高考物理经典题型解题指导:第5讲-电磁感应与电路(含答案解析)

合集下载

「高考辅导」物理专题辅导与真题汇总——电磁感应中的电路问题

「高考辅导」物理专题辅导与真题汇总——电磁感应中的电路问题

「高考辅导」物理专题辅导与真题汇总——电磁感应中的电路
问题
电磁感应与电路相结合的综合应用,也是高考的常考点,做这类问题关键就是抓住这类题的本质:
产生电磁感应的的部分就相当于电源,通过电磁感应的知识,求出电动势大小和电流方向,剩下的就变成一个纯电路问题,再结合电路规律解决问题就可以了。

具体解题步骤:
1. 找出电源(闭合线圈或者导体棒)
2. 判断外电路的连接方式(是否并联)画出等效电路图
3. 找出内外电阻(注意导轨和导体棒是否计电阻)
4. 根据电磁感应定律求出电动势大小
5. 根据闭合电路欧姆定律求出感应电流大小
6. 根据闭合电路欧姆定律求出导体棒或者线圈两端的电势差
(1)若回路是闭合的,导体棒或者线圈两端的电势差不是电动势,而是路端电压。

路段电压的计算一般根据串联电路电压之比为电阻之比进行计算较为简单,计算题可以根据闭合电路欧姆定律计算。

(2)若回路是不闭合的,没有感应电流,那么导体棒或者线圈两端的电势差就是电动势
(3)计算电势差时,要注意电势差的正负,需要判断电势的高低。

下面来看高考题:
结束
免责声明:引用内容版权归作者所有,如有侵权,请联系作者,立即删除。

电磁感应与电路问题-----高中物理模块典型题归纳(含详细答案)

电磁感应与电路问题-----高中物理模块典型题归纳(含详细答案)

电磁感应与电路问题-----高中物理模块典型题归纳(含详细答案)一、单选题1.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中()A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.PQ上拉力的功率先减小后增大D.线框消耗的电功率先减小后增大2.如图表示,矩形线圈绕垂直于匀强磁场磁感线的固定轴O以角速度w逆时针匀速转动时,下列叙述中正确的是()A.若从图示位置计时,则线圈中的感应电动势e=E m sinwtB.线圈每转1周交流电的方向改变1次C.线圈的磁通量最大时感应电动势为零D.线圈的磁通量最小时感应电动势为零3.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。

一根与导轨接触良好、有效阻值为的金属导线ab垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,不计导轨电阻,则()A.通过电阻R的电流方向为P→R→MB.a、b两点间的电压为BLvC.a端电势比b端电势高D.外力F做的功等于电阻R上产生的焦耳热4.闭合的金属环处于随时间均匀变化的匀强磁场中,磁场方向垂直于圆环平面,则()A.环中产生的感应电动势均匀变化B.环中产生的感应电流均匀变化C.环中产生的感应电动势保持不变D.环上某一小段导体所受的安培力保持不变5.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图所示。

在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c 和U d。

下列判断正确的是()A.U a<U b<U c<U dB.U a<U b<U d<U cC.U a=U b<U c=U dD.U b<U a<U d<U c6.如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经画出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法正确的是()A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势点C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点D.当金属棒向左加速运动时,b点电势高于a点,d点电势高于c点7.在匀强磁场中,ab、cd两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示。

专题05 能量观点和动量观点在电磁学中的应用 【讲】-2023年高考物理二轮热点题型归纳(解析)

专题05  能量观点和动量观点在电磁学中的应用 【讲】-2023年高考物理二轮热点题型归纳(解析)

专题05能量观点和动量观点在电磁学中的应用【要点提炼】1.电磁学中的功能关系(1)电场力做功与电势能的关系:W 电=-ΔE p 电。

推广:仅电场力做功,电势能和动能之和守恒;仅电场力和重力及系统内弹力做功,电势能和机械能之和守恒。

(2)洛伦兹力不做功。

(3)电磁感应中的功能关系其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量2.电路中的电功和焦耳热(1)电功:W 电=UIt ;焦耳热:Q =I 2Rt 。

(2)纯电阻电路:W 电=Q =UIt =I 2Rt =U 2Rt ,U =IR 。

(3)非纯电阻电路:W 电=Q +E 其他,U >IR 。

(4)求电功或电热时用有效值。

(5)闭合电路中的能量关系电源总功率任意电路:P 总=EI =P 出+P 内纯电阻电路:P 总=I 2(R +r )=E 2R +r电源内部消耗的功率P 内=I 2r =P 总-P 出电源的输出功率任意电路:P 出=UI =P 总-P 内纯电阻电路:P 出=I 2R =E 2R(R +r )2P 出与外电阻R 的关系电源的效率任意电路:η=P出P总×100%=UE×100%纯电阻电路:η=RR+r×100%由P出与外电阻R的关系可知:①当R=r时,电源的输出功率最大为P m=E24r。

②当R>r时,随着R的增大输出功率越来越小。

③当R<r时,随着R的增大输出功率越来越大。

④当P出<P m时,每个输出功率对应两个外电阻R1和R2,且R1R2=r2。

3.动量观点在电磁感应中的应用(1)动量定理在电磁感应中的应用导体在磁场对感应电流的安培力作用下做非匀变速直线运动时,在某过程中由动量定理有:BL I1Δt1+BL I2Δt2+BL I3Δt3+…=m v-m v0通过导体横截面的电荷量q=I1Δt1+I2Δt2+I3Δt3+…得BLq=m v-m v0,在题目涉及通过电路横截面的电荷量q时,可考虑用此表达式。

高考物理电磁感应现象压轴题知识归纳总结含答案解析

高考物理电磁感应现象压轴题知识归纳总结含答案解析

高考物理电磁感应现象压轴题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。

现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求:(1)线圈进入磁场时的速度 v 。

2024届高考一轮复习物理教案(新教材粤教版):电磁感应中的电路及图像问题

2024届高考一轮复习物理教案(新教材粤教版):电磁感应中的电路及图像问题

专题强化二十三电磁感应中的电路及图像问题目标要求 1.掌握电磁感应中电路问题的求解方法.2.会计算电磁感应电路问题中电压、电流、电荷量、热量等物理量.3.能够通过电磁感应图像,读取相关信息,应用物理规律求解问题.题型一电磁感应中的电路问题1.电磁感应中的电源(1)做切割磁感线运动的导体或磁通量发生变化的回路相当于电源.电动势:E=BL v或E=n ΔΦΔt,这部分电路的阻值为电源内阻.(2)用右手定则或楞次定律与安培定则结合判断,感应电流流出的一端为电源正极.2.分析电磁感应电路问题的基本思路3.电磁感应中电路知识的关系图考向1感生电动势的电路问题例1如图所示,单匝正方形线圈A边长为0.2m,线圈平面与匀强磁场垂直,且一半处在磁场中,磁感应强度随时间变化的规律为B=(0.8-0.2t)T.开始时开关S未闭合,R1=4Ω,R2=6Ω,C=20μF,线圈及导线电阻不计.闭合开关S,待电路中的电流稳定后.求:(1)回路中感应电动势的大小;(2)电容器所带的电荷量.答案(1)4×10-3V(2)4.8×10-8C解析(1)由法拉第电磁感应定律有E =ΔB Δt S ,S =12L 2,代入数据得E =4×10-3V (2)由闭合电路的欧姆定律得I =ER 1+R 2,由部分电路的欧姆定律得U =IR 2,电容器所带电荷量为Q =CU =4.8×10-8C.考向2动生电动势的电路问题例2(多选)如图所示,光滑的金属框CDEF 水平放置,宽为L ,在E 、F 间连接一阻值为R的定值电阻,在C 、D 间连接一滑动变阻器R 1(0≤R 1≤2R ).框内存在着竖直向下的匀强磁场.一长为L 、电阻为R 的导体棒AB 在外力作用下以速度v 匀速向右运动.金属框电阻不计,导体棒与金属框接触良好且始终垂直,下列说法正确的是()A .ABFE 回路的电流方向为逆时针,ABCD 回路的电流方向为顺时针B .左右两个闭合区域的磁通量都在变化且变化率相同,故电路中的感应电动势大小为2BL vC .当滑动变阻器接入电路中的阻值R 1=R 时,导体棒两端的电压为23BL vD .当滑动变阻器接入电路中的阻值R 1=R2时,滑动变阻器的电功率为B 2L 2v 28R 答案AD解析根据楞次定律可知,ABFE 回路电流方向为逆时针,ABCD 回路电流方向为顺时针,故A 正确;根据法拉第电磁感应定律可知,感应电动势E =BL v ,故B 错误;当R 1=R 时,外电路总电阻R 外=R 2,因此导体棒两端的电压即路端电压应等于13BL v ,故C 错误;该电路电动势E =BL v ,电源内阻为R ,当滑动变阻器接入电路中的阻值R 1=R2时,干路电流为I =3BL v 4R ,滑动变阻器所在支路电流为23I ,容易求得滑动变阻器电功率为B 2L 2v 28R,故D 正确.例3(多选)如图所示,ab 为固定在水平面上的半径为l 、圆心为O 的金属半圆弧导轨,Oa间用导线连接一电阻M .金属棒一端固定在O 点,另一端P 绕过O 点的轴,在水平面内以角速度ω逆时针匀速转动,该过程棒与圆弧接触良好.半圆弧内磁场垂直纸面向外,半圆弧外磁场垂直纸面向里,磁感应强度大小均为B ,已知金属棒由同种材料制成且粗细均匀,棒长为2l 、总电阻为2r ,M 阻值为r ,其余电阻忽略不计.当棒转到图中所示的位置时,棒与圆弧的接触处记为Q 点,则()A .通过M 的电流方向为O →aB .通过M 的电流大小为Bl 2ω6r C .QO 两点间电压为Bl 2ω4D .PQ 两点间电压为3Bl 2ω2答案CD解析根据右手定则可知金属棒O 端为负极,Q 端为正极,则通过M 的电流方向从a →O ,A 错误;金属棒转动产生的电动势为E =Bl ·ωl2,则有I =E R 总=Bl 2ω4r ,B 错误;由于其余电阻忽略不计,则QO 两点间电压,即电阻M 上的电压,根据欧姆定律有U =Ir =Bl 2ω4,C 正确;金属棒PQ 转动产生的电动势为E ′=Bl 2lω+lω2=3Bl 2ω2,由于PQ 没有连接闭合回路,则PQ 两点间电压,即金属棒PQ 转动产生的电动势,为3Bl 2ω2,D 正确.题型二电磁感应中电荷量的计算计算电荷量的导出公式:q =nΔФR 总在电磁感应现象中,只要穿过闭合回路的磁通量发生变化,闭合回路中就会产生感应电流,设在时间Δt 内通过导体横截面的电荷量为q ,则根据电流定义式I =qΔt 及法拉第电磁感应定律E =n ΔΦΔt ,得q =I Δt =E R 总Δt =n ΔΦR 总Δt Δt =n ΔΦR 总,即q =n ΔΦR 总.例4在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1m 2,线圈电阻为1Ω.规定线圈中感应电流I 的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B 随时间t 的变化规律如图乙所示.以下说法正确的是()A .在0~2s 时间内,I 的最大值为0.02AB .在3~5s 时间内,I 的大小越来越小C .前2s 内,通过线圈某横截面的总电荷量为0.01CD .第3s 内,线圈的发热功率最大答案C解析0~2s 时间内,t =0时刻磁感应强度变化率最大,感应电流最大,I =E R =ΔB ·SΔtR=0.01A ,A 错误;3~5s 时间内电流大小不变,B 错误;前2s 内通过线圈的电荷量q =ΔΦR =ΔB ·S R=0.01C ,C 正确;第3s 内,B 没有变化,线圈中没有感应电流产生,则线圈的发热功率最小,D 错误.例5(2018·全国卷Ⅰ·17)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于()A.54B.32C.74D .2答案B解析在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B (12πr 2-14πr 2)Δt 1,根据闭合电路的欧姆定律,有I 1=E 1R ,且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2R,q 2=I 2Δt 2又q1=q2,即B(12πr2-14πr2)R=(B′-B)12r2R所以B′B=32,故选B.题型三电磁感应中的图像问题1.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.2.解题步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;对切割磁感线产生感应电动势和感应电流的情况,还常涉及E-x图像和i-x图像;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路的欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.3.常用方法(1)排除法:定性地分析电磁感应过程中物理量的正负,增大还是减小,以及变化快慢,来排除错误选项.(2)函数法:写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断.考向1感生问题的图像例6(多选)(2023·广东湛江市模拟)如图甲所示,正方形导线框abcd放在范围足够大的匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t =0时刻,磁感应强度B的方向垂直纸面向外,感应电流以逆时针为正方向,cd边所受安培力的方向以垂直cd边向下为正方向.下列关于感应电流i和cd边所受安培力F随时间t变化的图像正确的是()答案BD解析设正方形导线框边长为L ,电阻为R ,在0~2s ,垂直纸面向外的磁场减弱,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =ΔBS Δt ·R =2B 0S2R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由2F 0=2B 0iL 减小到零.2~3s 内,垂直纸面向里的磁场增强,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,由零变化到-F 0=-B 0iL .3~4s 内垂直纸面向里的磁场减弱,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由F 0=B 0iL 减小到零.4~6s 内垂直纸面向外的磁场增强,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由零变化到-2F 0=-2B 0iL ,由以上分析计算可得A 、C 错误,B 、D 正确.考向2动生问题的图像例7如图所示,将一均匀导线围成一圆心角为90°的扇形导线框OMN ,圆弧MN 的圆心为O 点,将O 点置于直角坐标系的原点,其中第二和第四象限存在垂直纸面向里的匀强磁场,其磁感应强度大小为B ,第三象限存在垂直纸面向外的匀强磁场,磁感应强度大小为2B .t =0时刻,让导线框从图示位置开始以O 点为圆心沿逆时针方向做匀速圆周运动,规定电流方向ONM 为正,在下面四幅图中能够正确表示电流i 与时间t 关系的是()答案C解析在0~t 0时间内,线框沿逆时针方向从题图所示位置开始(t =0)转过90°的过程中,产生的感应电动势为E 1=12BωR 2,由闭合电路的欧姆定律得,回路中的电流为I 1=E 1r =BR 2ω2r ,根据楞次定律判断可知,线框中感应电流方向为逆时针方向(沿ONM 方向).在t 0~2t 0时间内,线框进入第三象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 2=12Bω·R 2+12·2BωR 2=32BωR 2=3E 1,感应电流为I 2=3I 1.在2t 0~3t 0时间内,线框进入第四象限的过程中,回路中的电流方向为逆时针方向(沿ONM 方向),回路中产生的感应电动势为E 3=12Bω·R 2+12·2Bω·R 2=32BωR 2=3E 1,感应电流为I 3=3I 1,在3t 0~4t 0时间内,线框出第四象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 4=12BωR 2,回路电流为I 4=I 1,故C 正确,A 、B 、D 错误.例8(2023·广东珠海市模拟)图中两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里.abcd 是位于纸面内的直角梯形线圈,ab 与dc 间的距离也为L .t =0时刻,ab 边与磁场区域边界重合(如图).现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域.取沿a →d →c →b →a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是()答案A解析线圈移动0~L ,即在0~Lv时间内,线圈进磁场,垂直纸面向里通过线圈的磁通量增大,线圈中产生逆时针方向的感应电流(正),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR 均匀增大;线圈移动L ~2L ,即在L v ~2L v 时间内,线圈出磁场,垂直纸面向里通过线圈的磁通量减少,线圈中产生顺时针方向的感应电流(负),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR均匀增大,因此A 正确,B 、C 、D 错误.课时精练1.如图所示是两个相互连接的金属圆环,小金属环的电阻是大金属环电阻的二分之一,匀强磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为()A.12EB.13EC.23E D .E答案B解析a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U=13E ,选项B 正确.2.如图甲所示,在线圈l 1中通入电流i 1后,在l 2上产生的感应电流随时间变化的规律如图乙所示,l 1、l 2中电流的正方向如图甲中的箭头所示.则通入线圈l 1中的电流i 1随时间t 变化的图像是图中的()答案D解析因为l 2中感应电流大小不变,根据法拉第电磁感定律可知,l 1中磁场的变化是均匀的,即l 1中电流的变化也是均匀的,A 、C 错误;根据题图乙可知,0~T4时间内l 2中的感应电流产生的磁场方向向左,所以线圈l 1中感应电流产生的磁场方向向左并且减小,或方向向右并且增大,B 错误,D 正确.3.(多选)(2023·广东省华南师大附中模拟)如图所示,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有两根光滑的平行导轨,间距为L ,导轨两端分别接有电阻R 1和R 2,导体棒以某一初速度从ab 位置向右运动距离x 到达cd 位置时,速度为v ,产生的电动势为E ,此过程中通过电阻R 1、R 2的电荷量分别为q 1、q 2.导体棒有电阻,导轨电阻不计.下列关系式中正确的是()A .E =BL vB .E =2BL vC .q 1=BLx R 1D.q 1q 2=R 2R 1答案AD解析导体棒做切割磁感线的运动,速度为v 时产生的感应电动势E =BL v ,故A 正确,B错误;设导体棒的电阻为r ,根据法拉第电磁感应定律得E =ΔΦΔt =BLxΔt ,根据闭合电路欧姆定律得I =Er +R 1R 2R 1+R 2,通过导体棒的电荷量为q =I Δt ,导体棒相当于电源,电阻R 1和R 2并联,则通过电阻R 1和R 2的电流之比I 1I 2=R 2R 1,通过电阻R 1、R 2的电荷量之比q 1q 2=I 1Δt I 2Δt =R2R 1,结合q =q 1+q 2,解得q 1=BLxR 2(R 1+R 2)r +R 1R 2,故C 错误,D 正确.4.(多选)如图甲所示,单匝正方形线框abcd 的电阻R =0.5Ω,边长L =20cm ,匀强磁场垂直于线框平面向里,磁感应强度的大小随时间变化规律如图乙所示,则下列说法中正确的是()A .线框中的感应电流沿逆时针方向,大小为2.4×10-2AB .0~2s 内通过ab 边横截面的电荷量为4.8×10-2CC .3s 时ab 边所受安培力的大小为1.44×10-2ND .0~4s 内线框中产生的焦耳热为1.152×10-3J 答案BD解析由楞次定律判断感应电流为顺时针方向,由法拉第电磁感应定律得电动势E =SΔB Δt=1.2×10-2V ,感应电流I =E R=2.4×10-2A ,故选项A 错误;电荷量q =I Δt ,解得q =4.8×10-2C ,故选项B 正确;安培力F =BIL ,由题图乙得,3s 时B =0.3T ,代入数值得:F =1.44×10-3N ,故选项C 错误;由焦耳定律得Q =I 2Rt ,代入数值得Q =1.152×10-3J ,故D 选项正确.5.在水平光滑绝缘桌面上有一边长为L 的正方形线框abcd ,被限制在沿ab 方向的水平直轨道上自由滑动.bc 边右侧有一正直角三角形匀强磁场区域efg ,直角边ge 和ef 的长也等于L ,磁场方向竖直向下,其俯视图如图所示,线框在水平拉力作用下向右以速度v 匀速穿过磁场区,若图示位置为t =0时刻,设逆时针方向为电流的正方向.则感应电流i -t 图像正确的是(时间单位为L v)()答案D 解析bc 边的位置坐标x 从0~L 的过程中,根据楞次定律判断可知线框中感应电流方向沿a →b →c →d →a ,为正值.线框bc 边有效切线长度为l =L -v t ,感应电动势为E =Bl v =B (L-v t )·v ,随着t 均匀增加,E 均匀减小,感应电流i =E R,即知感应电流均匀减小.同理,x 从L ~2L 的过程中,根据楞次定律判断出感应电流方向沿a →d →c →b →a ,为负值,感应电流仍均匀减小,故A 、B 、C 错误,D 正确.6.如图所示,线圈匝数为n ,横截面积为S ,线圈电阻为R ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k ,磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值均为2R .下列说法正确的是()A .电容器上极板带负电B .通过线圈的电流大小为nkS 2RC .电容器所带的电荷量为CnkS 2D .电容器所带的电荷量为2CnkS 3答案D解析由楞次定律和右手螺旋定则知,电容器上极板带正电,A 错误;因E =nkS ,I =E 3R =nkS 3R,B 错误;又U =I ×2R =2nkS 3,Q =CU =2CnkS 3,C 错误,D 正确.7.如图甲所示,一长为L 的导体棒,绕水平圆轨道的圆心O 匀速顺时针转动,角速度为ω,电阻为r ,在圆轨道空间存在有界匀强磁场,磁感应强度大小为B .半径小于L 2的区域内磁场竖直向上,半径大于L 2的区域内磁场竖直向下,俯视图如图乙所示,导线一端Q 与圆心O 相连,另一端P 与圆轨道连接给电阻R 供电,其余电阻不计,则()A .电阻R 两端的电压为BL 2ω4B .电阻R 中的电流方向向上C .电阻R 中的电流大小为BL 2ω4(R +r )D .导体棒的安培力做功的功率为0答案C 解析半径小于L 2的区域内,E 1=B L 2·ωL 22=BL 2ω8,半径大于L 2的区域,E 2=B L 2·ωL 2+ωL 2=3BL 2ω8,根据题意可知,两部分电动势相反,故总电动势E =E 2-E 1=BL 2ω4,根据右手定则可知圆心为负极,圆环为正极,电阻R 中的电流方向向下,电阻R 上的电压U =R R +r E =RBL 2ω4(R +r ),故A 、B 错误;电阻R 中的电流大小为I =E R +r =BL 2ω4(R +r ),故C 正确;回路有电流,则安培力不为零,故导体棒的安培力做功的功率不为零,故D 错误.8.(多选)如图,PAQ 为一段固定于水平面上的光滑圆弧导轨,圆弧的圆心为O ,半径为L .空间存在垂直导轨平面、磁感应强度大小为B 的匀强磁场.电阻为R 的金属杆OA 与导轨接触良好,图中电阻R 1=R 2=R ,其余电阻不计.现使OA 杆在外力作用下以恒定角速度ω绕圆心O 顺时针转动,在其转过π3的过程中,下列说法正确的是()A .流过电阻R 1的电流方向为P →R 1→OB .A 、O 两点间电势差为BL 2ω2C .流过OA 的电荷量为πBL 26RD .外力做的功为πωB 2L 418R答案AD 解析由右手定则判断出OA 中电流方向由O →A ,可知流过电阻R 1的电流方向为P →R 1→O ,故A 正确;OA 产生的感应电动势为E =BL 2ω2,将OA 当成电源,外部电路R 1与R 2并联,则A 、O 两点间的电势差为U =ER +R 2·R 2=BL 2ω6,故B 错误;流过OA 的电流大小为I =E R +R 2=BL 2ω3R ,转过π3弧度所用时间为t =π3ω=π3ω,流过OA 的电荷量为q =It =πBL 29R ,故C 错误;转过π3弧度过程中,外力做的功为W =EIt =πωB 2L 418R,故D 正确.9.(多选)(2019·全国卷Ⅱ·21)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是()答案AD 解析根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,PQ 通过磁场区域后MN 进入磁场区域,MN 同样匀速直线运动通过磁场区域,故流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,感应电动势和感应电流为零,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于刚开始仅PQ 切割磁感线时的感应电流I 1,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D.10.如图甲所示,虚线MN 左、右两侧的空间均存在与纸面垂直的匀强磁场,右侧匀强磁场的方向垂直纸面向外,磁感应强度大小恒为B 0;左侧匀强磁场的磁感应强度B 随时间t 变化的规律如图乙所示,规定垂直纸面向外为磁场的正方向.一硬质细导线的电阻率为ρ、横截面积为S 0,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.求:(1)t =t 02时,圆环受到的安培力;(2)在0~320内,通过圆环的电荷量.答案(1)3B 02r 2S 04ρt 0,垂直于MN 向左(2)3B 0rS 08ρ解析(1)根据法拉第电磁感应定律,圆环中产生的感应电动势E =ΔB Δt S 上式中S =πr 22由题图乙可知ΔB Δt =B 0t 0根据闭合电路的欧姆定律有I =ER 根据电阻定律有R =ρ2πrS 0t =12t 0时,圆环受到的安培力大小F =B 0I ·(2r )+B 02I ·(2r )联立解得F =3B 02r 2S 04ρt 0由左手定则知,方向垂直于MN 向左.(2)通过圆环的电荷量q =I ·Δt根据闭合电路的欧姆定律和法拉第电磁感应定律有I =E R ,E =ΔΦΔt在0~32t 0内,穿过圆环的磁通量的变化量为ΔΦ=B 0·12πr 2+B 02·12πr 2联立解得q =3B 0rS 08ρ.11.(2023·广东广州市模拟)在同一水平面中的光滑平行导轨P 、Q 相距L =1m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 间距离d =10mm ,定值电阻R 1=R 2=12Ω,R 3=2Ω,金属棒ab 电阻r =2Ω,其他电阻不计.磁感应强度B =1T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间、质量m =1×10-14kg 、带电荷量q =-1×10-14C 的微粒(图中未画出)恰好静止不动.取g =10m/s 2,在整个运动过程中金属棒与导轨接触良好.且运动速度保持恒定.求:(1)匀强磁场的方向;(2)ab 两端的电压;(3)金属棒ab 运动的速度大小.答案(1)竖直向下(2)0.4V (3)0.5m/s 解析(1)带负电的微粒受到重力和电场力处于静止状态,因重力竖直向下,则电场力竖直向上,故M 板带正电.ab 棒向右切割磁感线产生感应电动势,ab 棒相当于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下;(2)由平衡条件,得mg =EqE =U MNd所以MN 间的电压U MN =mgd q =1×10-14×10×10×10-31×10-14V =0.1VR 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流I =U MN R 3=0.12A =0.05A ab 棒两端的电压为U ab=U MN+R1R2·I=0.1V+0.05V×6V=0.4VR1+R2(3)由闭合电路欧姆定律得ab棒产生的感应电动势为E感=U ab+Ir=0.4+0.05×2V=0.5V由法拉第电磁感应定律得感应电动势E=BL v感联立解得v=0.5m/s.。

2025年高考物理-法拉第电磁感应定律的理解及应用(解析版)

2025年高考物理-法拉第电磁感应定律的理解及应用(解析版)

法拉第电磁感应定律的理解及应用考点考情命题方向考点法拉第电磁感应定律2024年高考甘肃卷2024年高考广东卷2024年高考北京卷2023年高考湖北卷2023高考江苏卷2022年高考天津卷法拉第电磁感应定律是电磁感应的核心知识点,年年考查,一般与安培力、动力学、功和能结合考查。

题型一对法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 的变化引起时,则E =nΔB ·S Δt ;当ΔΦ仅由S 的变化引起时,则E =n B ·ΔSΔt;当ΔΦ由B 、S 的变化同时引起时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt.3.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.1(2024•泰州模拟)如图所示,正三角形ABC 区域存在方向垂直纸面向里、大小随时间均匀增加的磁场。

以三角形顶点C 为圆心,粗细均匀的铜导线制成圆形线圈平行于纸面固定放置,则下列说法正确的是()A.线圈中感应电流的方向为顺时针B.线圈有扩张趋势C.线圈所受安培力方向与AB 边垂直D.增加线圈匝数,线圈中感应电流变小【解答】解:AB 、磁场垂直纸面向里,磁感应强度增大,穿过线圈的磁通量增加,根据楞次定律可知,感应电流的方向为逆时针。

因感应电流的磁场要阻碍磁通量的变化,所以线圈有收缩趋势,故AB 错误;C 、线圈的有效长度与AB 边平行,根据左手定则可知,线圈所受安培力方向与AB 边垂直,故C 正确;D 、设B =kt (k >0,且为常数),圆形线圈的半径为l ,电阻为R 。

2023年高考物理热点复习:电磁感应中的电路与图象问题(附答案解析)

2023年高考物理热点复习:电磁感应中的电路与图象问题(附答案解析)

2023年高考物理热点复习:电磁感应中的电路与图象问题【2023高考课标解读】1.对电磁感应中电源的理解2.解决电磁感应电路问题的基本步骤【2023高考热点解读】一、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源。

(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路。

2.电源电动势和路端电压(1)电动势:E=Blv或E=nΔΦΔt。

(2)路端电压:U=IR=E-Ir。

【拓展提升】1.电磁感应中电路知识的关系图2.解决电磁感应中的电路问题三步曲二、电磁感应中的图象问题电磁感应中常见的图象问题图象类型(1)随时间变化的图象,如B­t图象、Φ­t图象、E­t图象、I­t图象(2)随位移变化的图象,如E­x图象、I­x图象(所以要先看坐标轴:哪个物理量随哪个物理量变化要弄清)问题类型(1)由给定的电磁感应过程选出或画出正确的图象(画图象)(2)由给定的有关图象分析电磁感应过程,求解相应的物理量(用图象)应用知识四个规律左手定则、安培定则、右手定则、楞次定律六类公式(1)平均电动势E=nΔΦΔt(2)平动切割电动势E=Blv(3)转动切割电动势E=12Bl2ω(4)闭合电路欧姆定律I=ER+r(5)安培力F=BIl(6)牛顿运动定律的相关公式等例1.如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1 C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶1【答案】B【解析】当磁感应强度变大时,由楞次定律知,线圈中感应电流的磁场方向垂直纸面向外,由安培定则知,线圈内产生逆时针方向的感应电流,选项A错误;由法拉第电磁感应定律E=SΔBΔt及S a∶S b=9∶1知,E a=9E b,选项B正确;由R=ρLS′知两线圈的电阻关系为R a=3R b,其感应电流之比为I a∶I b=3∶1,选项C错误;两线圈的电功率之比为P a∶P b=E a I a∶E b I b=27∶1,选项D错误。

电磁感应现象中的电路和图像问题(核心考点精讲精练)(解析版)—2025年高考物理一轮复习

电磁感应现象中的电路和图像问题(核心考点精讲精练)(解析版)—2025年高考物理一轮复习

电磁感应现象中的电路和图像问题(核心考点精讲精练)1. 高考真题考点分布题型考点考查考题统计选择题图像问题2024年全国甲卷计算题电路问题2024年浙江卷2. 命题规律及备考策略【命题规律】高考对电磁感应现象中的电路和图像的考查较为频繁,对于图像问题的考查大多以选择题的形式出现,难度不是太大,电路问题的考查多在计算题中出现,题目多与功能动量等问题结合。

【备考策略】1.结合闭合电路欧姆定律,能够处理电磁感应现象中的电路问题。

2.结合法拉第电磁感应定律和闭合电路欧姆定律,能够分析电磁感应现象中的各类图像问题。

【命题预测】重点关注电磁感应现象中的图像问题。

一、电磁感应中电路知识的关系图二、电磁感应中的图像问题图像类型随时间变化的图像,如B-t 图像、Φ-t 图像、E-t 图像、I-t 图像;随位移变化的图像,如E-x图像、I-x图像(所以要先看坐标轴:哪个物理量随哪个物理量变化要弄清)问题类型(1)由给定的电磁感应过程选出或画出正确的图像(画图像)(2)由给定的有关图像分析电磁感应过程,求解相应的物理量(用图像)四个规律左手定则、安培定则、右手定则、楞次定律应用知识六类公式(1)平均电动势E =nΔΦΔt 2)平动切割电动势E =Blv(3)转动切割电动势E =12Bl 2ω(4)闭合电路欧姆定律I =E R +r(5)安培力F =BIl(6)牛顿运动定律的相关公式等考点一 电磁感应中的电路问题“三步走”分析电路为主的电磁感应问题1.如图,一个半径为L 的半圆形硬导体AB 以速度v ,在水平U 型框架上匀速滑动,匀强磁场的磁感应强度为B ,回路中的电阻为0R ,半圆形硬导体AB 的电阻为r ,其余电阻不计,则半圆形导体AB 切割磁感线产生感应电动势的大小及AB 之间的电势差分别为( )A .BLv ,00BLvR R r+B .2BLv ,BLv C .BLv ,2BL D .2BLv ,002BLvR R r+【答案】D【详解】半圆形硬导体切割磁感线的有效长度为2L ,则感应电动势大小为:2E BLv =根据闭合电路的欧姆定律可得,感应电流大小为:002E BLvI R r R r==++AB 之间的电势差为:0002AB BLvR U IR R r==+故选D 。

高中物理电磁感应现象压轴题知识归纳总结含答案解析

高中物理电磁感应现象压轴题知识归纳总结含答案解析

高中物理电磁感应现象压轴题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-3.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M ,通过高强度绳子套在半径1r 的承重转盘上,且绳子与转盘之间不打滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r 和3r 的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R .制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B ),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放置质量为m 的货物一起以速度v 竖直上升,电梯箱离终点(图中未画出)高度为h 时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E 为多少?此时a 与b 之间的电势差有多大?(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?(3)若要提高制动的效果,试对上述设计做出二处改进.【答案】(1)22321()2Bv r r E r -=,22321()6Bv r r U r -= (2)21()2Q M m v mgh =+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r 3或减小内金属圈的半径r 2 【解析】【分析】 【详解】(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度1v r ω=所以,制动转盘的角速度1vr ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势22321()2Bv r r B S E t t r -∆Φ⋅∆===∆∆所以干路中的电流223E EI R R R R R==++ 那么此时a 与b 之间的电势差即为路端电压22321()6Bv r r U E IR r -=-=(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得21(2)()2m M v m M gh Mgh Q +=+-+ 解得:21()2Q M m v mgh =+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率222223221()362B v r r E P Rr R-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.4.如图,POQ 是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP =OQ =L .整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B =B 0-kt (其中k 为大于0的常数).一质量为m 、长为L 、电阻为R 、粗细均匀的导体棒锁定于OP 、OQ 的中点a 、b 位置.当磁感应强度变为12B 0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v .导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g .求导体棒:(1)解除锁定前回路中电流的大小及方向; (2)滑到导轨末端时的加速度大小; (3)运动过程中产生的焦耳热.【答案】⑴238kL R,顺时针方向或b→a ;⑵g -2204B L v mR ;⑶【解析】 【分析】 【详解】⑴导体棒被锁定前,闭合回路的面积不变,B t∆∆=k 由法拉第电磁感应定律知:E =t Φ∆∆=BS t ∆∆=2316kL 由闭合电路欧姆定律知:I =E R 总=238kL R由楞次定律知,感应电流的方向:顺时针方向或b→a ⑵导体棒刚离开导轨时受力如图所示根据法拉第电磁感应定律有:E =012B Lv 根据闭合电路欧姆定律知:I =E R根据安培力公式有:F =012ILB 解得:F =012ILB 由牛顿第二定律知:mg -F =ma解得:a =g -2204B L vR⑶由能量守恒知:mgh =212mv +Q由几何关系有:h =34L 解得:Q =34mgL -212mv5.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)22mg fR B a - (2)()22122Rv mg f B a =-(3)()()()2224432mR Q mg f mg f a b B a⎡⎤=--++⎣⎦ 【解析】 【分析】(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222B a v mg f R=+解得:222()mg f Rv B a -=(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2mg f h mv -= 联立解得:221222()mg f Rv v mg f mg f B a+==-- (3)线框在向上通过磁场过程中,由能量守恒定律有:220111()()22Q mg f a b mv mv +++=- 而012v v =解得:222443[()]()()2mR Q mg f mg f a b B a=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为222443[()]()()2mR Q mg f mg f a b B a=--++ 【点睛】此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.6.如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .【答案】(1)0Bdv R ;(2)220B d v mR ;(3)2220()B d v v R-;【解析】 【分析】本题的关键在于导体切割磁感线产生电动势E =Blv ,切割的速度(v )是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能.(1)根据电磁感应定律的公式可得知产生的电动势,结合闭合电路的欧姆定律,即可求得MN 刚扫过金属杆时,杆中感应电流的大小I ;(2)根据第一问求得的电流,利用安培力的公式,结合牛顿第二定律,即可求得MN 刚扫过金属杆时,杆的加速度大小a ;(3)首先要得知,PQ 刚要离开金属杆时,杆切割磁场的速度,即为两者的相对速度,然后结合感应电动势的公式以及功率的公式即可得知感应电流的功率P . 【详解】(1)感应电动势 0E Bdv =感应电流E I R =解得0Bdv I R= (2)安培力 F BId = 牛顿第二定律 F ma =解得220B d v a mR=(3)金属杆切割磁感线的速度0=v v v '-,则感应电动势 0()E Bd v v =-电功率2E P R= 解得2220()B d v v P R -=【点睛】该题是一道较为综合的题,考查了电磁感应,闭合电路的欧姆定律以及电功电功率.对于法拉第电磁感应定律是非常重要的考点,经常入选高考物理压轴题,平时学习时要从以下几方面掌握. (1)切割速度v 的问题切割速度的大小决定了E 的大小;切割速度是由导体棒的初速度与加速度共同决定的.同时还要注意磁场和金属棒都运动的情况,切割速度为相对运动的速度;不难看出,考电磁感应的问题,十之八九会用到牛顿三大定律与直线运动的知识. (2)能量转化的问题电磁感应主要是将其他形式能量(机械能)转化为电能,可由于电能的不可保存性,很快又会想着其他形式能量(焦耳热等等)转化. (3)安培力做功的问题电磁感应中,安培力做的功全部转化为系统全部的热能,而且任意时刻安培力的功率等于系统中所有电阻的热功率. (4)动能定理的应用动能定理当然也能应用在电磁感应中,只不过同学们要明确研究对象,我们大多情况下是通过导体棒的.固定在轨道上的电阻,速度不会变化,显然没有用动能定理研究的必要.7.如图所示,两根电阻忽略不计、互相平行的光滑金属导轨竖直放置,相距L=1m ,在水平虚线间有与导轨所在平面垂直的匀强磁场,磁感应强度B=0.5T,磁场区域的高度d=1m,导体棒a的质量m a=0.2kg、电阻R a=1Ω;导体棒b的质量m b=0.1kg、电阻R b=1.5Ω.它们分别从图中M、N处同时由静止开始在导轨上无摩擦向下滑动,b匀速穿过磁场区域,且当b刚穿出磁场时a正好进入磁场,重力加速度g=10m/s2,不计a、b棒之间的相互作用,导体棒始终与导轨垂直且与导轨接触良好,求:(1)b棒穿过磁场区域过程中克服安培力所做的功;(2)a棒刚进入磁场时两端的电势差;(3)保持a棒以进入时的加速度做匀变速运动,对a棒施加的外力随时间的变化关系.【答案】(1)b棒穿过磁场区域过程中克服安培力所做的功为1J;(2)a棒刚进入磁场时两端的电势差为3.3V;(3)保持a棒以进入时的加速度做匀变速运动,对a棒施加的外力随时间的变化关系为F=0.45t﹣1.1.【解析】【分析】(1)b在磁场中匀速运动,其安培力等于重力,根据重力做功情况求出b棒克服安培力分别做的功.(2)b进入磁场做匀速直线运动,受重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律和切割产生感应电动势大小公式,求出b做匀速直线运动的速度大小.a、b都在磁场外运动时,速度总是相等,b棒进入磁场后,a棒继续加速运动而进入磁场,根据运动学速度时间公式求解出a进入磁场时的速度大小,由E=BLv求出a棒产生的感应电动势,即可求得a棒刚进入磁场时两端的电势差.(3)根据牛顿第二定律求出a棒刚进入磁场时的加速度,再根据牛顿第二定律求出保持a 棒以进入时的加速度做匀变速运动时外力与时间的关系式.【详解】(1)b棒穿过磁场做匀速运动,安培力等于重力,则有:BI1L=m b g,克服安培力做功为:W=BI1Ld=m b gd=0.1×10×1=1J(2)b棒在磁场中匀速运动的速度为v1,重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律得:=m b g,v b===10m/s,b棒在磁场中匀速运动的时间为t1,d=v b t1,t1===0.1s,a、b都在磁场外运动时,速度总是相等的,b棒进入磁场后,a棒继续加速t1时间而进入磁场,a棒进入磁场的速度为v a,v a=v b+gt1=10+10×0.1=11m/s.电动势为:E=BLv a=0.5×1×11=5.5V,a棒两端的电势差即为路端电压为:U===3.3V.(3)a棒刚进入磁场时的加速度为a,根据牛顿第二定律得:m a g﹣BI2L=m a a,a=g﹣=g﹣=10﹣=4.5m/s2,要保持加速度不变,加外力F,根据牛顿第二定律得:F+m a g﹣BIL=m a a得:F=t=×t=0.45t﹣1.1.8.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L,有yi 方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行,线框水平向右拉力作用下垂直于边界线穿过磁场区.(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时七两点间的电势差;(2)若线框从静止开始以恒定的加速度a运动,经过h时间七边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;(3)若线框速度v0进入磁场,且拉力的功率恒为P0,经过时间T,cd边进入磁场,此过程中回路产生的电热为Q,后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t.【答案】(1)(2)(3)【解析】【分析】【详解】(1)线框在离开磁场时,cd边产生的感应电动势 E=BLv回路中的电流则ab两点间的电势差 U=IR ab=BLv(2)t1时刻线框速度 v1=at1设cd边将要进入磁场时刻速度为v2,则v22-v12=2aL此时回路中电动势 E2=BLv2回路的电功率解得(3)设cd边进入磁场时的速度为v,线框从cd边进入到ab边离开磁场的时间为△t,则 P0T=(mv2−m v02)+QP0△t=m v02-mv2解得线框离开磁场时间还是T,所以线框穿过磁场总时间t=2T+△t=+T【点睛】本题电磁感应中电路问题,要熟练运用法拉第电磁感应定律切割式E=Blv,欧姆定律求出电压.要抓住线框运动过程的对称性,分析穿出磁场时线框的速度,运用能量守恒列式求时间.9.如图所示,两根间距为L的光滑金属导轨CMM′P′P、DNN′Q′Q固定放置,导轨MN左侧部分向上弯曲,右侧水平。

高中物理电磁感应习题及答案解析

高中物理电磁感应习题及答案解析

高中物理总复习—电磁感应本卷共150分,一卷40分,二卷110分,限时120分钟。

请各位同学认真答题,本卷后附答案及解析。

一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分.1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L 的线圈外,其他部分与甲图都相同,导体AB 以相同的加速度向右做匀加速直线运动。

若位移相同,则( )A .甲图中外力做功多B .两图中外力做功相同C .乙图中外力做功多D .无法判断2.图12-1,平行导轨间距为d ,一端跨接一电阻为R ,匀强磁场磁感强度为B ,方向与导轨所在平面垂直。

一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。

当金属棒沿垂直于棒的方向以速度v 滑行时,通过电阻R 的电流强度是( )A .BdvRB .sin Bdv RθC .cos Bdv R θD .sin Bdv R θ3.图12-3,在光滑水平面上的直线MN 左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。

将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v 向右完全拉出匀强磁场。

已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是( )A .所用拉力大小之比为2:1图12-1图12-3B .通过导线某一横截面的电荷量之比是1:1C .拉力做功之比是1:4D .线框中产生的电热之比为1:24. 图12-5,条形磁铁用细线悬挂在O 点。

O 点正下方固定一个水平放置的铝线圈。

让磁铁在竖直面内摆动,下列说法中正确的是( )A.在磁铁摆动一个周期内,线圈内感应电流的方向改变2次 B .磁铁始终受到感应电流磁铁的斥力作用 C .磁铁所受到的感应电流对它的作用力始终是阻力D .磁铁所受到的感应电流对它的作用力有时是阻力有时是动力5. 两相同的白炽灯L 1和L 2,接到如图12-4的电路中,灯L 1与电容器串联,灯L 2与电感线圈串联,当a 、b 处接电压最大值为U m 、频率为f 的正弦交流电源时,两灯都发光,且亮度相同。

电磁感应中的电路问题和图像问题(解析版)—2025年高考物理一轮复习考点通关卷(新高考通用)

电磁感应中的电路问题和图像问题(解析版)—2025年高考物理一轮复习考点通关卷(新高考通用)

电磁感应中的电路问题和图像问题建议用时:75分钟电磁感应中的电路问题和图像问题1.(2024·北京海淀·三模)如图所示,先后用一垂直于cd 边的恒定外力以速度1v 和2v 匀速把一正方形导线框拉出有界的匀强磁场区域,212v v =,拉出过程中ab 边始终平行于磁场边界。

先后两次把导线框拉出磁场情况下,下列结论正确的是( )A .感应电流之比12:2:1I I =B .外力大小之比12:1:2F F =C .拉力的功率之比12:1:2P P =D .拉力的冲量大小之比F1F2:1:2I I =【答案】B【详解】A .根据:E BLv I R R==可得感应电流之比:12:1:2I I =故A 错误;B .根据:22B L vF F BIL R ===安可得外力大小之比:12:1:2F F =故B 正确;C .根据:222B L v P Fv R ==可得拉力的功率之比:12:1:4P P =故C 错误;D .根据:I Ft =又:Lt v=联立,解得:23B L I R=可得拉力的冲量大小之比:F1F2:1:1I I =故D 错误。

故选B 。

2.(2024·四川巴中·一模)如图所示,平行金属导轨水平放置,导轨左端连接一阻值为R 的电阻,导轨所在空间存在竖直向下的匀强磁场,磁感应强度为B ,已知长度为l 导体棒MN 倾斜放置于导轨上,与导轨成θ角,导体棒电阻为r ,保持导体棒以速度v 沿平行于导轨方向匀速向右运动,导轨电阻不计,下列说法正确的是( )A .导体棒中感应电流的方向为N 到MB .MN 两端的电势差大小为RBlv R r+C .导体棒所受的安培力大小为22sin B l v R r q+D .电阻R 的发热功率为2222sin ()RB l v R r q +【答案】C【详解】A .导体棒沿导轨向右匀速运动时,由右手定则可知,导体棒中感应电流的方向为N 到M ,故A 错误;B .导体棒切割产生的感应电动势大小为:sin E Blv q =故导体棒两端的电势差大小为:sin E Blv U IR R R R r R rq ===++故B 错误;C .导体棒所受的安培力大小为:22sin E B l v F BIl Bl R r R r q===++故C 正确;D .电阻R 的发热功率为:2222222sin ()()E B l v P I R R R R r R r q ===++故D 错误。

高考物理经典题型解题思路辅导第5讲电磁感应与电路

高考物理经典题型解题思路辅导第5讲电磁感应与电路

第五讲 电磁感应与电路思想方法提炼电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。

题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。

在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。

高考的热点问题和复习对策:1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧.2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。

要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。

3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。

此部分涉及的主要内容有:1.电磁感应现象.(1)产生条件:回路中的磁通量发生变化.(2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流.(3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路.2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同.3.楞次定律三种表述:(1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例.(2)感应电流引起的运动总是阻碍相对运动.(3)自感电动势的方向总是阻碍原电流变化.4.相关链接(1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识.(2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识.(3)能的转化与守恒定律.感悟 · 渗透 · 应用【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直导线向下运动,Ⅱ沿平行长直导线方向平动,Ⅲ绕其竖直中心轴OO ′转动.(1)在这三个线框运动的过程中,哪些线框中有感应电流产生?方向如何?(2)线框Ⅲ转到图示位置的瞬间,是否有感应电流产生?【解析】此题旨在考查感应电流产生的条件.根据直线电流周围磁场的特点,判断三个线框运动过程中,穿过它们的磁通量是否发生变化.t∆∆Φ(1)长直导线通有自左向右的恒定电流时,导线周围空间磁场的强弱分布不变,但离导线越远,磁场越弱,磁感线越稀;离导线距离相同的地方,磁场强弱相同.线框Ⅰ沿垂直于导线方向向下运动,穿过它的磁通量减小,有感应电流产生,电流产生的磁场方向垂直纸面向里,根据楞次定律,感应电流的磁场方向也应垂直纸面向里,再由右手螺旋定则可判断感应电流为顺时针方向;线框Ⅱ沿平行导线方向运动,与直导线距离不变,穿过线框Ⅱ的磁通量不变,因此线框Ⅱ中无感应电流产生;线框Ⅲ绕OO ′轴转动过程中,穿过它的磁通量不断变化,在转动过程中线框Ⅲ中有感应电流产生,其方向是周期性改变的.(2)线框Ⅲ转到图示位置的瞬间,线框中无感应电流,由于长直导线下方的磁场方向与纸面垂直,在该位置线框Ⅲ的两竖直边运动方向与磁场方向平行,不切割磁感线,所以无感应电流;从磁通量变化的角度考虑,图示位置是线框Ⅲ中磁通量从增加到最大之后开始减小的转折点,此位置感应电流的方向要发生变化,故此时其大小必为0.【解题回顾】对瞬时电流是否存在应看回路中磁通量是否变化,或看回路中是否有一段导体做切割磁感线运动,要想知道线框在磁场中运动时磁通量怎样变化,必须知道空间的磁场强弱、方向分布的情况,对常见磁体及电流产生的磁场要相当熟悉.【例2】如图所示,在倾角为θ的光滑的斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,一个质量为m ,边长也为L 的正方形线框(设电阻为R)以速度v 进入磁场时,恰好做匀速直线运动.若当a b 边到达gg ′与ff ′中间位置时,线框又恰好做匀速运动,则:(1)当a b 边刚越过ff ′时,线框加速度的值为多少?(2)求线框开始进入磁场到a b 边到达gg ′与ff ′中点的过程中产生的热量是多少?【解析】此题旨在考查电磁感应与能量之间的关系.线框刚越过ff ′时,两条边都在切割磁感线,其电路相当于两节相同电池的串联,并且这两条边还同时受到安培力的阻碍作用.(1)a b 边刚越过ee ′即做匀速直线运动,表明线框此时所受的合力为0,即在a b 边刚越过ff ′时,a b 、cd 边都切割磁感线产生感应电动势,但线框的运动速度不能突变,则此时回路中的总感应电动势为E ′=2BLv ,设此时线框的加速度为a ,则2BE ′L/R-mgsin θ=m a ,a =4B 2L 2v/(Rm)-gsin θ=3gsin θ,方向沿斜面向上.(2)设线框再做匀速运动时的速度为v ′,则mgsin θ=(2B 2L 2v ′/R)×2,即v ′=v/4,从线框越过ee ′到线框再做匀速运动过程中,设产生的热量为Q ,则由能量守恒定律得:【解题回顾】电磁感应过程往往涉及多种能量形式的转化,适时选用能量守恒关系常会使求解很方便,特别是处理变加速直线运动或曲线运动问题. 【例3】如图所示,d a 、cb 为相距L 的平行导轨(电阻可以 忽略不计).a 、b 间接有一个固定 电阻,阻值为R.长直细金属杆MN 可以按任意角架在水平导轨上,并以速度v 匀速滑动(平移),v 的方向和d a 平行. 杆MN 有电阻,每米长的电阻值为R.整个空间充满匀强磁场,磁感应强度的大小为B ,方向垂直纸面(dabc 平面)向里(1)求固定电阻R 上消耗的电功率为最大时θ角的值(2)求杆MN 上消耗的电功率为最大时θ角的值.2223215sin 23'2121sin 23mv mgL mv mv L mg Q +=-+⋅=θθ【解析】如图所示,杆滑动时切割磁感线而产生感应电动势E=BLv ,与θ角无关.以r 表示两导轨间那段杆的电阻,回路中的电流为:(1)电阻R 上消耗的电功率为:由于E 和R 均与θ无关,所以r 值最小时,P R 值达最大.当杆与导轨垂直时两轨道间的杆长最短,r 的值最小,所以P R 最大时的θ值为θ=π/2.(2)杆上消耗的电功率为:P r = 要求P r 最大,即要求取最大值.由于 显然,r=R 时, 有极大值R ,r=R 即要求两导轨间的杆长为1m , 所以有以下两种情况:①如果L ≤1m ,则θ满足下式时r=R1×sin θ=L 所以θ=arcsinL②如果L >1m ,则两导轨间那段杆长总是大于1m ,即总有r >R在r >R 的条件下,上式随r 的减小而单调减小,r 取最小值时, 取最小值,取最大值,所以,Pr 取最大值时θ值为 【例4】如图所示,光滑的平行导轨P 、Q 相距 L=1m ,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C 两极板间距离d=10mm ,定值电阻R 1=R 3=8Ω,R 2=2Ω,导轨电阻不计. 磁感应强度B=0.4T 的匀强磁场竖直向下穿过导轨面.当金属棒a b 沿导轨向右匀速运动(开关S 断开)时,电容器两极板之间质量m=1×10-14kg 、带电量Q=-1×10-15C 的微粒恰好静止不动;当S 闭合时,微粒以加速度a =7m/s 2向下做匀加速运动,取g=10m/s 2,求:(1)金属棒a b 运动的速度多大?电阻多大?(2)S 闭合后,使金属棒a b 做匀速运动的外力的功率多大?【解析】(1)带电微粒在电容器两极板间静止时,受向上的电场力和向下的重力作用而平衡,则得到:mg=求得电容器两极板间的电压由于微粒带负电,可知上极板电势高.由于S 断开,R 1上无电流,R 2、R 3串联部分两端总电压等于U 1,电路中的感应电流,即通过R 2、R 3的电流为:由闭合电路欧姆定律,a b 切割磁感线运动产生的感应电动势为E=U 1+Ir ①其中r 为a b 金属棒的电阻当闭合S 后,带电微粒向下做匀加速运动,根据牛顿第二定律,有:mg-U 2q/d=m a求得S 闭合后电容器两极板间的电压:这时电路中的感应电流为I 2=U 2/R 2=0.3/2A=0.15A 根据闭合电路欧姆定律有 ②将已知量代入①②求得E=1.2V ,r=2Ω又因E=BLv∴v=E/(BL)=1.2/(0.4×1)m/s=3m/s即金属棒a b 做匀速运动的速度为3m/s ,电阻r=2Ω2)(r R r +2πθ=)(231312r R R R R R I E +++=(2)S闭合后,通过a b的电流I2=0.15A,a b所受安培力F2=BI2L=0.4×1×0.15N=0.06N a b以速度v=3m/s做匀速运动时,所受外力必与安培力F2大小相等、方向相反,即F=0.06N,方向向右(与v 同向),可见外力F的功率为:P=Fv=0.06×3W=0.18W【例5】已知某一区域的地下埋有一根与地面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此,可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度.当线圈平面平行地面时,a、c在两处测得试探线圈感应电动势为0,b、d两处测得试探线圈感应电动势不为0;当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0;经测量发现,a、b、c、d恰好位于边长为1m的正方形的四个顶角上,如图所示,据此可以判定地下电缆在两点连线的正下方,离地表面的深度为 m.【解析】当线圈平面平行地面时,a、c在两处测得试探线圈感应电动势为0,b、d两处测得试探线圈感应电动势不为0;可以判断出地下电缆在a、c两点连线的正下方;如图所示a′c′表示电缆,当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0;可判断出O′b垂直试探线圈平面,则作出:Rt△OO′b,其中∠ObO′=45°那么OO′=Ob= /2=0.71(m).【解题回顾】本题是一道电磁感应现象的实际应用的题目,将试探线圈产生感应电动势的条件应用在数学中,当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈感应电动势为0,即电缆与在b、d两处时的线圈平面平行,然后作出立体几何的图形,便可用数学方法处理物理问题.【例6】在如图所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B,导轨左端的间距为L1=4L0,右端间距为L2=L0。

高考物理电磁学知识点之电磁感应全集汇编附答案解析

高考物理电磁学知识点之电磁感应全集汇编附答案解析

高考物理电磁学知识点之电磁感应全集汇编附答案解析一、选择题1.如图所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环a ,下列各种情况中铜环a 中没有感应电流的是( )A .将电键突然断开的瞬间B .线圈中通以恒定的电流C .通电时,使滑动变阻器的滑片P 做加速移动D .通电时,使滑动变阻器的滑片P 做匀速移动2.如图所示,A 、B 是两个完全相同的灯泡,D 是理想二极管,L 是带铁芯的线圈,其电阻忽略不计。

下列说法正确的是A .S 闭合瞬间,A 先亮B .S 闭合瞬间,A 、B 同时亮C .S 断开瞬间,A 闪亮一下,然后逐渐熄灭D .S 断开瞬间,B 逐渐熄灭3.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是A .磁感应强度B 竖直向上且正增强,t φ∆=dmg nq B .磁感应强度B 竖直向下且正增强,t φ∆=dmg nqC .磁感应强度B 竖直向上且正减弱,tφ∆=()dmg R r nqR +D .磁感应强度B 竖直向下且正减弱,t φ∆=()dmgr R r nqR + 4.如图所示,电源的电动势为E ,内阻为r 不可忽略.A 、B 是两个相同的小灯泡,L 是一个自感系数较大的线圈.关于这个电路的说法中正确的是A .闭合开关,A 灯立刻亮,而后逐渐变暗,最后亮度稳定B .闭合开关,B 灯立刻亮,而后逐渐变暗,最后亮度稳定C .开关由闭合至断开,在断开瞬间,A 灯闪亮一下再熄灭D .开关由闭合至断开,在断开瞬间,电流自左向右通过A 灯5.如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下。

一飞机在北半球的上空以速度v 水平飞行,飞机机身长为a ,翼展为b ;该空间地磁场磁感应强度的水平分量为B 1,竖直分量为B 2;驾驶员左侧机翼的端点用A 表示,右侧机翼的端点用B 表示,用E 表示飞机产生的感应电动势,则A .E =B 2vb ,且A 点电势高于B 点电势B .E =B 1vb ,且A 点电势高于B 点电势C .E =B 2vb ,且A 点电势低于B 点电势D .E =B 1vb ,且A 点电势低于B 点电势6.如图所示,铁芯P 上绕着两个线圈A 和B , B 与水平光滑导轨相连,导体棒放在水平导轨上。

高考名师推荐物理--电路和电磁感应(带答案与解析)解答解析、考点详解.doc

高考名师推荐物理--电路和电磁感应(带答案与解析)解答解析、考点详解.doc

高考名师推荐物理--电路和电磁感应(带答案与解析)的正确答案、解答解析、考点详解姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分1.【题文】“热磁振荡发电技术”是新能源研究领域的最新方向,当应用于汽车等可移动的动力设备领域时,会成为氢燃料电池的替代方案。

它通过对处于磁路中的一段软磁体迅速加热并冷却,使其温度在其临界点上下周期性地振荡,引起磁路线圈中的磁通量周期性地增减,从而感应出连续的交流电。

它的技术原理是物理原理。

假设两足够长的光滑金属导轨竖直放置,相距为L,如图6所示,一导线与两导轨相连,磁感应强度的大小为B的匀强磁场与导轨平面垂直。

一电阻为R、质量为m的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后速度减小,最终稳定时离磁场上边缘的距离为H.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。

下列说法正确的是A.整个运动过程中回路的最大电流为B.整个运动过程中导体棒产生的焦耳热为C.整个运动过程中导体棒克服安培力所做的功为D.整个运动过程中回路电流的功率为【答案】B【解析】导体棒进入磁场后,先做变减速运动,安培力也逐浙减小,当减到与重力相等时导体棒稳定,所以导体棒进入磁场进入磁场时的速度最大,所产生的感应电动势最大,其感应电流也最大,由自由落体运动规律,进入磁场时的速度大小为,产生的感应电动势为,由闭合电路欧姆定律得选项A错;导体棒稳定后,产生的感应电动势为,根据平衡条件,有,所以;由能量守恒定律可知,减少的机械能转评卷人得分化为回路的电能,电能又转化为内能所以,有,所以,所以选项B正确;克服安培力做功与产生的焦耳热查等,所以选项C错;回路中的电流开始的变化的,所以选项D错.2.【题文】如图所示,足够长的光滑U型导轨宽度为L,其所在平面与水平面的夹角为,上端连接一个阻值为R的电阻,置于磁感应强度大小为B,方向垂直于导轨平面向上的匀强磁场中,今有一质量为、有效电阻的金属杆沿框架由静止下滑,设磁场区域无限大,当金属杆下滑达到最大速度时,运动的位移为,则A.金属杆下滑的最大速度B.在此过程中电阻R产生的焦耳热为C.在此过程中电阻R产生的焦耳热为D.在此过程中流过电阻R的电量为【答案】 B【解析】感应电动势为①感应电流为②安培力为③根据平恒条件得解得:由能量守恒定律得:又因所以由法拉第电磁感应定律得通过R的电量为所以选项B正确3.【题文】如图所示,平行导轨置于磁感应强度为B的匀强磁场中(方向向里),间距为L,左端电阻为R,其余电阻不计,导轨右端接一电容为C的电容器。

2021届高考物理:电磁感应中的电路和图象问题含答案

2021届高考物理:电磁感应中的电路和图象问题含答案
电磁感应中的图象问题[分考向训练]
电磁感应中常见的图象问题
图象类型
(1)随时间变化的图象、如Bt图象、Φt图象、Et图象、It图象
(2)随位移变化的图象、如Ex图象、Ix图象
(所以要先看坐标轴:哪个物理量随哪个物理量变化要弄清)
问题类型
(1)由给定的电磁感应过程选出或画出正确的图象(画图象)
(2)由给定的有关图象分析电磁感应过程、求解相应的物理量(用图象)
4.(多选)如图甲所示、在水平面上固定一个匝数为10匝的等边三角形金属线框、总电阻为3 Ω、边长为0.4 m。金属框处于两个半径为0.1 m的圆形匀强磁场中、顶点A恰好位于左边圆的圆心、BC边的中点恰好与右边圆的圆心重合。左边磁场方向垂直纸面向外、右边磁场垂直纸面向里、磁感应强度的变化规律如图乙所示、则下列说法中正确的是(π取3)( )
【变式1】试推导出回路中的热功率P随时间变化的关系式、并画出图象。
提示:回路中热功率P=I2R、
回路中电流I= 为定值、R= 2v0tr、
可得P= t、图象如图甲所示。

【变式2】试推导出回路中产生的焦耳热Q随时间变化的关系式、并画出图象。
提示:中Pt图线与t轴所围面积表示回路中产生的焦耳热Q、则
Q= Pt= t2。图象如图乙、丙所示。
乙 丙
电磁感应中确定电源的方法
(1)判断产生电磁感应现象的那一部分导体(电源)。
(2)动生问题(棒切割磁感线)产生的电动势E=BLv、方向由右手定则判定。
(3)感生问题(磁感应强度的变化)的电动势E=n 、方向由楞次定律判定。在等效电源内部电流方向都是由负极流向正极的。
[跟进训练]
感生电动势电路分析
B.通过电阻R的电流的最小值为 、方向从Q到P

高考物理命题分析专题(含解析):电磁感应与电路

高考物理命题分析专题(含解析):电磁感应与电路

高频考点:电磁感应与电路综合动态发布:2011全国理综第23题、2011重庆理综卷第23题、2010重庆理综第23题命题规律:电磁感应与电路综合是高考考查的重点和热点,考查电磁感应与电路综合的试题可能为选择题,也可能为计算题,难度中等。

命题分析考查方式一电磁感应与电路综合【命题分析】:在电磁感应中,切割磁感线的那部分导体或磁通量发生变化的回路产生感应电动势,该部分导体或回路就是电源,其中的电流方向是由电源负极指向正极(电源内部)。

解决电磁感应与电路综合问题的基本方法是:首先明确其等效电路,然后根据电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向,再根据电路的有关规律进行综合分析计算。

考查电磁感应与电路综合的试题难度中等。

例1(2011全国理综第23题)如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L1,电阻不计。

在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。

整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。

现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。

金属棒下落过程中保持水平,且与导轨接触良好。

已知某时刻后两灯泡保持正常发光。

重力加速度为g。

求:(1)磁感应强度的大小:(2)灯泡正常发光时导体棒的运动速率。

【解析】(1)设小灯泡额定电流为I0,则有P=I02R由题意,在金属棒沿导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN的电流为I=2 I0,此时金属棒MN所受的重力和安培力相等,下落的速度达到最大值,有mg=BIL联立解得(2)设灯泡正常发光时,导体棒的速率为v,由电磁感应定律与欧姆定律得E=BLv,E= I0R,联立解得v=2P mg(2)设电功率为P,则有P=U2/R。

(3)设电流强度为I,安培力为F,克服安培力做功为W。

由I=U/R,F=BIL,W=Fd,解得W=BLUd/R。

【点评】此题以可测速的跑步机测速原理切入,考查法拉第电磁感应定律、电功率、安培力做功、欧姆定律等相关知识点。

(含答案解析)电磁感应中的电路问题

(含答案解析)电磁感应中的电路问题

电磁感应中的电路问题一、基础知识 1、内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路. 2、电源电动势和路端电压(1)电动势:E =Blv 或E =n ΔΦΔt .(2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解(1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定.(2)电源的电动势的大小可由E =Blv 或E =n ΔΦΔt 求解.4、对电磁感应电路的理解(1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲(1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦΔt 或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )答案 B解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =34Blv ,选项B 正确.2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R2的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )A.Bav3B.Bav6C.2Bav3D .Bav答案 A解析 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·(12v )=Bav .由闭合电路欧姆定律得,U AB =ER 2+R 4·R 4=13Bav ,故选A. 3、如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是( )A .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC .de 两端的电压为1 VD .fe 两端的电压为1 V 答案 BD解析 由右手定则可判知A 选项错;由法拉第电磁感应定律E =Blv =0.5×1×4 V =2 V ,U cd =R R +RE =1 V ,B 正确;由于de 、cf 间电阻没有电流流过,故U cf =U de =0,所以U fe=U cd =1 V ,C 错误,D 正确.4、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、有效阻值为R2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻)( )A .通过电阻R 的电流方向为P →R →MB .a 、b 两点间的电压为BLvC .a 端电势比b 端电势高D .外力F 做的功等于电阻R 上产生的焦耳热 答案 C解析 由右手定则可知通过金属导线的电流由b 到a ,即通过电阻R 的电流方向为M →R →P ,A 错误;金属导线产生的感应电动势为BLv ,而a 、b 两点间的电压为等效电路路端电压,由闭合电路欧姆定律可知,a 、b 两点间电压为23BLv ,B 错误;金属导线可等效为电源,在电源内部,电流从低电势流向高电势,所以a 端电势高于b 端电势,C 正确;根据能量守恒定律可知,外力F 做的功等于电阻R 和金属导线产生的焦耳热之和,D 错误.5、如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动, 当电路稳定后,MN 以速度v 向右做匀速运动时( )A .电容器两端的电压为零B .电阻两端的电压为BLvC .电容器所带电荷量为CBLvD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR答案 C解析 当导线MN 匀速向右运动时,导线MN 产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端没有电压,电容器两极板间的电压为U =E =BLv ,所带电荷量Q =CU =CBLv ,故A 、B 错,C 对;MN 匀速运动时,因无电流而不受安培力,故拉力为零,D 错.6、如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面且电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出磁场的两过程中( )A .导体框中产生的感应电流方向相同B .导体框中产生的焦耳热相同C .导体框ad 边两端电势差相同D .通过导体框截面的电荷量相同 答案 AD解析 由右手定则可得两种情况导体框中产生的感应电流方向相同,A 项正确;热量Q=I 2Rt =(Blv R )2R ·l v =B 2l 3vR,可知导体框产生的焦耳热与运动速度有关,B 项错误;电荷量q =It =Blv R ·l v =Bl 2R,故通过截面的电荷量与速度无关,电荷量相同,D 项正确;以速度v 拉出时,U ad =14Blv ,以速度3v 拉出时,U ad =34Bl ·3v ,C 项错误.7、两根平行的长直金属导轨,其电阻不计,导线ab 、cd 跨在导轨上且与导轨接触良好,如图所示,ab 的电阻大于cd 的电阻,当cd 在外力F 1(大小)的作用下,匀速向右运动时,ab 在外力F 2(大小)的作用下保持静止,那么在不计摩擦力的情况下(U ab 、U cd 是导线与导轨接触间的电势差)( )A .F 1>F 2,U ab >U cdB .F 1<F 2,U ab =U cdC .F 1=F 2,U ab >U cdD .F 1=F 2,U ab =U cd答案 D解析 通过两导线电流强度一样,两导线都处于平衡状态,则F 1=BIl ,F 2=BIl ,所以F 1=F 2,A 、B 错误;U ab =IR ab ,这里cd 导线相当于电源,所以U cd 是路端电压,U cd =IR ab ,即U ab =U cd ,故D 正确.8、把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图所示,一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触.当金属棒以恒定速度v 向右移动经过环心O 时,求: (1)棒上电流的大小和方向及棒两端的电压U MN ; (2)圆环和金属棒上消耗的总热功率. 答案 (1)4Bav 3R ,从N 流向M 2Bav3(2)8B 2a 2v23R解析 (1)把切割磁感线的金属棒看成一个内阻为R 、电动势为E 的电源,两个半圆环看成两个并联的相同电阻,画出等效电路图如图所示. 等效电源电动势为E =Blv =2Bav 外电路的总电阻为R 外=R 1R 2R 1+R 2=12R棒上电流大小为I =ER 外+R =2Bav 12R +R =4Bav 3R电流方向从N 流向M .根据分压原理,棒两端的电压为U MN =R 外R 外+R ·E =23Bav .(2)圆环和金属棒上消耗的总热功率为P =IE =8B 2a 2v 23R.9、如图4(a)所示,水平放置的两根平行金属导轨,间距L =0.3 m ,导轨左端连接R =0.6 Ω的电阻,区域abcd 内存在垂直于导轨平面B =0.6 T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4 m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r =0.3 Ω.导轨电阻不计.使金属棒以恒定速度v =1.0 m/s 沿导轨向右穿越磁场.计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图(b)中画出.解析 t 1=Dv=0.2 s在0~t 1时间内,A 1产生的感应电动势E 1=BLv =0.18 V. 其等效电路如图甲所示. 由图甲知,电路的总电阻甲R 总=r +rR r +R =0.5 Ω 总电流为I =E 1R 总=0.36 A通过R 的电流为I R =I3=0.12 AA 1离开磁场(t 1=0.2 s)至A 2刚好进入磁场(t 2=2Dv =0.4 s)的时间内,回路无电流,I R =0,乙从A 2进入磁场(t 2=0.4 s)至离开磁场t 3=2D +Dv=0.6 s 的时间内,A 2上的感应电动势为E 2=0.18 V ,其等效电路如图乙所示.由图乙知,电路总电阻R 总′=0.5 Ω,总电流I ′=0.36 A ,流过R 的电流I R =0.12 A ,综合以上计算结果,绘制通过R 的电流与时间关系如图所示.10、(2011·重庆理综·23)有人设计了一种可测速的跑步机,测速原理如图所示.该机底面固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R .绝缘橡胶带上镀有间距为d 的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻.若橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率; (2)电阻R 消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功.答案 (1)U BL (2)U 2R (3)BLUd R解析 (1)设该过程产生的感应电动势为E ,橡胶带运动速率为v . 由:E =BLv ,E =U ,得:v =U BL. (2)设电阻R 消耗的电功率为P ,则P =U 2R.(3)设感应电流大小为I ,安培力为F ,克服安培力做的功为W . 由:I =U R ,F =BIL ,W =Fd ,得:W =BLUdR.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲 电磁感应与电路思想方法提炼电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。

题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。

在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。

高考的热点问题和复习对策:1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧.2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。

要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。

3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。

此部分涉及的主要内容有: 1.电磁感应现象.(1)产生条件:回路中的磁通量发生变化.(2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流.(3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路.2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同.3.楞次定律三种表述:(1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接(1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识.(2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. (3)能的转化与守恒定律. 感悟 · 渗透 · 应用【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直导线向下运动,Ⅱ沿平行长直导线方向 平动,Ⅲ绕其竖直中心轴OO ′转动. (1)在这三个线框运动的过程中, 哪些线框中有感应电流产生?方向如何? (2)线框Ⅲ转到图示位置的瞬间,是否 有感应电流产生?【解析】此题旨在考查感应电流产生的条件.根据直线电流周围磁场的特点,判断三个线框运动过程t∆∆Φ中,穿过它们的磁通量是否发生变化.(1)长直导线通有自左向右的恒定电流时,导线周围空间磁场的强弱分布不变,但离导线越远,磁场越弱,磁感线越稀;离导线距离相同的地方,磁场强弱相同.线框Ⅰ沿垂直于导线方向向下运动,穿过它的磁通量减小,有感应电流产生,电流产生的磁场方向垂直纸面向里,根据楞次定律,感应电流的磁场方向也应垂直纸面向里,再由右手螺旋定则可判断感应电流为顺时针方向;线框Ⅱ沿平行导线方向运动,与直导线距离不变,穿过线框Ⅱ的磁通量不变,因此线框Ⅱ中无感应电流产生;线框Ⅲ绕OO ′轴转动过程中,穿过它的磁通量不断变化,在转动过程中线框Ⅲ中有感应电流产生,其方向是周期性改变的.(2)线框Ⅲ转到图示位置的瞬间,线框中无感应电流,由于长直导线下方的磁场方向与纸面垂直,在该位置线框Ⅲ的两竖直边运动方向与磁场方向平行,不切割磁感线,所以无感应电流;从磁通量变化的角度考虑,图示位置是线框Ⅲ中磁通量从增加到最大之后开始减小的转折点,此位置感应电流的方向要发生变化,故此时其大小必为0.【解题回顾】对瞬时电流是否存在应看回路中磁通量是否变化,或看回路中是否有一段导体做切割磁感线运动,要想知道线框在磁场中运动时磁通量怎样变化,必须知道空间的磁场强弱、方向分布的情况,对常见磁体及电流产生的磁场要相当熟悉.【例2】如图所示,在倾角为θ的光滑的斜面上,存在着两个磁感应强度相等的匀强磁场, 方向一个垂直斜面向上,另一个垂直斜面向下, 宽度均为L ,一个质量为m ,边长也为L 的正方形线框(设电阻为R)以速度v 进入磁场时, 恰好做匀速直线运动.若当a b 边到达gg ′与ff ′ 中间位置时,线框又恰好做匀速运动,则:(1)当a b 边刚越过ff ′时,线框加速度的值为多少? (2)求线框开始进入磁场到a b 边到达gg ′与ff ′ 中点的过程中产生的热量是多少?【解析】此题旨在考查电磁感应与能量之间的关系.线框刚越过ff ′时,两条边都在切割磁感线,其电路相当于两节相同电池的串联,并且这两条边还同时受到安培力的阻碍作用. (1)a b 边刚越过ee ′即做匀速直线运动,表明线框此时所受的合力为0,即 在a b 边刚越过ff ′时,a b 、cd 边都切割磁感线产生感应电动势,但线框的运动速度不能突变,则此时回路中的总感应电动势为E ′=2BLv ,设此时线框的加速度为a ,则2BE ′L/R-mgsin θ=m a ,a =4B 2L 2v/(Rm)-gsin θ=3gsin θ,方向沿斜面向上.(2)设线框再做匀速运动时的速度为v ′,则mgsin θ=(2B 2L 2v ′/R)×2,即v ′=v/4,从线框越过ee ′到线框再做匀速运动过程中,设产生的热量为Q ,则由能量守恒定律得:【解题回顾】电磁感应过程往往涉及多种能量形式的转化,适时选用能量守恒关系常会使求解很方便,特别是处理变加速直线运动或曲线运动问题. 【例3】如图所示,d a 、cb 为相距L 的平行导轨(电阻可以 忽略不计).a 、b 间接有一个固定LRBLvB mg ⋅⋅=θsin 2223215sin 23'2121sin 23mv mgL mv mv L mg Q +=-+⋅=θθ电阻,阻值为R.长直细金属杆 MN 可以按任意角架在水平导轨上, 并以速度v 匀速滑动(平移),v 的方向和d a 平行. 杆MN 有电阻,每米长的电阻值为R.整个空间充满匀强磁场,磁感应强度的大小为B ,方向垂直纸面(dabc 平面)向里(1)求固定电阻R 上消耗的电功率为最大时θ角的值 (2)求杆MN 上消耗的电功率为最大时θ角的值.【解析】如图所示,杆滑动时切割磁感线而产生感应电动势E=BLv ,与θ角无关.以r 表示两导轨间那段杆的电阻,回路中的电流为:(1)电阻R 上消耗的电功率为:由于E 和R 均与θ无关,所以r 值最小时,P R 值达最大.当杆与导轨垂直时两轨道间的杆长最短,r 的值最小,所以P R 最大时的θ值为θ=π/2.(2)杆上消耗的电功率为:P r = 要求P r 最大,即要求 取最大值.由于 显然,r=R 时, 有极大值 因每米杆长的电阻值为R ,r=R 即要求两导轨间的杆长为1m , 所以有以下两种情况:①如果L ≤1m ,则θ满足下式时r=R 1×sin θ=L 所以θ=arcsinL②如果L >1m ,则两导轨间那段杆长总是大于1m ,即总有r >R 由于在r >R 的条件下,上式随r 的减小而单调减小,r 取最小值时, 取最小值,取最大值,所以,Pr 取最大值时θ值为【例4】如图所示,光滑的平行导轨P 、Q 相距 L=1m ,处在同一水平面中,导轨左端接有如图所示 的电路,其中水平放置的平行板电容器C 两极板间 距离d=10mm ,定值电阻R 1=R 3=8Ω,R 2=2Ω,导轨 电阻不计. 磁感应强度B=0.4T 的匀强磁场竖直向下 穿过导轨面.当金属棒a b 沿导轨向右匀速运动(开关S 断开)时,电容器两极板之间质量m=1×10-14kg 、带电量Q=-1×10-15C 的微粒恰好静止不动;当S 闭合时,微粒以加速度a =7m/s 2向下做匀加速运动,取g=10m/s 2,求:(1)金属棒a b 运动的速度多大?电阻多大?(2)S 闭合后,使金属棒a b 做匀速运动的外力的功率多大?r R E I +=222)(r R RE R I P R +==222)(r R r E r I +=2)(r R r+])(1[41)(22R r R r R r R r +--=+2)(r R r+22)21()(R r R R r R r +-=+-2)(R r R r +-2)(R r r +2πθ=【解析】(1)带电微粒在电容器两极板间静止时,受向上的电场力和向下的重力作用而平衡,则得到:mg=求得电容器两极板间的电压由于微粒带负电,可知上极板电势高.由于S 断开,R 1上无电流,R 2、R 3串联部分两端总电压等于U 1,电路中的感应电流,即通过R 2、R 3的电流为:由闭合电路欧姆定律,a b 切割磁感线运动产生的感应电动势为E=U 1+Ir ① 其中r 为a b 金属棒的电阻当闭合S 后,带电微粒向下做匀加速运动,根据牛顿第二定律,有:mg-U 2q/d=m a求得S 闭合后电容器两极板间的电压:这时电路中的感应电流为 I 2=U 2/R 2=0.3/2A=0.15A根据闭合电路欧姆定律有 ② 将已知量代入①②求得E=1.2V ,r=2Ω 又因E=BLv∴v=E/(BL)=1.2/(0.4×1)m/s=3m/s即金属棒a b 做匀速运动的速度为3m/s ,电阻r=2Ω(2)S 闭合后,通过a b 的电流I 2=0.15A ,a b 所受安培力F 2=BI 2L=0.4×1×0.15N=0.06N a b 以速度v=3m/s 做匀速运动时,所受外力必与安培力F 2大小相等、方向相反,即F=0.06N ,方向向右(与v 同向),可见外力F 的功率为: P=Fv=0.06×3W=0.18W 【例5】已知某一区域的地下埋有一根与地面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此,可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度.当线圈平面平行地面时,a 、c 在两处测得试探线圈感应电动势为0,b 、d 两处测得试探线圈感应电动势不为0;当线圈平面与地面成45°夹角时,在b 、d 两处测得试探线圈感应电动势为0;经测量发现,a 、b 、c 、d 恰好位于边长为1m 的正方形的四个顶角上, 如图所示,据此可以判定地下电缆在 两点连线的 正下方,离地表面的深度为 m.【解析】当线圈平面平行地面时,a 、c 在两处测得试探线圈感应电动势为0,b 、d 两处测得试探线圈感应电动势不为0;可以判断出地下电缆在a 、c 两点连线的正下方;如图所示a ′c ′表示电缆,dU q 1V V q mgd U 11001.0101015141=⨯⨯==--A A R R U I 1.02813211=+=+=V Vqd a g m U 3.01001.0)710(10)(15142=⨯-⨯=-=--)(231312r R R R R R I E +++=当线圈平面与地面成45°夹角时,在b 、d 两处测得试探线圈感应电动势为0; 可判断出O ′b 垂直试 探线圈平面,则作出:Rt △OO ′b ,其中∠ObO ′=45° 那么OO ′=Ob= /2=0.71(m).【解题回顾】本题是一道电磁感应现象的实际应用的题目,将试探线圈产生感应电动势的条件应用在数学中,当线圈平面与地面成45°夹角时,在b 、d 两处测得试探线圈感应电动势为0,即电缆与在b 、d 两处时的线圈平面平行,然后作出立体几何的图形,便可用数学方法处理物理问题. 【例6】 在如图所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B ,导轨左端的间距为L 1=4L 0,右端间距为L 2=L 0。

相关文档
最新文档