分子生物学总结
分子生物学知识点总结

,宛本人自己总结,大家随便一看。
基因与基因组基因(gene ):储存有功能的蛋白质多肽链或 RNA 序列信息,及表达这些信息所必须的全部 核苷酸序列所构成的遗传单位。
1.顺式作用元件有:启动子和上游启动子元件,反应元件,增强子,沉默子,Poly 加尾信号 启动子:有方向性,转录起始位点上游,TATA 盒,B 地贫,与 RNA 聚合酶特异结合及启 动转录上游启动子元件:TATA 盒上游,与反式作用因子结合,调控基因转录效率。
CAAT 盒,GC 盒,CACA 盒—B 地贫反应元件:与激活的信息分子受体结合,调控基因表达增强子:与反式作用因子结合,基因表达正调控,无方向性沉默子:与反式作用因子结合,基因表达负调控Poly 加尾信号:结构基因末端 AATAAA 及下游富含 GT 或 T 区,多聚腺苷酸化特异因子, 在 3 末端加 200 个 A B 地贫1.除逆转录病毒外,通常为单倍体基因组。
逆转录病毒:单股正链二倍体 RNA ,三个结构基因,gag ,pol ,env ,5 端甲基化帽,3 端 poly 加尾。
HIV 免疫缺陷病毒,白血病病毒,肉瘤病毒感染细菌的病毒基因组与细菌相似,基因连续,感染真核细胞的病毒基因组与真核细胞相似, 有内含子,基因不连续。
3.基因组连续:冠状病毒,脊髓灰质炎病毒,鼻病毒4.编码区占大部分原核生物基因组1.由一条环状双链 DNA 分子组成,通常只有一个复制起点。
2.结构基因大多组成操纵子,形成多顺反子(mRNA )3.非编码区主要是调控序列。
(转录终止区可有强终止子有反向重复序列,形成茎环结构)4.存在可移动的 DNA 序列(转座因子:能够在一个 DNA 内或两个 DNA 间移动的 DNA 片 段转座因子:插入序列,转座子,可转座的噬菌体,转座作用的机制:复制性转座,简单转 座,共整合体,插入突变)5.编码区大于非编码区真核生物基因组1.有同源性的功能相关基因构成基因家族核酸序列相同,核酸序列高度同源,编码产物的功能或功能区相同,假基因2.真核基因为断裂基因,编码为单顺反子。
分子生物学总结

分子生物学总结1.分子生物学的三大原则根据“序列假说”、“中心法则”这两个基本原则,分子生物学作为所有生命物质的共性学科遵循“三大原则:其一,构成生物大分子的单体是相同的。
在动物、植物、微生物3大系统的所有生物物种间都具有共同的核酸语言,即构成核酸大分子的单体均是A、T(U)、C、G。
所有生物物种间都具有共同的蛋白质语言,即构成蛋白质大分子的单体均是20种基本氨基酸。
其二,生物大分子单体的排列决定了不同生物性状的差异和个性特征。
其三,所有遗传信息表达的中心法是相同的。
2.简述Morgan基因论经典基因概念:即基因是孤立的排列在染色体上的实体,是具有特定功能的,能独立发生突变和遗传交换的,“三位一体”的、最小的遗传单位。
3.简述“顺反子假说”的主要内容顺反子理论认为:基因(即顺反子)是染色体上的一个区段,在一个顺反子内有若干个交换单位,最小的交换单位被称为交换子。
在一个顺反子中有若干个突变单位,最小的突变单位被称为突变子。
在一个顺反子结构区域内,若果发生突变就会导致功能丧失,所以顺反子即基因只是一个具有特定功能的、完整的、不可分割的最小的遗传单位。
4.名词解释:等位基因、全同等位基因、非全同等位基因等位基因(allele):同一座位存在的两个不同状态的基因全同等位基因(homoallele):在同一基因座位(locus)中,同一突变位点(site)向不同方向发生突变所形成的等位基因非全同等位基因(heteroallele):在同一基因座位(locus)中,不同突变位点(site)发生突变所形成的等位基因5.简述DNA作为遗传物质的优点(自然选择的优势)DNA作为主要的遗传物质的优点在于:1)储存遗传信息量大,在1kb DNA序列中,就可能编码出41000种遗传信息2)以A / T, C / G 互补配对形成的双螺旋,结构稳定,利于复制,便于转录,可以突变以求不断进化,方便修复以求遗传稳定;3)核糖的2’ – OH 脱氧,使其在水中的稳定性高于RNA,DNA中有T无U,消除了C突变为U带来进化中的负担和潜在危险。
分子生物学总结(名词解释)

分子生物学总结(名词解释)1.基因组:细胞或生物体的一套完整单倍体的遗传物质的总和。
2.启动子:与基因表达启动相关的顺式作用元件,是结构基因的重要成分。
3.顺式作用元件:存在基因旁侧序列中能影响基因表达的序列,包括启动子,增强子,调控序列和可诱导元件等,本身不编码任何蛋白质,仅仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控。
4.反式作用因子:各顺式作用原件上参与调控靶基因转录效率的结合蛋白称为反式作用因子。
5.GU-AG法则:GU表示供体衔接点的5’端,AG表示纳体衔接点的3’端,把这种保守序列模式称作GU-AG法则。
6.ORF(开放读码框架):一组连续三联密码子组成的DNA序列,由起始密码子开始,到终止密码子结束,能翻译指导合成一段肽链。
7.SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的保守片段,它与16SrRNA3’端反向互补,可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
8.操纵子:指原核生物中由一个或多个相关基因和转录翻译调控元件组成的基因表达单元。
9.衰减子:原核生物的操纵子中可以明显衰减乃至终止转录作用的一段核苷酸序列,位于操纵子的上游。
10.定时定量PCR技术:利用带荧光检测的PCR仪对整个PCR过程中扩增DNA的累积速率绘制动态变化图,从而消除了终端产物丰度时较大变异系数的问题。
11.编码链(有义链):双链DNA中,不能进行转录的那一条DNA链,该链的核苷酸序列与转录生成的RNA的序列一致。
12.模板链(反义链):基因的DNA双链中,转录时作为mRNA合成模板的那条单链叫做模板链或反义链。
13.C值:一种生物单倍体基因组DNA的总量称为C值14.C值悖论:生物基因组的大小同生物进化的复杂程度不一致,这种现象被称作C值悖论。
15.TBP:是一种转录因子,特异性的与DNA中的TATA box结合。
16.TATA box(TATA框):真核生物中位于转录起始点上游约-25~-30bp 处的共同序列TATAATAAT,也称为TATA区。
完整版)分子生物学总结完整版

完整版)分子生物学总结完整版分子生物学是研究生命体系中分子结构和功能的学科。
它包括结构分子生物学、基因表达的调节与控制、DNA重组技术及其应用、结构基因组学、功能基因组学、生物信息学和系统生物学等方面。
在DNA和染色体方面,我们可以了解到DNA的变性和复性过程,其中Tm是指DNA双链结构被解开成单链分子时的温度。
热变性的DNA经缓慢冷却后即可复性,称为退火。
此外,假基因是指基因组中存在的一段与正常基因非常相似但不能表达的DNA序列,以Ψ来表示。
C值矛盾或C值悖论是指C值的大小与生物的复杂度和进化的地位并不一致。
转座是可移动因子介导的遗传物质的重排现象,而转座子则是染色体、质粒或噬菌体上可以转移位置的遗传成分。
DNA的二级结构特点包括由两条相互平行的脱氧核苷酸长链盘绕而成,碱基排列在外侧,两条链间存在碱基互补,通过氢键连系,且A=T、G≡C(碱基互补原则)。
真核生物基因组结构包括编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列,具有庞大的结构和含有大量重复序列。
Histon(组蛋白)具有极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5等特点。
核小体由组蛋白和200bp DNA组成。
转座机制是一种基因组重排的方式。
在转座时,插入的转座子会位于两个重复的靶序列之间,而受体分子中的靶序列会被复制。
根据复制方式的不同,转座可以分为复制型和非复制型转座。
DNA生物合成时,采用半保留复制的方式。
这种方式下,母链DNA会解开为两股单链,各自作为模板合成与之互补的子链。
其中一股单链从亲代完整地接受过来,而另一股则是全新合成的。
这样,两个子细胞的DNA都与亲代DNA的碱基序列一致。
复制子是生物体内能够独立进行复制的单位。
在DNA复制中,有前导链和滞后链两种链。
前导链是以3'→5'方向为标准的模板链,而滞后链则是以5'→3'方向为标准的模板链。
分子生物学总结

SectionA1 三个域:真细菌,古细菌,真核生物2 组装中得主要作用力:非共价健作用力SectionB1 蛋白质纯化得分析方法2正电荷:天冬氨酸谷氨酸负电荷:赖氨酸精氨酸组氨酸极性:天冬酰胺谷氨酰胺苏氨酸丝氨酸半胱氨酸非极性:脂肪族甘氨酸丙氨酸缬氨酸亮氨酸异亮氨酸甲硫氨酸脯氨酸芳香族苯丙氨酸酪氨酸色氨酸Cys 二硫键Gly 无手性Pro 亚氨基酸芳香族氨基酸最大吸收峰280mm3 蛋白质得一级(决定蛋白折叠及其最后得形状得最重要得因素):氨基酸脱水缩合形成肽链N端到C端共价键二级:多肽链中空间结构邻近得肽链骨架通过氢键形成得特殊结构。
α转角β螺旋氢键为主要作用力三级:多肽链中得所有二级结构与其她松散肽链区域(散环结构)通过各种分子间作用力(非共价键为主),弯曲、折叠成具有特定走向得紧密球状构象。
非共价键四级:许多蛋白分子由多条多肽链(亚基,subunits )构成。
组成蛋白得各亚基以各种非共价键作用力为主,结合形成得立体空间结构即为四级结构。
非共价键4 偶极:电子云在极性共价键得两原子间不均匀分布,使共价键两端得原子分别呈现不同得电性兼性离子:具有正电荷(碱性),又具有负电荷(酸性)得分子双极性分子:Section C1核酸得光学特性:增色性:一种化合物随着结构得改变对光得吸收能力增加得现象减色性:一种化合物随着结构得改变对光得吸收能力减少得现象Reason: 碱基环暴露在环境中得越多,对紫外得吸收力越强Absorbance(吸收值):Nucleotide > ssDNA/RNA > dsDNA核酸得最大吸收峰260mm(碱基有芳香环)芳香族氨基酸最大吸收峰280mmA260/A280:纯得dsDNA:1、8纯得RNA:2、0纯得Protein:0、52 Tm 值(熔解温度):热变性时,使得DNA双链解开一半所需要得温度。
Tm=2x(A+T) + 4x(G+C)Tm值与DNA分子得长度,及GC得含量成正比Annealing(退火):热变性得DNA经过缓慢冷却后复性快速冷却:Stay as ssDNA缓慢冷却: 复性成dsDNA3 脱氧核糖核酸与核糖核苷酸得到画法4 支持双螺旋结构得两个实验:查戈夫规则X射线晶体衍射5 双螺旋得内容:双链之间得关系:DNA分子由两条链组成双链反向平行(5’3’方向)两链得碱基通过氢键互补配对,A:T; G:C。
分子生物学知识点总结

分子生物学知识点总结分子生物学是研究生物体中分子结构、功能和相互作用的学科。
它在解释细胞和生命现象的分子基础方面发挥着重要作用。
以下是分子生物学的几个核心知识点总结:DNA的结构和功能DNA是生物体中遗传信息的储存和传递的分子。
它由核苷酸组成,每个核苷酸包含一个磷酸基团、一个五碳糖(脱氧核糖)和一个氮碱基。
DNA的双螺旋结构由两股互补的链组成,通过氢键相连。
DNA的功能包括遗传信息的复制、转录和翻译,是细胞遗传信息的储存库。
RNA的结构和功能RNA也是由核苷酸组成的分子,与DNA的结构类似,但包含的糖是核糖,而不是脱氧核糖。
RNA起到多种功能,其中包括转录DNA信息、参与蛋白质合成等。
mRNA是将DNA信息转录成蛋白质合成的模板,tRNA通过与mRNA和氨基酸的配对作用,在翻译过程中帮助氨基酸正确排列。
基因表达调控基因表达调控是细胞根据内外环境调节基因转录和翻译的过程。
它包括转录因子、启动子、启动子结合因子、RNA干扰等。
转录因子结合在DNA上的启动子区域,促进或抑制转录的发生。
通过不同的基因表达调控方式,细胞可以在不同的发育和环境条件下产生不同的蛋白质。
基因突变和遗传疾病基因突变是DNA序列发生突变或改变的现象。
它可以是点突变、插入突变、缺失突变等。
基因突变可能导致蛋白质功能的改变,从而引起遗传疾病。
例如,单基因遗传病如囊性纤维化和苯丙酮尿症,以及复杂遗传病如癌症,都与基因突变有关。
PCR技术聚合酶链反应(PCR)是一种体外扩增DNA的技术,可以从微弱的DNA样本中扩增特定片段。
PCR由三步循环组成:变性、退火和延伸。
它广泛应用于分子生物学研究、基因工程和医学诊断等领域。
基因克隆和DNA测序基因克隆是将特定的DNA片段插入载体DNA(如质粒)中,形成重组DNA分子。
通过基因克隆,可以大量复制目标DNA片段。
DNA 测序是确定DNA序列的过程,它有助于揭示基因的结构和功能,促进遗传学和进化生物学的研究。
分子生物学的研究方法例题和知识点总结

分子生物学的研究方法例题和知识点总结分子生物学是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。
它的研究方法多种多样,下面我们将通过一些例题来深入理解这些方法,并对相关知识点进行总结。
一、核酸提取与纯化核酸包括 DNA 和 RNA,是分子生物学研究的重要对象。
提取和纯化高质量的核酸是后续实验的基础。
例题:从植物叶片中提取总 DNA,需要经过哪些步骤?知识点:1、破碎细胞:使用机械研磨、酶解法等破坏细胞壁和细胞膜,释放出核酸。
2、去除杂质:通过加入蛋白酶 K 去除蛋白质,用酚/氯仿抽提去除酚类、多糖等杂质。
3、沉淀核酸:常用乙醇或异丙醇沉淀 DNA,离心后获得核酸沉淀。
4、洗涤和溶解:用 70%乙醇洗涤沉淀去除盐分,干燥后用适当的缓冲液溶解。
二、PCR 技术(聚合酶链式反应)PCR 是一种用于扩增特定 DNA 片段的技术。
例题:设计一对引物用于扩增某基因的特定片段,需要考虑哪些因素?知识点:1、引物长度:通常为 18 25 个核苷酸。
2、碱基组成:G + C 含量在 40% 60%之间,避免形成稳定的二级结构。
3、特异性:引物要与目的基因特异性结合,避免与其他序列有过多的同源性。
4、退火温度:根据引物的碱基组成计算退火温度,以保证扩增的特异性和效率。
PCR 的基本步骤包括:1、变性:高温使双链 DNA 解离为单链。
2、退火:降低温度,引物与单链 DNA 结合。
3、延伸:在 DNA 聚合酶的作用下,从引物 3'端开始合成新的DNA 链。
三、基因克隆基因克隆是将目的基因插入到载体中,导入宿主细胞进行复制和表达。
例题:简述构建重组质粒的过程。
知识点:1、目的基因获取:可以通过 PCR 扩增、从基因文库中筛选等方法获得。
2、载体选择:常见的载体有质粒、噬菌体等,要根据实验需求选择合适的载体。
3、酶切和连接:用相同的限制性内切酶分别切割目的基因和载体,然后用 DNA 连接酶将它们连接起来。
分子生物学总结知识点

分子生物学总结知识点分子生物学总结知识点在日常的学习中,大家都背过各种知识点吧?知识点就是掌握某个问题/知识的学习要点。
掌握知识点是我们提高成绩的关键!下面是店铺精心整理的分子生物学总结知识点,仅供参考,欢迎大家阅读。
分子生物学总结知识点11、生物体生命活动的物质基础是:组成生物体的各种化学元素和化合物。
2、大量元素: C、H、O、N、P、S、K、Ca、Mg微量元素:Fe、Mn、B、Zn、Cu、Mo、Cl、Ni (生物体必不可少的元素,但需要量很少)基本元素:C (也是生命的核心元素)主要元素:C、H、O、N、P、S (6种,占生物体总量的97%以上)矿质元素:N、P、S、K、Ca、Mg、Fe、Mn、B、Zn、Cu、Mo、Cl、Ni (14种)(糖类:C、H、O;脂肪:C、H、O;血红蛋白:C、H、O、N、Fe ;叶绿素:C、H、O、N、Mg;甲状腺激素:C、H、O、N、I;核酸:C、H、O、N、P; ATP: C、H、O、N、P;纤维素:C、H、O)3、自然界中含量最多的元素是O;占人体细胞干重最多的元素是C,占细胞鲜重最多的元素是O。
4、C、H、O、N四种元素含量比较:鲜重:O C H N;干重:C O N H5、组成生物体的化学元素的种类大体相同,但含量相差很大。
6、生物界与非生物界具有统一性:组成细胞的元素在无机自然界都可以找到,没有一种是细胞所特有的。
生物界与非生物界具有差异性:细胞与非生物相比,各种元素的含量又大不相同。
7、还原糖(葡萄糖、果糖、麦芽糖) + 斐林试剂—→(Cu2O)砖红色沉淀(条件是水浴加热)脂肪 + 苏丹Ⅲ—→橘黄色(或脂肪 + 苏丹Ⅳ—→红色)(使用50%的酒精的作用:洗去浮色)蛋白质 + 双缩脲试剂—→紫色反应(不需加热;若反应后颜色不为紫色,而为蓝色的原因:可能是加入的CuSO4溶液过多,生成大量的Cu(OH)2遮盖所产生的紫色)8、斐林试剂要现配现用,必须将甲液(0、1g/ml的NaOH)和乙液(0、05g/ml的CuSO4)先等量混匀后使用;双缩脲试剂使用时应先向蛋白质中加甲液(0、1g/ml的NaOH),混匀后再加乙液(0、01g/ml的CuSO4)9、在可溶性还原糖、脂肪、蛋白质鉴定中要用显微镜的是:脂肪的鉴定;需要加热的是:还原糖的鉴定;不发生化学反应的是:脂肪的鉴定。
分子生物学总结 PPT课件共32页

第三章 复制
一、DNA复制概况
▪ 概念: Replicon、 replication bubbles、 Replication
fork、 semi-coservative replication、 semidiscontinuocos replication、 Okazaki fragment、 leading strand、 lagging strand
组成 • 端粒结合蛋白 • 端粒的功能(※) :保护染色体结构和功能的
完整性 • 端粒酶的作用机制 • 端粒、端粒酶与衰老、肿瘤的关系※
第四章 转录和转录后加工
转录
• 1.概念(※) :transcription、 promoter、 terminator、 read-through、 transcription factors、 Cis-acting elements、 Trans-acting factors、 ribozyme、 alternative splicing、
• 疾病: Thalassemia(地中海贫血)
3. discontinuous gene
• 概念※ :不连续基因(discontinuous gene ) 、
外显子(exon ) 、内含子(intron ) • 证据(理解):R环结构、限制性内切酶分析 • 外显子和内含子的连接区 • (※) … …的可变调控: 组成性剪接、选择性
• 2.概述:转录和DNA复制的区别、 Template(模板) • 3.E.coli RNA聚合酶:全酶 、核心酶 、功能
• 4.转录过程
• 模板的识别:启动子、 -10序列、-35序列
• 起始
• 延伸
• 终止:不依赖ρ因子的终止子、依赖于ρ因子的终止子
分子生物学总结

分⼦⽣物学总结分⼦⽣物学总结第⼀章绪论⼀. DNA重组技术和基因⼯程技术.DNA重组技术⼜称基因⼯程,⽬的是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达.产⽣影响受体细胞的新的遗传性状.基因⼯程技术还包括其他可能使⽣物细胞基因组结构得到改造的体系.第⼆章染⾊体与DNA⼀. DNA的⼀、⼆、三级结构特征.DNA⼀级结构特征1. 双链反向平⾏配对⽽成2. 脱氧核糖和磷酸交替连接,构成DNA⾻架,碱基排在内侧3. 内侧碱基通过氢键互补形成碱基对DNA⼆级结构特征绕DNA双螺旋表⾯上出现的螺旋沟,宽的沟称为⼤沟,窄沟称为⼩沟。
⼤沟,⼩沟都、是由于碱基对堆积和糖-磷酸⾻架扭转造成的。
DNA三级结构特征拓扑异构酶拓扑异构酶负超螺旋松弛DNA 正超螺旋溴已啶溴已啶⼆. 原核⽣物DNA具有哪些不同于真核⽣物DNA的特征.1. 结构简练2. 存在转录单元3. 有重叠基因三. DNA复制通常采取哪些⽅式.1. 线性DNA双链的复制.2. 环状DNA双链的复制分为θ型、滚环型和D-环型等.四. 原核⽣物DNA的复制特点.1. DNA双螺旋的解旋2. DNA复制的引发3. 冈崎⽚段与半不连续复制4. 复制的终⽌5. DNA聚合酶五. 细胞通过哪⼏种修复系统对DNA损伤进⾏修复?1. 错配修复2. 碱基切除修复3. 核苷酸切除修复4. DNA直接修复六. 什么是转座⼦?可分为哪些种类?转座⼦是存在与染⾊体DNA上可⾃主复制和位移的基本单位原核⽣物转座⼦的类型: 1. 插⼊序列 2. 复合转座⼦ 3. TnA家族第三章⽣物信息的传递(上)⼀. 什么是编码链?什么是模板链?与mRNA序列相同的那条DNA链称为编码链;将另⼀条根据碱基互补原则指导mRNA合成的DNA链称为模板链。
三. 简述σ因⼦的作⽤.σ因⼦的作⽤是负责模板链的选择和转录的起始,它是酶的别构效应物,使酶专⼀性识别模板上的启动⼦.四. 什么是Pribnow box?它的保守序列是什么?RNA聚合酶全酶与模板DNA结合后,⽤DNase I⽔解DNA,然后⽤酚抽提,沉淀纯化DNA后得到⼀个被RNA聚合酶保护的DNA⽚段,约有41-44个核苷酸对.在被保护区内有⼀个由5个核苷酸组成的共同序列,是RNA聚合酶的紧密结合点,称为Pribnow box. Pribnow区的保守序列是: TTGACA五. 简述原核⽣物和真核⽣物mRNA的区别.(⼀)原核⽣物mRNA的特征1、半衰期短2、多以多顺反⼦的形式存在3、5’ 端⽆“帽⼦”结构, 3’ 端没有或只有较短的polyA 结构。
分子生物学总结

名词解释1.遗传密码:mRNA上每3个核苷酸翻译成多肽链上的一个氨基酸,这3个核苷酸称一个密码子(三联子密码)。
2.下游启动子:3.分子伴侣:细胞中一类能够识别并结合到不完全折叠或装配的蛋白质上以帮助这些多肽正确折叠、转运或防止它们聚集的蛋白质,其本身不参与终产物的形成。
4.半保留复制:DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。
这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样。
因此每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式称DNA的半保留复制。
5.信号肽:在起始密码子之后,有一段编码疏水性氨基酸序列的RNA区域,被称为信号肽序列,它负责把蛋白质引导到细胞内不同膜结构的亚细胞器内。
6.C值谬误/矛盾:总体上说,生物基因组的大小与种系的进化复杂性之间不一致,某些低等生物具有较大的C值,这种现象称为C值矛盾7.转录元件:是一段可被RNA聚合酶转录成一条连续MRNA链的DNA,包括转录起始和终止信号,一个简单的转录单位只携带合成一种蛋白的信息,符合转录单位可携带不止一种蛋白质分子的信息。
8.无义突变:在DNA序列中任何导致编码氨基酸的三联子密码子转变为终止密码子(UAG、UGA、UAA)的突变,它使蛋白质合成提前终止,合成无功能的或无意义的多肽。
9.端粒酶:一种自身携带模板的逆转录酶,由RNA和蛋白质组成,RNA组分中含有一段短的模板序列与端粒DNA的重复序列互补,而其蛋白质组分具有逆转录酶活性,以RNA为模板催化端粒DNA的合成,将其加到端粒的3′端,以维持端粒长度及功能。
10.强终止子:内在终止子,不依赖于Rho蛋白质辅助因子(ρ因子)而能实现终止作用的终止子。
11.启动子:是一段位于结构基因5’端上游区的DNA序列,能够活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性。
12.阻遏蛋白:是指转录调控系统中调节基因表达产物丰富的蛋白质,其作用部位往往是操纵子的操纵区,起着阻止结构基因转录的作用。
分子生物学重点知识总结

分子生物学重点知识总结分子生物学一、名词解释1.ORF答:ORF是XXX的缩写,即开放阅读框架。
在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。
2.结构基因答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。
3.断裂基因答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或RNA的核酸序列,还包括保证转录所必需的调控序列、位于编码区5'端与3'端的非编码序列和内含子。
真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。
4.选择性剪接答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中经由过程不同的剪接体式格局(选择不同的剪接位点组合)发生不同的mRNA剪接异构体的过程,而终究的蛋白产物会表现出不同大概是相互拮抗的功能和布局特征,大概,在相同的细胞中由于表达程度的不同而招致不同的表型。
5.C值答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。
6.生物大分子答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。
常见的生物大分子包括蛋白质、核酸、脂类、糖类。
7.酚抽提法答:酚抽提法最初于1976年由Stafford及其同事提出,经由过程改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破裂细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,按照不同需要进行透析或沉淀处理获得所需的DNA样品。
8.凝胶过滤层析答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。
分子生物学考点总结

02 D. 细胞分裂
03
2. 在分子生物学中,DNA的哪种特性使其成为遗传
信息的载体?
选择题
01
A. 稳定性
02
B. 可复制性
03
C. 可变性
04
D. 可转录性
填空题
1. DNA的基本组成单位是________。 2. ________是指DNA分子中碱基对的排列顺序。
3. ________是指DNA分子中特定的碱基序列,可以控制蛋白质的合成。
率和品质。
生物农药
03
利用微生物或其代谢产物,开发高效、低毒、低残留的生物农
药,替代化学农药。
工业生物技术
生物催化
利用酶或其他生物催化剂,在温和条件下进行有机合成和降解, 降低能耗和环境污染。
生物材料
利用生物分子或微生物,制备具有特殊性能的生物材料,如可降 解塑料、生物纤维等。
生物制药
利用分子生物学技术,生产高纯度、高质量的药物,降低制药成 本和提高生产效率。
受体作用
细胞受体能识别信号分子并与其结合,进而触发一系 列的信号转导反应。
信号转导途径
信号转导途径是指信号分子与受体结合后,通过一系 列的信号传递过程,最终导致细胞反应的过程。
基因表达与调控
基因表达
基因表达是指基因经过转录和翻译过程,将遗传信息转化为具有功能的蛋白质的过程。
基因调控
基因调控是指对基因表达的启动、维持和终止过程进行调节和控制,以实现对细胞功能和代谢活 动的精细调节。
蛋白质组学分析
蛋白质组学
研究细胞中所有蛋白质的表达、修饰和功能情况。
蛋白质相互作用分析
通过实验手段研究蛋白质之间的相互作用关系,揭示蛋白质的功能网络。
分子生物知识点总结

分子生物知识点总结1. DNADNA(脱氧核糖核酸)是生物体内存储遗传信息的一种生物分子。
DNA分子由磷酸、五碱基、核糖和脱氧核糖等部分组成。
DNA的功能主要包括两个方面:遗传物质和蛋白质合成。
DNA的双螺旋结构由Watson和Crick在1953年提出,并由此得到了诺贝尔奖。
通过基因复制,DNA可以在细胞分裂时实现自我复制,确保遗传信息的传递。
2. RNARNA(核糖核酸)是存在于细胞内的一种核酸分子。
它在生物体内主要担负信息传递、蛋白质合成和基因调控等功能。
RNA分子与DNA有很多相似之处,但也有很多独特的结构和功能。
RNA分子在翻译过程中负责传递DNA上的遗传信息,并将其转化成蛋白质序列。
3. 蛋白质蛋白质是生物体内最基本的大分子,也是一种最为复杂的生化分子。
蛋白质在生物体内担任着多种不同的功能,包括酶的催化作用、结构支持、运输作用、调节功能等。
蛋白质的合成是通过翻译过程实现的,翻译将mRNA上的信息转化为氨基酸序列,后者进而折叠成特定的三维结构,从而体现出蛋白质特定的功能和生物学意义。
4. 基因组基因组是指生物体内全部基因的总和,既包括编码基因,也包括非编码序列。
基因组学是对基因组进行研究的学科,主要研究基因组的结构、功能和调控。
研究发现,不同物种之间的基因组具有很大的相似性,但也存在着显著的差异。
人类基因组计划的开展将有助于我们更深入地了解基因组的组成和功能。
5. 克隆技术克隆技术是指通过人工手段将生物体的某一部分分离出来,并培养出完整的个体。
其中最重要的技术是核移植技术,它包括质体移植、细胞核移植和胚胎分裂等技术手段。
克隆技术的应用,既有助于生物学研究的深入,也对农业、医学等领域有着重要的应用价值。
6. PCR技术PCR(聚合酶链式反应)技术是一种重要的核酸扩增技术,它可以在体外模拟DNA的复制过程,以此扩增DNA片段。
PCR技术的应用范围非常广泛,包括基因分型、疾病诊断、法医学鉴定等领域。
分子生物学知识点总结汇总

一、真核基因组的结构特点: 1.编码序列所占比例远小于非编码序列2.高等真核生物基因组含有大量的重复序列3.存在多基因家族和假基因4.基因通过可变前接能改变蛋白质的序列5.真核基因组DNA 与蛋白质结合形成染色体二、半保留复制的概念1.DNA 复制时除代DNA 双螺旋解开成为两条单链。
2.自作为模板按照碱基配对规律合成-条与模板相互补的新链,形成两个子代DNA 分子。
3.每一个子代DNA 分子中都保留有一条来自亲代的链。
★三、半不连续复制: 1.DNA 双螺旋结构中两股单链反向互补平行,一股链的方向为5' →3',另一股链的方向为3'→5'。
2.复制时合成的互补链方向则对应为3'→5和5'→3' 3' ,,而生物体内DNA 的合成方向只能是5'→3’。
3.复制时,顺着解链方向生成的一股子链其合成方向与解链方向相同,合成能连续进行,称为前导链; 4.而另一股子链的合成方向与解链方向相反,它必须等待模板链解开至一定长度后才能合成一段,然后又等待下一段模板暴露出来再合成合成是不连续进行的,称为后随链。
5.这种前导链连续复制而后随链不连续复制的方式称为半不连续复制。
这种前导链连续复制而后随链不连续复制的方式称为半不连续复制。
在复制中不连续合成在复制中不连续合成的DNA 片段称为冈崎片段。
★四、真核生物的DNA 聚合酶a 、β、γ、δ、ε1.DNA 聚合酶δ是复制中最重要的酶,主要负责子链的延长,相当于原核生物的DNA 聚合酶Ⅲ; 2.DNA 聚合酶a 主要催化合成引物; 3.聚合酶β、ε参与染色体DNA 的损伤修复; 4.聚合γ复制线粒体DNA 。
五、DNA 复制是如何实现高保真性的: 生物体至少有3种机制实现复制保真性: ①严格遵守碱基配对规律:A-T 配对,G-C 配对。
②聚合酶在复制延长中对碱基的选择功能:原核生物DNA DNA pol pol Ⅲ对嘌呤不同构型表现不同亲和力,从而实现其选择功能。
分子生物学知识点总结

分子生物学知识点总结分子生物学结构分子生物学部分绪论①总述:进化论、细胞学说、生化遗传学、DNA的发现②分子生物学:定义、研究内容(四方面)③发展史:里程碑④三个相关学科:生物化学、细胞生物学、遗传学⑤中心法则:经典、现代Ⅰ DNA ①结构:碱基比率、配对规则、种数(4n)、0.34nm的应用(碱基对M/2x,长度0.34×M/2x) ⑴三类DNA(ABZ):结构、形成、特点及Z-DNA的作用⑵质粒超螺旋:正负超螺旋定义、转化、意义、计算、主要以负超螺旋存在 3-⑶其它:0.34nm的计算、※DNA稳定因素(PO4)与Tm、Z-DNA不稳②性质⑴复性:五条件、机制(Cot曲线)、三个吸光度⑵修饰:甲基化(ACG)O⑶变性:DNA碱性全变性、90C以上全变性增色37%、增色效应(Tm)⑷水解:酸(PHGUG>UUG)、T1/2、原核特有SD序列②真核mRNA三类帽:0、1、2类定义③原核mRNA的SD序列:5‘,作用,结构Ⅴ蛋白质与核酶①结构域:②分子伴侣:分类、作用机制③核酶:定义、分类(剪接、剪切)剪切分三类:锤头、发夹、丁肝病毒核酶基因组学部分Ⅰ染色体①观察:有丝分裂中期光学显微镜可见②功能:遗传载体③作为遗传物质所需四要素:稳定、半保留复制、产生蛋白质、可变异Ⅱ真核基因组①组成:DNA(或RNA)+Protain(组、非组)②DNA:C值与C值反常现象、三序列(不重复、中度重复、高度重复)占序列比例,单/多拷贝③组蛋白:六种、特征(保守、特例、氨基酸不对称、修饰、H5-赖氨酸)④非组蛋白:三种常见,DNA结合蛋白的定义⑤真核基因组结构基础--核小体⑴组成:200bpDNA+八聚体⑵八聚体:2×(H2A+H2B+H3+H4)⑶结构:颗粒(八聚体+120bpDNA链,直径10nm,DNA链绕1.65圈) 连接DNA(80bpDNA 链+H1,H1作用)是负超螺旋⑥染色单体:螺线管、螺旋n倍⑦端粒与端粒酶⑴端粒:真核基因组末端,功能(防真核基因组末端结合)⑵端粒酶:反转录酶、功能(反转录成端粒、连接后随链所得的冈崎片段)、反转录机理(Ⅲ原核基因组①真原核基因组比较:大小(真核大,原核小)复杂度(断裂/连续、大多为调控/表达区、重复序列/重叠基因)复制(真核多向,原核单向)转录(单顺反子/多顺反子)真核特殊(DNA多态性、端粒)②真原核基因表达的比较:复制、表达连续性及机理Ⅳ真核基因组结构①hnRNA内含子:GU-AG法则,3‘嘧啶区,5‘保守区、3’上游18-50处的保守区②启动子:核心(TATA,决定转录起始位点)、识别RNA聚合酶(CG、CAAT,决定转录起始频率)③增强子:定义、结构、作用机制、特点、代表(β-珠蛋白基因)④终止子:两类(依赖/不依赖ρ因子)、结构特点、作用机理、穷追模型Ⅴ原核基因组结构①启动子:-35区(识别RNA聚合酶),-10区(结合RNA聚合酶)Ⅵ基因组学①几个定义:重叠基因、断裂基因、基因家族、基因簇、超基因家族、假基因、管家基因、奢侈基因、组织特异性基因②顺式与反式作用因子:⑴顺式作用元件:定义,启动子、增强子、沉默子⑵反式作用元件:定义,转录复合物③人类基因组计划:④比较基因组学:基因表达部分ⅠDNA复制①半保留复制:定义、意义、发现(N14N15)②半不连续复制:前导链、后随链、冈崎片段、过程、实验证明(电泳、30s)③复制起点:复制叉、复制子、复制起点特征④复制方式:线性-眼形,环状-3种(θ型、滚环型、D环型;各对应DNA种类、机制)⑤复制方向、速度:三种,以定点反向等速为主⑥复制所需酶、蛋白:拓扑异构酶(两类)、解旋酶、SSB(作用);引发酶;DNA聚合酶(见下)、DNA连接酶※ DNA聚合酶:原核:Ⅰ→Ⅴ结构与功能(聚合酶活性、外切酶活性),Ⅲ最主要真核:αβγωδ,αδ最主要功能总结:与连接酶共同作用(合成子链、损伤修复校正、补冈崎片段的连接处)⑦原核DNA复制过程及酶的作用:DNA解旋(三种酶)→引发(引物的作用)→延伸→终止⑧复制特点:子链复制方向:5’→3‘,原核、真核连续性⑨复制的调控:⑴原核:复制叉多少决定起始频率,起始频率直接调控因子—RNP ⑵真核:三个水平(细胞周期、染色体、复制子)Ⅱ DNA损伤与修复①损伤:三种(紫外线、脱氨、甲基化、氧化机制,对应修复法):碱基异常(U-G、T-G)②变异:基因突变基础、突变类型、突变后果③修复:切除(碱基、核苷酸),错配(Dam、5‘GATC3’),重组(先复制后修复),直接(光修复、去甲基化),SOS();各修复机理(所需酶)Ⅲ DNA转录与逆转录①转录的定义:转录、转录单元②转录特点:不对称(正负链定义、负链为模板,多基因DNA正负链相间);连续单向(mRNA5‘→3’);有起始终止位点(启动子、终止子定义);能力(双链强于单链及原因);不需完全解链③转录起始位点:定义、上下游表示法(-n/+n);原核启动子(-10区、-35区结构、功能,两区最佳间距)、真核启动子(TATA区、CAAT区、GC区结构、功能);启动子的上升/下降突变④转录所需酶、复合物:RNA聚合酶(见下);复合物(转录因子定义、分类、结构与功能)※ RNA聚合酶:真核:ⅠⅡⅢ(对应三种内含子),Ⅱ最主要,对应三种RNA(rRNA、hnRNA、tRNA),对α-鹅膏蕈碱敏感度(三类)原核:(α2ββˊ)σ:α2ββˊ为核心酶,ββˊ与原核启动子识别、结合,σ协助ββˊ。
高中生物分子生物学知识点归纳总结

高中生物分子生物学知识点归纳总结生物分子生物学是高中生物学的一部分,它研究生物体的组成、结构和功能,以及生物分子间的相互作用。
以下是对高中生物分子生物学的一些重要知识点的归纳总结。
1. 生物分子的种类生物体由许多不同种类的分子组成,包括蛋白质、核酸、脂质和碳水化合物。
蛋白质是细胞中最重要的分子,它们在生物体内发挥许多不同的功能,如结构支持、运输和储存物质以及代谢调节等。
核酸则是遗传信息的载体,包括DNA和RNA。
脂质是细胞膜的主要组成部分,起着保护和隔离细胞内外环境的作用。
碳水化合物则是能量的重要来源。
2. 生物分子的结构和功能蛋白质是由氨基酸组成的长链,具有不同的结构和功能。
它们可以通过氨基酸序列的不同排列来产生不同的结构和功能。
生物体内的许多重要生化反应都是由酶这种特殊的蛋白质催化的。
核酸的结构包括碱基、糖和磷酸基团,DNA和RNA的序列编码了生物体的遗传信息。
脂质是不溶于水的,它们在细胞膜中形成双层结构,起到维持细胞结构和调节物质进出的作用。
碳水化合物包括单糖、双糖和多糖,它们是细胞内能量的主要储存形式。
3. 生物分子间的相互作用生物分子之间的相互作用对生物体的结构和功能至关重要。
蛋白质与蛋白质、蛋白质与核酸、蛋白质与脂质之间都存在相互作用。
这些相互作用可以是非共价的,如氢键和疏水相互作用,也可以是共价的,如硫键。
这些相互作用决定了生物分子的结构和功能。
4. 代谢和酶作用代谢是指生物体中化学反应的总和。
酶是生物体内参与代谢反应的催化剂,它们可以加速化学反应的速率而不改变反应本身。
酶可以识别特定的底物,并与其结合形成酶底物复合物,然后通过降低活化能来促进反应。
酶的活性受到多种因素的影响,如温度、pH值和底物浓度等。
5. DNA复制与基因表达DNA复制是遗传信息的传递过程,它确保每次细胞分裂时,每个新细胞都获得完整的遗传信息。
DNA复制是由酶协同作用完成的,其中DNA聚合酶是最重要的酶之一。
基因表达是指从DNA到蛋白质的过程,包括转录和翻译两个步骤。
博士后生生物学分子生物学知识点归纳总结

博士后生生物学分子生物学知识点归纳总结生物学是研究生命的起源、发展和活动规律的科学领域,而分子生物学是生物学中的一个重要分支,致力于研究生物体内分子的结构、功能以及相互作用。
作为一位博士后研究学者,在分子生物学领域的研究中,要掌握一定的知识点才能更好地开展研究工作。
本文将对博士后生在分子生物学方面需要了解的知识点进行归纳总结。
1.细胞结构与功能细胞是生物体的基本单位,了解细胞的结构与功能对于研究分子生物学具有重要意义。
细胞由细胞膜、细胞质、核糖体、核膜和细胞器等组成。
细胞膜是细胞的保护屏障,同时也是物质进出细胞的渠道。
细胞质中有多种细胞器,如线粒体、内质网、高尔基体等,这些细胞器各自具有特定的功能,如能量供应、蛋白质合成和分泌等。
2.DNA结构与复制DNA是生物体内存储遗传信息的分子,了解DNA的结构与复制过程对于研究分子生物学至关重要。
DNA由核苷酸组成,包括脱氧核糖、磷酸基团和碱基。
DNA的复制是生物体进行细胞分裂和遗传信息传递的基础,它包括两个DNA链的分离、碱基配对和链合三个步骤。
3.基因与遗传基因是决定生物性状的遗传单位,了解基因的结构和功能有助于理解生物体的遗传过程。
基因由DNA编码,通过转录和翻译过程转化为蛋白质。
基因突变是遗传变异的重要原因,它可能导致生物个体的遗传性状发生改变。
4.蛋白质的合成与功能蛋白质是生物体中功能最为重要的分子,了解蛋白质的合成过程及其功能对于研究分子生物学具有关键作用。
蛋白质的合成包括转录和翻译两个过程,转录是将DNA转录为RNA,而翻译是将RNA翻译为氨基酸序列,最终形成蛋白质。
5.基因调控基因调控是分子生物学研究的热点领域,它涉及到细胞内部的多个信号传导通路以及特定转录因子的调控机制。
通常通过转录调控、转录后调控和表观遗传调控等多个层面来控制基因的表达。
6.细胞信号传导细胞内的信号传导网络负责调控细胞发育、生长和应激反应等生物过程。
了解细胞信号传导的机制对于理解细胞的正常功能和疾病发生有着重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章分子生物学概论第一节分子生物学的概念1,分子生物学的定义分子生物学:是研究生物大分子结构与功能的一门学科。
广义的讲,一切从分子水平研究生命奥秘的研究工作都是分子生物学。
2,分子生物学的三大原则a)构成生物大分子的单体是相同的:共同的核酸语言,共同的蛋白质语言。
b)生物遗传信息表达的中心法则相同:DNA←→RNA →(polypeptides)→protein→characterc)生物大分子单体的排列(核苷酸、氨基酸)的不同→不同的高级结构,不同的生物大分子之间的互作→不同的物种特性3,分子生物学研究的三大领域a)基因的分子生物学:基因的概念、结构、复制、表达、重组、交换(狭义的分子生学)b)结构生物学:生物大分子的结构与功能,生物大分子之间的互作(DNA-蛋白质,激素和受体,酶和底物)c)生物技术理论与应用:基因工程、细胞工程、酶工程、发酵工程、蛋白质工程二、分子生物学的发展简史三、分子生物学实际应用的现状和展望在现代分子生物学领域理论上的三大发现(1)40年代发现了生物的遗传物质是DNA。
l944年,Avery报道了著名的肺炎球菌的转化实验结果,证明了DNA是遗传物质。
(2)50年代搞清楚了DNA的双螺旋结构和半保留复制机理。
1953年,Walson和Crick提出了DNA结构的双螺旋模型。
对生命科学的发展,足以和达尔文学说、盂德尔定律相提并论。
(3)60年代确定了遗传信息的传递方式,确定遗传信息是以密码方式传递的,每三个核苷酸组成一个密码子,代表一个氨基酸。
到了1966年,Nirenberg、Ochoa以及Khorana等几组科学家的共同努力破译了64个密码子,编排了一本密码字典,叙述了中心法则。
从此,千百年来神秘的遗传现象,在分子水平上得到了揭示。
第二章核酸的性质前言遗传物质的本质第一节核酸结构第二节核酸的理化性质第三节核酸的光谱学和热力学特性第四节DNA超螺旋前言遗传物质的本质一、DNA携带两类不同的遗传信息1、遗传物质必须具有的特性DNA的特征a、贮存并表达遗传信息各异的碱基序列储存大量的遗传信息b、能把信息传递给子代碱基互补是其复制、转录表达遗传信息的基础c、物理和化学性质稳定生理状态下物理、化学性质稳定d、具有遗传变化的能力有突变和修复能力,可稳定遗传是生物进化的基础2、DNA携带两种遗传信息a、编码蛋白质和RNA的信息(编码tRNA、rRNA)64个三联体密码子,三个终止密码子,编码氨基酸的61个密码子有简并性、通用性b、编码基因选择性表达的信息* 原核生物的结构基因占Genome的比例很大* 真核生物的结构基因占Genome的比例很小其余80%以上的DNA起什么作用目前还无法精确解释,但可以肯定其中大部分DNA 序列是编码基因选择性表达的遗传信息表现在:细胞周期的不同时相中,个体发育不同阶段,不同的器官和组织,不同的外界环境下各种基因的表达与否以及量的差异。
所以又称--调控序列二、RNA也可作为遗传物质* RNA病毒传染媒介是病毒颗粒(病毒基因组RNA、蛋白质外壳)* 类病毒(viroid)使高等植物产生疾病的传染性因子,只由RNA组成三、是否存在核酸以外的遗传物质朊病毒---蛋白质样的感染因子羊搔痒病(scripie) ,人类库鲁(kuru)病,牛海绵状脑炎(疯牛病)均由传染性病原蛋白颗粒引起,统称Prion (朊病毒)第一节核酸结构一、含氮碱基、核苷、核苷酸☉碱基Nitrogenous bases:嘧啶Pyrimidines,嘌呤Purines☉核苷(nucleotide)糖苷键Glycosidic bond:嘧啶的1位N原子、嘌呤的9位N原子核糖是戊糖:RNA-核糖核苷,DNA-脱氧核糖核苷核糖核苷三磷酸缩写为NTP二、DNA分子的一级结构(DNA sequence)1、多聚核苷酸链,主链是核糖和磷酸侧链为碱基,由3‘,5‘磷酸二酯键连接2、链的方向:同一个磷酸基的3‘酯键到5‘酯键的方向5‘-UCAGGCUA-3‘= UCAGGCUA默认书写顺序5‘→3‘3、DNA双螺旋模型的提出(double helix model)* 提出:1953. Watsosn & Crick 右手B- DNA Double helix Model* 双螺旋的主链:每一单链具有5‗→3‘极性,两条单链极性相反,反向平行,两条单链间以氢键连接,以中心为轴,向右盘旋(直径2nm),双螺旋中存在大、小沟,碱基互补* 双螺旋模型参数1)·直径20Å2)·螺距为34Å(任一条链绕轴一周所升降的距离)3)·每圈有10个核苷酸(碱基)4)·两个碱基之间的垂直,距离是3.4Å。
螺旋转,角是36度5)·有大沟和小沟,配对碱基并不充满双螺旋空间,且碱基对占据的空间不对称大、小沟的差异: a.大沟中碱基差异容易识别,往往是蛋b.小沟相对体现的信息较少4、双螺旋结构的基本形式·B-DNA 资料来自相对湿度为92%所得到的DNA钠盐纤维·此外人们还发现了A、C、D、E等右手双螺旋和左手双螺旋Z构象等形式DNA结构的多态性:几种不同的DNA双螺旋结构以及同一种双螺旋结构内参数存在差异的现象原因:多核苷酸链的骨架含有许多可转动的单键磷酸二酯键的两个P-O键、糖苷键、戊糖环各个键三、RNA structure1.单链核苷酸2.有时候形成不规则的螺旋二级结构3.球状构型与功能多样性相适应如tRNA, rRNA and snRNAC. Properties of nucleic acids修饰核酸Modified Nucleic AcidsModifications correspond to numbers of specific roles.For example, methylation of A and C to can avoid restriction digestion of endogenous DNA sequence.第二节核酸的理化性质Chemical and Physical Properties of Nucleic Acids:1.Stability of Nucleic Acids2.Effect of Acid & applications Chemical properties3.Effect of alkali & applications Chemical properties4.Chemical denaturation Chemical properties5.Viscosity & applications Physical properties6.Buorant density & application Physical properties核酸稳定性1.Hydrogen bonding (氢键)通常并不足以提供核酸或蛋白的稳定性对大分子的碱基间的配对具有特异性2. Stacking interaction(堆积作用)/hydrophobic interaction (疏水作用)核酸分子的稳定性的根源在于碱基之间的堆积作用酸效应Effect of Acid强酸+高温,如高氯酸中100度以上时,核酸完全水解成碱基,核糖/脱氧核糖,和磷酸pH 3-4 : 连接嘌呤和核糖的糖苷键易被水解断裂碱效应(Effect of Alkali )High pH (> 7-8) has subtle (small) effects on DNA structureHigh pH changes the tautomeric (互变异构)state of the bases脱氧核糖是其显著特点--DNA极其稳定的根本原因DNA在高pH值时磷酸酯键非常稳定,只是碱基存在构像的变化RNA 在高pH时则稳定性很差,由于2‗-OH导致的水解化学变性Chemical DenaturationUrea (H2NCONH2) (尿素): denaturing PAGEFormamide (HCONH2) (甲酰胺): Northern blotDisrupting the hydrogen bonding of the bulk water solution→Hydrophobic effect (aromatic bases) is reduced→Denaturation of strands in double helical structureViscosity(粘性)Reasons for the DNA high viscosity1.High axial ratio(高轴比)2.Relatively stiff (比较刚性)Applications:Long DNA molecules can easily be shortened by shearing force. Remember to avoid shearing problem when isolating very large DNA molecule.浮力密度Buoyant density1.7 g cm-3, a similar density to 8M CsClPurifications of DNA: equilibrium density gradient centrifugation第三节核酸的光谱学和热力学特性1.紫外吸收(UV absorption).核酸因含有苯环而吸收紫外光,最大吸收波长为260nm2.减色性(Hypochromicity)单一核苷酸在260 nm的光吸收值最大,其次单链,再双链,这是由于碱基在疏水环境中的堆积所造成的,这种光吸收的变化称为减色性。
3. 核酸定量Quantitation of nucleic acids消光系数Extinction coefficients: 1 mg/ml dsDNA has an A260 of 204.DNA纯度Purity of DNA A260/A280:纯dsDNA--1.8,若>1.8有RNA污染,若<1.8有蛋白污染纯RNA--2.0protein--0.55. 热变性Thermal denaturation/melting: heating leads to the destruction of double-stranded hydrogen-bonded regions of DNA and RNA.RNA: the absorbance increases gradually and irregularlyDNA: the absorbance increases cooperatively(协同地).melting temperature (Tm): the temperature at which 40% increase in absorbance is achieved.6. 复性Renaturation:Rapid cooling: only allow the formation of local base paring. Absorbance is slightly decreased Slow cooling: whole complementation of dsDNA. Absorbance decreases greatly andcooperatively. 退火Annealing: base paring of short regions of complementarity within or between DNA strands. (example: annealing step in PCR reaction)杂交Hybridization: renaturation of complementary sequences between different nucleic acid molecules. (examples: Northern or Southern hybridization)第四节DNA超螺旋1闭环DNA Closed circular molecule2.超螺旋supercoiled DNADNA双螺旋先扭曲后两端相连,这种被固定下来的变形称为超螺旋(扭曲方向与双螺旋方向相同为正,反之为负).3..拓扑异构体Topoisomer各个拓扑异构体之间的区别仅在于他们的连接数不同拓扑异构酶Topoisomerases :能够调控DNA分子超螺旋水平的酶称为拓扑异构酶Type I: break one strand of the DNA , and change the linking number in steps of ±1.Type II: break both strands of the DNA , and change the linking number in steps of ±2.拓扑异构酶拓扑异构体:只在连接数上有差别的同种DAN分子称为这种DNA的拓扑异构体拓扑异构酶(topoisomerase):催化DNA由一种拓扑异构体转变成另一种拓扑异构体的酶类拓扑异构酶的类别和特性:表格见PPT内容回顾:1、碱基、核苷、核苷酸的化学组成2、核酸的一级结构,书写方向3、Watson &Crick 的Double Helix Model:参数,大小沟,二级结构的多态性4、核酸的理化性质5、DNA超螺旋第三章原核与真核生物的染色体结构Chromosomes, chromatin, and the nucleosome Consider the structure of DNA within the cell, and the biological relevance of the structure.V ocabularyNucleus: 细胞核; Nucleolus: 核仁;Nucleoid: 类核Mitosis: 有丝分裂;Meiosis:减数分裂;interphase:分裂间期Chromotasome: 染色小体;Nucleosome: 核小体;Histone: 组蛋白Chromosome: 染色体;Chromatin: 染色质Centromere (中心粒)Telomere(端粒)Repetitive DNA (重复DNA) Tandem gene cluster(串联基因)D1 原核生物的染色体结构 Prokaryotic chromosomeD1-1 大肠杆菌染色体The E. coli chromosome1.大肠染色体由长4.6X106bp的单一闭环DNA组成2.DNA被包裹在拟核区域内,该区域内DNA 浓度高达30-50 mg/ml ,并包含着所有与DNA结合的蛋白如聚合酶,阻抑物及其他成分。