2021年人教版七年级数学下册第七章检测题及答案

合集下载

2021年人教版七年级下册数学 第七章 平面直角坐标系 单元卷(含答案)

2021年人教版七年级下册数学 第七章 平面直角坐标系 单元卷(含答案)

威家的位置用坐标表示是
;距离学校最近的是
家.
三、解答题 17. 已知点 A(-5,m+4)和点 B(4m+15,-8)是平行于 y 轴的直线上的两点,求 A, B 两点的坐标.
18. 图是某动物园平面示意图的一部分(图中小正方形的边长代表 100 米). (1)在大门东南方向上有哪些景点? (2)从大门径直向东走 300 米,再向北走 200 米,到达哪个景点? (3)以大门为坐标原点,正东方向为 x 轴正方向,正北方向为 y 轴正方向建立平面 直角坐标系,写出蛇山、水族馆及大象馆的坐标.
3. 【答案】B
4. 【答案】C [解析] 因为点 A(2,1)平移后落在点 A1(-2,2)处,所以线段 AB 是 先向左平移 4 个单位长度,再向上平移 1 个单位长度,所以点 B(3,-1)平移后的 对应点 B1 的坐标为(3-4,-1+1), 即 B1(-1,0).故选 C.
5. 【答案】D [解析] 由题意知 m+1-2m=0,解得 m=1,所以 P(1,-1).故选 D.
A.第一象限
B.第二象限 C.第三象限 D.第四象限
6. 小明为画一个零件的轴截面,以该轴截面底边所在的直线为 x 轴,对称轴为 y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取 1 mm,则图中转折 点 P 的坐标表示正确的是 ( )
A.(5,30)
B.(8,10)
C.(9,10)
D.(10,10)
2021 年人教版七年级下册数学 第七章 平面直角坐标系 单元卷
一、选择题 1. 已知 y 轴上的点 P 到 x 轴的距离为 3,则点 P 的坐标为( )
A.(3,0) B.(0,3)
C.(0,3)或(0,-3) D.(3,0)或(-3,0)

2020--2021学年人教版数学七年级下册第7章《平面直角坐标系》单元测试题(含答案)

2020--2021学年人教版数学七年级下册第7章《平面直角坐标系》单元测试题(含答案)

人教版数学七年级下册《平面直角坐标系》单元测试题一、选择题1.下列关于有序数对的说法正确的是( )A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置2.点P在第三象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.如果点P(m+3,m+1)在直角坐标系的x轴上,那么P点坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,-4)4.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点的坐标变化为( )A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)6.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为()A.(﹣4,3)B.(3,4)C.(﹣3,4)D.(4,3)7.如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为( )A.(﹣1,﹣1) B.(1,0) C.(﹣1,0) D.(3,0)8.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是( )A.(4,0) B.(0,4) C.(﹣4,0) D.(0,﹣4)9.已知点A(﹣3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是()A.(﹣3,3)B.(3,﹣3)C.(﹣3,3)或(﹣3,﹣3)D.(﹣3,3)或(3,﹣3)10.已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣511.若m是任意实数,则点P (m-4,m+1) 一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限12.将一组整数按如图所示的规律排列下去.若有序数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示的数为8,则(7,4)表示的数是()A.32B.24C.25D.-25二、填空题13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1),N(0,1),将线段MN平移后得到线段M′N′(点M,N分别平移到点M′,N′的位置).若点M′的坐标为(-2,2),则点N′的坐标为____________.14.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.15.点N(x,y)的坐标满足xy<0,则点N在第象限.16.在平面直角坐标系中,若将点P (-1,4) 向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为.17.已知点P在第四象限,它的横坐标与纵坐标之和为1,则点P的坐标为(写出一个即可)18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是.三、作图题19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为;(2)将△ABC向左平移7个单位,请画出平移后的△A′B′C′,若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M'的坐标为.四、解答题20.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?21.如图,机械手要将一个工件从图中的A处移动到B处,但是这个工件不能碰到图中的障碍(不包括坐标轴所表示的直线),试用坐标写出一条机械手在移动中可能要经过的路线(机械手的行走路线均经过格点).22.已知:A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出△ABC;(2)求△ABC的面积;(3)若点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.23.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C(7,3)、D(2,5).(1)填空:四边形ABCD内(边界点除外)一共有个整点(即横坐标和纵坐标都是整数的点);(2)求四边形ABCD的面积.24.如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点D与点A关于y轴对称,则点D的坐标为___;(2)将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为____;(3)求A,B,C,D组成的四边形ABCD的面积.25.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.参考答案1.C.2.B.3.B.4.B5.B.6.D.7.C.8.A.9.C.10.C.11.D12.D13.答案为:(2,4);14.答案为:(-3,5).15.答案为:二、四.16.答案为:(1,1)17.答案为:(2,﹣1)18.答案为:(504,2).19.解:(1)利用图形得出:点A的坐标为:(2,8),点C的坐标为:(6,6);(2)∵将△ABC向左平移7个单位,M为△ABC内的一点,其坐标为(a,b),∴平移后点M的对应点M'的坐标为:(a﹣7,b).20.解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2.(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1.21.解:答案不唯一,如:A(1,-2)→(5,-2)→(5,5)→(-4,5)→B(-4,3).22.解:(1)如图所示.(2)S△ABC=3×4-×2×3-×2×4-×2×1=12-3-4-1=4.(3)当点P在x轴上时,S△ABP=AO·BP=4,即×1·BP=4,解得BP=8,∴点P的坐标为(10,0)或(-6,0);当点P在y轴上时,S△ABP=BO·AP=4,即×2AP=4,解得AP=4,∴点P的坐标为(0,5)或(0,-3),∴点P的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).23.解:(1)填空:四边形ABCD内(边界点除外)一共有 13个整点.(2)如下图所示:∵S四边形ABCD=S△ADE+S△DFC+S四边形BEFG+S△BCGS△ADE=×2×4=4 S△DFC=×2×5=5 S四边形BEFG=2×3=6 S△BCG=×2×2=2 ∴S四边形ABCD=4+5+6+2=17 即:四边形ABCD的面积为1724.解:_(2,2) (2,-1)(3)15.5.25.解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2).∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.。

2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系章节测试练习题(含详解)

2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系章节测试练习题(含详解)

初中数学七年级下册第七章平面直角坐标系章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、根据下列表述,能确定位置的是( )A .光明剧院8排B .毕节市麻园路C .北偏东40°D .东经116.16°,北纬36.39°2、点P 的坐标为(﹣3,2),则点P 位于( )A .第一象限B .第二象限C .第三象限D .第四象限3、在平面直角坐标系中,点A 的坐标为()21,,将点A 向左平移3个单位长度,再向上平移1个单位长度得到点'A ,则点'A 的坐标为( )A .()12-,B .()50,C .()10-,D .()52,4、若点A (a ,b ﹣2)在第二象限,则点B (﹣a ,b +1)在第( )象限.A .一B .二C .三D .四5、在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为()1,1A --,()1,2B ,平移线段AB ,平移后其中一个端点的坐标为()3,1-,则另一端点的坐标为( )A .()1,4B .()5,2C .()1,4-或()5,2D .()5,2-或()1,4- 6、根据下列表述,不能确定具体位置的是( )A .电影院一层的3排4座B .太原市解放路85号C .南偏西30D .东经108︒,北纬53︒7、在平面直角坐标系中,点A (0,3),B (2,1),经过点A 的直线l ∥x 轴,C 是直线l 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .(0,1)B .(2,0)C .(2,﹣1)D .(2,3)8、若点P (2,b )在第四象限内,则点Q (b ,-2)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9、在平面直角坐标系中,对于平面内任一点(),m n ,规定以下两种变换:①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有:f [g (3,4)]=f (-3,-4)=(-3,4),那么g [f (-3,2)]等于( )A .(3,2)B .(3,-2)C .(-3,2)D .(-3,-2)10、在某个电影院里,如果用(2,5)表示2排5号,那么图框中的座次可以表示为( )A .()9,9B .()5,5C .()5,9D .()9,5二、填空题(5小题,每小题4分,共计20分)1、已知点(210,39)P m m --在第二象限,且离x 轴的距离为3,则|3||5|m m ++-=____.2、在平面直角坐标系中,点()1,23A a +到x 轴的的距离与到y 轴的距离相等,则=a _______.3、在平面直角坐标系中,将点P (﹣1,2)向右平移3个单位得到点Q ,则点Q 的坐标为 ___.4、如图,将△AOB 沿x 轴方向向右平移得到△CDE ,点B 的坐标为(3,0),DB =1,则点E 的坐标为 ___.5、已知当m,n都是实数,且满足2m﹣n=8时,称P(m﹣1,22n)为“和谐点”.若点A(a,2a﹣1)是“和谐点”,则点A在第____象限.三、解答题(5小题,每小题10分,共计50分)1、观察如图所示的图形,解答下列问题.(1)写出每个象限四个点的坐标,它们的坐标各有什么特点?(2)写出与x轴平行的线段上的四个点的坐标,并说说它们的坐标的特点.2、已知点P(2a﹣2,a+5).(1)点P在x轴上,求出点P的坐标;(2)在第四象限内有一点Q的坐标为(4,b),直线PQ y∥轴,且PQ=10,求出点Q的坐标.3、如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2).(1)求S四边形ABCO;(2)连接AC,求S△ABC;(3)在x 轴上是否存在一点P ,使S △PAB =8?若存在,请求点P 坐标.4、在平面直角坐标系中,点A 的坐标是()35,1a a -+.(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 在第二象限且到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标.5、如图所示,以直角△AOC 的直角顶点O 为原点,分别以OC 、OA 所在直线为x 轴、y 轴建立平面直角坐标系,点A (0,a ),C (c ,0),且240a c c -+-=.(1)C 点的坐标为 ,A 点的坐标为 ;(2)已知坐标轴上有两动点P 、Q ,两动点同时出发,P 点从C 点出发,沿x 轴负方向以每秒1个单位长度的速度匀速移动,Q 点从O 点出发,沿y 轴正方向以每秒2个单位长度的速度移动,Q 点到达A 点时,P 、Q 同时停止运动.AC 的中点D 的坐标是(2,4),设运动时间为t (t >0)秒,问:是否存在这样的t 值使ΔΔODP ODQ S S =? 若存在,请求出t 的值;若不存在,请说明理由.---------参考答案-----------一、单选题1、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:A.光明剧院8排,没有明确具体位置,故此选项不合题意;B.毕节市麻园路,不能确定位置,故此选项不合题意;C.北偏东40︒,没有明确具体位置,故此选项不合题意;D.东经116.16︒,北纬36.39︒,能确具体位置,故此选项符合题意;故选:D.【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.2、B【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.3、A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵点A 的坐标为(2,1),将点A 向左平移3个单位长度,再向上平移1个单位长度得到点A ′, ∴点A ′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).故选:A .【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.4、A【分析】先根据第二象限内点坐标符号可得0,20a b <->,再判断出,1a b -+的符号即可得.【详解】 解:点(,2)A a b -在第二象限,0,20a b ∴<->,即0,2a b <>,0,130a b ∴->+>>,则点,(1)B a b -+在第一象限,故选:A .【点睛】本题考查了判断点所在象限,熟练掌握各象限内的点坐标符号规律是解题关键.5、C【分析】分两种情况讨论,①A (−1,−1) 平移后的对应点的坐标为(3,−1),②B(1,2) 平移后的对应点的坐标为(3,−1),根据根据平移规律可得另一端点的坐标.【详解】解:①A(-1,-1)平移后得到点的坐标为(3,-1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2);①B(1,2)平移后得到点的坐标为(3,-1),∴向右平移2个单位,向下平移3个单位,∴A(-1,-1)的对应点坐标为(-1+2,-1-3),即(1,-4);综上,另一端点的坐标为(1,-4)或(5,2).故选:C.【点睛】本题主要考查了坐标与图形的变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.没有确定对应点时,注意分类讨论.6、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;故选C【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.7、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.8、C【分析】根据点P(2,b)在第四象限内,确定b的符号,即可求解.【详解】解:点P(2,b)在第四象限内,∴0b<,所以,点Q (b ,-2)所在象限是第三象限,故选:C .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.9、A【分析】根据题目中规定将点的坐标进行变换即可.【详解】解:()()()3,23,23,2g f g -=--=⎡⎤⎣⎦.故选:A .【点睛】本题考查点的坐标的规律,正确理解题意是解题关键.10、C【分析】根据有序数对的意义,直接写出座次的坐标即可.【详解】解:根据题意得:5排9号可以表示为()5,9,故选C .【点睛】本题主要考查用坐标表示位置,理解横纵坐标的意义,是解题的关键.二、填空题1、8【解析】【分析】根据题意可得393m -=,求出m 的值,代入|3||5|m m ++-计算即可.【详解】 解:点(210,39)P m m --在第二象限,且离x 轴的距离为3,393m ∴-=,解得4m =,|3||5|m m ∴++-71=+8=.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出m 的值是解本题的关键.2、-1或-2【解析】【分析】根据点A 到x 轴的距离与到y 轴的距离相等可得2a +3=1或2a +3=-1,据此解出a 的值.【详解】解:∵A 到x 轴的距离与到y 轴的距离相等,∴2a +3=1或2a +3=-1,解得a=-1或a=-2.故答案为:-1或-2.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.3、(2,2)【解析】【分析】点P向右平移3个单位,横坐标加3,纵坐标不变,进而得出点Q的坐标.【详解】解:将点P(﹣1,2)向右平移3个单位得到点Q,点Q的坐标为(13,2)-+,即(2,2),故答案为:(2,2).【点睛】此题考查了坐标与图形的变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.4、(5,0)【解析】【分析】先由点B坐标求得OB,进而求得OD,根据平移性质可求得点E坐标.【详解】解:∵点B的坐标为(3,0),∴OB=3,又∵DB =1,∴OD=OB -DB =3-1=2,∵△AOB 沿x 轴方向向右平移得到△CDE ,∴BE=OD=2,∴点E 坐标为(5,0),故答案为:(5,0).【点睛】本题考查坐标与图形变换-平移,熟练掌握平移变换规律是解答的关键.5、三【解析】【分析】 先设21,2n x m y +=-=将“和谐点”的定义进行改写,再根据“和谐点”的定义求出a 的值,由此即可得.【详解】 解:设21,2n x m y +=-=, 则1,22m x n y =+=-,22(1)(22)224m n x y x y ∴-=+--=-+,当2248x y -+=时,2x y -=,因此,“和谐点”的定义可改写为:已知当,x y 都是实数,且满足2x y -=时,称(,)P x y 为“和谐点”.点(,21)A a a -是“和谐点”,(21)2a a ∴--=,解得1a =-,则点A 的坐标为(1,3)A --,位于第三象限,故答案为:三.【点睛】本题考查了点坐标,正确将“和谐点”的定义进行改写是解题关键.三、解答题1、(1)见解析;(2)见解析.【解析】【分析】(1)结合坐标轴写出点坐标,由坐标可得其特点;(2)结合坐标轴写出点坐标,由坐标可得其特点;【详解】(1)第一象限点的坐标:()1,2,()2,2,()4,1,()5,4等,坐标的特点:横坐标为正实数,纵坐标为正实数;第二象限点的坐标:()1,3-,()1,5-,()3,4-,()5,5-等,坐标的特点:横坐标为负实数,纵坐标为正实数;第三象限点的坐标:()5,1--,()5,2--,()3,1--,()3,2--等,坐标的特点:横坐标为负实数,纵坐标为负实数;第四象限点的坐标:()2,1-,()2,2-,()41-,,()7,1-,坐标的特点:横坐标为正实数,纵坐标为负实数;(2)与x 轴平行的线段上的点的坐标:()8,1--,()5,1--,()41-,,()7,1-等,坐标的特点,纵坐标相等;【点睛】本题主要考查的是点的坐标的定义、坐标轴上点的特点、平行坐标轴的直线上的点的坐标特点,掌握相关知识是解题的关键.2、(1)(12,0)P -;(2)(4,2)Q -【解析】【分析】(1)P点在x轴上,所以纵坐标为0,可得a+5=0,据此可得a的值,进而得出点P的坐标;(2)平行于y轴的直线上的点的横坐标相等,据此可得a的值,再根据第四象限的点的坐标特征解答即可.【详解】解:(1)∵点P在x轴上,a=-,∴50a+=,解得:5∴2212a-=-,P-.∴(12,0)PQ y轴,(2)∵直线//∴224a-=,解得3a=,∴58a+=,P,∴(4,8)PQ=,∵点Q在第四象限内,且10Q-.∴8102b=-=-,∴(4,2)【点睛】本题主要考查平面直角坐标系内点的坐标特点,熟练掌握坐标轴上点的坐标特征、平行于坐标轴的直线上点坐标的特征、在第四象限内的点的坐标特征.3、(1)11;(2)7;(3)存在,(0,0)或(8,0).【解析】【分析】(1)如图1,过点B作BD⊥OA于点D,根据 S四边形ABCO=S梯形CODB+S△ABD,利用面积公式求解即可;(2)根据S△ABC=S四边形ABCO-S△AOC,利用面积公式求解即可;(3)设P(m,0),构建方程求出m即可.【详解】解:(1)如图1,过点B作BD⊥OA于点D,∵点A(4,0),B(3,4),C(0,2),∴OC=2,OD=3,BD=4,AD=4-3=1,∴S四边形ABCO=S梯形CODB+S△ABD=1(24)32⨯+⨯+1142⨯⨯=9+2=11;(2)如图2,连接AC,S△ABC=S四边形ABCO-S△AOC=11-1422⨯⨯=11-4=7;(3)设P(m,0),则有12×|m-4|×4=8,∴m=0或8,∴P(0,0)或(8,0).【点睛】本题考查了三角形的面积,坐标与图形的性质等知识,解题的关键是学会利用分割法求四边形面积,学会利用参数构建方程解决问题.4、(1)53a =,80,3⎛⎫⎪⎝⎭;(2)1a =,()2,2A - 【解析】【分析】(1)根据A 点在y 轴上可得35=0a -,解方程即可求出a 的值和A 点坐标;(2)根据点A 在第二象限且到x 轴的距离与到y 轴的距离相等,可得()351a a -=-+,解方程求解即可求出a 的值和A 点坐标.【详解】解:(1)点A 在y 轴上,∴350a -=,解得:53a =,813a +=,点A 的坐标为:80,3⎛⎫ ⎪⎝⎭; (2)点A 在第二象限且A 到x 轴的距离与到y 轴的距离相等,∴()351a a -=-+,解得:1a =,则点()2,2A -.【点睛】此题考查了平面直角坐标系中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中点的坐标特点.5、(1)( 4,0 ),( 0,8);(2)存在,t =2.【解析】【分析】(1)根据绝对值的非负性求得字母a c ,的值,即可求解;(2)运动时间为t 秒,求得线段OQ 、OP ,根据题意列方程求解即可.【详解】(1)∵240a c c -+-=∴20a c -= ,40c -=∴4c =,8a =∴A ( 0 , 8 ) 、C ( 4 , 0 ) ,故答案是:( 0 , 8 ) , ( 4 , 0 ) ;(2)存在由已知得P 点从C 点运动到O 点的时间为4秒,Q 点从O 点运动到A 点的时间为4秒,当04t <≤时,点Q 在线段AO 上,点P 在线段OC ,∴ CP t =,4OP t =-,2OQ t =, ∴()Δ11·448222ODP D S OP y t t ==-⨯=- Δ11·22222ODQ D S OQ x t t ==⨯⨯= ∵ΔΔODP ODQ S S =∴822t t -=∴2t =.【点睛】本题考查三角形综合题、非负数的性质、三角形的面积等知识,解题的关键是熟知三角形的面积公式,学会用转化的思想思考问题.。

人教版七年级数学下册第七章达标测试卷含答案

人教版七年级数学下册第七章达标测试卷含答案

人教版七年级数学下册第七章达标测试卷一、选择题(每小题3分,共30分)1.电影院中5排6号记为(5,6),则6排5号记为()A.(6,5) B.(6,-5)C.(-6,-5) D.(-6,5)2.点A(-3,5)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图是象棋盘的一部分,若在该象棋盘上建立直角坐标系,使“炮”的坐标为(-1,1),“象”的坐标为(3,-2),则“将”的坐标为()A.(1,-1) B.(1,-2)C.(-1,2) D.(-1,-2)4.已知在平面直角坐标系中,点Q的坐标为(m,n),且mn=0,则点Q在() A.坐标原点B.x轴上C.y轴上D.坐标轴上5.在下列各点中,与点A(-2,-4)的连线平行于y轴的是() A.(2,-4) B.(-2,4)C.(-4,2) D.(4,-2)6.已知平面直角坐标系内不同的两点A(a+2,4)和B(3,2a+2)到y轴的距离相等,则a的值为()A.-3 B.-5C.1或-3 D.1或-57.如图,广州动物园(记作A)在小明家(记作B)南偏西25°的方向上,且与小明家的距离是4 km,若∠ABC=90°,且AB=BC,则超市(记作C)在小明家(记作B)的()A.南偏东65°的方向上,相距4 kmB.南偏东55°的方向上,相距4 kmC.北偏东55°的方向上,相距4 kmD.北偏东65°的方向上,相距4 km8.已知N(a,b)是平面直角坐标系中第四象限内的一点,则化简b2+|b-a|的结果是()A.-a+2b B.aC.a-2b D.-a9.平面直角坐标系中,点A(-3,2),B(1,4),经过点A的直线l∥x轴,点C 是直线l上的一个动点,则当线段BC的长度最小时,点C的坐标为() A.(-1,4) B.(1,0)C.(1,2) D.(4,2)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到点P3(3,-2),…,按这样的运动规律,第2 023次运动到点P2 023,则点P2 023的坐标是()A.(2 023,1) B.(2 023,0)C.(2 023,-2) D.(2 023,2)二、填空题(每题3分,共15分)11.点(-3,5)到x轴的距离是________,到y轴的距离是________.12.若点P(a+1,2a-6)在x轴上,则点P的坐标为__________.13.已知点P(x,x+1),当x变化时,点P不可能在第______象限.14.对有序数对(m ,n )定义“f 运算”:f (m ,n )=(12m +a ,12n -b ),其中a ,b 为常数.当a =0,b =0时,f (-2,4)=________.15.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB平移到A 1B 1,点A 1,B 1的坐标分别为(2,a ),(b ,3),则a 2-2b 的值为________. 三、解答题(一)(每小题8分,共24分)16.已知在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (-3,-1),B (-2,-4),C (1,-3).(1)请在如图所示的平面直角坐标系中画出△ABC ;(2)若将△ABC 向上平移3个单位长度,再向右平移2个单位长度得到△A 1B 1C 1,请在如图所示的平面直角坐标系中画出△A 1B 1C 1.17.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 的面积分别为64和16.请写出点A ,E ,F 的坐标.18.已知点M 在第一象限,其横坐标是a 2-5的算术平方根,纵坐标是1,且点M 到y 轴的距离是到x 轴的距离的2倍. (1)求点M 的坐标; (2)求a 的值.四、解答题(二)(每小题9分,共27分)19.张超设计的广告牌草图如图所示(单位:m),张超想通过电话征求李强的意见.假如你是张超,你如何把这个草图告诉李强呢?(提示:建立平面直角坐标系)20.如图是汕头某学校的部分平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示食堂和图书馆;(3)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置.21.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直于点C,求C点的坐标.五、解答题(三)(每小题12分,共24分)22.如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).(1)求四边形ABCO的面积;(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,在图中画出得到的四边形A′B′C′O′,你能从中得到什么结论?(3)直接写出四边形A′B′C′O′的面积.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4 cm,OA=5 cm,DE=2 cm,动点P从点A出发,以每秒1 cm的速度,沿ABC路线向点C运动;动点Q从点O出发,以每秒2 cm的速度,沿OED 路线向点D运动.若P,Q两点同时出发,其中一点到达终点时,运动均停止.(1)直接写出B,C,D三点的坐标;(2)设P,Q两点运动的时间为t s,当0<t<4时,用含t的式子表示运动过程中△OPQ的面积;(3)当P,Q两点运动3 s时,求△PQC的面积.答案一、1.A 2.B 3.B 4.D 5.B 6.B7.A8.C9.C10.A二、11.5;312.(4,0)13.四14.(-1,2)15.-1三、16.解:(1)如图.(2)如图.17.解:∵正方形ABCD和正方形EFGC的面积分别为64和16,∴正方形ABCD 和正方形EFGC的边长分别为8和4.∴OG=8+4=12.∴A(0,8),E(8,4),F(12,4).18.解:(1)∵点M的纵坐标为1,且点M到y轴的距离是到x轴的距离的2倍,∴点M到y轴的距离为2,∴点M的横坐标为2或-2,又∵点M在第一象限,∴点M的坐标为(2,1).(2)根据题意,得a2-5=4,解得a=3或a=-3.四、19.解:建立平面直角坐标系,标出点(0,0),(0,5),(3,5),(3,3),(7,3),(7,0),再把各点依次连接,所得图案即为草图.(答案不唯一) 20.解:(1)建立的平面直角坐标系如图所示.(2)食堂(-5,5),图书馆(2,5).(3)如图所示.21.解:(1)根据题意,得m +1=-4.解得m =-5.∴m +3=-2,∴点A 的坐标是(2,-4),点B 的坐标是(-2,-4).∵2-(-2)=4,∴A ,B 两点间的距离为4.(2)∵l ∥x 轴,PC ⊥l ,∴PC ⊥x 轴.∴点C 的横坐标为-1. 又∵点C 在l 上,∴点C 的纵坐标为-4.∴C (-1,-4). 五、22.解:(1)S 四边形ABCO =12×2×1+12×(2+4)×4+12×4×1=1+12+2=15.(2)如图.四边形的形状和大小不变,只是将四边形ABCO 向左平移了3个单位长度,向下平移了2个单位长度.(3)S 四边形A ′B ′C ′O ′=15.23.解:(1)B (4,5),C (4,2),D (8,2).(2)根据题意,得S △OPQ =12OQ ·OA =12×2t ×5=5t (cm 2)(0<t <4).(3)当P ,Q 两点运动3 s 时,点P 坐标为(3,5),点Q 坐标为(6,0).过点P 作PM ⊥x 轴,垂足为点M ,延长BC 交x 轴于点N ,延长DC 交PM 于点K ,则有M (3,0),N (4,0),K (3,2).∴QM =3,CK =1,PK =3,KM =2,∴S △PQC =12×3×5-12×1×3-12×(1+3)×2=2.。

2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷及答案解析

2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷及答案解析

2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.106.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.87.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.19.在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,P A,若∠POA=m°,∠P AO=n°,则我们把(m°,n°)叫做点P的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(,)的“双角坐标”为;(2)若点P到x轴的距离为,则m+n的最小值为.20.如图,点A(0,1),点B(﹣,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A1OB1,使∠A1OB1=90°,使∠B1=30°;作OA2⊥A1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,……,以同样的作法可得到Rt△A n OB n,则当n=2018时,点B2018的纵坐标为.21.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2017B2018C2018的顶点B2018的坐标是.22.如图,已知正方形A1A2A3A4,A5A6A7A8,A9A10A11A12…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A2018的坐标为.23.如图,点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后动点P的坐标是.24.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2018次,点P依次落在点P1,P2,P3,P4,…P2018的位置,则P2018的横坐标x2018=.25.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为.26.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q 的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M(6,m)表示单车停放点,且满足M到A,B的“实际距离”相等,则m=.若点N表示单车停放点,且满足N到A,B,C的“实际距离”相等,则点N的坐标为.27.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当点P第2018次碰到长方形的边时,点P的坐标为.28.在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.29.如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.30.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P1,第2次碰到矩形的边时,记为点P2,…第n次碰到矩形的边时,记为点P n,则点P4的坐标是;点P125的坐标是.31.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.32.已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为.33.已知平面直角坐标系xOy中,点A(8,0)及在第一象限的动点P(x,),设△OP A 的面积为S.则S随x的增大而.(填“增大”,“不变”或“减小”)34.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),AB=AC =13,则点A的坐标为.35.无论m为何值,点A(m﹣1,m+1)不可能在第象限.36.对于任意实数x,点P(x,x2﹣4x)一定不在第象限.37.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.38.在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,﹣x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(a,b),对于任意的正整数n,点A n均在y轴的右侧,则a,b应满足的条件是.39.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,若△AOB内部(不包括边)的整点个数为3,则点B的横坐标的所有可能值是.40.平面直角坐标系中,点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P 的坐标是(任意写一个,正确即可).41.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值.三.解答题(共9小题)42.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(﹣2,1)、F(0,6),则这3点的“矩面积”=.(2)若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标.43.若点P(2a﹣4,a+2)是第二象限内的整点(横纵坐标都是整数),求满足条件的所有P点坐标.44.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.45.(1)在数轴上,点A表示数3,点B表示数﹣2,我们称A的坐标为3,B的坐标为﹣2;那么A、B的距离AB=;一般地,在数轴上,点A的坐标为x1,点B的坐标为x2,则A、B的距离AB=;(2)如图,在直角坐标系中点P1(x1,y1),点P2(x2,y2),求P1、P2的距离P1P2;(3)如图,△ABC中,AO是BC边上的中线,利用(2)的结论证明:AB2+AC2=2(AO2+OC2).46.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.47.已知A(0,a),B(﹣b,﹣1),C(b,0)且满足﹣|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y 轴交于点(0,﹣5).48.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A、B作x轴、y 轴的垂线交于点C,如图所示,点P从原点出发,以每秒1个单位长度的速度沿着O﹣B﹣C﹣A﹣O的路线移动.(1)写出A、B、C三点的坐标;A,B,C;(2)点P在运动过程中,当△OAP的面积为6时,求点P的坐标;(3)当P运动14秒时,连结O、P两点,将线段OP向上平移h个单位(h>0),得到O'P',若O'P'将四边形OACB的面积分成相等的两部分,求h的值.49.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为50.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【解答】解:观察发现:A1(2,4),A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),A6(﹣3,3)…∴依此类推,每4个点为一个循环组依次循环,∵2019÷4=504余3,∴点A2019的坐标与A3的坐标相同,为(﹣2,﹣2),故选:B.【点评】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)【分析】根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【解答】解:∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选:D.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)【分析】根据线段的中点坐标公式即可得到结论.【解答】解:设D(x,y),由中点坐标公式得:=3,=2,∴x=﹣1,y=1,∴D(﹣1,1),故选:A.【点评】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)【分析】若设M(x,y),构建方程组即可解决问题.【解答】解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故选:A.【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.10【分析】根据直角三角形斜边上中线的性质,即可得到OP=AB=3,依据OC﹣OP≤CP≤OP+OC,即可得出当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长.【解答】解:如图所示,连接OC,OP,PC,∵P A⊥PB,∴∠APB=90°,又∵AO=BO=3,∴Rt△ABP中,OP=AB=3,∵OC﹣OP≤CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,∴线段PC的最大值为OP+OC=3+5=8,故选:C.【点评】本题主要考查了坐标与图形性质,判断点P在以O为圆心,AB长为直径的圆上是解决问题的关键.6.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.8【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.7.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)【分析】观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.依此先确定2025的坐标为(45,1),再根据图的结构求得2019的坐标.【解答】解:观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.12=1的坐标为(1,1),32=9的坐标为(3,1),52=25的坐标为(5,1),…452=2025的坐标为(45,1),图中横坐标为45的数共有45个数,∵2025﹣2019=6,∴2019的坐标为(45,7).故选:A.【点评】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)【分析】根据点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,据此根据平移的定义和性质解答可得.【解答】解:由点B(﹣4,1)的对应点B1坐标为(﹣4+5,1+1),即(1,2),∴点C(﹣2,1)对应的点C1的坐标为(﹣2+5,1+1),即(3,2),故选:A.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是根据对应点的坐标得出平移的方向和距离及平移的定义和性质.二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为(﹣,).【分析】设AC与BD交于F点,则由不等式的性质可得,|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,可求最小值.【解答】解:如图,设AC与BD交于F点,则|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|P A|+|PB|+|PC|+|PD|≥|AC|+|BD|=,此时P的坐标为:(﹣,)故答案为:(﹣,)【点评】本题主要考查了轴对称问题,关键是根据不等式的性质在求解最值中的应用解答.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为﹣()2018.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,即可得出结果.【解答】解:∵A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x轴的负半轴上,∵2019÷4=504…余数是3,∴A2019在x轴的负半轴上,横坐标为﹣()2018,故答案为:﹣()2018.【点评】本题考查了图形与坐标、规律型等知识,找出序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上的规律是解题的关键.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为(﹣1008,0).【分析】根据图形得到规律:当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.然后确定出第2019个点的坐标即可.【解答】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),A5(4,0),A6(1,﹣3),A7(﹣2,0),A8(2,4),A9(6,﹣1),A10(1,﹣5),A11(﹣4,0),A12(2,6),…,由上可知,当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.∵2019÷4=504……3,∴点A2019在x轴负半轴上,横坐标是﹣(2019﹣3)÷2=﹣1008,纵坐标是0,∴A2019的坐标为(﹣1008,0).故答案为:(﹣1008,0).【点评】本题是对点的坐标变化规律的考查,找出“当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.”这一变化规律是解题的关键.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为(0,﹣21010).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2019的坐标.【解答】解:∵正方形OABC边长为1,∴OB=,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(2,0),同理可知OB2=2,B2点坐标为(2,﹣2),同理可知OB3=4,B3点坐标为(0,﹣4),B4点坐标为(﹣4,﹣4),B5点坐标为(﹣8,0),B6(﹣8,8),B7(0,16)B8(16,16),B9(32,0),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2019÷8=252…3,∴B2019的横坐标,与点B3的相同为0,横纵坐标都是负值,∴B2013的坐标为(0,﹣21010).故答案为:(0,﹣21010).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是(,).【分析】根据△ABC是等边三角形,得到AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(,),C(1,0),根据等腰三角形的性质得到AA1=A1C,根据中点坐标公式得到A1(,),推出△A1B1C是等边三角形,得到A2是A1C的中点,求得A2(,),推出A n(,),即可得到结论.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,∴A(,),C(1,0),∵BA1⊥AC,∴AA1=A1C,∴A1(,),∵A1B1∥OA,∴∠A1B1C=∠ABC=60°,∴△A1B1C是等边三角形,∴A2是A1C的中点,∴A2(,),同理A3(,),…∴A n(,),故答案为:(,).【点评】本题考查了点的坐标,等边三角形的性质,关键是能根据求出的数据得出规律,题目比较好,但是有一定的难度.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于4.【分析】根据点A的坐标可以求得∠AOB和OA的长度,再根据锐角三角函数可以求得AC和AB的长,从而可以求得BC的长.【解答】解:∵点A(3,),∴tan∠AOB=,OA=,∴∠AOB=30°,∵AC⊥OA于点A,∠BOC=30°,∴∠OAC=90°,∠AOC=60°,∴tan∠AOB=,tan∠AOC=,即tan30°=,tan60°=,解得,AB=2,AC=6,∴BC=AC﹣AB=4,故答案为:4.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是(﹣21009,21009).【分析】利用等腰直角三角形的性质可得出部分点A n的坐标,根据点的坐标的变化可得出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”,结合2019=252×8+3即可得出点A2019的坐标.【解答】解:由等腰直角三角形的性质,可知:A1(1,1),A2(0,2),A3(﹣2,2),A4(0,﹣4),A5(﹣4,﹣4),A6(0,﹣8),A7(8,﹣8),A8(16,0),A9(16,16),A10(0,32),A11(﹣32,32),…,∴点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数).∵2019=252×8+3,∴点A2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009),故答案为:(﹣21009,21009).【点评】本题考查了等腰直角三角形以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”是解题的关键.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是(4+,0).【分析】根据含30°的直角三角形的性质和坐标特点解答即可.【解答】解:∵MAC=120°,∴∠CAB=60°,∵∠CBN=150°,∴∠ABC=30°,∴∠C=90°,∵MA=AC=2﹣1=1,∴AB=2AC=2,∴BC=,∴ON=1+1+2+=4+,∴点N的坐标为(4+,0),故答案为:(4+,0),【点评】此题考查坐标与图形,关键是根据含30°的直角三角形的性质和坐标特点解答.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是(673,0).【分析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故答案为(673,0).【点评】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.【分析】过点P作PD⊥向x轴于D,PE⊥y轴于E,根据角平分线的性质,角平分线上的点到这个角两边的距离相等,求出PD和PE,再根据三角形OAB的面积=三角形OAP 的面积+三角形OPB的面积,此题便可求解【解答】解:如图,过点P作PD⊥向x轴于D,PE⊥y轴于E,则∠PEO=∠PDO=90°∵若OP平分∠AOB∴PD=PE,∵∠AOB=90°,∴∠PEO=∠PDO=∠AOB=90°,∴四边形EPDO是矩形,又PD=PE∴矩形EPDO为正方形,∵OP=4,∴PD=PE=,∵三角形OAB的面积=三角形OAP的面积+三角形OPB的面积,∴,∴,。

人教版七年级下册数学第7章测试题(附答案)

人教版七年级下册数学第7章测试题(附答案)

七下数学第七章《平面直角坐标系》单元测试一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>03.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.210.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.311.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.014.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.17.已知点P(m+2,2m﹣1)在y轴上,则m的值是.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第象限.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为.21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.参考答案一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边【分析】根据坐标确定位置的方法逐一判断即可得.【解答】解:能较为准确描述合肥市大蜀山位置的是北纬32°,东经116°,故选:C.2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>0【分析】第三象限内横纵坐标均为负数,从而可得答案.【解答】解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)【分析】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【解答】解:将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标为(﹣2+3,3﹣4),即(1,﹣1).故选:C.4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)【分析】根据点P的位置确定P点坐标即可.【解答】解:∵点P在x轴的下方,到x轴的距离是3,∴P点纵坐标为﹣3,∵P在y轴的左方,到y轴的距离是2,∴P点横坐标为﹣2,∴P(﹣2,﹣3),故选:D.5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)【分析】将点B的横坐标减去2,纵坐标加上1即可得到点B'的坐标.【解答】解:∵将△ABC先向左平移2个单位,再向上平移1个单位得到△A′B′C′,B(﹣1,1),∴点B的对应点B'的坐标是(﹣1﹣2,1+1),即(﹣3,2),故选:C.6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【解答】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用平面直角坐标内点的坐标特点得出a,b的取值范围进而得出答案.【解答】解:∵点A(2a+1,b﹣2)在第三象限,∴2a+1<0,b﹣2<0,解得:a<﹣,b<2,∴﹣a>0,3﹣b>0,则点B(﹣a,3﹣b)在第一象限.故选:A.8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【分析】由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019(673,0)则点P2019的坐标是(673,0).故选:D.9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.2【分析】由平面内点的坐标特点可知,点到x轴的距离是该点纵坐标的绝对值.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.10.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.3【分析】AB∥x轴,可得A和B的纵坐标相同,即可求出m的值.【解答】解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.11.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:把点(﹣3,4)向右平移3个单位,再向下平移2个单位后所得的点的坐标为:(﹣3+3,4﹣2),即(0,2),故选:D.12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限【分析】根据a2b>0>0可得b>0,可得a>0或a<0,再根据平面直角坐标系中各象限内点的坐标特征可判断出P点所在象限.【解答】解:∵a2b>0,∴b>0,a>0或a<0,当a>0,b>0时,点P所在的象限为第一象限;当a<0,b>0时,点P所在的象限为第二象限;故选:A.13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.0【分析】先利用点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【解答】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.14.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【分析】根据点的坐标特点来确定点所在位置.【解答】解:因为点A(m,n)在平面直角坐标系的第三象限,所以m<0,n<0,所以mn>0,所以点B(mn,0)横坐标是正数,纵坐标是0,符合点在x轴的正半轴上的条件.故选:A.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作(3,5).【分析】由于将“7排4号”记作(7,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).17.已知点P(m+2,2m﹣1)在y轴上,则m的值是﹣2.【分析】直接利用y轴上点的坐标特点得出m+2=0,进而得出答案.【解答】解:∵点P(m+2,2m﹣1)在y轴上,∴m+2=0,解得:m=﹣2.故答案为:﹣2.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第三象限.【分析】直接利用第二象限内点的坐标特点得出m,n的符号,进而得出答案.【解答】解:∵P(m,n)在第二象限,∴m<0,n>0,∴﹣n<0,∴Q(﹣n,m)在第三象限.故答案为:三.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(2,3).【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【解答】解:由题意可得,如右图所示的平面直角坐标系,故点C的坐标为(2,3),故答案为:(2,3).20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为(3,3)或(3,﹣7).【分析】先根据平行于y轴的直线上任意两点横坐标相同得出点M的横坐标是3,再根据MP=5求出点M的纵坐标.【解答】解:∵点P(3,﹣2),MP∥y轴,∴点M的横坐标与点P的横坐标相同,是3,又∵MP=5,∴点M的纵坐标为为﹣2+5=3,或﹣2﹣5=﹣7,∴点M的坐标为(3,3)或(3,﹣7).故答案为(3,3)或(3,﹣7).21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为2.【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b 的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】解:由题意可知:a=0+(3﹣2)=1;b=0+(2﹣1)=1;∴a+b=2.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.【分析】坐标平面内的点到两轴的距离实际上就是该点两坐标的绝对值.【解答】解:根据题意得,m﹣1=3m+5或m﹣1=﹣(3m+5),解得:m﹣1=3m+5,得m=﹣3,∴m﹣1=﹣4,点B的坐标为(﹣4,﹣4),解得:m﹣1=﹣(3m+5),得m=﹣1,∴m﹣1=﹣2,点B的坐标为(﹣2,2),∴点B的坐标为(﹣4,﹣4)或(﹣2,2).23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.【分析】根据直线平行于x轴的特点解答.【解答】解:∵直线AB平行于x轴,∴点A的纵坐标与点B的纵坐标相等相等,∴m2﹣3=6,m=3或m=﹣3,∵A.B是两个点.∴m≠3,即m=﹣3.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.【分析】(1)利用与x轴平行的直线上点的坐标特征得到a+2=4,求出a得到A、B点的坐标,然后计算它们的横坐标之差得到A、B两点间的距离;(2)利用与x轴垂直的直线上点的坐标特征得|b|=3,解得b=3或b=﹣3,从而得到C点坐标.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.【分析】(1)根据三角形面积求法得出即可;(2)根据已知将△ABC各顶点向下平移2个单位,向右平移5个单位得到各对应点,即可作图;进而得出点C′的坐标.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.【分析】(1)根据平移规律即可得到结论,(2)根据三角形的面积公式即可得到结论.【解答】解:(1)因为△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得所以,△A1B1C1是由△ABC向左平移3个单位,再向上平移1个单位所得A1(﹣1,2),B1(2,4),C1(0,5);(2)如图,△ABC的面积=3×3﹣×1×3﹣×1×2﹣×2×3=3.5.。

人教版数学七年级下册第七章测试卷(含答案)

人教版数学七年级下册第七章测试卷(含答案)

初中数学人教版七年级下学期第七章测试卷一、单选题(共7题;共14分)1. ( 2分) 根据下列表述,能够确定一物体位置的是( )A. 东北方向B. 萧山歌剧院8排C. 朝晖大道D. 东经20度北纬30度2. ( 2分) 下列说法错误的是()A. 在x轴上的点的坐标纵坐标都是0,横坐标为任意数;B. 坐标原点的横、纵坐标都是0;C. 在y轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0;D. 坐标轴上的点不属于任何象限3. ( 2分) 如图是在方格纸上画出的小旗图案,若用(2,1)表示A点,(2,5)表示B点,那么C点的位置可表示为()A. (3,5)B. (4,3)C. (3,4)D. (5,3)4. ( 2分) 点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A. (0,-2)B. (4,0)C. (2,0)D. (0,-4)5. ( 2分) 在平面直角坐标系中,将点(1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是()A. (﹣1,﹣1)B. (﹣1,5)C. (3,﹣1)D. (3,5)6. ( 2分) 如图6,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是( )A. 4B. 5C. 6D. 77. ( 2分) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,−1),平移线段AB,使点A落在点A1(−2,2)处,则点B的对应点B1的坐标为()A. (−1,−1)B. (1,0)C. (−1,0)D. (3,0)二、填空题(共3题;共7分)8. ( 1分) 直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为________.9. ( 1分) 如图,已知A1(0,1),A2(√32,−12),A3(−√32,−12),A4(0,2),A5(√3,−1),A6(−√3,−1),A7(0,3),A8(3√32,−32),A9(−3√32,−32),…,则点A2010的坐标是________.10. ( 5分) 点P(-5,1)沿x轴正方向平移2个单位,在沿y轴负方向平移4个单位所得的点的坐标为三、解答题(共2题;共15分)11. ( 5分) 如图,平面直角坐标系中,三角形ABC的顶点都在网格点上,平移三角形ABC,使点B 与坐标原点O重合,请写出图中点A,B,C的坐标并画出平移后的三角形A1OC112. ( 10分) 小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).(1)画出平面直角坐标系;(2)求出其他各景点的坐标.四、作图题(共2题;共21分)13. ( 11分) 如图,直角坐标系中,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A,B 的坐标分别是A(3,1),B(2,3).(1)请在图中画出△AOB关于y轴的对称△A′OB′,写出点A′的坐标,点B′的坐标(2)请写出A′点关于x轴的对称点A′'的坐标为________;(3)求△A′OB′的面积.14. ( 10分) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,已知点A(2,4),B(1,1),C(3,2).(1)将三角形ABC先沿着x轴负方向平移6个单位,再沿y轴负方向平移2个单位得到三角形A1B1C1,在图中画出三角形A1B1C1;(2)直接写出点A1,B1,C1的坐标.五、综合题(共1题;共12分)15. ( 12分) 在图所示的平面直角坐标系中表示下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。

2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系定向测试试卷(含答案详细解析)

2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系定向测试试卷(含答案详细解析)

初中数学七年级下册第七章平面直角坐标系定向测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、已知点P 在第四象限,且到x 轴,y 轴的距离分别为2,5.则点P 的坐标为( )A .(5,﹣2)B .(﹣2,5)C .(2,﹣5)D .(﹣5,2)2、已知过(),2A a -,()3,4B -两点的直线平行于y 轴,则a 的值为( )A .-2B .3C .-4D .23、已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .24、如图所示,在正方形网格中有A ,B ,C 三个点,若建立平面直角坐标系后,点A 的坐标为(2,1),点B 的坐标为(1,﹣2),则点C 的坐标为( )A .(1,1)B .(﹣2,1)C .(﹣1,﹣2)D .(﹣2,﹣1)5、在平面直角坐标系中,点P (﹣2,﹣3)在( )A .第一象限B .第二象限C .第三象限D .第四象限6、点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(4,-3)C .(-3,4)D .(3,-4)7、如果点P (m ,n )是第三象限内的点,则点Q (-n ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上8、如图,A 、B 两点的坐标分别为A (-2,-2)、B (4,-2),则点C 的坐标为( )A .(2,2)B .(0,0)C .(0,2)D .(4,5)9、下列不能确定点的位置的是( )A .东经122°,北纬43.6°B .乐平市珠海路76号C .教室第1组D .小岛H 北偏东30°方向上距小岛50海里10、在平面直角坐标系中,点A 的坐标为()21,,将点A 向左平移3个单位长度,再向上平移1个单位长度得到点'A ,则点'A 的坐标为( )A .()12-,B .()50,C .()10-,D .()52,二、填空题(5小题,每小题4分,共计20分)1、如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是_____.2、平面直角坐标系中,点P(3,-4)到x轴的距离是________.3、已知点A、点B都x轴上,且AB=3,点C在y轴上,以A、B、C三点为顶点的三角形的面积等于6,则点C的坐标为_______.4、如图,在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…,如此继续运动下去,则P2020的坐标为________.5、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点An,则点A2022的坐标是__________.三、解答题(5小题,每小题10分,共计50分)1、郑州市区的许多街道习惯用“经几纬几”来表示.小颖所乘的汽车从“经七纬五”出发,经过“经六纬五”到达“经五纬一”.(1)在图上标出“经五纬一”的位置;(2)在图上标出小颖所乘汽车可能行驶的一条路线图.还有其他可能吗?(3)你能说出图中“华美达广场”的位置吗?2、如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.3、如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.4、在直角坐标系中描出下列各点,并将各组内这些点依次用线段连接.(1)()3,5D -,()7,3E -,()1,3C ,()3,5D -;(2)()6,3F -,()6,0G -,()0,0A ,()0,3B ;观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段EC 与x 轴有什么位置关系?点E 和点C 的坐标有什么特点?线段EC 上其他点的坐标呢?(3)点F 和点G 的横坐标有什么共同特点?线段FG 与y 轴有怎样的位置?5、已知:如图,把ABC 平移得对应A B C ''',且()2,1A -的对应点为()0,4A '. (1)在网格中作出A B C ''',并写出B ′,C '的坐标;(2)点P 在y 轴上,且△BCP 与△ABC 的面积相等,写出点P 的坐标.---------参考答案-----------一、单选题1、A【分析】根据“点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值”,求解即可.【详解】解:点P在第四象限,所以横坐标大于0,纵坐标小于0又∵点P到x轴,y轴的距离分别为2,5∴横坐标为5,纵坐标为-2即点P的坐标为(5,﹣2)故选:A【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.2、B【分析】根据平行于y 轴的直线上的点的横坐标相等,即可求解.【详解】解:∵过(),2A a -,()3,4B -两点的直线平行于y 轴,∴A 、B 两点的横坐标相等,即:a =3,故选B .【点睛】本题主要考查点的坐标特征,熟练掌握“平行于y 轴的直线上的点的横坐标相等”是解题的关键.3、C【分析】由对应点坐标确定平移方向,再由平移得出x ,y 的值,即可计算x +y .【详解】∵A (3,﹣2),B (1,0)平移后的对应点C (5,x ),D (y ,0),∴平移方法为向右平移2个单位,∴x =﹣2,y =3,∴x +y =1,故选:C .【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.4、D【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:∴点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.5、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.6、C根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是4,∴点P的坐标为(-3,4).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.7、A【分析】根据平面直角坐标系中象限的坐标特征可直接进行求解.【详解】解:∵点P(m,n)是第三象限内的点,∴n<0,∴-n>0,∴点Q(-n,0)在x轴正半轴上;故选A.【点睛】本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.8、B根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.【详解】解:∵A点坐标为(-2,-2),B点坐标为(4,-2),∴可以建立如下图所示平面直角坐标系,∴点C的坐标为(0,0),故选B.【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.9、C【分析】根据坐标确定位置需要两个数据对各选项分析判断后利用排除法求解即可.【详解】A,东经122︒,北纬43.6︒,物体的位置明确,故本选项不符合题意;B,乐平市珠海路76号物体的位置明确,故本选项不符合题意;C,教室第1组无法确定物体的具体位置,故本选项符合题意;D,小岛H北偏东30方向上距小岛50海里物体的位置明确,故本选项不符合题意;故选:C【点睛】本题考查了坐标确定位置,理解位置的确定需要两个数据是解题关键.10、A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.二、填空题1、(14,14)【解析】【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用55除以4,根据商和余数判断出点A55所在的正方形以及所在的象限,再根据正方形的性质写出即可.【详解】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵55÷4=13余3,∴点A55是第14个正方形的第3个顶点,在第一象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A3(1,1),1=314+;A7(2,2),1=714+;A11(3,3),1=1114+;…,∴551144+=,∴A55(14,14).故答案为:(14,14).【点睛】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A55所在的正方形和所在的象限是解题的关键.2、4【解析】【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.3、(0,-4)或C(0,4)【解析】【分析】设C点坐标为(0,x),然后根据三角形ABC的面积等于6,AB=3,列方程即可求出点C的坐标.【详解】解:∵点A、点B都在x轴上,且AB=3,以A、B、C三点为顶点的三角形的面积等于6,设C点坐标为(0,x),∴根据题意得:13=62x⨯⨯,解得:4x=±,∴点C的坐标为(0,-4)或C(0,4).故答案为:(0,-4)或C(0,4).【点睛】此题考查了三角形面积,平面直角坐标系中点的表示方法,解题的关键是设出点C的坐标,根据三角形的面积列出方程求解.4、 (1011,﹣1010)【解析】【分析】根据第一象限中点的特征,探究规律,利用规律解决问题.【详解】解:由题意P1(1,1),P5(3,3),P9(5,5),•••P2021(1011,1011),∴P2020(1011,-1010),故答案为:(1011,-1010).【点睛】本题考查坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法.5、(1011,-1).【解析】【分析】由点的移动规律发现每移动8次构成一个循环,一个循环相当于向右平移4个单位,用2022÷8即可解决问题.【详解】解:由题意知:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),可以发现每移动8次构成一个循环,一个循环相当于向右平移4个单位,∴2022÷8=252⋯6,∴252×4=1008,∴A2022(1011,-1),故答案为:(1011,-1).【点睛】本题考查了平面直角坐标系中的点的规律探索问题,仔细观察图形,得出每移动8次构成一个循环,一个循环相当于向右平移4个单位结论是解题的关键.三、解答题1、(1)“经五纬一”在广播大厦旁边的十字路口;(2)“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”;(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近【解析】【分析】(1)先在图中分别找出经七路和纬五路,两条路的交点位置即为“经七纬五"的位置,与上步同理可确定"经六纬五”、“经五纬一"的位置;(2)结合“市区图"即可画出路线图了;(3)根据“市区图”中“华美达广场”的位置确定其所在的“经"路与"纬"路,问题即可解答.【详解】解:(1)如图:“经五纬一”在广播大厦旁边的十字路口.(2)如图:从“经七纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”.(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.【点睛】本题旨在让学生感受平面内确定物体位置的方法,在平面内确定一个物体的位置一般需要两个数据.2、(1)见解析;(2)5【解析】【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法.3、(1)3,4,3,﹣2,D ,﹣2;(2)见解析【解析】【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A →C ( 3,4),B →D (3﹣2),C →D (+1,﹣2);故答案为3,4;3,﹣2;D ,﹣2;(2)这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.4、连接起来的图形像“房子”;(1)线段AG上的点都在x轴上,它们的纵坐标都等于0;线段AB上的点、线段CD与y轴的交点,它们都在y轴上,它们的横坐标都等于0;(2)线段EC平行于x轴,点E和点C的纵坐标相同.线段EC上其他点的纵坐标也相同,都是3;(3)点F和点G的横坐标相同.线段FG与y轴平行.【解析】【分析】在坐标系中描出各点,再顺次连接可得一个房子的图案;(1)结合图案分析,即可得出答案;(2)结合图案分析,即可得出答案;(3)结合图案分析,即可得出答案;【详解】连接起来的图形像“房子”.(1)线段AG 上的点都在x 轴上,它们的纵坐标都等于0;线段AB 上的点、线段CD 与y 轴的交点,它们都在y 轴上,它们的横坐标都等于0.(2)线段EC 平行于x 轴,点E 和点C 的纵坐标相同.线段EC 上其他点的纵坐标也相同,都是3.(3)点F 和点G 的横坐标相同.线段FG 与y 轴平行.【点睛】本题主要考查坐标与图形的性质,作图的关键是根据点的坐标确定点在平面直角坐标系中的位置,并根据位置依次连接,形成题目中要求的图形.5、(1)见解析,()1,1B '-,()3,1C ';(2)见解析,()0,1或()0,5-【解析】【分析】(1)利用点A 和A '的坐标特征得到平移的方向与距离,然后利用此平移规律写出B '、C '的坐标,然后描点即可;(2)设P (0,m ),利用三角形面积公式得12×4×|m +2|=12×4×3,然后解方程求出m 即可得到P 点坐标.【详解】解:(1)A B C '''如下图所示;()1,1B'-,()3,1C'(2)设P(0,m),∵△BCP与△ABC的面积相等,∴12×4×|m+2|=12×4×3,解得m=1或-5,∴P(0,1)或(0,-5)【点睛】本题考查了作图-平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.。

人教版七年级数学下册第七章测试题(附答案)

人教版七年级数学下册第七章测试题(附答案)

人教版七年级数学下册第七章测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题 1.点M (1,2)关于x 轴对称的点的坐标为( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1)2.已知点A (m-1,3)与点B (2,n+1)关于x 轴对称,则m+n 的值为A 、1-B 、7-C 、1D 、73.点P ( 2,-3)关于x 轴对称的点是( )A .(-2, 3)B .(2,3)C .(-2, -3)D .(2,-3)4.在平面直角坐标系中,点P (1,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知点P 坐标为(2﹣a ,3a+6),且点P 到两坐标轴的距离相等,则a 的值是( )A .﹣1或4B .1或4C .1或﹣4D .﹣1或﹣46.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是( )A .(2,﹣3)B .(2,3)C .(3,2)D .(3,﹣2)7.图示为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( )A .△ACD 的外心B .△ABC 的外心C .△ACD 的内心D .△ABC 的内心8.在平面直角坐标系中,已知点A (﹣4,0)和B (0,2),现将线段AB 沿着直线AB 平移,使点A 与点B 重合,则平移后点B 坐标是( )A .(0,﹣2)B .(4,6)C .(4,4)D .(2,4)9.点(﹣2,3)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.平面直角坐标系中的点P (2﹣m ,m )在第一象限,则m 的取值范围在数轴上可表示为( )A .B .C .D .11.有理数a ,b ,c 在数轴上的位置如图所示,则a c +-2c b -+3b a +=( )A .-2bB .0C .-4a -b -3cD .-4a -2b -2c12.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)评卷人得分二、填空题13.下面是某医院各部门的示意图,横向表示的是楼层,纵向表示的是门号,例如:院长室在4楼3门,我们用(4,3)来表示其位置,试根据上面方法,结合图形,完成下面问题:(1)儿科诊室可以表示为;(2)口腔科诊室在楼门;(3)图形中显示,与院长室同楼层的有;(4)与神经科诊室同楼层的有;(5)表示为(1,2)的诊室是;(6)表示为(3,5)的诊室是;(7)3楼7门的是.14.点P(﹣2,1)向上平移2个单位后的点的坐标为.15.已知点O(0,0),B(1,2),点A在坐标轴上,且S△OAB=2,则满足条件的点A的坐标为.16.在如图所示的方格中,每个小方格都是边长为1的正方形,△ABC的三个顶点都在格点上.(1)建立平面的直角坐标系,使A(﹣2,﹣1),C(1,﹣1),则B点坐标为.(2)如果△ABC平移后B点的对应点B′的坐标变为(4,2),画出平移后的图△A′B′C′.17.若点P(﹣a,b)在第三象限,则点Q(b,a)在第象限.18.点(﹣3,7)到x轴上的距离是,到y轴上的距离是.19.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(4,2),C(6,0),解答下列问题:(1)请在图中确定该圆弧所在圆心D点的位置,并写出D点坐标为;(2)连结AD,CD,求⊙D的半径(结果保留根号);20.已知点P (2a -6,a +1)在y 轴上,则点P 的坐标为________评卷人得分 三、解答题21.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 平移至A′的位置,使点A 与A'对应,得到△A′B′C′;(2)线段AA′与BB′的关系是: ;(3)求△ABC 的面积.22.如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C (3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k )个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E .(1)点D 的坐标为 ,若a=2,b=-3,k=2,则点'D 的坐标为 ;(2)若'A (1,4),'C (6,-4),求点'E 的坐标.23.多多和爸爸、妈妈周末到公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x 轴、y 轴.只知道牡丹园的坐标为(3,3),请你帮他建立平面直角坐标系(画在图中)并求出其它各景点的坐标?答案1.C .2.A3.B4.D .5.D6.C.7.B.8.B9.B10.B11.C12.D13.(1)儿科诊室可以表示为(2,4).(2)口腔科诊室在1楼、7门.(3)图形中显示,与院长室同楼层的有外科.(4)与神经科诊室同楼层的有儿科、妇科.(5)表示为(1,2)的诊室内科.(6)表示为(3,5)的诊室是骨科.(7)3楼7门的是皮肤科.14.(﹣2,3).15.(2,0)或(﹣2,0)或(0,4)或(0,﹣4).16.解:(1)如图,B 点坐标为(0,1),(2)如图,△A′B′C′为所作.17.解:由点P (﹣a ,b )在第三象限,得﹣a <0,b <0.得a >0,b <0,点P (﹣a ,b )在第三象限,18.7,319.(1)、图形见解析;D(2,-2);(2)、25(2)、如图2,过点D 作DE ⊥y 轴,交y 轴于点E ,在Rt △ADE 中,AE=4,DE=2,则524222=+=r ,所以⊙D 的半径为52.考点:(1)、圆的确定;(2)、垂径定理20.(0,4)21.(1)见解析;(2)平行且相等.(3)3.5.解:(1)△A′B′C′如图所示;22.(1)(3,2),(8,-6);(2)E ′(5,2).23.A (0,4);B (﹣3,2);C (﹣2,﹣1);D (2,﹣2).。

教材全解2021人教版七年级数学下第七章检测题及答案解析

教材全解2021人教版七年级数学下第七章检测题及答案解析

教材全解2021人教版七年级数学下第七章检测题及答案解析(时刻:90分钟,满分:100分)一、选择题(每小题3分,满分30分)1.(2020·湖北随州中考改编)在直角坐标系中,将点(2,-3)向左平移2个单位长度得到的点的坐标是( )A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)2. 如图,1P 、2P 、3P 这三个点中,在第二象限内的有( )A .1P 、2P 、3PB .1P 、2PC .1P 、3PD .1P第2题图 第3题图3.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时动身,沿矩形BCDE 的边作围绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2020次相遇地点的坐标是( ) A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1)4. 已知点P 坐标为,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或(6,-6) 5.设点在轴上,且位于原点的左侧,则下列结论正确的是( ) A.,为一切数B.,C.为一切数,D.,6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原先图案相比( ) A.形状不变,大小扩大到原先的倍 B.图案向右平移了个单位 C.图案向上平移了个单位D.图案向右平移了个单位,同时向上平移了个单位 7.已知点,在轴上有一点点与点的距离为5,则点的坐标为( )A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)8. (2020•贵州安顺中考)点P (-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0) 9.若点),(n m A 在第二象限,则点,(m B -│n │)在( )A.第一象限B.第二象限C.第三象限D.第四象限10. (2020•山东淄博中考)假如m 是任意实数,那么点P (m -4,m +1)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,满分24分) 11. 已知点是第二象限的点,则的取值范畴是 .12. 已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 13. (2020•山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原先的31,那么点A 的对应点A '的坐标是_______. 14.在平面直角坐标系中,点A (2,2m +1)一定在第 __________象限.15. (2020·四川绵阳中考)如图是轰炸机机群的一个飞行队形,假如最后两架轰炸机的平面坐标分别是A (-2,1)和B (-2,-3),那么第一架轰炸机C 的平面坐标是__________.第13题图 第15题图 16. 已知点)1,(-a M 和点),2(b N 不重合.(1)当点N M 、关于_______对称时,;1,2==b a (2)当点N M 、关于原点对称时,a = _______,b =________.17. 如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 __________. 18. 如图,围棋盘的左下角出现的是一局围棋竞赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,如此,白棋②的位置可记为(E ,3),白棋④的位置可记为(G ,4),则白棋⑨的位置应记为 __________.第17题图 第18题图三、解答题(共46分)19. (7分)(2020·广西桂林中考节选)如图,△ABC 各顶点的坐标分别是A (-2,-4),B (0,-4),C (1,-1). 在图中画出△ABC 向左平移3个单位后的△.第19题图 第20题图20.(7分)(2020•四川宜宾中考节选)如图,在平面直角坐标系中,四边形ABCD 是矩形,AD ∥x 轴,A,AB =1,AD =2.写出B ,C ,D 三点的坐标.21.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A (-3,1),B (-3,-3)可认,而要紧建筑C (3,2)破旧,请通过建立直角坐标系找到图中C 点的位置.第21题图22.(8分)在直角坐标系中,用线段顺次连接点A (,0),B (0,3),C (3,3),D (4,0).(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长. 23.(8分)如图,点用表示,点用表示. 若用→→→→表示由到的一种走法,并规定从到只能向上或向右走,用上述表示法再写出另两种走法,并判定这几种走法的路程是否相等. 24.(8分)如图,已知A (-1,0),B (1,1),把线段 AB 平移,使点B 移动到点D (3,4)处,这时点A 移到 点C 处.(1)画出平移后的线段CD ,并写出点C 的坐标;(2)假如平移时只能左右或者上下移动,叙述线段AB 是如何样移到CD 的.第七章 平面直角坐标系检测题参考答案1. C 解析:依照平移的性质,结合直角坐标系,点(2,-3)向左平移2个单位长度,即横坐标减2,纵坐标不变,即平移后的点的坐标为(0,-3).2.D 解析:由图可知,1P 在第二象限,点2P 在y 轴的正半轴上,点3P 在x 轴的负半轴上,因此,在第二象限内的有1P .故选D .3.D 解析:矩形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时刻相同,物体甲与物体乙的路程比为1∶2,由题意知:第23题图第24题图①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×31=4,物体乙行的路程为12×32=8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×31=12,物体乙行的路程为12×3×32=24,在A 点相遇,现在甲、乙两个物体回到原动身点. … …则每相遇三次,两个物体回到原动身点, 因为2 012÷3=670……2,故两个物体运动后的第2020次相遇的地点是:第二次相遇地点,即物体甲行的路程为12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇;现在相遇点的坐标为(-1,-1),故选D .4.D 解析:因为点P 到两坐标轴的距离相等,因此,因此,5.D 解析:因为点在轴上,因此纵坐标是0,即.又因为点位于原点的左侧,因此横坐标小于0,即,因此,故选D .6.D7.D 解析:过点作⊥轴于点,则点的坐标为(3,0).因为点到轴的距离为4,因此.又因为,因此由勾股定理得,因此点的坐标为(6,0)或(0,0),故选D.8. A 解析:依照点的平移规律:左减右加,上加下减,可得点P (-2,-3)向左平移1个单位,再向上平移3个单位后的点的坐标是(-3,0).9. A 解析:因为点A 在第二象限,因此,0,0><n m 因此,0>-m ︱n ︱>0,因此点B 在第一象限.10. D 解析:∵(m +1)-(m -4)=m +1-m +4=5, ∴点P 的纵坐标一定大于横坐标.∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P 一定不在第四象限.故选D .11. 解析:因为点是第二象限的点,因此⎩⎨⎧>-<,,030a a 解得.12.3 -4 解析:因为点(13)A m -,与点(21)B n +,关于x 轴对称,因此横坐标不变,纵坐标互为相反数,因此因此13. (2,3) 解析:点A 的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原先的31,得到它的对应点A '的坐标是16,33⎛⎫⨯ ⎪⎝⎭即A '(2,3).14.一 解析:因为2m ≥0,1>0, 因此纵坐标2m +1>0. 因为点A 的横坐标2>0, 因此点A 一定在第一象限.15. (2,-1) 解析:通过分析可知,坐标原点在D 处的飞机位置, 第15题答图因此轰炸机C 的坐标是(2,-1).16. (1)x 轴;(2)-2 1 解析:两点关于x 轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数.17.(3,5) 解析:因为正方形ABCD 的边长为4,点A 的坐标为(-1,1), 因此点C 的横坐标为4-1=3,点C 的纵坐标为4+1=5, 因此点C 的坐标为(3,5).故答案为(3,5).18.(D ,6) 解析:由题意可知,白棋⑨在纵线对应D ,横线对应6的位置,故记作(D ,6). 19. 解:画出△如图所示.20.解:(1) B,C,D.21. 分析:先依照点A (-3,1),B (-3,-3)的坐标,确定出x 轴和y 轴,再依照C点的坐标(3,2),即可确定C 点的位置.解:点C 的位置如图所示.22. 解:(1)因为(0,3)和(3,3)的纵坐标相同,))和((0,40,2-的纵坐标也相同,因而BC ∥AD .又因为AD BC ,故四边形是梯形.作出图形如图所示.(2)因为,,高,故梯形的面积是21227. (3)在Rt △中,依照勾股定理得,同理可得,因而梯形的周长是.23.解:路程相等. 走法一:;走法二:;答案不唯独.24.解:(1)因为点B (1,1)移动到点D (3,4)处,如图, 因此C (1,3);(2)向右平移2个单位长度,再向上平移3个单位长度即可得到CD .第22题答图 第24题答图。

2021年新人教版数学七年级下人教新课标第七章三角形综合检测题

2021年新人教版数学七年级下人教新课标第七章三角形综合检测题

数学:第7章三角形综合检测题A(人教新课标七年级下)一、选择题(每题3分,共30分)1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.(2021年••福州市)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )A 、3个B 、4个C 、5个D 、6个6.下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

A 、3个B 、4个C 、5个D 、6个7.在∆ABC 中,C B ∠∠,的平分线相交于点P ,设,︒=∠x A 用x 的代数式表示BPC ∠的度数,正确的是( )(A)x 2190+ (B)x 2190- (C)x 290+ (D)x +90 8.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、1800 9.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

人教版七年级下册数学第七章测试题(附答案)

人教版七年级下册数学第七章测试题(附答案)

人教版七年级下册数学第七章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.已知点P(x,y)在第四象限,且,,则P点的坐标是( )A. (-3,-5) B. (5,-3) C. (3,-5) D. (-3,5)2.如图所示,点A的坐标是 ( )A. (3,2)B. (3,3)C. (3,-3)­D. (-3,-3)3.在如图所示的平面直角坐标系中,一只蚂蚁从A点出发,沿着A﹣B﹣C﹣D﹣A…循环爬行,其中A点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C的坐标为(﹣1,3),D的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为()A. (1,1)B. (1,0)C. (0,1)D. (1,﹣1)4.A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()A. 先向上平移5个单位长度,再向右平移7个单位长度B. 先向上平移5个单位长度,再向左平移7个单位长度C. 先向左平移7个单位长度,再向上平移5个单位长度D. 先向右平移7个单位长度,再向下平移5个单位长度5.已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A. ( 4 , 3 )B. (-5,4)C. (-1,-2)D. (-2,-1)7.在平面直角坐标系中,下列各点在第四象限的是()A. (2,1)B. (2,﹣1)C. (﹣2,1)D. (﹣2,﹣1)8.已知点P的坐标为((2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标为()A. (3,3)B. (3,-3)C. (6,-6)D. (3,3)或(6,-6)9.如图如果规定行写在前面,列写在后面,则A点表示为( )A. (1,2)B. (2 ,1)C. (1 ,2)或(2 ,1)D. 以上都不对10.位于坐标平面上第四象限的点是( ).A. (0,-4)B. (3,0)C. (4,-3)D. (-5,-2)11.在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为1万米。

最新人教版七年级下册数学第七章测试卷及答案

最新人教版七年级下册数学第七章测试卷及答案
B 的横坐标为 3 时,m=1;当点 B 的横坐标为 3n(n 为正整数)时,m=_3_n__-__2__.(用含 n 的代数式
表示)
三、解答题 13.(2021·合肥质检)已知点 P(-3a-4,2+a),解答下列各题: (1)若点 P 在 x 轴上,则点 P 的坐标为 P________; (2)若 Q(5,8),且 PQ∥y 轴,则点 P 的坐标为 P________; (3)若点 P 在第二象限,且它到 x 轴、y 轴的距离相等,求 a2 020+2 020 的值.
【解析】(1)由题意可得 2+a=0,解得 a=-2. 所以-3a-4=6-4=2,所以点 P 的坐标为(2,0). 答案:(2,0) (2)根据题意,得-3a-4=5,解得 a=-3. 所以 2+a=-1,所以点 P 的坐标为(5,-1). 答案:(5,-1) (3)根据题意,得-3a-4=-2-a. 解得 a=-1,所以-3a-4=-1,2+a=1,(-1,1)在第二象限. 把 a=-1 代入 a2 020+2 020=2 021.
(1)写出 A,B,C 三点的坐标:A________,B________,C________; (2)当 t=14 秒时,求三角形 OAP 的面积. (3)点 P 在运动过程中,当三角形 OAP 的面积为 6 时,求 t 的值及点 P 的坐标.
【解析】(1)因为(a-4)2+|b-6|=0,所以 a-4=0,b-6=0,所以 a=4,b=6, 所以 A(4,0),B(0,6), 因为 BC∥x 轴,所以点 C 的纵坐标为 6,因为 AC∥y 轴,所以点 C 的横坐标为 4, 所以 C(4,6). 答案:(4,0) (0,6) (4,6) (2)因为 A(4,0),B(0,6),C(4,6),所以四边形 OACB 是矩形,所以 OB=AC= 6,BC=OA=4, 当 t=14 时,P 在 AC 边上,此时 AP=2. 所以三角形 OAP 的面积=12 OA·PA=12 ×4×2=4;

2021七年级数学下册第七章平面直角坐标系单元测试卷含解析新版新人教版

2021七年级数学下册第七章平面直角坐标系单元测试卷含解析新版新人教版

七年级数学下册:第七章一、选择题(每小题3分,共30分)1.能确定某学生在教室中的具体位置的是( D )A.第3排B.第2排以后C.第2列D.第3排第2列2.如图,小颖从家到达学校要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( D )A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)D.(0,4)→(3,4)→(4,2)→(4,0)3.已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( A )4.小明住在学校正东200米处,从小明家出发向北走150米就到了李华家,若选取李华家为原点,分别以正东、正北方向为x轴,y轴正方向建立平面直角坐标系,则学校的坐标为( B )A.(-150,-200) B.(-200,-150)C.(0,-50) D.(150,200)5.已知直角坐标系中,点P(x,y)满足|x-2|+(y+3)2=0,则点P的坐标为( C ) A.(2,3) B.(-2,3)C.(2,-3) D.(2,-3)或(-2,-3)6.若|a-b|·|a+b|=0,则点P(a,b)在( C )A.第一、三象限内B.第一、三象限角平分线上C.第一、三象限角平分线或第二、四象限角平分线上D.第二、四象限角平分线上7.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1 km(小圆半径是1 km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A、B的位置,正确的是( C )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( A )A.O1B.O2C.O3D.O49.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( C )A.2 B.1C.4 D.310.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,3)=(-1,3);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(-a,-b),如h(1,3)=(-1,-3).按照以上变换有f(g(h(2,-3)))=f(g(-2,3))=f(3,-2)=(-3,-2),那么f(g(h(-3,5)))等于( B )A.(-5,-3) B.(5,3)C.(5,-3) D.(-5,3)二、填空题(每小题3分,共18分)11.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下角的坐标是(0,0),右下角的坐标是(32,0),左上角的坐标是(0,28),则右上角的坐标是__(32,28)__.12.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,2),(1,3),(1,4),(5,1),则这个英文单词为LOVE .13.如图,已知∠AOC=30°,∠BOC=150°,OD为∠BOA的平分线,则∠DOC=90°.若点A可表示为(30°,1),点B可表示为(150°,4),则点D可表示为__(90°,5)__.14.如图,半径为1的圆,在x轴上从原点O开始向右滚动一周后,落定点M的坐标为__(2π,0)__.15.在平面直角坐标系内,将点P(m+2,n-4)先向左平移1个单位长度,再向上平移3个单位长度得到点P′(2018,-2019),则m=__2017__,n=__-2018__.16.如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示;第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2019的坐标是__(1010,1)__.三、解答题(共72分)17.(8分)如图,长方形ABCD在坐标平面内,点A的坐标是(2,1),且边AB、CD与x 轴平行,边AD、BC与y轴平行,AB=4,AD=2.(1)求B、C、D三点的坐标;(2)怎样平移,才能使点A与原点O重合?解:(1)因为A(2,1),AB=4,AD=2,所以BC到y轴的距离为4+2,CD到x轴的距离2+1=3,所以点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度),能使点A 与原点O 重合.18.(8分)一长方形住宅小区长400 m ,宽300 m ,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x 轴,和较短边平行的直线为y 轴,并取50 m 为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A (3,3.5)、B (-2,2)、C (0,3.5)、D (-3,2)、E (-4,4).在平面直角坐标系中标出这些违章建筑的位置,并说明哪些在小区内,哪些不在小区内.解:如题图:在小区内的违章建筑有B 、D ,不在小区内的违章建筑有A 、E 、C .19.(8分)如图是小明家和学校所在地的简单地图,已知OA =2 km ,OB =3.5 km ,OP =4 km ,C 为OP 的中点.解答下列问题:(1)图中哪些地方距小明家的距离相同?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.解:(1)因为C 为OP 的中点,所以OC =12OP =12×4=2(km).因为OA =2 km ,所以图中学校和公园距小明家的距离相同.(2)学校在小明家北偏东45°的方向上,且到小明家的距离为2 km ;商场在小明家北偏西30°的方向上,且到小明家的距离为3.5 km ;停车场在小明家南偏东60°的方向上,且到小明家的距离为4 km.20.(8分)如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D 、点B 与点E 、点C 与点F 分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D 、点B 与点E 、点C 与点F 的坐标,并说出△DEF 是由△ABC 经过怎样的变换得到的;(2)若点Q (a +3,4-b )是点P (2a,2b -3)通过上述变换得到的,求a -b 的值.解:(1)A (2,4)、D (-1,1)、B (1,2)、E (-2,-1)、C (4,1)、F (1,-2).△DEF 是由△ABC 先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(2)由题意,得2a -3=a +3,2b -3-3=4-b ,解得a =6,b =103,所以a -b =83.21.(9分)已知点P (a -2,2a +8),分别根据下列条件求出点P 的坐标. (1)点P 在x 轴上; (2)点P 在y 轴上;(3)点Q 的坐标为(1,5),直线PQ ∥y 轴; (4)点P 到x 轴、y 轴的距离相等.解:(1)因为点P (a -2,2a +8)在x 轴上,所以2a +8=0,解得a =-4,故a -2=-4-2=-6,则P (-6,0).(2)因为点P (a -2,2a +8)在y 轴上,所以a -2=0,解得a =2,故2a +8=2×2+8=12,则P (0,12).(3)因为点Q 的坐标为(1,5),直线PQ ∥y 轴,所以a -2=1,解得a =3,故2a +8=14,则P (1,14).(4)因为点P 到x 轴、y 轴的距离相等,所以a -2=2a +8或a -2+2a +8=0,解得a =-10或a =-2.当a =-10时,a -2=-12,2a +8=-12,则P (-12,-12);当a =-2时,a -2=-4,2a +8=4,则P (-4,4).综上所述,点P 的坐标为(-12,-12)或(-4,4).22.(9分)在如图所示的平面直角坐标系中描出下面各点:A (0,3)、B (1,-3)、C (3,-5)、D (-3,-5)、E (3,5)、F (5,7)、G (5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点____重合; (2)连接接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积.解:描点如题图. (1)D(2)如题图,连接CE .因为C 、E 两点的横坐标相同,故直线CE 平行于y 轴.(3)设CE 与x 轴相交于点H ,则DC =6,EC =10,GH =2,所以S 四边形DEGC =S △EDC +S △GEC =12DC×EC +12EC ×GH =12×6×10+12×10×2=40.23.(10分)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P 从原点O 出发,速度为1 cm/s ,且整点P 向上或向右运动,运动时间(s)与整点(个)的关系如下表:整点P 从原点O 出发的时间(s)可以得到整点P 的坐标可以得到点P 的个数1 (0,1),(1,0)2 2 (0,2),(1,1),(2,0)3 3 (0,3),(1,2),(2,1),(3,0)4 ………………根据上表中的规律,解答下列问题:(1)当整点P 从点O 出发4 s 时,求可以得到的整点P 的个数;(2)当整点P 从点O 出发8 s 时,在直角坐标系中描出可以得到的所有整点; (3)当整点P 从点O 出发多少秒时,可以达到整点(16,4)的位置?解:(1)根据表中所示的规律,点的个数比时间数多1,可计算出整点P 从点O 出发4 s 时,可以得到整点P 的个数为5.(2)由表中所示规律,可知横、纵坐标的和等于时间,则所有整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).如题图.(3)由表中规律,可知整点的横、纵坐标的和等于到达该点的时间,则当点P 从点O 出发16+4=20(s)时,可以达到整点(16,4)的位置.24.(12分)如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4 cm ,OA =5 cm ,DE =2 cm ,动点P 从点A 出发,沿A →B →C 路线运动到点C 停止;动点Q 从点O出发,沿O →E →D 路线运动到点D 停止.若P 、Q 两点同时出发,且点P 的运动速度为1 cm/s ,点Q 的运动速度为2 cm/s.(1)直接写出B 、C 、D 三个点的坐标;(2)当P 、Q 两点出发112s 时,试求△PQC 的面积;(3)设两点运动的时间为t s ,用含t 的式子表示运动过程中△OPQ 的面积S .(单位:cm 2)解:(1)B (4,5)、C (4,2)、D (8,2).(2)当t =112时,点P 运动的路程为112 cm ,点Q 运动到点D 处停止.由已知条件可得BC=OA -DE =5-2=3(cm).因为AB +BC =7 cm >112 cm ,AB =4 cm <112 cm ,所以当t =112时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32(cm),所以S △CPQ =12CP ·CD =12×32×4=3(cm 2).(3)当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图1所示.因为OA =5 cm ,OQ =2t cm ,所以S △OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图2所示.过点P 作PM ∥x 轴交ED 延长线于点M ,则OE =8 cm ,EM =(9-t )cm ,PM =4 cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,所以S △OPQ =S 梯形OPME -S △PMQ -S △OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);当5<t ≤7时,点P 在BC 上,点Q 停在点D ,如图3所示,过点P 作PM ∥x 轴交ED 的延长线于点M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,所以S △OPQ =S梯形OPME-S △PDM -S △DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎪⎨⎪⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).图1 图2 图3。

2021七年级数学下册第七章平面直角坐标系单元测试卷含解析新版新人教版

2021七年级数学下册第七章平面直角坐标系单元测试卷含解析新版新人教版

第七章一、选择题(每小题3分.共30分)1.能确定某学生在教室中的具体位置的是( D )A.第3排B.第2排以后C.第2列D.第3排第2列2.如图.小颖从家到达学校要穿过一个居民小区.若小区的道路均是正南或正东方向.小颖走下面哪条线路不能到达学校( D )A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)D.(0,4)→(3,4)→(4,2)→(4,0)3.已知点P(3-m.m-1)在第二象限.则m的取值范围在数轴上表示正确的是( A )4.小明住在学校正东200米处.从小明家出发向北走150米就到了李华家.若选取李华家为原点.分别以正东、正北方向为x轴.y轴正方向建立平面直角坐标系.则学校的坐标为( B )A.(-150.-200) B.(-200.-150)C.(0.-50) D.(150,200)5.已知直角坐标系中.点P(x.y)满足|x-2|+(y+3)2=0.则点P的坐标为( C ) A.(2,3) B.(-2,3)C.(2.-3) D.(2.-3)或(-2.-3)6.若|a-b|·|a+b|=0.则点P(a.b)在( C )A.第一、三象限内B.第一、三象限角平分线上C.第一、三象限角平分线或第二、四象限角平分线上D.第二、四象限角平分线上7.小米同学乘坐一艘游船出海游玩.游船上的雷达扫描探测得到的结果如图所示.每相邻两个圆之间距离是1 km(小圆半径是1 km).若小艇C相对于游船的位置可表示为(270°.-1.5).则描述图中另外两个小艇A、B的位置.正确的是( C )A.小艇A(60°.3).小艇B(-30°.2)B.小艇A(60°.3).小艇B(60°.2)C.小艇A(60°.3).小艇B(150°.2)D.小艇A(60°.3).小艇B(-60°.2)8.如图.直线m⊥n.在某平面直角坐标系中.x轴∥m.y轴∥n.点A的坐标为(-4,2).点B 的坐标为(2.-4).则坐标原点为( A )A.O1B.O2C.O3D.O49.定义:平面内的直线l1与l2相交于点O.对于该平面内任意一点M.点M到直线l1、l2的距离分别为a、b.则称有序实数对(a.b)是点M的“距离坐标”.根据上述定义.距离坐标为(2,3)的点的个数是( C )A.2 B.1C.4 D.310.在平面直角坐标系中.对于平面内任一点(a.b).若规定以下三种变换:①f(a.b)=(-a.b).如f(1,3)=(-1,3);②g(a.b)=(b.a).如g(1,3)=(3,1);③h(a.b)=(-a.-b).如h(1,3)=(-1.-3).按照以上变换有f(g(h(2.-3)))=f(g(-2,3))=f(3.-2)=(-3.-2).那么f(g(h(-3,5)))等于( B )A.(-5.-3) B.(5,3)C.(5.-3) D.(-5,3)二、填空题(每小题3分.共18分)11.如果把电视屏幕看作一个长方形平面.建立一个直角坐标系.若左下角的坐标是(0,0).右下角的坐标是(32,0).左上角的坐标是(0,28).则右上角的坐标是__(32,28)__.12.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,2).(1,3).(1,4).(5,1).则这个英文单词为LOVE .13.如图.已知∠AOC=30°.∠BOC=150°.OD为∠BOA的平分线.则∠DOC=90°.若点A 可表示为(30°.1).点B可表示为(150°.4).则点D可表示为__(90°.5)__.14.如图.半径为1的圆.在x轴上从原点O开始向右滚动一周后.落定点M的坐标为__(2π.0)__.15.在平面直角坐标系内.将点P(m+2.n-4)先向左平移1个单位长度.再向上平移3个单位长度得到点P′(2018.-2019).则m=__2017__.n=__-2018__.16.如图.平面直角坐标系中.一个点从原点O出发.按向右→向上→向右→向下的顺序依次不断移动.每次移动1个单位.其移动路线如图所示;第1次移到点A1.第二次移到点A2.第三次移到点A3.….第n次移到点A n.则点A2019的坐标是__(1010,1)__.三、解答题(共72分)17.(8分)如图.长方形ABCD在坐标平面内.点A的坐标是( 2.1).且边AB、CD与x轴平行.边AD、BC与y轴平行.AB=4.AD=2.(1)求B、C、D三点的坐标;(2)怎样平移.才能使点A与原点O重合?解:(1)因为A( 2.1).AB=4.AD=2.所以BC到y轴的距离为4+ 2.CD到x轴的距离2+1=3.所以点B的坐标为(4+ 2.1).点C的坐标为(4+ 2.3).点D的坐标为( 2.3).(2)由图可知.先向下平移1个单位长度.再向左平移2个单位长度(或先向左平移2个单位长度.再向下平移1个单位长度).能使点A 与原点O 重合.18.(8分)一长方形住宅小区长400 m.宽300 m.以长方形的对角线的交点为原点.过原点和较长边平行的直线为x 轴.和较短边平行的直线为y 轴.并取50 m 为1个单位.住宅小区内和附近有5处违章建筑.它们分别是A (3,3.5)、B (-2,2)、C (0,3.5)、D (-3,2)、E (-4.4).在平面直角坐标系中标出这些违章建筑的位置.并说明哪些在小区内.哪些不在小区内.解:如题图:在小区内的违章建筑有B 、D .不在小区内的违章建筑有A 、E 、C .19.(8分)如图是小明家和学校所在地的简单地图.已知OA =2 km.OB =3.5 km.OP =4 km.C 为OP 的中点.解答下列问题:(1)图中哪些地方距小明家的距离相同?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.解:(1)因为C 为OP 的中点.所以OC =12OP =12×4=2(km).因为OA =2 km.所以图中学校和公园距小明家的距离相同.(2)学校在小明家北偏东45°的方向上.且到小明家的距离为2 km ;商场在小明家北偏西30°的方向上.且到小明家的距离为3.5 km ;停车场在小明家南偏东60°的方向上.且到小明家的距离为4 km.20.(8分)如图.△DEF 是△ABC 经过某种变换得到的图形.点A 与点D 、点B 与点E 、点C 与点F 分别是对应点.观察点与点的坐标之间的关系.解答下列问题:(1)分别写出点A 与点D 、点B 与点E 、点C 与点F 的坐标.并说出△DEF 是由△ABC 经过怎样的变换得到的;(2)若点Q (a +3,4-b )是点P (2a,2b -3)通过上述变换得到的.求a -b 的值.解:(1)A (2,4)、D (-1,1)、B (1,2)、E (-2.-1)、C (4,1)、F (1.-2).△DEF 是由△ABC 先向左平移3个单位.再向下平移3个单位得到的(或先向下平移3个单位.再向左平移3个单位得到的).(2)由题意.得2a -3=a +3,2b -3-3=4-b .解得a =6.b =103.所以a -b =83.21.(9分)已知点P (a -2,2a +8).分别根据下列条件求出点P 的坐标. (1)点P 在x 轴上; (2)点P 在y 轴上;(3)点Q 的坐标为(1,5).直线PQ ∥y 轴; (4)点P 到x 轴、y 轴的距离相等.解:(1)因为点P (a -2,2a +8)在x 轴上.所以2a +8=0.解得a =-4.故a -2=-4-2=-6.则P (-6,0).(2)因为点P (a -2,2a +8)在y 轴上.所以a -2=0.解得a =2.故2a +8=2×2+8=12.则P (0,12).(3)因为点Q 的坐标为(1,5).直线PQ ∥y 轴.所以a -2=1.解得a =3.故2a +8=14.则P (1,14).(4)因为点P 到x 轴、y 轴的距离相等.所以a -2=2a +8或a -2+2a +8=0.解得a =-10或a =-2.当a =-10时.a -2=-12,2a +8=-12.则P (-12.-12);当a =-2时.a -2=-4,2a +8=4.则P (-4,4).综上所述.点P 的坐标为(-12.-12)或(-4,4).22.(9分)在如图所示的平面直角坐标系中描出下面各点:A (0,3)、B (1.-3)、C (3.-5)、D (-3.-5)、E (3,5)、F (5,7)、G (5,0).(1)将点C 向x 轴的负方向平移6个单位.它与点____重合; (2)连接接CE .则直线CE 与y 轴是什么关系?(3)顺次连接接D 、E 、G 、C 、D 得到四边形DEGC .求四边形DEGC 的面积.解:描点如题图.(1)D(2)如题图.连接CE.因为C、E两点的横坐标相同.故直线CE平行于y轴.(3)设CE与x轴相交于点H.则DC=6.EC=10.GH=2.所以S四边形DEGC=S△EDC+S△GEC=12DC×EC+12EC×GH=12×6×10+12×10×2=40.23.(10分)在直角坐标系中.我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发.速度为1 cm/s.且整点P向上或向右运动.运动时间(s)与整点(个)的关系如下表:根据上表中的规律.解答下列问题:(1)当整点P从点O出发4 s时.求可以得到的整点P的个数;(2)当整点P从点O出发8 s时.在直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发多少秒时.可以达到整点(16,4)的位置?解:(1)根据表中所示的规律.点的个数比时间数多1.可计算出整点P从点O出发4 s时.可以得到整点P的个数为5.(2)由表中所示规律.可知横、纵坐标的和等于时间.则所有整点为(0,8).(1,7).(2,6).(3,5).(4,4).(5,3).(6,2).(7,1).(8,0).如题图.(3)由表中规律.可知整点的横、纵坐标的和等于到达该点的时间.则当点P 从点O 出发16+4=20(s)时.可以达到整点(16,4)的位置.24.(12分)如图.在平面直角坐标系中.AB ∥CD ∥x 轴.BC ∥DE ∥y 轴.且AB =CD =4 cm.OA =5 cm.DE =2 cm.动点P 从点A 出发.沿A →B →C 路线运动到点C 停止;动点Q 从点O 出发.沿O →E →D 路线运动到点D 停止.若P 、Q 两点同时出发.且点P 的运动速度为1 cm/s.点Q 的运动速度为2 cm/s.(1)直接写出B 、C 、D 三个点的坐标;(2)当P 、Q 两点出发112s 时.试求△PQC 的面积;(3)设两点运动的时间为t s.用含t 的式子表示运动过程中△OPQ 的面积S .(单位:cm 2)解:(1)B (4,5)、C (4,2)、D (8,2).(2)当t =112时.点P 运动的路程为112cm.点Q 运动到点D 处停止.由已知条件可得BC =OA -DE =5-2=3(cm).因为AB +BC =7 cm >112 cm.AB =4 cm <112 cm.所以当t =112时.点P运动到BC 上.且CP =AB +BC -112=4+3-112=32(cm).所以S △CPQ =12CP ·CD =12×32×4=3(cm 2).(3)当0≤t <4时.点P 在AB 上.点Q 在OE 上.如图1所示.因为OA =5 cm.OQ =2t cm.所以S △OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);当4≤t ≤5时.点P 在BC 上.点Q 在ED 上.如图2所示.过点P 作PM ∥x 轴交ED 延长线于点M .则OE =8 cm.EM =(9-t )cm.PM =4 cm.EQ =(2t -8)cm.MQ =(17-3t )cm.所以S △OPQ =S梯形OPME-S △PMQ -S △OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);当5<t ≤7时.点P 在BC 上.点Q 停在点D .如图3所示.过点P 作PM ∥x 轴交ED 的延长线于点M .则MD =CP =(7-t )cm.ME =(9-t )cm.所以S △OPQ=S 梯形OPME -S △PDM -S △DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述.S =⎩⎪⎨⎪⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).图1 图2 图3。

2021学年人教版七年级数学下册 第7章 平面直角坐标系 单元测试题有答案

2021学年人教版七年级数学下册 第7章 平面直角坐标系  单元测试题有答案

第7章平面直角坐标系单元测试题班级:_____________姓名:_____________一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 点M(2,-1)向上平移2个单位长度得到的点的坐标是()A.(2,0)B.(2,1)C.(2,2)D.(2,-3)2. 下列说法中,正确的是()A.点P(3, 2)到x轴的距离是3B.在平面直角坐标系中,点(2, −3)和点(−2, 3)表示同一个点C.若y=0,则点M(x, y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号3. 点P(−3, −8)在坐标系中的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4. 把P1(2, √3)向下平移√3个单位长度再向左平移2个单位长度到达点P2处,则P2的坐标是()A.(4, 0)B.(0, 0)C.(2, 2√3)D.(4, √3)5. 若线段AB // y轴,且AB=3,点A的坐标为(2, 1),现将线段AB先向左平移1个单位,再向下平移两个单位,则平移后B点的坐标为()A.(1, 2)B.(1, −4)C.(−1, −1)或(5, −1)D.(1, 2)或(1, −4)6. 如图,已知A1(1, 0)、A2(1, 1)、A3(−1, 1)、A4(−1, −1)、A5(2, −1)、…则点A2010的坐标为()A.(503, 503)B.(−503, 503)C.(503, −503)D.(−503, −503)7. 如图,笑脸盖住的点的坐标可能为()A.(5, 2)B.(3, −4)C.(−4, −6)D.(−1, 3)8. 在平面直角坐标系中,点A(a,0),点B(52,0),且A在B的左边,点C(1,−1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4,那么a的取值可以是()A.−32B.−1 C.−54D.−14二、填空题(本题共计12 小题,每题3 分,共计36分,)9. 已知点P的坐标是(2, 3),则点P到x轴的距离是________.10. 在平面直角坐标系中,点A1(−1, 1),A2(2, 4),A3(−3, 9),A4(4, 16),…,用你发现的规律确定点A9的坐标为________.11. 已知点A(1,0),B(0,2),点P在y轴上,且△PAB的面积为5,则点P的坐标为________.12. 若点A(a,b)在第一象限,则点B(−a,−1−b)在第________象限.13. 已知直角坐标系中的点A,点B的坐标分别为A(−2, 6),B(0, −4),且P为AB的中点,若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标为________.14. 如图,在平面直角坐标系中,已知点A(2,0),B(2−a,0),C(2+a,0)(a>0),点P在以D(8,8)为圆心,2为半径的圆上运动,且始终满足∠BPC=90∘,则a的最大值是________.15. 如图,在平面直角坐标系中,已知点A(1, 1),B(−1, 1),C(−1, −2),D(1, −2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是________.16. 将平面直角坐标系内的一点A(−2,5)绕原点O沿顺时针方向旋转90∘后得到点A′,则A′的坐标是________.17. 某人出汽车站向南走300米到天天超市,再从天天超市向西走100米到广场,将天天超市坐标记为(0, −300),则广场站的坐标为________.18. 如图,在平面直角坐标系中,已知点A(1, 1),B(−1, 1),C(−1, −2),D(1, −2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是________.19. 如图,将△ABC平移得到△A′B′C′,△ABC的顶点A(2, 3)的对应点为A′,若△ABC内一点P(a, b),则其对应点P′的坐标为________.20. 如图,动点P从(0, 3)出发,沿箭头·所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2021次碰到矩形的边时,点P的坐标为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,平面直角坐标系,三角形ABC三个顶点的坐标分别是A(−3,1),B(−5,−3),C(−2.−4),将三角形ABC向上平移4个单位长度,再向右平移6个单位长度,得三角形A’B’C’。

2021年人教版数学七年级下册 第七章测试卷(一).doc

2021年人教版数学七年级下册 第七章测试卷(一).doc

2021年人教版数学七年级下册第七章测试卷(一)姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分l6.如图,小华从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A. 点AB. 点BC. 点CD. 点D7.在如图所示的平面直角坐标系内,画在透明胶片上的ABCD,点A的坐标是(0,2),现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()A. 先向右平移5个单位,再向下平移1个单位B. 先向右平移5个单位,再向下平移3个单位C. 先向右平移4个单位,再向下平移1个单位D. 先向右平移4个单位,再向下平移3个单位评卷人得分8.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁崀山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A. (2,1)B. (0,1)C. (-2,-1)D. (-2,1)9.已知点A(-1,0)和点B(1,2),将线段AB平移至A'B',点A'与点A对应。

若点A'的坐标为(1,-3),则点B'的坐标为()A. (3,0)B. (3,-3)C. (3,1)D. (-1,3)10.如图,所有正方形的中心坐标均为坐标原点,且各边与x轴或y轴都平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A. (13,13)B. (-13,-13)C. (-14,-14)D. (14,14)l参考答案:C、A、E,F3、如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为______________________.参考答案:(2n,1)4、已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则a=______________________.参考答案:-1或-45、如图,在一次军棋比赛中,若团长所在的位置坐标为(1,-4),工兵所在的位置坐标为(0,-1),则司令所在的位置坐标是______________________.参考答案:(3,-1)6、某人从火车站向南走300米到平价超市,再从平价超市向西走100米,再向北走500米到汽车站,若将平价超市标记为(0,-300),则汽车站的坐标为______________________.参考答案:(-100,200)7、如图,A,B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为______________________.参考答案:(3,0)或(9,0)8、已知点M(-4,7),在平面直角坐标系内有一点N满足MN∥x轴,且MN=5,则点N的坐标为______________________.参考答案:(1,7)或(-9,7)三、按要求做题。

2021年人教版七年级数学第二学期第七章达标检测卷

2021年人教版七年级数学第二学期第七章达标检测卷

2021年人教版七年级数学第二学期第七章达标检测卷一、选择题(每题3分,共30分)1.下列数据中不能确定物体位置的是( )A .南偏西40°B .幸福小区3号楼701号C .平原路461号D .东经130°,北纬54°2.在平面直角坐标系中,点P (-2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点( )A .(-1,1)B .(-2,-1)C .(-4,1)D .(1,-2)4.如图,在平面直角坐标系xOy 中,点P 的坐标为(1,1).如果将x 轴向上平移2个单位长度,y 轴不变,得到新坐标系,那么点P 在新坐标系中的坐标是( )A .(1,-1)B .(-1,1)C .(3,1)D .(1,2)5.已知AB ∥y 轴,且点A 的坐标为(m ,2m -1),点B 的坐标为(2,4),则点A的坐标为( )A .(2,3) B.⎝ ⎛⎭⎪⎫52,4 C .(-2,-4) D .(2,-4)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A 点的坐标为()A.(5,3) B.(4,3) C.(4,2) D.(3,3)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15 B.7.5 C.6 D.38.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a-10)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.如图,长方形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边做环绕运动,物体甲按逆时针方向以1个单位长度/秒的速度匀速运动,物体乙按顺时针方向以2个单位长度/秒的速度匀速运动,则两个物体运动后的第2 021次相遇地点的坐标是() A.(1,-1) B.(2,0)C.(-1,1) D.(-1,-1)二、填空题(每题3分,共30分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为________.12.在平面直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图所示为沱江两个风景区的位置,若麻拐岩风景区的坐标为(-4,2),则阳华岩风景区的坐标为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.若点P(a2-9,a-1)在y轴的负半轴上,则点P的坐标为________.17.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为________.18.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C 到直线AB的距离为4,三角形ABC是直角三角形且∠C不是直角,则满足条件的点C有________个.19.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(21题6分,22题8分,25题12分,26题14分,其余每题10分,共60分)21.如图,由小亮家向东走2 km,再向北走1 km就到了小丽家;若再向北走3 km 就到了小红家;再向东走4 km就到了小涛家.若用(0,0)表示小亮家的位置,用(2,1)表示小丽家的位置.(1)小红、小涛家该如何表示?(2)若小刚家的位置是(6,3),则小涛从家到小刚家怎么走?22.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直,垂足为C,求C点的坐标.23.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出三角形A1B1C1;(3)求三角形AOA1的面积.24.如图,A,B,C为一个平行四边形的三个顶点,且A,B,C三点的坐标分别为(3,3),(6,4),(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.25.如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC的边逆时针移动一周(即:沿着O→A→B→C→O的路线移动).(1)点B的坐标为________;(2)当点P移动4 s时,求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间t.26.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b-3)2=0.(1)填空:a=________,b=________;(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示三角形ABM的面积;(3)在(2)的条件下,当m=-32时,在y轴上有一点P,使得三角形BMP的面积与三角形ABM的面积相等,请求出点P的坐标.答案一、1.A 2.C3.C 点拨:由“帅”与“马”的位置可以确定平面直角坐标系,进而可知“兵”位于点(-4,1),故选C.4.A5.A 点拨:平行于x 轴(或垂直于y 轴)的直线上的点的纵坐标都相等,平行于y 轴(或垂直于x 轴)的直线上的点的横坐标都相等.6.D 点拨:由长方形ABCD 的长为3,可知A 点的横坐标为6-3=3,纵坐标与D 点相同,即A 点的坐标为(3,3).故选D.7.D 点拨:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO ,然后运用转化思想将点的坐标转化为线段的长度,即底BO =2,高为3,所以三角形ABO 的面积=12×2×3=3.8.D 点拨:由P ,Q 两点在图中的位置可知a <7,b <5,所以6-b >0,a -10<0,故点(6-b ,a -10)在第四象限.9.D 点拨:因为点P 到两坐标轴的距离相等,所以|2-a |=|3a +6|,所以a =-1或a =-4.当a =-1时,点P 的坐标为(3,3);当a =-4时,点P 的坐标为(6,-6).10.D 点拨:长方形BCDE 的长与宽分别为4和2,因为物体乙的速度是物体甲的2倍,二者的运动时间相同,所以物体甲与物体乙走的路程比为1 2.由题意可知,①第一次相遇时,物体甲与物体乙走的路程之和为12×1,物体甲走的路程为12×13=4,物体乙走的路程为12×23=8,相遇在BC 边上点(-1,1)处;②第二次相遇时,物体甲与物体乙走的路程之和为12×2,物体甲走的路程为12×2×13=8,物体乙走的路程为12×2×23=16,相遇在DE 边上的点(-1,-1)处;③第三次相遇时,物体甲与物体乙走的路程之和为12×3,物体甲走的路程为12×3×13=12,物体乙走的路程为12×3×23=24,相遇在出发点A 点.此时,甲、乙回到原出发点,故每相遇三次,甲、乙两物体就回到出发点.因为2 021÷3=673……2,所以两个物体运动后的第2 021次相遇地点是DE 边上的点(-1,-1)处.故选D.二、11.(5,2)12.(5,-2)13.(0,-3) 14.(-9,2)15.二16.(0,-4)17.(3,0)或(9,0)点拨:设点P的坐标为(x,0),根据题意,得12×4×|6-x|=6,解得x=3或9,所以点P的坐标为(3,0)或(9,0).18.419.(2,1)点拨:由题意知四边形BEB′D是正方形,∴点B′的横坐标与点E 的横坐标相同,点B′的纵坐标与点D的纵坐标相同,∴点B′的坐标为(2,1).20.(2n,1)点拨:由题图可知n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1)……所以点A4n+1(2n,1).三、21.解:(1)由题意可知小红家可表示为(2,4),小涛家可表示为(6,4).(2)小涛从家到小刚家向南走1 cm.22.解:(1)∵l∥x轴,点A,B都在l上,∴m+1=-4,∴m=-5,∴A(2,-4),B(-2,-4),∴A,B两点间的距离为4.(2)∵l∥x轴,PC⊥l,x轴⊥y轴,∴PC∥y轴,∴C点的横坐标为-1.又点C在l上,∴C点的纵坐标为-4,∴C(-1,-4).23.解:(1)C1(4,-2).(2)三角形A1B1C1如图所示.(3)如图,三角形AOA1的面积=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=6.24.解:(1)(7,7)或(1,5)或(5,1).(2)以A,B,C为顶点的三角形的面积为3×3-12×3×1-12×2×2-12×1×3=4.所以这个平行四边形的面积为4×2=8.25.解:(1)(4,6)(2)点P移动了4 s,移动的距离为4×2=8(个)单位长度,即OA+AP=8.又易知OA=4,所以点P在AB上且距点A 4个单位长度,所以点P的坐标为(4,4).(3)当点P第一次距x轴5个单位长度时,AP=5,即OA+AP=4+5=9=2 t,解得t=9 2s.当点P第二次距x轴5个单位长度时,OP=5,即OA+AB+BC+CP=4+6+4+(6-5)=15=2 t,解得t=15 2s.综上所述,当t=92s或152s时,点P到x轴的距离为5个单位长度.易错警示:解答本题第(3)问时,容易出现因忽视对点P的移动情况进行分类讨论而产生漏解的错误.在平时的训练过程中,同学们要注意培养自己思维的严密性.11 26.解:(1)-1;3 (2)如图①,过点M 作MN ⊥x 轴于点N .∵A (-1,0),B (3,0),∴AB =1+3=4.又∵点M (-2,m )在第三象限,∴MN =|m |=-m ,∴S三角形ABM =12AB ·MN=12×4×(-m )=-2m .(3)当m =-32时,点M 的坐标为⎝ ⎛⎭⎪⎫-2,-32,∴S 三角形ABM =-2×⎝ ⎛⎭⎪⎫-32=3.点P 的位置有两种情况:①如图②,当点P 在y 轴的正半轴上时,设点P 的坐标为(0,k ),则S 三角形BMP =5⎝ ⎛⎭⎪⎫32+k -12×2⎝ ⎛⎭⎪⎫32+k -12×5×32-12×3 k =52k +94. ∵S 三角形BMP =S 三角形ABM ,∴52k +94=3,解得k =310,∴点P 的坐标为⎝ ⎛⎭⎪⎫0,310;②如图③,当点P 在y 轴的负半轴上时,设点P 的坐标为(0,n ),则S 三角形BMP=-5n -12×2⎝ ⎛⎭⎪⎫-n -32-12×5×32-12×3×(-n )=-52n -94.∵S 三角形BMP =S 三角形ABM ,∴-52n -94=3,解得n =-2110,∴点P 的坐标为⎝ ⎛⎭⎪⎫0,-2110. 综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫0,310或⎝ ⎛⎭⎪⎫0,-2110.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的坐标为 __________.
18. 如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数
字表示.纵线用英文字母表示,这样,白棋②的位置可记为( E ,3),白棋④的位置 可记为(G,4),则白棋⑨的位置应记为 __________.
第 17 题图
第 18 题图
三、解答题(共 46 分)
解:点 C 的位置如图所示.
22. 解:(1)因为(0,3)和(3,3)的纵坐标相同,
(- 2,0)和(4,0)的纵坐标也相同,因而 BC∥AD.
又因为 BC AD,故四边形 是梯形.作出图形如图所示.
(2)因为

,高

故梯形的面积是 1 2
27 . 2
(3)在 Rt△ 中,根据勾股定理得

7/8
(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.
23.(8 分)如图,点 用
表示,点 用
表示.
若用




表示由 到 的一种走法,
并规定从 到 只能向上或向右走,用上述表示法再写出 另两种走法,并判断这几种走法的路程是否相等.
24.(8 分)如图,已知 A(-1,0),B(1,1),把线段
为 12×2× 1 =8,物体乙行的路程为 12×2× 2 =16,在 DE 边相遇;此时相遇点的坐
3
3
标为(-1,-1),故选 D.
4.D 解析:因为点 P 到两坐标轴的距离相等,所以
,
,所以
5.D 解析:因为点
在 轴上,所以纵坐标是 0,即 .又因为点 位于原点的
左侧,所以横坐标小于 0,即 ,所以
8/8
16. (1)x 轴;(2)-2 1 解析:两点关于 x 轴对称时,横坐标相等,纵坐标互为相反数;两 点关于原点对称时,横、纵坐标都互为相反数.
6/8
优质资料
17.(3,5) 解析:因为正方形 ABCD的边长为 4,点 A 的坐标为(-1,1), 所以点 C 的横坐标为 4-1=3,点 C 的纵坐标为 4+1=5, 所以点 C 的坐标为(3,5).故答案为(3,5).
第 13 题图
第 15 题图
16. 已知点 M (a,1) 和点 N (2,b) 不重合.
(1)当点 M、N 关于_______对称时, a 2,b 1; (2)当点 M、N 关于原点对称时, a = _______, b =________.
17. 如图,正方形 ABCD的边长为 4,点 A 的坐标为(-1,1), AB 平行于 x 轴,则点 C
14.在平面直角坐标系中,点 A (2, m2 +1)一定在第 __________象限.
15. (202X·四川绵阳中考)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸 机的平面坐标分别是 A(-2,1)和 B(-2,-3),那么第一架轰炸机 C 的平面坐标

__________.
2/8
优质资料
地点的坐标是( )
A.(2,0)
B.(-1,1)
C.(-2,1)
D.(-1,-1)
4. 已知点 P 坐标为
,且点 P 到两坐标轴的距离相等,则点 P 的坐标
是( )
A.(3,3)
B.(3,-3)
C.(6,-6)
D.(3,3)或(6,-6)
5.设点
在 轴上,且位于原点的左侧,则下列结论正确的是( )
A.
A. P1 、 P2 、 P3
B. P1 、 P2 C. P1 、 P3 D. P1
第 2 题图
第 3 题图
3.如图,矩形 BCDE 的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点 A (2,0)
同时出发,沿矩形 BCDE 的边作环绕运动,物体甲按逆时针方向以 1 个单位/秒匀速运
动,物体乙按顺时针方向以 2 个单位/秒匀速运动,则两个物体运动后的第 2012 次相遇
③第三次相遇物体甲与物体乙行的路程和为 12×3,物体甲行的路程为 12×3× 1 =12, 3
物体乙行的路程为 12×3× 2 =24,在 A 点相遇,此时甲、乙两个物体回到原出发点. 3
……
则每相遇三次,两个物体回到原出发点,
因为 2 012÷3=670……2,
故两个物体运动后的第 2012 次相遇的地点是:第二次相遇地点,即物体甲行的路程
同理可得
,因而梯形的周长是
23.解:路程相等. 走法一:
走法二:
答案不唯一.
优质资料

; ;
第 22 题答图
第 24 题答图
24.解:(1)因为点 B (1,1)移动到点 D (3,4)处,如图, 所以 C (1,3); (2)向右平移 2 个单位长度,再向上平移 3 个单位长度即可得到 CD .
,故选 D.
6.D
7.D 解析:过点 作 ⊥ 轴于点 ,则点 的坐标为(3,0).因为点 到 轴的距离为 4,
所以
.又因为
,所以由勾股定理得
,所
以点 的坐标为(6,0)或(0,0),故选 D.
5/8
优质资料
8. A 解析:根据点的平移规律:左减右加,上加下减,可得点 P(-2,-3)向左平移 1 个单位,再向上平移 3 个单位后的点的坐标是(-3,0).
优质资料
七年级下册数学第七章检测试题
(时间:90 分钟,满分:100 分)
一、选择题(每小题 3 分,满分 30 分)
1.(202X·湖北随州中考改编)在直角坐标系中,将点(2,-3)向左平移 2 个单位 长度得到的点的坐标是( )
A.(4,-3) C.(0,-3)
B.(-4,3) P3 这三个点中,在第二象限内的有( )
19. (7 分)(202X·广西桂林中考节选)如图,△ABC 各顶点的坐标分别是 A(-2,
-4),B(0,-4),C(1,-1). 在图中画出△ABC 向左平移 3 个单位后的△
.
第 19 题图
第 20 题图
20.(7 分)(202X•四川宜宾中考节选)如图,在平面直角坐标系中,四边形 ABCD 是矩形,
2.D 解析:由图可知,P1 在第二象限,点 P2 在 y 轴的正半轴上,点 P3 在 x 轴的负半轴 上,所以,在第二象限内的有 P1 .故选 D.
4/8
优质资料
3.D 解析:矩形的边长为 4 和 2,因为物体乙的速度是物体甲的速度的 2 倍,时间相 同,物体甲与物体乙的路程比为 1∶2,由题意知:
C.第三象限
D.第四象限
11. 已知点
是第二象限的点,则 的取值范围是
.
12. 已知点 A(m 1,3) 与点 B(2,n 1) 关于 x 轴对称,则 m
,n

13. (202X•山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不 变,横坐标分别变为原来的 1 ,那么点 A 的对应点 A'的坐标是_______. 3
AB 平移,使点 B 移动到点 D(3,4)处,这时点 A 移到
点 C 处. (1)画出平移后的线段 CD,并写出点 C 的坐标; (2)如果平移时只能左右或者上下移动,叙述线段 AB
是怎样移到 CD 的.
第 24 题图
第七章 平面直角坐标系检测题参考答案
1. C 解析:根据平移的性质,结合直角坐标系,点(2,-3)向左平移 2 个单位长 度,即横坐标减 2,纵坐标不变,即平移后的点的坐标为(0,-3).
9. A 解析:因为点 A 在第二象限,所以 m 0, n 0, 所以 m 0, ︱ n ︱>0,因此点 B
在第一象限.
10. D 解析:∵(m+1)-(m-4)=m+1-m+4=5, ∴点 P 的纵坐标一定大于横坐标. ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点 P 一定不在第四象限.故选 D.
18.( D ,6) 解析:由题意可知,白棋⑨在纵线对应 D ,横线对应 6 的位置,故 记作( D ,6).
19. 解:画出△
如图所示.
20.解:(1) B
,C
,D
.
21. 分析:先根据点 A(-3,1),B(-3,-3)的坐标,确定出 x 轴和 y 轴,再根据 C 点的坐标(3,2),即可确定 C 点的位置.
, 为一切数
B.

C. 为一切数,
D.

1/8
优质资料
6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 得的图案与原来图案相比( )
,那么所
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
7.已知点
①第一次相遇物体甲与物体乙行的路程和为 12×1,物体甲行的路程为 12× 1 =4,物 3
体乙行的路程为 12× 2 =8,在 BC 边相遇; 3
②第二次相遇物体甲与物体乙行的路程和为 12×2,物体甲行的路程为 12×2× 1 =8, 3
物体乙行的路程为 12×2× 2 =16,在 DE 边相遇; 3
AD∥x 轴,A
,AB=1,AD=2.写出 B,C,D 三点的坐标.
3/8
优质资料
21.(8 分)有一张图纸被损坏,但上面有如图所示的两个标志点 A(-3,1),B(-3, -3)可认,而主要建筑 C(3,2)破损,请通过建立直角坐标系找到图中 C 点的 位置.
第 21 题图
第 23 题图
22.(8 分)在直角坐标系中,用线段顺次连接点 A( ,0),B(0,3),C(3,3), D(4,0).
,得到它的对应点
相关文档
最新文档