒, ;动能守恒, ;特例1:A 、B 两物体发生弹性碰撞,设碰前A 初速度为v0,B 静止,则碰后速度,vB= .特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A 的速度等于碰前B 的速度,碰后B 的速度等于碰前A 的速度)例1、质量为M 的木块在光滑水平面上以速度v 1向右运动,质量为m 的子弹以速率v 2水平向左射入木块,假设子弹射入木块后均未穿出,且在第N 颗子弹射入后,木块恰好停下来,求N 的数值。

解:取水平向右为正方向,对木块与N 颗子弹组成的系统,由动量守恒定律得:M v 1-Nm v 2=0,N =M v 1m v 2。

二、量子理论的建立 黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= h ν。

h 为普朗克常数(6.63×10-34J.S )2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。

3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。

(普朗克的能量子理论很好的解释了这一现象)三、光电效应光子说光电效应方程1、光电效应(表明光子具有能量)(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。

在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。

(实验图在课本)(2)光电效应的研究结果:新教材:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应;④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。

2、光子说(爱因斯坦):光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为h ν。

这些能量子被成为光子。

3、光电效应方程:E K = h- W O(掌握Ek/Uc—ν图象的物理意义)同时,h截止= W O(Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。

)四、康普顿效应(表明光子具有动量)1、1918-1922年康普顿(美)在研究石墨对X射线的散射时发现:光子在介质中和物质微粒相互作用,可以使光的传播方向发生改变,这种现象叫光的散射。

2、在光的散射过程中,有些散射光的波长比入射光的波长略大,这种现象叫康普顿效应。

3、光子的动量:p=h/λ五、光的波粒二象性物质波概率波不确定关系1、光的波粒二象性:干涉、衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子,由于光既有波动性,又有粒子性,只能认为光具有波粒二象性。

但不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子。

少量的光子表现出粒子性,大量光子运动表现为波动性;光在传播时显示波动性,与物质发生作用时,往往显示粒子性;频率小波长大的波动性显著,频率大波长小的粒子性显著。

(P41 电子干涉条纹对概率波的验证)2、光子的能量E=hν,光子的动量p=h/λ表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。

由以上两式和波速公式c=λν还可以得出:E = p c。

3、物质波:1924年德布罗意(法)提出,实物粒子和光子一样具有波动性,任何一个运动着的物体都有一种与之对应的波,波长λ=h / p,这种波叫物质波,也叫德布罗意波。

(P38 电子的衍射图样;电子显微镜的分辨率为何远远高于光学显微镜)4、概率波:从光子的概念上看,光波是一种概率波。

5、不确定关系:,△x表示粒子位置的不确定量,△p表示粒子在x方向上的动量的不确定量。

(为何粒子位置的不确定量△x越小,粒子动量的不确定量△p越大,用单缝衍射进行解释?P43 图)例2.(2011·广东高考)光电效应实验中,下列表述正确的是()A.光照时间越长光电流越大B.入射光足够强就可以有光电流C.遏止电压与入射光的频率有关D.入射光频率大于极限频率才能产生光电子解析:光电流的大小与光照时间无关,A项错误;如果入射光的频率小于金属的极限频率,入射光再强也不会发生光电效应,B项错误;遏止电压U c,满足eU c=hν-hν0,从表达式可知,遏止电压与入射光的频率有关,C项正确;只有当入射光的频率大于极限频率,才会有光电子逸出,D项正确。

答案:CD例3.普朗克常量h=6.63×10-34 J·s,铝的逸出功W0=6.72×10-19 J,现用波长λ=200 nm的光照射铝的表面(结果保留三位有效数字)。

求光电子的最大初动能?解析:E k=hν-W0 ν=c/λ∴E k=3.23×10-19 J例4.(2011·福建高考)(1)爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖。

某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图1所示,其中ν0为极限频率。

从图中可以确定的是D。

A.逸出功与ν有关B.E km与入射光强度成正比C.当ν>ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关六、原子核式模型机构1、1897年汤姆生(英)发现了电子,提出原子的枣糕模型,揭开了研究原子结构的序幕。

2、1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验(实验装置见必修本P257)得到出乎意料的结果:绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子却发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转角几乎达到180°。

(P53 图)3、卢瑟福在1911年提出原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。

按照这个学说,可很好地解释α粒子散射实验结果,α粒子散射实验的数据还可以估计原子核的大小(数量级为10-15m)和原子核的正电荷数。

原子序数=核电荷数=质子数=核外电子数。

七、氢原子的光谱1、光谱的种类:(1)发射光谱:物质发光直接产生的光谱。

炽热的固体、液体及高温高压气体发光产生连续光谱;稀薄气体发光产生线状谱,不同元素的线状谱线不同,又称特征谱线。

(2)吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。

2、氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。

3、基尔霍夫开创了光谱分析的方法:利用元素的特征谱线(线状谱或吸收光谱)鉴别物质的分析方法。

八、原子的能级1、卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(矛盾为:a、原子是不稳定的;b、原子光谱是连续谱),1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。

2、玻尔理论的假设:(1)原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做定态。

氢原子的各个定态的能量值,叫做它的能级。

原子处于最低能级时电子在离核最近的轨道上运动,这种定态叫做基态;原子处于较高能级时电子在离核较远的轨道上运动的这些定态叫做激发态。

(2)原子从一种定态(设能量为E n)跃迁到另一种定态(设能量为E m)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即h = E n-E m,(能级图见3-5第64页)(3)原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。

原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。

3、玻尔计算公式:r n =n2 r1 , E n = E1/n2 (n=1,2,3??)r1 =0.53?10-10 m , E1 = -13.6eV ,分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量。

(选定离核无限远处的电势能为零,电子从离核无限远处移到任一轨道上,都是电场力做正功,电势能减少,所以在任一轨道上,电子的电势能都是负值,而且离核越近,电势能越小。

)4、从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。

原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。

5、一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N= 。

6、玻尔模型的成功之处在于它引入了量子概念(提出了能级和跃迁的概念,能解释气体导电时发光的机理、氢原子的线状谱),局限之处在于它过多地保留了经典理论(经典粒子、轨道等),无法解释复杂原子的光谱。

7、现代量子理论认为电子的轨道只能用电子云来描述。

8、光谱测量发现原子光谱是线状谱和夫兰克—赫兹实验证实了原子能量的量子化(即原子中分立能级的存在)例5.(1)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子。

光电子从金属表面逸出的过程中,其动量的大小________(选填“增大”、“减小”或“不变”),原因是____________________。

(2)已知氢原子处在第一、第二激发态的能级分别为-3.40 eV和-1.51 eV,金属钠的截止频率为5.53×1014 Hz,普朗克常量h=6.63×10-34 J·s。

请通过计算判断,氢原子从第二激发态跃迁到第一激发态过程中发出的光照射金属钠板,能否发生光电效应。

解析:(1)见答案。

相关文档
最新文档