Far-infrared Point Sources

合集下载

傅里叶变换红外光谱仪英文

傅里叶变换红外光谱仪英文

傅里叶变换红外光谱仪英文Fourier Transform Infrared SpectrometerIntroduction:The Fourier Transform Infrared (FTIR) spectrometer is an essential tool in the field of spectroscopy. It utilizes the mathematical technique known as Fourier transform to analyze infrared light, enabling scientists to study the molecular composition and structure of various substances. In this article, we will explore the principles behind the Fourier Transform Infrared Spectrometer and its applications in scientific research.Principles of Fourier Transform Infrared Spectroscopy:Fourier Transform Infrared Spectroscopy is based on the interaction between infrared light and matter. When a substance is exposed to infrared radiation, the energy absorbed by the molecules causes them to vibrate. These vibrations are specific to each molecule and are dependent on the molecular bonds present within the substance.The spectrometer operates by passing an infrared beam through the sample and measuring the amount of light absorbed at different wavelengths. This absorption spectrum is then transformed using Fourier analysis, producing a highly detailed and accurate representation of the substance's molecular structure.Advantages of Fourier Transform Infrared Spectroscopy:1. High Speed and Sensitivity: Fourier Transform Infrared Spectroscopy offers rapid analysis times due to its ability to gather a full range ofwavelengths simultaneously. This allows for efficient data collection, making it ideal for high-throughput applications. Additionally, the technique is highly sensitive, capable of detecting even small quantities of sample material.2. Broad Analytical Range: FTIR spectroscopy covers a wide range of wavelengths, from near-infrared (NIR) to mid-infrared (MIR). This versatility enables the analysis of various substances, including organic and inorganic compounds, polymers, pharmaceuticals, and biological samples.3. Non-destructive Analysis: One of the key advantages of FTIR spectroscopy is that it is a non-destructive technique. Samples do not require any special preparation and can be analyzed directly, allowing for subsequent analysis or retesting if required.Applications of Fourier Transform Infrared Spectrometers:1. Pharmaceutical Analysis: FTIR spectroscopy plays a vital role in drug discovery and development. It is used to identify and characterize the molecular composition of active pharmaceutical ingredients (APIs), excipients, and impurities. By comparing spectra, scientists can ensure the quality and purity of pharmaceutical products.2. Environmental Analysis: Fourier Transform Infrared Spectrometers are employed in environmental monitoring to analyze air, water, and soil samples. It aids in detecting pollutants, identifying unknown substances, and assessing the impact of human activities on the environment.3. Forensic Science: FTIR spectroscopy has proven to be a valuable tool in forensic science. It assists in the analysis of various evidence, such asfibers, paints, and drugs. FTIR spectra can provide crucial information in criminal investigations, helping to identify unknown substances and link them to potential sources.4. Food and Beverage Industry: The FTIR spectrometer allows for the analysis of food quality, safety, and authenticity. It can identify contaminants, detect adulteration, and verify product labeling claims. Both raw materials and finished products can be analyzed using this technique, ensuring compliance with industry regulations.Conclusion:The Fourier Transform Infrared Spectrometer has revolutionized the field of spectroscopy by providing accurate and detailed information about a substance's molecular structure. Its speed, sensitivity, and versatility make it a crucial analytical tool in various scientific disciplines. With ongoing advancements in technology, FTIR spectroscopy continues to contribute to new discoveries and advancements in research.。

附录A 外文及翻译

附录A 外文及翻译

附录A 外文文献及翻译How Remote Controls Workby Julia Layton from: /remote-control.htmIntroduction to How Remote Controls WorkThe world's first remote controls were radio-frequency devices that directed German naval vessels to crash into Allied boats during WWI. In WWII, remote controls detonated bombs for the first time. The end of the great wars left scientists with a brilliant technology and nowhere to apply it. Sixty years later, some of us spend an hour looking for the remote before we remember there are buttons on the TV.In this article, we'll examine the infrared technology used in most home theaters, look at the difference between IR and RF remotes, find out the difference between a "universal" and a "learning" remote and check out some of the other high-tech features you can find on remotes today, like PC connectivity, RF extenders and macro commands.Infrared Remote Controls: The ProcessPushing a button on a remote control sets in motion a series of events that causes the controlled device to carry out a command. The process works something like this:1. You push the "volume up" button on your remote control, causing it to touch the contact beneath it and complete the "volume up" circuit on the circuit board. The integrated circuit detects this.2.The integrated circuit sends the binary "volume up" command to the LED at the front of the remote.3.The LED sends out a series of light pulses that corresponds to the binary "volume up" command.One example of remote-control codes is the Sony Control-S protocol, which is used for Sony TVs and includes the following 7-bit binary commands:The remote signal includes more than the command for "volume up," though. It carries several chunks of information to the receiving device, including:•a "start" command•the command code for "volume up"•the device address (so the TV knows the data is intended for it) 、•a "stop" command (triggered when you release the "volume up" button)So when you press the "volume up" button on a Sony TV remote, it sends out a series of pulses that looks something like this:Sony TV remotes use a space-coding method in which the length of the spaces between pulses of light represent a one or a zero.When the infrared receiver on the TV picks up the signal from the remote and verifies from the addresscode that it's supposed to carry out this command, it converts the light pulses back into the electrical signal for 001 0010. It then passes this signal to the microprocessor, which goes about increasing the volume. The "stop" command tells the microprocessor it can stop increasing the volume.Infrared remote controls work well enough to have stuck around for 25 years, but they do have some limitations related to the nature of infrared light. First, infrared remotes have a range of only about 30 feet (10 meters), and they require line-of-sight. This means the infrared signal won't transmit through walls or around corners -- you need a straight line to the device you're trying to control. Also, infrared light is so ubiquitous that interference can be a problem with IR remotes. Just a few everyday infrared-light sources include sunlight, fluorescent bulbs and the human body. To avoid interference caused by other sources of infrared light, the infrared receiver on a TV only responds to a particular wavelength of infrared light, usually 980 nanometers. There are filters on the receiver that block out light at other wavelengths. Still, sunlight can confuse the receiver because it contains infrared light at the 980-nm wavelength. To address this issue, the light from an IR remote control is typically modulated to a frequency not present in sunlight, and the receiver only responds to 980-nm light modulated to that frequency. The system doesn't work perfectly, but it does cut down a great deal on interference.While infrared remotes are the dominant technology in home-theater applications, there are other niche-specific remotes that work on radio waves instead of light waves. If you have a garage-door opener, for instance, you have an RF remote.Remote-control FeaturesToday's home-theater remotes do a lot more than turn a component on and off and control the volume. Here are just a handful of the features you can find on some of the higher-tech remote controls out there.Universal capabilitiesDifferent electronics brands use different command codes. Some IR remotes are preprogrammed with more than one manufacturer's command codes so they can operate multiple devices (sometimes up to 15) of different brands. If your home-theater setup incorporates components from, say, three different manufacturers, you can either use three different remotes to operate your system or use one universal remote. To add functions to a universal remote, you need to know the command codes for the component you want to control. You can look these up online or find them in the manual that came with your remote.LearningA learning remote can receive and store codes transmitted by another remote control; it can then transmit those codes to control the device that understands them. For instance, let's say you have a receiver with its own preprogrammed remote, and you buy a new TV that comes with a universal learning remote. The learning remote can pick up the signals your receiver remote sends out and remember them so it can control your receiver, too. You don't need to input the command codes yourself -- a learning remote picks up and stores the signals another remote sends out. All learning remotes are considered universal remotes because they can control more than one device.Macro commandsA macro is a series of commands that you program to occur sequentially at the push of a single button. These macros can be anything you want, such as an "activity command." You can set up a macro that lets you push one button to activate, in order, everything that needs to happen for you to watch a movie or listen to a CD. (Some remotes come with "activity commands" preprogrammed, and others let you download macros from the Internet.)PC connectivityThere are remotes that connect to your PC via the USB port so you can install programming software and download command codes and personalized graphic icons (for remotes with LCD screens).LCD screenA remote-control LCD screen may simply display data, or it may be a touchscreen that receives user input.User interfacesMost remotes still utilize the simple button-pushing method, but some have more high-tech manners of inputing commands. You'll find remotes that you operate via an LCD touchscreen, a joystick (for directional commands) and even voice commands.RF extendersSome IR remotes can send out both IR and RF signals. The RF signals aren't meant to control RF devices (in fact, they can't control them). They're meant to extend the operating range of the IR remote control from about 30 feet to about 100 feet (give or take) and allow the signal to penetrate walls and glass cabinet enclosures. The remote automatically transmits both IR and RF signals for every command. When you hook up an RF-to-IR converter (sometimes included with IR/RF remotes, sometimes sold as add-ons) on the receiving end, it receives and converts the signal back into the infrared pulses the device can understand. Now you've got an IR remote that can increase the volume on your home-theater stereo from your bedroom upstairs.Remote controls are steadily increasing the number of devices and functions they can manage. Some universal remotes intended for home-theater components can learn commands for wirelessly controlled lights, so they will not only start a movie at the push of a button, but they'll also dim the lights for you. Full home-automation systems let you use one remote control to manage lighting, alarm systems and entertainment components by way of a receiver wired directly into your home's electrical wiring. Chances are it won't be long before you have a single remote control to manage every electronic device in your life.无线遥控器怎样工作Julia Layton著红外遥控工作原理世界上第一个无线遥控器是在一战中以发射无线电波来指引德国海军摧毁盟军的船只。

远红外锦纶6的制备及其性能

远红外锦纶6的制备及其性能
1.3 工艺流程 1.3.1 远红外锦纶6预取向丝(POY)的生产工艺
利用母粒在线添加装置,将远红外母粒和聚酰胺6半 光切片经计量加料器计量后分别送至螺杆挤压机内,充 分熔融后混合挤出。其中,远红外母粒添加量分别为 0、 3%、4%和5%,熔融过程中螺杆各区温度和箱体温度分 别为255、256、257、257、257和257 ℃;熔体经计量泵 精确计量后进入纺丝组件,经喷丝板喷出形成丝束,喷 丝板上喷丝孔数量为48;经单体抽吸的丝束通过侧吹风 冷却,冷却温度为22.5 ℃,湿度为75%,风速为0.53 m/ s;经侧吹风冷却的纤维通过油嘴精确计量上油集束,所 用油剂浓度为5%;上油后丝束经预网络器、导丝盘后卷 绕成形,生产速度为4 200 m/min,制得远红外锦纶6预 取向丝(94.4 dtex/48 f)。 1.3.2 远红外锦纶6 DTY的生产工艺
应用技术 纤维技术
Fiber Technology
限公司;TEXTURMAT全自动线卷缩率测试仪,德国 TEXTECHNO公司;LC20A凝胶渗透色谱仪,日本岛津 公司;DSC1差示扫描量热仪,瑞士梅特勒-托利多集 团;Nikon Eclipse E100显微镜,上海普赫光电科技有限 公司;织袜设备,HC21K染色试验编织机,无锡宏成纺 织机械电子有限公司。
1 实验部分 1.1 实验原料
锦纶6半光切片,特性黏数(2.47±0.03)dL/g,熔 点215 ~ 225 ℃,TiO2含量≥0.3%,灰分含量≤0.1%,端 氨基含量(47.0±3.0)mmol/kg,可萃取物含量≤0.5%, 水分含量≤0.06%,福建锦江科技有限公司。
远红外母粒,特性黏数(2.20±0.03)dL/g,熔点 215 ~ 225 ℃,端氨基含量121.36 mmol/kg,端羧基含 量31.44 mmol/kg,水分含量≤0.06%,远红外粉体含量 20%,国内某母粒生产厂商。

opus中红外光谱

opus中红外光谱

opus中红外光谱
在红外光谱学中,"Opus"通常指的是一系列的实验数据、图表或光谱,特别是指红外光谱。

红外光谱(Infrared 光谱)是一种分析技术,它利用分子对红外光的吸收特性来鉴定化合物的结构和组成。

在红外光谱图中,横轴代表波数(或波长),纵轴代表吸光度(或透过率)。

红外光谱可以分为几个不同的区域,包括:
远红外(Far Infrared, FIR):波长较长,通常与分子的振动能级有关。

中红外(Middle Infrared, MIR):波长范围较宽,涵盖了多种有机和无机化合物的吸收峰。

近红外(Near Infrared, NIR):波长较短,通常与分子内部的振动力学有关。

在红外光谱图中,不同的吸收峰可以对应于分子中不同的官能团。

例如,羰基(carbonyl)官能团通常在1600-1800 cm-1的区域有吸收峰,而甲基(methyl)和亚甲基(methylene)官能团的吸收峰则出现在2800-3000 cm-1的区域。

红外光谱在化学、材料科学、药物分析、环境科学等领域有着广泛的应用。

它不仅可以用来鉴定化合物的结构,还可以用来分析样品的组成和监测化学反应的进程。

最新服装执行标准

最新服装执行标准

最新服装执行标准标准标号标准名称,@ G => 6}•GB/T2660-1999 衬衫(Shirts) AO.8 6Jho•GB/T2662-1999 棉服装(Cotton wadded clothes) 1J6^{8 T/.•GB/T2664-2001 男西服、大衣(Men's suits and coats) >U K _IO•GB/T2665-2001 女西服、大衣(Women's suits and coats) > Tqh]Em•GB/T2666-2001 男、女西裤(Women and men's trousers) f |s,•GB/T14272-2002 羽绒服装(Down garments) H ~. +•GB/T18132―2000 丝绸服装(Silk garments) m1L 9zr ,E•FZ/T81007-2003 单、夹服装(Casual wear) q4* : kcWj•FZ/T81004-2003 连衣裙、裙套(Skirts and skirted suit) 6W *J* O•FZ/T81003-2003 儿童服装、学生服(Children's clothing and student's wear) •FZ/T81002-2002 水洗羽毛羽绒(Washed feather and down) | E 36 @•FZ/T81010-2001 风雨衣(All-weather coats) 0g l &#92;903•FZ/T81008-2004 茄克衫(Jackets) ]brhF cR•FZ/T81006―1992 牛仔服装(Jeanswear) 5 ic E•FZ/T81001-1991 睡衣套(Pajamas) z gs -L•FZ/T81009-1994 人造毛皮服装(Fur imitation garment) jB=[ Z"_[O•FZ/T81005-2006 绗缝制品(Quilting goods) s|0ES ><J•FZ/T82002-2006 缝制帽(Sewing cap) 65 |ATA [•GB/T8878-2002 棉针织内衣(Cotton knitted underwear) ] J :" c•FZ/T73016-2000 针织保暖内衣絮片类( underwear-Wadding category) >%4[`]%8$h•FZ/T64010-2000 远红外纺织品(Far infrared radiated textiles) '=H>> kP•FZ/T72002-2006(1~4) 针织人造毛皮(Knitted fur imitation) X; z:=f'•FZ/T73005-2002(Low wool content 低含毛混纺针织品and wool like knittgoodsing) { ?>} .A7•FZ/T73006-1995 腈纶针织内衣(Acrylic knitted underwear) jv+'Eo C''•FZ/T73007-2002 针织运动服(Knitted spots wear) Z7%3b+% ^•FZ/T73008-2002 针织T恤衫(Knit T-shirt) A0]n"wbwj•FZ/T73009-1997 羊绒针织品(Cashmere knittinggoods) }(J# Y V•FZ/T73010-1998 针织工艺衫(Knitted processing shirt) m/vZ `0•FZ/T73013-2004 针织泳装(Knitted swimming costume) ZPK : yIF•FZ/T73014-1999 粗梳牦牛绒针织品(Woollen yak hair knitting doods) ; pA; f•FZ/T73015-1999 亚麻针织品(Flax knitting goods) K >)E?P•FZ/T73017-2000 针织睡衣(Knitted night clothes) -+P uV NM3•FZ/T73018-2002 毛针织品(Woollen knitting goods) *g OF9^•FZ/T73019.1-2004 针织塑身内衣弹力型(Knitted constrictive) in-wear) ]IW &#92;W~F, •FZ/T73019.2-2004 针织塑身内衣调整型(Knitted constrictive in-wear) g tg jO"j•FZ/T73020-2004 针织休闲服装(Knitted sportswear) $qo]u33y 3•FZ/T73021-2004 针织学生服(Knitted school uniform) , j |AnK•FZ/T73022-2004 针织保暖内衣(Knit thermals underwear) : 8i21aKV•GB/T2660-1999 衬衫(Shirts) $y#UNt N•GB/T2662-1999 棉服装(Cotton wadded clothes) n j> FR >N•GB/T2664-2001 男西服、大衣((Men's suits and coats) T "VSY {|•GB/T2665-2001 女西服、大衣(Women's suits and coats) +F. ocK•GB/T2666-2001 男、女西裤(Women and men's trousers) E E|A /•GB/T14272-2002 羽绒服装(Down garments) {D~o JklAN•GB/T18863-2002 免烫纺织品(Non-ironing textiles) Fc 3(xu/SQ•FZ/T81001-1991 睡衣套(Pajamas) q#YI09K•FZ/T81002-2002 水洗羽毛羽绒(Washed feather and down) 9G6A B>A•FZ/T81003-2003 儿童服装、学生服(Children's clothing ang student's wear) •FZ/T81004-2003 连衣裙、裙套(Skirts and skirted suit) U v 2} PM•FZ/T81006―1992 牛仔服装(Jeanswear) M%Q8 JiR•FZ/T81007-2003 单、夹服装(Casual wear) ,nM u C+•FZ/T81008-2004 茄克衫(Jackets) OAS{mx3+q•FZ/T81009-1994 人造毛皮服装(Fur imitation garment) - BccYkOob•FZ/T81010-2001 风雨衣(All-weather coats) / [ nI`IA•QB/T1615-2006 皮革服装(Leather garment) n) `b:w9V。

活动星系

活动星系
In type II Seyfert galaxies the denser gas is missing or obscured.
Brightness varies on timescale of months → compact nucleus
3C 84的射电变化
The activity of some Seyfert galaxies may result from galaxy interactions.
Radio emission is produced by high-speed electrons in magnetic fields through synchrotron radiation.
Movement of radio galaxies causes different appearance.
Radiation power ~γ2B2β2, whereβ= v/c, γ= (1-β2)-1/2.
Beamed radiation along the particle’s motion with
half-opening angleα≈1/γ.
Power-law spectrum
(3) Unusual structure Bright nucleus, jets and irregular appearance
non-thermal radiation, with peak energy at far-infrared wavelength.
Synchrotron Radiation 同步加速辐射
Continuum radiation from high-speed charged particles, such as electrons, as they are accelerated in a strong magnetic field.

铋离子掺杂红外发光材料的综述

铋离子掺杂红外发光材料的综述

毕业设计(论文)题目铋离子掺杂红外发光材料综述系(院)化学与化工系专业应用化工技术班级2010级4班学生姓名居晨学号1023100825指导教师刘志亮职称助教二〇一三年三月十五日铋离子掺杂红外发光材料综述摘要铋离子红外发光具有良好的应用前景,铋是天然放射性元素,为有银白色光泽的金属,质脆易粉碎;室温下,铋不与氧气或水反应,在空气中稳定,加热到熔点以上时能燃烧,发出淡蓝色的火焰,生成三氧化二铋,铋在红热时与空气作用,也可与硫、卤素化合。

而发光是物体将某种方式吸收的能量转化为光辐射的过程,而红外发光是某一段波长的光波吸收能量转换为光辐射的过程。

近红外有机发光材料主要集中在两大类:一是稀土元素配合物;二是有机离子染料。

远红外线是红外线中的一种,远红外线有较强的渗透力和辐射力,具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。

本文章就铋离子掺杂红外发光材料的机理以及影响因素做出理论解释,并就铋离子掺杂红外发光材料的前景进行展望。

关键字:铋离子;红外发光;机理;影响因素Review on Bi-doped infra-luminescence materialsAbstractBismuth ions infrared glow light has good of application prospects, bismuth is natural radioactive elements, for metal with silver luster, very brittle shatter easily; At room temperature, bismuth does not react with oxygen or water, stable in the air, heated to melting point above can burn, a light blue flame, and generate the bismuth oxide bismuth in red with the air, also can compound with sulfur and halogen. And luminous objects is to absorb the way energy is converted to optical radiation, the process of the infrared light is a Duan Bo long wavelengths absorbed energy is converted to optical radiation process. Nir organic light-emitting materials are mainly concentrated in two categories: one is the rare earth complexes; Second, the organic dye ions. Far infrared ray is one of the infrared, far infrared ray has strong penetration and radial force, has a significant effect, temperature effect and resonance, it is easy to absorbed by the object and translated into the internal energy of the object. This article is bismuth ions doping mechanism and affecting factors of the infrared light emitting materials to make theoretical explanation, and bismuth ions doped future infrared light-emitting materials is prospected as well.Bismuth ion infrared glow has good of application prospects, bismuth is natural radioactive element, for has silver gloss of metal, mass crisp easy crushed; at room temperature Xia, bismuth not and oxygen orwater reaction, in air in the stability, heating to melting point above Shi can burning, issued light blue of flame, generated three oxidation II bismuth, bismuth in red hot Shi and air role, also can and sulfur, and halogen combined. , Shiny object somehow absorbed radiation energy into light, and infrared light is a wavelength of light energy converted to optical radiation absorption process. Near infra-red organic light-emitting materials are mainly concentrated in two broad categories: first, the complexes of rare earth elements; the second, organic Ionic dyes. Far infrared is a form of infrared, far infrared rays with strong penetration and radiation, with significant temperature effects and resonance effects, it is absorbed by the body and transform into objects of internal energy. The article bismuth-doped infrared light emitting materials to theoretical explanations of the mechanism and influencing factors and prospect prospect of bismuth ions-doped infrared light emitting material.Key words: Bismuth ion; infra-luminescence; mechanization; influencing factor目录引言 ................................................................................................................................................... - 2 -第一章铋离子简介 .................................................................................................................... - 2 -1.1铋离子简介 . (2)第二章红外发光材料研究进展............................................................................................. - 3 -2.1发光材料简述 (3)2.2红外发光材料简述 (3)2.2.1近红外有机发光材料 (3)2.2.2远红外有机发光材料 (4)第三章铋离子掺杂红外发光材料机理................................................................. - 5 -3.1近红外发光机理.. (6)3.1.1高价态离子B I5+ (6)3.1.2低价态B I离子B I+ (6)3.1.3B I原子或者团簇 (6)第四章铋离子掺杂红外发光材料影响因素..................................................................... - 7 -4.1光学碱度 (7)4.2配位环境 (7)4.3晶体场 (7)4.4能量传递 (8)第五章铋离子掺杂红外发光技术的前景展望................................................................ - 8 -参考文献.......................................................................................................................................... - 9 -谢辞............................................................................................................................................... - 10 -引言随着社会的不断进步,发光材料已经广泛进入我们的生活生产中,而红外发光材料又是生活中应用最多的一种材料,近期又发现铋离子掺杂红外发光材料具有良好的应用前景,铋是天然放射性元素,为有银白色光泽的金属,质脆易粉碎;室温下,铋不与氧气或水反应,在空气中稳定,加热到熔点以上时能燃烧,发出淡蓝色的火焰,生成三氧化二铋,铋在红热时与空气作用,也可与硫、卤素化合。

激光、光电、光学相关词汇的中英文对照

激光、光电、光学相关词汇的中英文对照

A01光学材料:A01-001 光学材料 Optical MaterialsA01-002 光学玻璃 Optical GlassA01-003 激光玻璃 Laser GlassA01-004 声光玻璃 Acousto-Optic GlassA01-005 红外线玻璃 Infrared GlassA01-006 红外线材料 Infrared MaterialsA01-007 紫外线材料 Ultraviolet MaterialsA01-008 石英镜片Fused Silica GlassA01-009 光学陶瓷CeramicsA01-010 矽半导体材料Silicon Semiconductor MaterialsA01-011 化合物半导体材料 Compound Semiconductor MaterialsA01-012 光纤材料 Fiber Optic MaterialsA01-013 光纤预型体 Fiber Optic PreformsA01-014 PLZT晶圆,钛酸锆酸铅晶圆 PLZT WafersA01-015 环氧树脂 EpoxiesA01-016 声光光学晶体 Acousto-Optic CrystalsA01-017 双折射/偏光晶体 Birefringent and Polarizing Crystals A01-018 电光光学晶体 Electro-Optic CrystalsA01-019 红外线晶体 Infrared CrystalsA01-020 激光晶体 (YAG) YAG Laser CrystalsA01-021 激光晶体(亚历山大) Alexandrite Laser CrystalsA01-022 激光晶体(GGG) GGG Laser CrystalsA01-023 激光晶体(GSGG,GSAG) GSGG GSAG Laser CrystalsA01-024 激光晶体(YLF) YLF Laser CrystalsA01-025 激光晶体(其他) Other Laser CrystalsA01-026 非线性光学晶体 Nonlinear CrystalsA01-027 有机光学材料 Organic Optical MaterialsA01-028 萤光放射晶体 Fluorescent Emission CrystalsA01-029 结晶育成材料 Crystals Growing MaterialsA01-030 镀膜材料 Coating MaterialsA01-031 光罩材料 Photomask MaterialsA01-032 真空蒸镀化学药品 Vaccum Evaporation ChemicalsA01-033 感光剂 SensitizersA01-034 影像用材料 Materials for ImagingA01-035 热色材料Thermochromic MaterialsA01-036 光色材料 Photochromic MaterialsA01-037 稀土族材料 Rare Earth MaterialsA01-038 光碟基板,基板材料 Optical Disk Substrate Materials A01-039 光碟记录材料 Optical Disk Data Storage MaterialsA02加工用其他材料:A02 加工用其他材料MATERIALS FOR PROCESSINGA02-001 光学用胶合剂/接著剂 Optical Cements and AdhesivesA02-002 光学用气体 Gases for Optical ApplicationA02-003 激光用气体 Gases for LasersA02-004 光学研磨材料(研磨布纸) Optical-Coated AbrasiveA02-005 光学研磨材料(砥粒) Optical-Powder or Grin Abrasive A02-006 光学研磨材料(砥石) Optical-Wheel AbrasiveA02-007 研磨化合物 Polishing CompoundsA02-008 研磨衬垫及布Polishing Pads and ClothA02-009 全像底片及感光板 Holographic Films and PlatesA02-010 红外线底片及感光板 Infrared Films and PlatesA02-011 相片用化学药品 Photographic ChemicalsA02-012 折射率液 Refractive Index LiquidsA02-013 显微镜浸液 Microscope Immerison LiquidsA02-014 显微镜埋置用材料 Microscope Imbedding MediaA02-015 激光用染料 Laser DyesA02-016 冷媒 CoolantsA02-017 拭镜纸 Lens TissueA03 显示器用材料:A03 显示器用材料 MATERIALS FOR DISPLAYA03-001 液晶 Liquid CrystalsA03-002 导电膜玻璃基板 ITO Glass SubstrateA03-003 彩色滤光片 Color FilterA03-004 偏光板/相位差板 Polarizer/ Phase Shift LayerA03-005 显示面板用驱动IC Driver ICA03-006 背光源 BacklightA03-007 配向膜 Alignment FilmA03-008 间隔物SpacerB01 透镜:B01 透镜 LENSESB01-001 单透镜 Simple (Single) LensesB01-002 球透镜 Ball LensesB01-003 歪像透镜 Anamorphic LensesB01-004 圆锥透镜 Conical LensesB01-005 柱状透镜,环形透镜 Cylindrical & Toroidal LensesB01-006 非球面透镜 Aspheric LensesB01-007 反射折射透镜 Catadioptric LensesB01-008 绕射极限透镜 Diffraction-Limited LensesB01-009 GRIN透镜 GRIN Lenses (Graduated Refractive Index Rod) B01-010 微小透镜阵列 Micro Lens ArraysB01-011 准直透镜 Collimator LensesB01-012 聚光透镜Condenser LensesB01-013 多影像透镜Multiple Image LensesB01-014 傅利叶透镜Fourier Lenses B01-015 菲涅尔透镜Fresnel Lenses B01-016 替续透镜Relay LensesB01-017 大口径透镜(直径150mm以上) Large Aperture Lenses (150mm) B01-018 复合透镜Complex LensesB01-019 红外线透镜Infrared LensesB01-020 紫外线透镜 Ultraviolet LensesB01-021 激光透镜Laser LensesB01-022 望远镜对物镜Telescope Objectives LensesB01-023 显微镜对物镜Microscope Objectives LensesB01-024 接目镜Eyepieces LensesB01-025 向场透镜Field LensesB01-026 望远镜头Telephoto LensesB01-027 广角镜头Wide Angle LensesB01-028 可变焦伸缩镜头Variable Focal Length Zoom LensesB01-029 CCTV镜头CCTV LensesB01-030 影印机镜头Copy Machine LensesB01-031 传真机镜头Facsimile LensesB01-032 条码扫描器镜头Bar Code Scanner LensesB01-033 影像扫描器镜头Image Scanner LensesB01-034 光碟机读取头透镜Pick-up Head LensesB01-035 APS相机镜头APS Camera LensesB01-036 数位相机镜头Digital Still Camera LensesB01-037 液晶投影机镜头Liquid Crystal Projector LensesB02 镜面:B02 镜面MIRRORB02-001 平面镜Flat MirrorsB02-002 球面凹面镜,球面凸面镜Spherical Concave and Convex Mirrors B02-003 抛物面镜,椭圆面镜Off-Axis Paraboloids and Ellipsoids Mirrors B02-004 非球面镜Aspheric MirrorsB02-005 多面镜Polygonal MirrorsB02-006 热镜Hot MirrorsB02-007 冷镜Cold MirrorsB02-008 玻璃,玻璃/陶瓷面镜Glass and Glass-Ceramic MirrorsB02-009 双色向面镜Dichroic MirrorB02-010 金属面镜Metal MirrorsB02-011 多层面镜Multilayer MirrorsB02-012 半涂银面镜Half-Silvered MirrorsB02-013 激光面镜Laser MirrorsB02-014 天文用面镜Astronomical MirrorsB02-099 其他面镜Other MirrorsB03 棱镜:B03 棱镜 PRISMB03-001 Nicol棱镜 Nicol PrismsB03-002 Glan-Thomson棱镜 Glan-Thomson PrismsB03-003 Wollaston棱镜 Wollaston PrismsB03-004 Rochon棱镜 Rochon PrismsB03-005 直角棱镜 Right-Angle; Rectangular PrismsB03-006 五面棱镜 Pentagonal PrismsB03-007 脊角棱镜 Roof PrismsB03-008 双棱镜 BiprismsB03-009 直视棱镜 Direct Vision PrismsB03-010 微小棱镜 Micro PrismsB03-099 其他棱镜 Other PrismsB04 滤光镜:B04 滤光镜FILTERB04-001 尖锐滤光镜Sharp Cut (off) FiltersB04-002 色温变换滤光镜,日光滤光镜Colour Conversion/Daylight Filters B04-003 干涉滤光镜Interference FiltersB04-004 中性密度滤光镜Neutral Density FiltersB04-005 空间/光学匹配滤光镜Spatial/Optical Matched FiltersB04-006 双色向滤光镜Dichroic FiltersB04-007 偏光滤光镜Polarizing FiltersB04-008 排除频带滤光镜Rejection Band FiltersB04-009 可调式滤光镜Turnable FilterB04-010 超窄频滤光镜Ultra Narrowband FiltersB04-011 色吸收滤光镜Absorption FiltersB04-012 红外吸收/反射滤光镜Infrared Absorbing/Reflecting FiltersB04-013 红外透过滤光镜Infrared Transmitting FiltersB04-014 紫外吸收滤光镜Ultraviolet Absorbing FiltersB04-015 紫外透过滤光镜Ultraviolet Transmitting FiltersB04-016 针孔滤光镜Pinhole FiltersB04-017 有色玻璃滤光镜Colored-Glass FiltersB04-018 塑胶滤光镜Plastic FiltersB04-019 照像用滤光镜Photographic FiltersB04-020 全像滤光镜Holographic FiltersB04-021 微小干涉滤光镜Micro Interference FiltersB06 激光:LASERS B06 激光 LASERSB06-100 气体激光 GAS LASERSB06-101 氦氖激光 He-Ne LasersB06-102 金属蒸气激光 Metal Vapor LasersB06-103 氩离子激光 Argon LasersB06-104 氪离子激光 Krypton LasersB06-105 二氧化碳激光(气流型) CO2 (Gas Flow type) LasersB06-106 二氧化碳激光(脉冲,TEA型) CO2 (Pulsed,TEA) LasersB06-107 二氧化碳激光(密封型) CO2 (Sealed tube) LasersB06-108 二氧化碳激光(波导型) CO2 (Wave guide) LasersB06-109 一氧化碳激光 CO LasersB06-110 氦镉激光 He-Cd LasersB06-111 氮分子激光 Nitrogen LasersB06-112 准分子激光 Excimer LasersB06-113 氙分子激光 Xenon LasersB06-200 固体激光 SOLID STATE LASERSB06-201 红宝石激光 Ruby LasersB06-202 玻璃激光 Glass LasersB06-203 Nd:YAG激光(脉冲式) Nd:YAG (Pulsed) LasersB06-204 Nd:YAG激光(连续式) Nd:YAG Laser (CW) LasersB06-205 Nd:YAG激光(半导体激光激发) Nd:YAG (LD Pumped) LasersB06-206 YLF激光 YLF LasersB06-207 亚历山大激光 Alexanderite LasersB06-208 铒固体激光 Erbium LasersB06-209 半导体激光激发式固态激光 Solid State(LD pumped)LaserB06-210 其他固态激光 OthersB06-300 染料激光 DYE LASERSB06-301 染料激光(闪光灯激发) Dye (Flash lamp Pumped) LasersB06-302 染料激光(激光激发) Dye (Laser Pumped) LasersB06-400 半导体激光 SEMICONDUCTOR LASERSB06-401 半导体激光(1.55μm带) Semiconductor (1.55μm) LasersB06-402 半导体激光(1.30μm带) Semiconductor (1.30μm) LasersB06-403 半导体激光(0.85μm带) Semiconductor (0.85μm) LasersB06-404 半导体激光(0.78μm带) Semiconductor (0.78μm) LasersB06-405 半导体激光(0.60μm带) Semiconductor (0.60μm) LasersB06-406 半导体激光(其他波长带) Other Semiconductor LasersB06-407 半导体激光模组(长波长) Semiconductor (Long Wavelength) Laser Modules B06-408 半导体激光模组(短波长) Semiconductor (Short Wavelength) Laser Modules B06-409 半导体激光模组(可见光) Semiconductor (Visible) Laser ModulesB06-501 铁离子中心激光 F-Center LasersB06-502 化学激光(HF-DF) Chemical (HF-DF) LasersB06-503 平板激光 Slab LasersB06-504 远红外线激光 Far-Infrared LasersB06-505 真空紫外线激光 Vacuum Ultraviolet LasersB06-506 多色激光 Multi Colour LasersB06-507 稳频激光 Frequency Stabilized LasersB06-508 自由电子激光Free Electron LasersB07 激光用元件:B07 激光用元件 LASER COMPONENTSB07-001 Q 开关 Laser Q-SwitchesB07-002 激光管 Laser Tubes and BoresB07-003 激光棒 Laser RodsB07-004 激光板 Laser SlabsB07-005 气体再生设备,气体填充设备 Gas Recyclers and Gas Handling Equipment B07-006 激光控制设备 Laser Control EquipmentB07-007 激光用盒 Laser CellsB07-008 参数振汤器Parametric OscillatorsB07-009 光脉冲产生设备 Optical Pulse GeneratorsB07-010 激光用共振腔 Resonators for LasersB07-011 磁铁 MagnetsB07-012 激光用冷却设备 Cooling Systems for LasersB07-013 激光护眼镜 Safty Equipment; Goggles Glasses and FilmsB07-014 激光光吸收体 Safty Equipment; Laser AbsorbersB07-015 激光用安全设备 Safty Equipment; Protective HousingsB08 发光二极体:B08 发光二极体 LIGHT-EMITTING DIODES; LEDB08-001 通信用1.55μm发光二极体 1.55μm LEDs for CommunicationB08-002 通信用1.30μm发光二极体 1.30μm LEDs for CommunicationB08-003 通信用0.85μm发光二极体 0.85μm LEDs for CommunicationB08-004 通信用长波长发光二极体模组 Long Wavelength LED Modules for CommunicationB08-005 通信用短波长发光二极体模组 Short Wavelength LED Modules for CommunicationB08-006 可见光发光二极体(红色) Visible (Red) LEDsB08-007 可见光发光二极体(黄色) Visible (Yellow,Orange) LEDsB08-008 可见光发光二极体(绿色,多色) Visible (Green,Multi-Color) LEDsB08-009 可见光发光二极体(蓝色) Visible (Blue) LEDsB08-010 红外线二极体(非通信用) Infrared (not for Communication) LEDsB08-011 文数字表示用发光二极体 Alpha-Numeric LEDsB08-012 发光二极体晶圆(通信用) LED Wafers for CommunicationB08-013 发光二极体晶圆(非通信用) LED Wafers not for CommunicationB08-014 发光二极体晶片、晶粒(通信用) LED Chips for CommunicationB08-015 发光二极体晶片、晶粒(非通信用) LED Chips not for CommunicationB09 光源设备:B09 光源设备LIGHT SOURCESB09-001 标准光源Standard Light SourcesB09-002 安定化光源Stabilized Light SourcesB09-003 弧光灯Arc Light SourcesB09-004 氪灯Krypton Light SourcesB09-005 卤素灯Halogen Light SourcesB09-006 氙灯Xenon /Xenon Flashlamps Light SourcesB09-007 紫外线光源Ultraviolet Light SourcesB09-008 真空紫外线光源VUV Light SourcesB09-009 红外线光源Infrared Light SourcesB09-010 闪光光源Stroboscopic Light SourcesB09-011 小型光源Miniature Light SourcesB09-012 光纤光源Fiber Optic IlluminatorsB10 显示器元件:B10 显示器元件DISPLAY PANELB10-001 发光二极体显示器LED DisplaysB10-002 液晶显示器Liquid Crystal Display (LCD)B10-003 电浆显示器Plasma Display Panels(PDP)B10-004 电激发光显示器Electroluminescence Display (ELD)B10-005 电铬显示器Electrochromic Display (ECD)B10-006 真空萤光显示器Vacuum Fluorescent Display (VFD)B10-007 平面阴极射线管Flat CRTsB10-008 场发射显示器Field Emitter Display(FED)B10-099 其他平面显示元件Other Flat Panel DisplaysB11 检光元件及光纤混成元件:B11 检光元件及光纤混成元件 DETECTORS & FIBEROPTIC HYBRID DEVICESB11-001 通信用PIN光二极体 PIN Photodiodes for CommunicationB11-002 通信用崩溃光二极体 Avalanche Photodiodes for CommunicationB11-003 通信用(长波长)Ge和III-V族检光元件 Long-wavelength Detectors for CommunicationB11-004 通信用PIN光二极体模组 PIN Photodiode Modules for CommunicationB11-005 通信用崩溃光二极体模组 Avalanche Photodiode Modules for CommunicationB11-006 通信用(长波长)Ge和III-V族检光模组 Long-wavelength Decector Modules for Communication B11-007 光二极体(近红外光) Near-infrafed PhotodiodesB11-008 光二极体(可见光) Visible PhotodiodesB11-009 光二极体(紫外光) Ultraviolet PhotodiodesB11-010 光电晶体 PhototransistorsB11-011 光电管 PhototubesB11-012 光电子增倍管(PMT) PhotomultipliersB11-013 光导电池 Photoconductive CellsB11-014 热电偶检测器 Thermocouple DetectorsB11-015 热堆检测器 Thermopile DetectorsB11-016 微道板 Microchannel PlatesB11-017 热电检测器 Pyroelectroic DetectorsB11-018 辐射热测定器 BolometersB11-019 其他红外线检测器 Infrared DetectorsB11-020 摄像管 Camera TubesB11-021 线型检光元件 One Dimension Detector ArraysB11-022 面型检光元件 Two Dimension Detector ArraysB11-023 光电耦合器 Photo CouplerB11-024 光断续器 Photo InterrupterB11-025 光反射器 Photo ReflectorB11-026 光闸流晶体管 PhotocyristorsB11-027 光感测元件 Photosensing UnitsB11-028 内藏电路之光感测器 Detectors with CircuitB11-029 民用用太阳电池 Solar Cells for Consumer UseB11-030 产业用太阳电池 Solar Cells for Power & Space UseB12 光纤及光缆:B12 光纤及光缆 FIBER OPTIC FIBERS & CABLEB12-100 光纤 FIBER OPTIC FIBERSB12-101 石英系多模态步阶式折射率型光纤 Fiber Optic Fibers, Silica, Multimode, Step IndexB12-102 石英系多模态渐近式折射率型光纤(50/125) Fiber Optic Fibers, Silica, Multimode, Graded Index,50/125B12-103 石英系多模态渐近式折射率型光纤(62.5/125) Fiber Optic Fibers, Silica, Multimode,Graded Index ,62.5/125 B12-104 石英系多模态渐近式折射率型光纤(100/140) Fiber Optic Fibers, Silica, Multimode,Graded Index ,100/140 B12-105 石英系单模态标准型光纤 Fiber Optic Fibers, Silica, Single Mode,StandardB12-106 色散位移光纤 Fiber Optic Fibers, Dispersion – ShiftedB12-107 偏振恒持光纤 Fiber Optic Fibers, Polarization – MaintainingB12-108 其他单模态光纤 Other Single Mode Optic FibersB12-109 石英系塑胶包覆光纤 Fiber Optic Fibers, Plastic - Clad SilicaB12-110 塑胶光纤 Fiber Optic Fibers, PlasticB12-111 石英系影像光纤 Fiber Optic Bundles, Silica, ImagingB12-112 多成分影像光纤 Fiber Optic Bundles, Non-silica, ImagingB12-113 光导管 Fiber Optic LightguidesB12-199 其他集束光纤 Other Fiber Optic BundlesB12-200 光缆 FIBER OPTIC CABLEB12-201 单模态标准型松包悬空式光缆 Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, AerialB12-202 单模态标准型松包管路式光缆 Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, DuctB12-203 单模态标准型松包直埋式光缆 Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, Direct Buried B12-204 单模态标准型紧包单心式光缆 Fiber Optic Cable, Single Mode, Standard, Tightly Buffered, Single Fiber B12-205 单模态标准型紧包多心式光缆 Fiber Optic Cable, Single Mode, Standard, Tightly Buffered, MultifiberB12-206 光纤带 RibbonB12-207 色散位移光缆 Fiber Optic Cable, Dispersion-ShiftedB12-208 偏振恒持光缆 Fiber Optic Cable, Polarization – MaintainingB12-209 其他单模态光缆 Other Single Mode Fiber Optic CableB12-210 多模态石英系(50/125)光缆 Fiber Optic Cable, Multimode, Silica, 50/125B12-211 多模态石英系(62.5/125)光缆 Fiber Optic Cable, Multimode, Silica, 62.5/125B12-212 多模态石英系(100/140)光缆 Fiber Optic Cable, Multimode, Silica, 100/140B12-213 塑胶光缆 Fiber Optic Cable, PlasticB12-214 石英系塑胶包覆光缆 Fiber Optic Cable, Plastic-Clad SilicaB12-215 其他多模态光缆 Other Multimode Fiber Optic CableB12-216 光纤保护用管 Protect Tubes for Fiber Optic FiberB13 光被动元件/光控制元件:B13 光被动元件/光控制元件 OPTICAL PASSIVE DEVICES/CONTROL DEVICESB13-001 单模态ST光纤连接器 Fiber Optic Connectors, Single Mode, STB13-002 单模态Biconic光纤连接器 Fiber Optic Connectors, Single Mode, BiconicB13-003 单模态FC/PC光纤连接器 Fiber Optic Connectors, Single Mode, FC/PCB13-004 单模态APC光纤连接器 Fiber Optic Connectors, Single Mode, APCB13-005 单模态FDDI光纤连接器 Fiber Optic Connectors, Single Mode, FDDIB13-006 单模态SC光纤连接器 Fiber Optic Connectors, Single Mode, SCB13-007 单模态D4光纤连接器 Fiber Optic Connectors, Single Mode, D4B13-008 单模态光纤连接器插座(ST,FC/PC,SC,Biconic) Fiber Optic Connectors, Single Mode,Adapter(ST,FC/PC,SC,Biconic)B13-009 单模态多心光纤连接器(MT) Fiber Optic Connectors, Single Mode,Multi-Channel/MTB13-010 其他单模态光纤连接器 Other Single Mode Fiber Optic ConnectorsB13-011 多模态ST光纤连接器 Fiber Optic Connectors, Multimode, STB13-012 多模态FC/PC相容光纤连接器 Fiber Optic Connectors, Multimode, FC/PCB13-013 多模态SMA光纤连接器 Fiber Optic Connectors, Multimode, SMAB13-014 多模态FDDI光纤连接器 Fiber Optic Connectors, Multimode, FDDIB13-015 多模态SC光纤连接器 Fiber Optic Connectors, Multimode, SCB13-016 多模态D4光纤连接器 Fiber Optic Connectors, Multimode, D4B13-017 多模态光纤连接器插座(ST,SMA,FC/PC) Fiber Optic Connectors, Multimode,Adapter(ST,SMA,FC/PC) B13-018 多模态多心光纤连接器 Fiber Optic Connectors, Multimode, Multi-ChannelB13-019 其他多模态光纤连接器 Other Multimode Fiber Optic ConnectorsB13-020 套筒 SleevesB13-021 金属箍(套管) Metal FerrulesB13-022 塑胶箍(套管) Plastic FerrulesB13-023 陶瓷箍(套管) Ceramic FerrulesB13-024 插座 ReceptaclesB13-025 插头 PlugsB13-026 光连接器(含光纤线) Optical Connectors with FiberB13-027 光纤耦合器(两分支) Optical Couplers, Tap/SplitterB13-028 光纤耦合器(树状分支) Optical Couplers, TreeB13-029 星状光纤耦合器(穿透形) Transmission Type Star Optical CouplersB13-030 星状光纤耦合器(反射形) Reflection Type Star Optical CouplersB13-031 其他光纤耦合器 Other Optical CouplersB13-032 光分波合波器(两波长) Optical Couplers, WDM, Dual-WavelengthB13-033 光分波合波器(多波长) Optical Couplers, WDM, Over Two WavelengthB13-034 其他光分波合波器 Other Optical WDM CouplersB13-035 光衰减器(固定) Fixed Optical AttenuatorsB13-036 光衰减器(可变) Adjustable Optical AttenuatorsB13-037 光隔离器(通信用) Optical Isolators for CommunicationB13-038 光隔离器(非通信用) Optical Isolators for Non-CommunicationB13-039 光环流器Optical CirculatorsB13-040 光开关(机械式) Mechanical Optical SwitchesB13-041 光开关(非机械式) Non-mechanical Optical SwitchesB13-042 光纤光栅 Fiber Bragg GratingB13-043 光移相器Optical Phase ShiftersB13-044 光共振器Optical ResonatorsB13-045 空间调变元件Spatial Light ModulatorsB13-046 光影像转换元件(ITC) Incoherent to Coherent Devices(ITC)B13-047 光截波器,机械式光调变器Optical Choppers, Mechanical ModulatorsB13-048 磁光调变器Maganeto-Optic ModulatorsB13-049 声光调变器Acousto-Optic ModulatorsB13-050 电光调变器Electro-Optic ModulatorsB13-051 波导形调变器,行波形调变器Optical Waveguide,Travelling-wave ModulatorsB13-052 类比/强度调变器Analog/Intensity ModulatorsB13-053 数位调变器Digital ModulatorsB13-054 其他调变器Other ModulatorsB13-055 光弹性调变器Photoelastic ModulatorsB13-056 机械式偏折/扫瞄器(Galvanometer方式) Mechanical Optical Deflectors/Scanners(Galvanometer Mirror)B13-057 声光偏折/扫瞄器Acousto-Optic Optical Deflectors/ScannersB13-058 电光偏折/扫瞄器Electro-Optic Optical Deflectors/ScannersB13-059 机械式扫瞄器(回转多面镜方式) Mechanical Optical Scanners(Polygonal Mirrors)B13-060 机械式扫瞄器(全像方式) Mechanical Optical Scanners(Holographic)B13-061 光纤跳接线Fiber Optic Patchcord PigtailB13-062 光纤终端箱Fiber Optic Distribution BoxB13-063 光纤接续盒Fiber Optic ClosureB13-099 其他光被动元件/控制元件Other Optical Passive Devices/Control DevicesB14 积体光元件:B14 积体光元件INTEGRATED OPTICAL DEVICESB14-001 光IC Optical ICB14-002 OEIC Optoelectronic ICB14-099 其他光电元件Other DevicesC01 光通讯设备:C01 光通讯设备 OPTICAL COMMUNICATION EQUIPMENTC01-100 电信用光通讯设备 OPTICAL COMMUNICATION EQUIPEMNT(TELECOMMUNICATION)C01-101 同步光纤网路光波传输系统及多工机设备 Lightwave/Transimission System and Multiplexer Equipment (SONET-Based)C01-102 同步光纤网路光数位回路载波机设备 Optical/Digital Loop Carrier Equipment (SONET-Based)C01-103 同步光纤网路数位交换连接系统设备 Digital Cross Connect System Equipment (SONET-based)C01-104 同步数位阶层光波传输系统及多工机设备 Lightwave/Transmission System and Multiplexer Equipment (SDH-Based)C01-105 同步数位阶层光数位回路载波机设备 Optical/Digital Loop Carrier Equipment (SDH-Based)C01-106 同步数位阶层数位交换连接系统设备 Digital Cross Connect System Equipment (SDH-Based)C01-107 光纤网路单体 ONU(Optical Network Unit)C01-108 非同步光通讯设备 Asynchronous Optical Communication EquipmentC01-199 其他公众用光通讯设备 Other Optical Communication Equipment (Telecommunication)C01-200 数据通讯光纤网路设备 OPTICAL DATA COMMUNICATION NETWORK EQUIPMENT (PREMISES)C01-201 光纤分散式资料介面网路设备 FDDI Network EquipmentC01-202 非同步传输模式网路设备 ATM Network EquipmentC01-203 高速乙太网路设备 Fast Ethernet Network EquipmentC01-204 光纤通道 Fiber ChannelC01-299 其他用户光数据通讯设备 Other Optical Data Communication Network Equipment (Premises)C01-300 特殊用途光传输设备 OPTICAL TRANSMISSION EQUIPMENT(SPECIAL PURPOSE)C01-301 有线电视光传输设备 Optical Transmission Equipment, CATVC01-302 视讯/闭路监视光传输设备 Optical Transmission Equipment, Video/CCTVC01-303 量测/控制信号光传输设备 Optical Transmission Equipment, Measure/ControlC01-304 空间(无线)光传输设备 Optical Transmission Equipment, Spatial (Wireless)C01-305 光放大器 Optical AmplifierC01-399 其他特殊用途光传输设备 Other Optical Transmission Equipment (Special Purpose)C02 光测仪器设备:C02 光测仪器设备 OPTICAL MEASURING EQUIPMENTC02-001 量测用标准光源 Standard/Stabilized Light SourcesC02-002 光功率计(热转换型) Thermal Conversion Type Optical Power MetersC02-003 光功率计(光电转换型) Photoelectric Conversion Type Optical Power MetersC02-004 光谱分析仪 Optical Spectrum AnalyzersC02-005 光波长计 Optical Wavelength MetersC02-006 光谱幅宽量测器 Spectral Width Measuring EquipmentC02-007 光时域反射计(OTDR) Optical Time-Domain Reflectometers(OTDR)C02-008 基频传输特性检测器 Baseband Frequency Characteristics Evaluation EquipmentC02-009 波长色散量测器 Wavelength Dispersion Measuring EquipmentC02-010 光纤测试设备 Optical Fiber Test EquipmentC02-011 激光光束波形量测器 Laser Beam Profile Measuring EquipmentC02-012 光纤尺寸量测器 Optical Fiber Sizes Measuring EquipmentC02-013 光纤模态参数测试器 Optical Fiber Mode Field Parameters Test EquipmentC02-014 光纤强度测试器 Optical Fiber Strength Test EquipmentC02-015 其他光纤相关量测设备 Other Optical Fiber Measurement EquipmentC02-016 光连接器尺寸量测器 Optical Connector Sizes Measuring EquipmentC02-017 光碟测定检查设备(装置用) Optical Disk Drive Inspection EquipmentC02-018 光碟测定检查设备(碟片用) Optical Disk Inspection EquipmentC02-019 光度计 PhotometersC02-020 复光束光度计,复光束量测器 Double Beam PhotometersC02-021 测微光度计 MicrophotometersC02-022 感光密度计 DensitometersC02-023 光泽度计 GrossmetersC02-024 照度计 Illuminance MetersC02-025 测距仪 RangefindersC02-026 曝光计 Exposure MetersC02-027 辉度计 Luminance MetersC02-028 比色计 Comparison ColorimetersC02-029 色彩计(分光型) Spectral ColorimetersC02-030 色彩计(光电型) Photoelectric ColorimetersC02-031 积分球 Integrating SpheresC02-032 折射计 RefractometersC02-033 椭圆计 EllipsometersC02-034 偏振光镜 PolariscopesC02-035 偏振计 PolarimetersC02-036 比较量测器 ComparatorsC02-037 焦距仪 FocometersC02-038 球径计 SpheremetersC02-039 OTF(光学转换函数)设备 Optical Transfer Function InstrumentationC02-040 MTF分析/量测装置 Modulation Transfer Function(MTF) Analysis/Measurement EquipmentC02-041 投影检查器 Profile ProjectorsC02-042 自动准直仪 AutocollimatorsC02-043 光弹性机器 Photoelastic InstrumentsC02-099 其他光(学)量测器 Other Optical Measurement EquipmentC03 分光镜、干涉仪:C03 分光镜、干涉仪 SPECTROSCOPES, INTERFEROMETERSC03-001 分光计 SpectrometersC03-002 单色器 MonochromatorsC03-003 分光镜,干涉分光镜,摄谱仪 Spectroscopes, Interference Spectroscopes,SpectrographsC03-004 分光光度计,分光测光器 SpectrophotometerC03-005 Michelson干涉仪 Michelson InterferometersC03-006 Tywman Green干涉仪 Tywman Green InterferometersC03-007 Mach-Zehnder干涉仪 Mach-Zehnder InterferometersC03-008 Fizeau干涉仪 Fizeau InterferometersC03-009 Fabry-Perot干涉仪 Fabry-Perot InterferometersC04 显微镜,望远镜,照像机:C04 显微镜,望远镜,照像机 MICROSCOPES, TELESCOPES, CAMERASC04-001 放大镜 MagnifiersC04-002 单接物镜双眼显微镜 Binocular MicroscopesC04-003 双眼实体显微镜,立体显微镜 Stereo MicroscopesC04-004 金属显微镜 Metallurgical MicroscopesC04-005 偏光显微镜 Polarizing MicroscopesC04-006 相位差显微镜 Phase-Contrast MicroscpoesC04-007 干涉显微镜,微分干涉对比显微镜 Interferences/Differential Interference Contrast Microscopes C04-008 萤光显微镜 Fluorescence MicroscopesC04-009 激光显微镜 Laser MicroscopesC04-010 量测用显微镜,工具显微镜 Measurement MicroscopesC04-011 显微镜光度计 Microscope PhotometersC04-012 折射望远镜,Galilean望远镜 Galilean Refracting TelescopesC04-013 反射望远镜 Reflecting TelescopesC04-014 反射折射望远镜 Catadioptric TelescopesC04-015 35mm焦平面自动对焦相机 35mm AF Focal Plane CamerasC04-016 35mm焦平面手动对焦相机 35mm NON-AF Focal Plane CamerasC04-017 35mm镜头快门多焦点相机 35mm Multi Focal Points Lens Shutter CamerasC04-018 35mm镜头快门单焦点相机 35mm Single Focal Point Lens Shutter CamerasC04-019 中,大型照相机 Medium and Large Size CamerasC04-020 VTR摄影机 VTR CamerasC04-021 电视摄影机 TV CamerasC04-022 高画质电视摄影机 High Definition(HDTV) CamerasC04-023 CCTV摄影机 CCTV CamerasC04-024 全像照像机 Holographic CamerasC04-025 眼镜 EyeglassesC04-026 夜视设备 Night Vision EquipmentC04-027 照像机用之日期显示模组 Date moduleC04-028 照像机用之底片计数器 Film counterC04-029 APS相机 APS CamerasC05 光感测器:C05 光感测器 OPTICAL SENSORSC05-001 光电开关,光电感测器 Photo Switches, Photo SensorsC05-002 标记感测器 Mark Photo SensorsC05-003 色彩标记感测器 Color Mark Photo SensorsC05-004 色彩感测器 Color Photo SensorsC05-005 光学式编码器,角度感测器 Optical Encoders, Angle SensorsC05-006 光遥控器 Optical Remote Control EquipmentC05-007 影像感测器式量测设备 Image Sensor Type Measurement InstrumentsC05-008 显微镜式量测设备 Microscope Type Measurement InstrumentsC05-009 精密长度干涉仪 Precise Length InterferometersC05-010 光波测距装置 Electronic Distance MetersC05-011 三角测量法距离感测器 Triangulation Distance MetersC05-012 激光调变测距方式距离感测器 Laser Modulation Distance MetersC05-013 脉冲测距方式距离感测器 Pulse Distance MetersC05-014 激光外径测定器 Laser Outer Diameter Measuring SensorsC05-015 激光厚度计 Laser Thickness GaugesC05-016 激光拉伸计 Laser Extension MeterC05-017 红外线厚度计 Infrared Thickness GaugesC05-018 水平仪 LevelsC05-019 激光水平仪 Laser LevelsC05-020 经纬仪 Theodlites/TransitsC05-021 激光经纬仪 Laser Theodlites/TransitsC05-022 激光标线设备 Laser Marking-off EquipmentC05-023 位置光电感测器 Position Sensors, Pattern Edge SensorsC05-024 半导体位置感测器 Position Sensitive Devices(PSDs)C05-025 激光指示器 Laser PointersC05-026 激光都卜勒测速计Laser Doppler VelocimetersC05-027 环形激光流速计,光纤陀螺仪Ring Laser Velocimeters, Optical Fiber Laser GyrosC05-028 转速仪Rotational Speed MetersC05-029 激光都卜勒转速仪Laser Doppler Rotational Speed MetersC05-030 全像方式图样量测设备Holographic Method Pattern Measurement EquipmentsC05-031 激光移位计Laser Displacement MetersC05-032 激光指纹检测器Laser Fingerprint DetectorsC05-033 光学水质污染检测设备Optical Water Pollution Measurement and Detection Equipment C05-034 光学大气污染检测设备Optical Air Pollution Measurement and Detection EquipmentC05-035 红外线气体浓度感测器Infrared Gas Density MetersC05-036 光电式烟检知器Photo Smoke DetectorsC05-037 激光粉尘监视器,粒径量测器Laser Dust MonitorsC05-038 距离测定用激光雷达Rang-finding Lidar SystemsC05-039 环境监测用激光雷达Environment Monitoring Lidar SystemsC05-040 激光表面检查设备Laser Surface Inspection EquipmentC05-041 平面度测定系统Flatness TestersC05-042 斑点图形量测设备Speckle Method Pattern Measurement EquipmentC05-043 云纹图形量测设备Moire Method Pattern Measurement EquipmentC05-044 影像分析仪Image AnalyzersC05-045 激光缺陷检查设备Laser Defect Inspection EquipmentC05-046 红外线辐射温度感测器Infrared ThermometersC05-047 人体检知感测器,激光保全设备Laser Security/Surveillance EquipmentsC05-048 光计数器Photo CountersC05-049 激光公害检测设备Laser Pollution Detective DevicesC05-050 激光热常数量测设备Laser Thermal Constants Measurement EquipmentC05-051 全像非破坏检查设备Holographic Nondestructive Testing EquipmentC06 光纤感测器:C06 光纤感测器FIBER OPTIC SENSORSC06-001 光纤光电开关/感测器Fiber Optic Photo Switches/ SensorsC06-002 光纤式标记感测器Fiber Optic Mark Photo SensorsC06-003 光纤式色彩标记感测器Fiber Optic Color Mark Photo SensorsC06-004 光纤温度感测器Fiber Optic Temperature SensorsC06-005 光纤压力感测器Fiber Optic Pressure SensorsC06-006 光纤声波感测器Fiber Optic Acoustic SensorsC06-007 光纤变形感测器Fiber Optic Strain SensorsC06-008 光纤振动感测器Fiber Optic Vibration SensorsC06-009 光纤移位感测器Fiber Optic Displacement SensorsC06-010 光纤陀螺仪感测器Fiber Optic Gyro SensorsC06-011 光纤速度感测器Fiber Optic Velocity SensorsC06-012 光纤磁通量感测器Fiber Optic Magnetic Flux SensorsC06-013 光纤磁场感测器Fiber Optic Magnetic Field SensorsC06-014 光纤电流感测器Fiber Optic Current SensorsC06-015 光纤电场感测器Fiber Optic Electric Field SensorsC06-016 光纤浓度、成份感测器Fiber Optic Density,Constituent SensorsC06-017 光纤油膜感测器Fiber Optic Oil Film SensorsC06-018 光纤液位感测器Fiber Optic Liquid Surface Level SensorsC06-019 光纤光分布/放射线感测器Fiber Optic Light Distribution/Radiation SensorsC06-020 光纤显微镜Fiber Optic FiberscopesC06-021 光纤光栅应变感测器Fiber Grating Strain SensorC07 光储存装置:C07 光储存装置OPTICAL STORAGE PRODUCTC07-100 消费性光碟机CONSUMER OPTICAL DISC PLAYERSC07-101 激光唱盘Compact Disc (CD) PlayersC07-102 激光音响组合Products Incorporated CD(CD-Radio-Cassette Tape Recorders)C07-103 LD 影碟机Laser Disc (LD) PlayersC07-104 影音光碟机Video CD PlayersC07-105 DVD DVD 影碟机Digital Versatile Disc (DVD) PlayersC07-106 迷你音碟机Mini Disc (MD) PlayersC07-200 资讯用仅读型光碟机READ-ONLY OPTICAL DISC DRI597VESC07-201 CD-ROMCD-ROM光碟机CD-ROM DrivesC07-202 DVD-ROM DVD-ROM 光碟机DVD-ROM DrivesC07-300 资讯用仅写一次型光碟机RECORDABLE OPTICAL DISC DRIVESC07-301 CD-R CD-R 光碟机CD-R DrivesC07-399 其他仅写一次型光碟机Other Recordable Optical Disc DrivesC07-400 资讯用可覆写型光碟机REWRITABLE OPTICAL DISC DRIVESC07-401 3.5" MO 光碟机3.5" MO Disc DrivesC07-402 5.25" MO 光碟机5.25" MO Disc DrivesC07-403 PD 光碟机PD DrivesC07-404 CD-RW光碟机CD-RW DrivesC07-499 其他可覆写型光碟机Other Rewritable Optical Disc DrivesC07-500 光碟机零组件DEVICES OF OPTICAL DISC DRIVESC07-501 光学头,光学读取头Optical Heads , Pick-up HeadsC07-502 光学头伺服装置,伺服用IC模组Optical Head Controllers, Control ICs/Modules C07-503 光学头驱动装置Optical Head ServomotorsC07-504 光碟匣Optical Disc CartridgesC07-505 主轴马达Spindle MotorC07-600 光碟片OPTICAL DISCSC07-601 CD 音碟片Compact Discs。

尼科莱特 I S50 FT-IR 光谱仪:通过紧凑型自动化提高生产力 应用笔记 52416说明书

尼科莱特 I S50 FT-IR 光谱仪:通过紧凑型自动化提高生产力 应用笔记 52416说明书

Thermo Scientific Nicolet iS50 FT-IRSpectrometer: Improving Productivity through Compact Automation Application Note 52416 Key WordsAutomation, Far-IR, FT-IR, Full-spectral, Infrared, Mid-IR, Multi-range,Multiple Methods, Near-IR, Workflow OptimizationChallenges Facing Industrial Analytical LabsMany routine QC/QA laboratories can perform materialanalyses with single range, basic Fourier transform-infrared (FT-IR) instrument configurations. However,modern analytical laboratories face increasing workloadsfrom a broad range of sample types with a simultaneousdrive for faster results and more complex samplecharacterization needs. Flexibility to analyze multiplesample types becomes mandatory when rapidly respondingto these different application requests. Such diversityrequires laboratory instruments to be reconfigured forspecific measurements multiple times per day, taking timeaway from other critical activities. This also implies thatlaboratory personnel possess the necessary skills andexperience to make decisions on how best to configure the instrument for a given application. In addition, frequent handling of delicate optics components presents a costly risk for instrument failure. As a result, many industrial laboratories choose to outsource complex analyses. These limitations inevitably slow the laboratory’s ability to respond to urgent business needs.The Thermo Scientific™ Nicolet™ iS™50 FT-IR spectrometer alleviates many of these productivity concerns by automating setup of the FT-IR system for multi-spectral range experiments (>20,000 cm-1 to 80 cm-1) and fori ntegrating techniques like FT-Raman, near-IR and mid/far-IR attenuated total reflectance (ATR) into a single workflow. Intelligent design behind the Nicolet iS50 spectrometer permits unattended, risk-free operation, increasing lab efficiency, sample throughput, and operational consistency between users. This capability is delivered in an economical, compact system (63 cm of linear bench space) enabling any laboratory to employ multiple techniques for their analysis.Flexibility and Value-added ActivitiesWorking labs need analytical flexibility to respond toa variety of situations where answers are critical for decision-making. Examples include deformulating mixtures to build a case for patent infringement, identifying counterfeit materials for product safety alerts, analyzing forensic samples for criminal investigations, performing failure analysis to minimize production run delays, assessing process scale-up options for a new product launch, or troubleshooting customer complaints. Such diversity of applications requires the selection and installation of the correct instrument accessory as well as choosing the optimal source, beamsplitter, detector, optical path, and experimental conditions. Manually changing components and sampling parameters requires skill and may risk exposure of expensive optics to the external environment (i.e., dust, fingerprints or water vapor). In addition, changing these parameters can result in extensive wait times to equilibrate the instrument before the next measurement.These manual reconfigurations provide little added value to the laboratory workflow. Users must plan and set up batch experiments to minimize the number of steps. This creates bottlenecks, limiting access to the full capability of the instrument. As a result, labs are less able to address “emergency situations” without interrupting the batch run and resetting the instrument parameters. For instance, analysis of a polymer with additives requires mid-IR and far-IR plus Raman spectroscopy. This would entail three beamsplitter changes with associated risks in handling expensive components and instrument recovery times between changes.The productivity improvements with the Nicolet iS50 FT-IR spectrometer come from two main sources. First, the internally mounted iS50 ABX Automated Beamsplitter Exchanger uses one-button simplicity (described as a Touch Point) to perform instrument setup and operation, providing a “one touch and done” workflow. The removal of manual handling and exposure of the optics to the environment means instant readiness. Second, the user need no longer care about which optics are installed. As seen in Table 1, the potential for error in manual operations is apparent when the array of possible component combinations is considered. With the Nicolet iS50 spectrometer, however, a user simply presses the Touch Point on the instrument to automate the configuration and ready the instrument for the experiment. For example, pressing the Touch Point on the iS50 NIR module automates the setup without requiring any understanding of which optics are used. What matters is performing NIR analysis – not worrying about choosing the right components. The instrument takes care of this step. Integration of the spectrometer with its modules and components allows the user to expand capabilities, increasing productivity with tools such as:• Up to three detectors (such as near-, mid- and far-IR)• The iS50 Raman sample compartment module• The built-in diamond iS50 ATR sampling station• T he iS50 NIR module with integrating sphere or fiber optics• The iS50 GC-IR module• A sample compartment thermal gravimetric analysis-IR (TGA-IR Interface)Figure 1 describes the analytical power the user can achieve with the iS50 spectrometer to obtain answers needed for time-sensitive decisions. With a single user interaction, the instrument can perform multiple measurements and analyses, resulting in a final report, even when unattended. The Thermo Scientific OMNIC™software provides a user-friendly interface to set up applications quickly and generate spectra for definitive answers. By adding powerful analytical tools like the Thermo Scientific OMNIC Specta™ software with a library of over 30,000 spectra and multi-component searching (or the TQ Analyst™ software for chemometrics), a complete analytical workflow from sampling to results can often be achieved in less than 60 seconds.This paper will demonstrate how the integration and automation of the Nicolet iS50 spectrometer leads to new levels of productivity, while minimizing risk to costly components. Unlike most spectrometers, operating the Nicolet iS50 instrument becomes simpler as modules are added and as more manual steps are removed even when unattended.Experiment Source Beamsplitter Detector AccessoryMid-IR Transmission Thermo Scientific Polaris™KBr KBr-DLaTGS Standard Cells Far-IR Transmission Polaris Solid Substrate Polyethylene DLaTGS Cells w/Far-IR Windows Near-IR Transmission White Light CaF2InGaAs CuvettesMid-IR ATR Polaris KBr Dedicated DLaTGS iS50 ATRFar-IR ATR Polaris Solid Substrate Dedicated DLaTGS iS50 ATRFT-Raman Raman Laser CaF2Raman InGaAs iS50 RamanTable 1: Experiments made possible with the Nicolet iS50 FT-IR SpectrometerFigure 1: Nicolet iS50 analysis workflowAutomated Multi-spectral Analysis:Mid- and Far-IR ATR plus Near-IRMost FT-IR users understand the utility of the mid-IR spectral range for qualitative and quantitative analyses. Less well known, the far-IR region can provide new and unique information. Simply put, as the mass of atoms involved in vibrations increases, the wavenumber decreases.1Thus, for materials like organometallics or metal oxides, the IR absorption shifts below 400 cm-1 and below the range of standard KBr optics. Numerous polymers, sugars, and other large molecules also have far-IR information which may be useful or definitive to the analyst. Traditionally, collecting FT-IR spectra in both the mid-IR and far-IR region entailed significant sample preparation. This included changing hygroscopic optics and multiple detectors, and risking altered system performance from water vapor. The Nicolet iS50 spectrometer enables rapid analysis over the full mid-IR and well into thefar-IR region (4,000 cm-1 to 80 cm-1) when equipped with the iS50 ABX, iS50 ATR, and the correct beamsplitters. The typical, multi-range FT-IR application requires opening the spectrometer to swap beamsplitters. This requires care in handling costly components and exposesthe internal optics to the environment by disrupting purge or desiccation. This activity adds a recovery period tore-equilibrate the instrument before quality data can be collected. These wait times add no value to operations, wasting the analyst’s precious time. Integration and automation on the spectrometer eliminate non-productive wait times, improving efficiency.As an example, Table 2 compares the steps needed to perform a full spectral analysis from far-IR to near-IR between the manual method (Typical) and the Nicolet iS50 method with built-in iS50 ATR and iS50 NIR module. This represents three spectral ranges in one sampling operation, a unique power of the instrument. Most important the built-in iS50 ATR optics and detector permit spectral data collection in both the mid- and far-IR regions. The analysis time decreases from around 30 minutes to less than seven. With the Nicolet iS50 spectrometer, the user is able to load two sampling locations (the built-in ATR and the Integrating Sphere module), start the macro and walk away, while in the manual operation, continuous attention is needed to swap the beamsplitters at the right moments. This seemingly hidden improvement allows unattended operation, permitting productivity through automation. Figure 2 shows just the mid- and far-IR spectra collected from acetylferrocene analyzed using an OMNIC macro-controlled workflow. The additional information from the far-IR spectra is clear – the low end triplet verifies that the iron is sandwiched between the cyclopentadiene rings. The NIR data is not shown, but the entire process required seven minutes, including collection of themid- and far-IR backgrounds. Automation also reduced the total hands-on time of the user (pressing buttons, loading sample) to ≈20 seconds. Figure 2: Mid-IR and far-IR spectra of Acetylferrocene. The far-IR optics permit collection to 1700 cm-1, which may be sufficient (fingerprint and far-IR) for many applications.Time Nicolet iS50 Time Process Step Typical (minutes) with Built-in ATR (minutes) Sample Preparation Grind, Mix 10 None 0 Mid-IR Background Collect BKG 0.5 Collect BKG (2nd)* 1. Mid-IR Collect Load Sample, 2 Load Sample, 1Collect Spectrum Collect SpectrumChange Optics Manual Exchange 0.5 Automated 0.5 Recovery Time Wait for Purge 5–10 No Recovery Time 0 Far-IR Background Collect BKG 0.5 Collect BKG (1st)* 0.5 Far-IR Collect Load Sample, 2 Load Sample, 1Collect Spectrum Collect SpectrumChange Optics (NIR) Manual Exchange 0.5 Automated 0.5 Recovery Time Wait for Purge 5 No Recovery Time 0 Collect Background Collect BKG 0.5 Collect BKG 0.5 Collect Sample Load Sample, 1 Collect SAM 0.5Collect SAMData Analysis (Search) Perform Search 2 Automated Search 0.5 Total Time 29.5–34.5 6.5 Table 2: Far-infrared analysis: Typical versus Nicolet iS50 process* W ith the iS50 ATR present, the far-IR background (BKG) is collected, the iS50 ABX swaps beamsplitters, and themid-IR background is collected in <1.5 minutes. The sample is loaded and the spectra are collected in sequence.All times are approximate.Figure 3: The Thermo Scientific Nicolet iS50 FT-IR spectrometer configured for FT-Raman, near-IR, and mid/far-IR ATR with the automated beamsplitter exchanger.Figure 4: Touch Points on the Nicolet iS50 spectrometer employ one-button switching between modules and the iS50 ABX automates optics set-up Touch Point A – NIR module Touch Point B – Raman moduleTouch Point C – Built-in diamond ATRComponent D – ABX Automated Beamsplitter ExchangerMultiple Techniques and Multi-range Analysis: Enhanced FlexibilityThe Nicolet iS50 spectrometer can be configured with FT-Raman, NIR, and wide-range diamond ATR. Switching between these experiments raises concerns of instrument recovery time (purge), exposure/handling of optics, and potential confusion or user error. The experiments are often seen as independent activities for these reasons. The spectrometer with iS50 ABX simplifies this apparently complex situation to one step – initiation of a macro. The Nicolet iS50 instrument shown in Figure 3 is configured with the iS50 NIR, iS50 Raman, iS50 ATR and the iS50 ABX modules and shows how easy sample loading and analysis can be done.For operating one module at a time, the user need only press the associated Touch Point. Seen more closely in Figure 4, Touch Points make one-button operation effortless when switching between modules (sampling stations) and automating optics exchange. Rather than thinking through the components needed (light source, beamsplitter, optical path and detector) to run anexperiment, the user simply presses the Touch Point to switch from an ATR to an NIR measurement and waits until the instrument indicates that it is ready to begin. This error-free operation is done in 30 seconds.The Nicolet iS50 analytical power in Figure 1 becomes clear when the four data collections – mid-IR and far-IR ATR, NIR, and Raman – are performed in one workflow. Collecting spectra from each of these modules using a conventional manual approach required about 50 minutes, including sample loading, optical changes, time forequilibration, and optimization of the Raman signal. The analyst needed to be present throughout the experiment to perform the beamsplitter changes and collect various backgrounds for each sampling station. At the end of the 50 minutes, four spectra and their analyses were available. Actual data collection took 5 minutes and total hands-on time was 45 minutes, representing inefficient use of the analyst’s time.In contrast, the results shown in Figure 5 emerged from a single OMNIC-macro operation. The macro wasprogrammed to begin by collecting backgrounds for the mid- and far-IR ATR, and then switched to the iS50 Raman module. Next the samples were loaded on the ATR, NIR, and Raman sampling stations. After optimizing the signal using the autofocus feature of the Ramanmodule, the macro was initiated, and the analyst walked away. From starting the macro to completion of the final report, the analysis took less than 12 minutes, representing a time savings of over 70%. The actual data collection time was again 5 minutes, however, total hands-on time for the analyst was only 2 minutes – a highly efficient use of the analyst’s (and the instrument’s) time.ABC DApplication Note 52416AN52416_E 12/12MAfrica +27 11 822 4120Australia +61 3 9757 4300Austria +43 1 333 50 34 0Belgium +32 53 73 42 41Canada +1 800 530 8447China +86 10 8419 3588Denmark +45 70 23 62 60Europe-Other +43 1 333 50 34 0Finland/Norway/Sweden +46 8 556 468 00France +33 1 60 92 48 00Germany +49 6103 408 1014India +91 22 6742 9434Italy +39 02 950 591Japan +81 45 453 9100Latin America +1 561 688 8700Middle East +43 1 333 50 34 0Netherlands +31 76 579 55 55New Zealand +64 9 980 6700Russia/CIS +43 1 333 50 34 0Spain +34 914 845 965Switzerland +41 61 716 77 00UK +44 1442 233555USA +1 800 532 4752©2012 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.ConclusionMany forces contribute to new pressures on industrial analytical laboratories: increased sample loads, decreased staffing, retirement of experts, and shrinking budgets. The Thermo Scientific Nicolet iS50 FT-IR spectrometer makes a significant contribution to alleviating these challenges through automation in a multi-tasking, single platform instrument. The Nicolet iS50 spectrometer greatly simplifies and streamlines workflows by decreasing the number of steps with one-button ease and macro operations performed by the analyst. In addition, risks inherent in manual operations (e.g., user error, environmentalexposure) and long recovery times are eliminated. Analysts of any skill level can successfully obtain meaningful results with minimal hands-on time.Technology designed to improve workflow can be found in the iS50 ABX and task-specific modules (i.e., Raman, NIR, TGA-IR etc.). The Touch Point operation simplifies access to the full range of capabilities by automatically configuring the optics (near-, mid- and far-IR) andswitching between sampling stations (modules) in secondsfor enhanced productivity. For the modern industrial lab, the Nicolet iS50 FT-IR spectrometer offers a powerful new tool that goes beyond routine FT-IR to more comprehensive analyses (e.g., FT-Raman and far-IR), adding value to laboratory activities in a compact, easy-to-operate platform.References1. H eavy atoms or groups of atoms shift the IR wavenumber value lower, according to the relationshipwhere ˜v is the IR wavenumber (cm -1) and μ is the reduced mass. As the mass (μ) increases, the IR peak shifts to lower wavenumbers.GlossaryCaF 2– calcium fluorideDLaTGS – d euterated L-alanine doped triglycene sulphate InGaAs – Indium gallium arsenide KBr– potassium bromideFigure 5: Multi-technique data for a recyclable plastic component using the spectrometer pictured in Figure 3. Inset shows NIRindependently for clarity.。

远红外贴 原理

远红外贴 原理

远红外贴原理The far infrared patch is a popular item in many health and wellness communities. It is believed to have a variety of health benefits, including pain relief, improved circulation, and relaxation. Far infrared technology is a form of electromagnetic radiation that has longer wavelengths than visible light, and is able to penetrate deeply into the body. This means that when the patch is applied to the skin, the far infrared waves are able to reach the muscles, tissues, and organs beneath the surface. This can lead to a warming sensationand increased blood flow, which may help to alleviate discomfortand promote healing.远红外贴是许多健康和健康社区中备受欢迎的物品。

人们相信它具有各种健康益处,包括缓解疼痛、改善循环和放松身心。

远红外技术是一种电磁辐射,其波长比可见光长,能够深入体内。

这意味着当贴片贴在皮肤上时,远红外波能够到达肌肉、组织和皮下器官。

这可以带来一种温暖的感觉和增加的血液流量,这可能有助于缓解不适和促进愈合。

One of the key reasons for the popularity of far infrared patches is their potential to alleviate pain. Many people use these patches tomanage chronic pain conditions, such as arthritis, back pain, or muscle soreness. The infrared waves are thought to penetrate deep into the body, targeting the source of the pain and providing relief. The warming sensation caused by the patches can also help to relax muscles and reduce tension, which may contribute to pain relief and improved mobility.远红外贴备受欢迎的一个关键原因是它们缓解疼痛的潜力。

(整理)激光、光电、光学词汇的中英文对照

(整理)激光、光电、光学词汇的中英文对照

A01光学材料:A01-001 光学材料Optical MaterialsA01-002 光学玻璃Optical GlassA01-003 激光玻璃Laser GlassA01-004 声光玻璃Acousto-Optic GlassA01-005 红外线玻璃Infrared GlassA01-006 红外线材料Infrared MaterialsA01-007 紫外线材料Ultraviolet MaterialsA01-008 石英镜片Fused Silica GlassA01-009 光学陶瓷CeramicsA01-010 矽半导体材料Silicon Semiconductor MaterialsA01-011 化合物半导体材料Compound Semiconductor Materials A01-012 光纤材料Fiber Optic MaterialsA01-013 光纤预型体Fiber Optic PreformsA01-014 PLZT晶圆,钛酸锆酸铅晶圆PLZT WafersA01-015 环氧树脂EpoxiesA01-016 声光光学晶体Acousto-Optic CrystalsA01-017 双折射/偏光晶体Birefringent and Polarizing Crystals A01-018 电光光学晶体Electro-Optic CrystalsA01-019 红外线晶体Infrared CrystalsA01-020 激光晶体(YAG) YAG Laser CrystalsA01-021 激光晶体(亚历山大) Alexandrite Laser CrystalsA01-022 激光晶体(GGG) GGG Laser CrystalsA01-023 激光晶体(GSGG,GSAG) GSGG GSAG Laser Crystals A01-024 激光晶体(YLF) YLF Laser CrystalsA01-025 激光晶体(其他) Other Laser CrystalsA01-026 非线性光学晶体Nonlinear CrystalsA01-027 有机光学材料Organic Optical MaterialsA01-028 萤光放射晶体Fluorescent Emission CrystalsA01-029 结晶育成材料Crystals Growing MaterialsA01-030 镀膜材料Coating MaterialsA01-031 光罩材料Photomask MaterialsA01-032 真空蒸镀化学药品Vaccum Evaporation ChemicalsA01-033 感光剂SensitizersA01-034 影像用材料Materials for ImagingA01-035 热色材料Thermochromic MaterialsA01-036 光色材料Photochromic MaterialsA01-037 稀土族材料Rare Earth MaterialsA01-038 光碟基板,基板材料Optical Disk Substrate Materials A01-039 光碟记录材料Optical Disk Data Storage MaterialsA02加工用其他材料:A02 加工用其他材料MATERIALS FOR PROCESSINGA02-001 光学用胶合剂/接著剂Optical Cements and Adhesives A02-002 光学用气体Gases for Optical ApplicationA02-003 激光用气体Gases for LasersA02-004 光学研磨材料(研磨布纸) Optical-Coated AbrasiveA02-005 光学研磨材料(砥粒) Optical-Powder or Grin Abrasive A02-006 光学研磨材料(砥石) Optical-Wheel AbrasiveA02-007 研磨化合物Polishing CompoundsA02-008 研磨衬垫及布Polishing Pads and ClothA02-009 全像底片及感光板Holographic Films and PlatesA02-010 红外线底片及感光板Infrared Films and PlatesA02-011 相片用化学药品Photographic ChemicalsA02-012 折射率液Refractive Index LiquidsA02-013 显微镜浸液Microscope Immerison LiquidsA02-014 显微镜埋置用材料Microscope Imbedding MediaA02-015 激光用染料Laser DyesA02-016 冷媒CoolantsA02-017 拭镜纸Lens TissueA03 显示器用材料:A03 显示器用材料MATERIALS FOR DISPLAYA03-001 液晶Liquid CrystalsA03-002 导电膜玻璃基板ITO Glass SubstrateA03-003 彩色滤光片Color FilterA03-004 偏光板/相位差板Polarizer/ Phase Shift LayerA03-005 显示面板用驱动IC Driver ICA03-006 背光源BacklightA03-007 配向膜Alignment FilmA03-008 间隔物SpacerB01 透镜:B01 透镜LENSESB01-001 单透镜Simple (Single) LensesB01-002 球透镜Ball LensesB01-003 歪像透镜Anamorphic LensesB01-004 圆锥透镜Conical LensesB01-005 柱状透镜,环形透镜Cylindrical & Toroidal LensesB01-006 非球面透镜Aspheric LensesB01-007 反射折射透镜Catadioptric LensesB01-008 绕射极限透镜Diffraction-Limited LensesB01-009 GRIN透镜GRIN Lenses (Graduated Refractive Index Rod)B01-010 微小透镜阵列Micro Lens ArraysB01-011 准直透镜Collimator LensesB01-012 聚光透镜Condenser LensesB01-013 多影像透镜Multiple Image LensesB01-014 傅利叶透镜Fourier Lenses B01-015 菲涅尔透镜Fresnel Lenses B01-016 替续透镜Relay LensesB01-017 大口径透镜(直径150mm以上) Large Aperture Lenses (150mm) B01-018 复合透镜Complex LensesB01-019 红外线透镜Infrared LensesB01-020 紫外线透镜Ultraviolet LensesB01-021 激光透镜Laser LensesB01-022 望远镜对物镜Telescope Objectives LensesB01-023 显微镜对物镜Microscope Objectives LensesB01-024 接目镜Eyepieces LensesB01-025 向场透镜Field LensesB01-026 望远镜头Telephoto LensesB01-027 广角镜头Wide Angle LensesB01-028 可变焦伸缩镜头Variable Focal Length Zoom LensesB01-029 CCTV镜头CCTV LensesB01-030 影印机镜头Copy Machine LensesB01-031 传真机镜头Facsimile LensesB01-032 条码扫描器镜头Bar Code Scanner LensesB01-033 影像扫描器镜头Image Scanner LensesB01-034 光碟机读取头透镜Pick-up Head LensesB01-035 APS相机镜头APS Camera LensesB01-036 数位相机镜头Digital Still Camera LensesB01-037 液晶投影机镜头Liquid Crystal Projector LensesB02 镜面:B02 镜面MIRRORB02-001 平面镜Flat MirrorsB02-002 球面凹面镜,球面凸面镜Spherical Concave and Convex Mirrors B02-003 抛物面镜,椭圆面镜Off-Axis Paraboloids and Ellipsoids Mirrors B02-004 非球面镜Aspheric MirrorsB02-005 多面镜Polygonal MirrorsB02-006 热镜Hot MirrorsB02-007 冷镜Cold MirrorsB02-008 玻璃,玻璃/陶瓷面镜Glass and Glass-Ceramic MirrorsB02-009 双色向面镜Dichroic MirrorB02-010 金属面镜Metal MirrorsB02-011 多层面镜Multilayer MirrorsB02-012 半涂银面镜Half-Silvered MirrorsB02-013 激光面镜Laser MirrorsB02-014 天文用面镜Astronomical MirrorsB02-099 其他面镜Other MirrorsB03 棱镜:B03 棱镜PRISMB03-001 Nicol棱镜Nicol PrismsB03-002 Glan-Thomson棱镜Glan-Thomson PrismsB03-003 Wollaston棱镜Wollaston PrismsB03-004 Rochon棱镜Rochon PrismsB03-005 直角棱镜Right-Angle; Rectangular PrismsB03-006 五面棱镜Pentagonal PrismsB03-007 脊角棱镜Roof PrismsB03-008 双棱镜BiprismsB03-009 直视棱镜Direct Vision PrismsB03-010 微小棱镜Micro PrismsB03-099 其他棱镜Other PrismsB04 滤光镜:B04 滤光镜FILTERB04-001 尖锐滤光镜Sharp Cut (off) FiltersB04-002 色温变换滤光镜,日光滤光镜Colour Conversion/Daylight Filters B04-003 干涉滤光镜Interference FiltersB04-004 中性密度滤光镜Neutral Density FiltersB04-005 空间/光学匹配滤光镜Spatial/Optical Matched FiltersB04-006 双色向滤光镜Dichroic FiltersB04-007 偏光滤光镜Polarizing FiltersB04-008 排除频带滤光镜Rejection Band FiltersB04-009 可调式滤光镜Turnable FilterB04-010 超窄频滤光镜Ultra Narrowband FiltersB04-011 色吸收滤光镜Absorption FiltersB04-012 红外吸收/反射滤光镜Infrared Absorbing/Reflecting FiltersB04-013 红外透过滤光镜Infrared Transmitting FiltersB04-014 紫外吸收滤光镜Ultraviolet Absorbing FiltersB04-015 紫外透过滤光镜Ultraviolet Transmitting FiltersB04-016 针孔滤光镜Pinhole FiltersB04-017 有色玻璃滤光镜Colored-Glass FiltersB04-018 塑胶滤光镜Plastic FiltersB04-019 照像用滤光镜Photographic FiltersB04-020 全像滤光镜Holographic FiltersB04-021 微小干涉滤光镜Micro Interference FiltersB06 激光:LASERS B06 激光LASERSB06-100 气体激光GAS LASERSB06-101 氦氖激光He-Ne LasersB06-102 金属蒸气激光Metal Vapor LasersB06-103 氩离子激光Argon LasersB06-104 氪离子激光Krypton LasersB06-105 二氧化碳激光(气流型) CO2 (Gas Flow type) LasersB06-106 二氧化碳激光(脉冲,TEA型) CO2 (Pulsed,TEA) LasersB06-107 二氧化碳激光(密封型) CO2 (Sealed tube) LasersB06-108 二氧化碳激光(波导型) CO2 (Wave guide) LasersB06-109 一氧化碳激光CO LasersB06-110 氦镉激光He-Cd LasersB06-111 氮分子激光Nitrogen LasersB06-112 准分子激光Excimer LasersB06-113 氙分子激光Xenon LasersB06-200 固体激光SOLID STATE LASERSB06-201 红宝石激光Ruby LasersB06-202 玻璃激光Glass LasersB06-203 Nd:YAG激光(脉冲式) Nd:YAG (Pulsed) LasersB06-204 Nd:YAG激光(连续式) Nd:YAG Laser (CW) LasersB06-205 Nd:YAG激光(半导体激光激发) Nd:YAG (LD Pumped) LasersB06-206 YLF激光YLF LasersB06-207 亚历山大激光Alexanderite LasersB06-208 铒固体激光Erbium LasersB06-209 半导体激光激发式固态激光Solid State(LD pumped)LaserB06-210 其他固态激光OthersB06-300 染料激光DYE LASERSB06-301 染料激光(闪光灯激发) Dye (Flash lamp Pumped) LasersB06-302 染料激光(激光激发) Dye (Laser Pumped) LasersB06-400 半导体激光SEMICONDUCTOR LASERSB06-401 半导体激光(1.55μm带) Semiconductor (1.55μm) LasersB06-402 半导体激光(1.30μm带) Semiconductor (1.30μm) LasersB06-403 半导体激光(0.85μm带) Semiconductor (0.85μm) LasersB06-404 半导体激光(0.78μm带) Semiconductor (0.78μm) LasersB06-405 半导体激光(0.60μm带) Semiconductor (0.60μm) LasersB06-406 半导体激光(其他波长带) Other Semiconductor LasersB06-407 半导体激光模组(长波长) Semiconductor (Long Wavelength) Laser ModulesB06-408 半导体激光模组(短波长) Semiconductor (Short Wavelength) Laser ModulesB06-409 半导体激光模组(可见光) Semiconductor (Visible) Laser ModulesB06-501 铁离子中心激光F-Center LasersB06-502 化学激光(HF-DF) Chemical (HF-DF) LasersB06-503 平板激光Slab LasersB06-504 远红外线激光Far-Infrared LasersB06-505 真空紫外线激光Vacuum Ultraviolet LasersB06-506 多色激光Multi Colour LasersB06-507 稳频激光Frequency Stabilized LasersB06-508 自由电子激光Free Electron LasersB07 激光用元件:B07 激光用元件LASER COMPONENTSB07-001 Q 开关Laser Q-SwitchesB07-002 激光管Laser Tubes and BoresB07-003 激光棒Laser RodsB07-004 激光板Laser SlabsB07-005 气体再生设备,气体填充设备Gas Recyclers and Gas Handling EquipmentB07-006 激光控制设备Laser Control EquipmentB07-007 激光用盒Laser CellsB07-008 参数振汤器Parametric OscillatorsB07-009 光脉冲产生设备Optical Pulse GeneratorsB07-010 激光用共振腔Resonators for LasersB07-011 磁铁MagnetsB07-012 激光用冷却设备Cooling Systems for LasersB07-013 激光护眼镜Safty Equipment; Goggles Glasses and FilmsB07-014 激光光吸收体Safty Equipment; Laser AbsorbersB07-015 激光用安全设备Safty Equipment; Protective HousingsB08 发光二极体:B08 发光二极体LIGHT-EMITTING DIODES; LEDB08-001 通信用1.55μm发光二极体1.55μm LEDs for CommunicationB08-002 通信用1.30μm发光二极体1.30μm LEDs for CommunicationB08-003 通信用0.85μm发光二极体0.85μm LEDs for CommunicationB08-004 通信用长波长发光二极体模组Long Wavelength LED Modules for Communication B08-005 通信用短波长发光二极体模组Short Wavelength LED Modules for Communication B08-006 可见光发光二极体(红色) Visible (Red) LEDsB08-007 可见光发光二极体(黄色) Visible (Yellow,Orange) LEDsB08-008 可见光发光二极体(绿色,多色) Visible (Green,Multi-Color) LEDsB08-009 可见光发光二极体(蓝色) Visible (Blue) LEDsB08-010 红外线二极体(非通信用) Infrared (not for Communication) LEDsB08-011 文数字表示用发光二极体Alpha-Numeric LEDsB08-012 发光二极体晶圆(通信用) LED Wafers for CommunicationB08-013 发光二极体晶圆(非通信用) LED Wafers not for CommunicationB08-014 发光二极体晶片、晶粒(通信用) LED Chips for CommunicationB08-015 发光二极体晶片、晶粒(非通信用) LED Chips not for CommunicationB09 光源设备:B09 光源设备LIGHT SOURCESB09-001 标准光源Standard Light SourcesB09-002 安定化光源Stabilized Light SourcesB09-003 弧光灯Arc Light SourcesB09-004 氪灯Krypton Light SourcesB09-005 卤素灯Halogen Light SourcesB09-006 氙灯Xenon /Xenon Flashlamps Light SourcesB09-007 紫外线光源Ultraviolet Light SourcesB09-008 真空紫外线光源VUV Light SourcesB09-009 红外线光源Infrared Light SourcesB09-010 闪光光源Stroboscopic Light SourcesB09-011 小型光源Miniature Light SourcesB09-012 光纤光源Fiber Optic IlluminatorsB10 显示器元件:B10 显示器元件DISPLAY PANELB10-001 发光二极体显示器LED DisplaysB10-002 液晶显示器Liquid Crystal Display (LCD)B10-003 电浆显示器Plasma Display Panels(PDP)B10-004 电激发光显示器Electroluminescence Display (ELD)B10-005 电铬显示器Electrochromic Display (ECD)B10-006 真空萤光显示器Vacuum Fluorescent Display (VFD)B10-007 平面阴极射线管Flat CRTsB10-008 场发射显示器Field Emitter Display(FED)B10-099 其他平面显示元件Other Flat Panel DisplaysB11 检光元件及光纤混成元件:B11 检光元件及光纤混成元件DETECTORS & FIBEROPTIC HYBRID DEVICESB11-001 通信用PIN光二极体PIN Photodiodes for CommunicationB11-002 通信用崩溃光二极体Avalanche Photodiodes for CommunicationB11-003 通信用(长波长)Ge和III-V族检光元件Long-wavelength Detectors for CommunicationB11-004 通信用PIN光二极体模组PIN Photodiode Modules for CommunicationB11-005 通信用崩溃光二极体模组Avalanche Photodiode Modules for CommunicationB11-006 通信用(长波长)Ge和III-V族检光模组Long-wavelength Decector Modules for Communication B11-007 光二极体(近红外光) Near-infrafed PhotodiodesB11-008 光二极体(可见光) Visible PhotodiodesB11-009 光二极体(紫外光) Ultraviolet PhotodiodesB11-010 光电晶体PhototransistorsB11-011 光电管PhototubesB11-012 光电子增倍管(PMT) PhotomultipliersB11-013 光导电池Photoconductive CellsB11-014 热电偶检测器Thermocouple DetectorsB11-015 热堆检测器Thermopile DetectorsB11-016 微道板Microchannel PlatesB11-017 热电检测器Pyroelectroic DetectorsB11-018 辐射热测定器BolometersB11-019 其他红外线检测器Infrared DetectorsB11-020 摄像管Camera TubesB11-021 线型检光元件One Dimension Detector ArraysB11-022 面型检光元件Two Dimension Detector ArraysB11-023 光电耦合器Photo CouplerB11-024 光断续器Photo InterrupterB11-025 光反射器Photo ReflectorB11-026 光闸流晶体管PhotocyristorsB11-027 光感测元件Photosensing UnitsB11-028 内藏电路之光感测器Detectors with CircuitB11-029 民用用太阳电池Solar Cells for Consumer UseB11-030 产业用太阳电池Solar Cells for Power & Space UseB12 光纤及光缆:B12 光纤及光缆FIBER OPTIC FIBERS & CABLEB12-100 光纤FIBER OPTIC FIBERSB12-101 石英系多模态步阶式折射率型光纤Fiber Optic Fibers, Silica, Multimode, Step IndexB12-102 石英系多模态渐近式折射率型光纤(50/125) Fiber Optic Fibers, Silica, Multimode, Graded Index,50/125B12-103 石英系多模态渐近式折射率型光纤(62.5/125) Fiber Optic Fibers, Silica, Multimode,Graded Index ,62.5/125B12-104 石英系多模态渐近式折射率型光纤(100/140) Fiber Optic Fibers, Silica, Multimode,Graded Index ,100/140B12-105 石英系单模态标准型光纤Fiber Optic Fibers, Silica, Single Mode,StandardB12-106 色散位移光纤Fiber Optic Fibers, Dispersion – ShiftedB12-107 偏振恒持光纤Fiber Optic Fibers, Polarization – MaintainingB12-108 其他单模态光纤Other Single Mode Optic FibersB12-109 石英系塑胶包覆光纤Fiber Optic Fibers, Plastic - Clad SilicaB12-110 塑胶光纤Fiber Optic Fibers, PlasticB12-111 石英系影像光纤Fiber Optic Bundles, Silica, ImagingB12-112 多成分影像光纤Fiber Optic Bundles, Non-silica, ImagingB12-113 光导管Fiber Optic LightguidesB12-199 其他集束光纤Other Fiber Optic BundlesB12-200 光缆FIBER OPTIC CABLEB12-201 单模态标准型松包悬空式光缆Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, AerialB12-202 单模态标准型松包管路式光缆Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, DuctB12-203 单模态标准型松包直埋式光缆Fiber Optic Cable, Single Mode, Standard, Loosely Buffered, Direct BuriedB12-204 单模态标准型紧包单心式光缆Fiber Optic Cable, Single Mode, Standard, Tightly Buffered, Single FiberB12-205 单模态标准型紧包多心式光缆Fiber Optic Cable, Single Mode, Standard, Tightly Buffered, MultifiberB12-206 光纤带RibbonB12-207 色散位移光缆Fiber Optic Cable, Dispersion-ShiftedB12-208 偏振恒持光缆Fiber Optic Cable, Polarization – MaintainingB12-209 其他单模态光缆Other Single Mode Fiber Optic CableB12-210 多模态石英系(50/125)光缆Fiber Optic Cable, Multimode, Silica, 50/125B12-211 多模态石英系(62.5/125)光缆Fiber Optic Cable, Multimode, Silica, 62.5/125B12-212 多模态石英系(100/140)光缆Fiber Optic Cable, Multimode, Silica, 100/140B12-213 塑胶光缆Fiber Optic Cable, PlasticB12-214 石英系塑胶包覆光缆Fiber Optic Cable, Plastic-Clad SilicaB12-215 其他多模态光缆Other Multimode Fiber Optic CableB12-216 光纤保护用管Protect Tubes for Fiber Optic FiberB13 光被动元件/光控制元件:B13 光被动元件/光控制元件OPTICAL PASSIVE DEVICES/CONTROL DEVICESB13-001 单模态ST光纤连接器Fiber Optic Connectors, Single Mode, STB13-002 单模态Biconic光纤连接器Fiber Optic Connectors, Single Mode, BiconicB13-003 单模态FC/PC光纤连接器Fiber Optic Connectors, Single Mode, FC/PCB13-004 单模态APC光纤连接器Fiber Optic Connectors, Single Mode, APCB13-005 单模态FDDI光纤连接器Fiber Optic Connectors, Single Mode, FDDIB13-006 单模态SC光纤连接器Fiber Optic Connectors, Single Mode, SCB13-007 单模态D4光纤连接器Fiber Optic Connectors, Single Mode, D4B13-008 单模态光纤连接器插座(ST,FC/PC,SC,Biconic) Fiber Optic Connectors, Single Mode, Adapter(ST,FC/PC,SC,Biconic) B13-009 单模态多心光纤连接器(MT) Fiber Optic Connectors, Single Mode,Multi-Channel/MTB13-010 其他单模态光纤连接器Other Single Mode Fiber Optic ConnectorsB13-011 多模态ST光纤连接器Fiber Optic Connectors, Multimode, STB13-012 多模态FC/PC相容光纤连接器Fiber Optic Connectors, Multimode, FC/PCB13-013 多模态SMA光纤连接器Fiber Optic Connectors, Multimode, SMAB13-014 多模态FDDI光纤连接器Fiber Optic Connectors, Multimode, FDDIB13-015 多模态SC光纤连接器Fiber Optic Connectors, Multimode, SCB13-016 多模态D4光纤连接器Fiber Optic Connectors, Multimode, D4B13-017 多模态光纤连接器插座(ST,SMA,FC/PC) Fiber Optic Connectors, Multimode,Adapter(ST,SMA,FC/PC)B13-018 多模态多心光纤连接器Fiber Optic Connectors, Multimode, Multi-ChannelB13-019 其他多模态光纤连接器Other Multimode Fiber Optic ConnectorsB13-020 套筒SleevesB13-021 金属箍(套管) Metal FerrulesB13-022 塑胶箍(套管) Plastic FerrulesB13-023 陶瓷箍(套管) Ceramic FerrulesB13-024 插座ReceptaclesB13-025 插头PlugsB13-026 光连接器(含光纤线) Optical Connectors with FiberB13-027 光纤耦合器(两分支) Optical Couplers, Tap/SplitterB13-028 光纤耦合器(树状分支) Optical Couplers, TreeB13-029 星状光纤耦合器(穿透形) Transmission Type Star Optical CouplersB13-030 星状光纤耦合器(反射形) Reflection Type Star Optical CouplersB13-031 其他光纤耦合器Other Optical CouplersB13-032 光分波合波器(两波长) Optical Couplers, WDM, Dual-WavelengthB13-033 光分波合波器(多波长) Optical Couplers, WDM, Over Two WavelengthB13-034 其他光分波合波器Other Optical WDM CouplersB13-035 光衰减器(固定) Fixed Optical AttenuatorsB13-036 光衰减器(可变) Adjustable Optical AttenuatorsB13-037 光隔离器(通信用) Optical Isolators for CommunicationB13-038 光隔离器(非通信用) Optical Isolators for Non-CommunicationB13-039 光环流器Optical CirculatorsB13-040 光开关(机械式) Mechanical Optical SwitchesB13-041 光开关(非机械式) Non-mechanical Optical SwitchesB13-042 光纤光栅Fiber Bragg GratingB13-043 光移相器Optical Phase ShiftersB13-044 光共振器Optical ResonatorsB13-045 空间调变元件Spatial Light ModulatorsB13-046 光影像转换元件(ITC) Incoherent to Coherent Devices(ITC)B13-047 光截波器,机械式光调变器Optical Choppers, Mechanical ModulatorsB13-048 磁光调变器Maganeto-Optic ModulatorsB13-049 声光调变器Acousto-Optic ModulatorsB13-050 电光调变器Electro-Optic ModulatorsB13-051 波导形调变器,行波形调变器Optical Waveguide,Travelling-wave ModulatorsB13-052 类比/强度调变器Analog/Intensity ModulatorsB13-053 数位调变器Digital ModulatorsB13-054 其他调变器Other ModulatorsB13-055 光弹性调变器Photoelastic ModulatorsB13-056 机械式偏折/扫瞄器(Galvanometer方式) Mechanical Optical Deflectors/Scanners(Galvanometer Mirror)B13-057 声光偏折/扫瞄器Acousto-Optic Optical Deflectors/ScannersB13-058 电光偏折/扫瞄器Electro-Optic Optical Deflectors/ScannersB13-059 机械式扫瞄器(回转多面镜方式) Mechanical Optical Scanners(Polygonal Mirrors)B13-060 机械式扫瞄器(全像方式) Mechanical Optical Scanners(Holographic)B13-061 光纤跳接线Fiber Optic Patchcord PigtailB13-062 光纤终端箱Fiber Optic Distribution BoxB13-063 光纤接续盒Fiber Optic ClosureB13-099 其他光被动元件/控制元件Other Optical Passive Devices/Control DevicesB14 积体光元件:B14 积体光元件INTEGRATED OPTICAL DEVICESB14-001 光IC Optical ICB14-002 OEIC Optoelectronic ICB14-099 其他光电元件Other DevicesC01 光通讯设备:C01 光通讯设备OPTICAL COMMUNICATION EQUIPMENTC01-100 电信用光通讯设备OPTICAL COMMUNICATION EQUIPEMNT(TELECOMMUNICATION)C01-101 同步光纤网路光波传输系统及多工机设备Lightwave/Transimission System and Multiplexer Equipment (SONET-Based) C01-102 同步光纤网路光数位回路载波机设备Optical/Digital Loop Carrier Equipment (SONET-Based)C01-103 同步光纤网路数位交换连接系统设备Digital Cross Connect System Equipment (SONET-based)C01-104 同步数位阶层光波传输系统及多工机设备Lightwave/Transmission System and Multiplexer Equipment (SDH-Based)C01-105 同步数位阶层光数位回路载波机设备Optical/Digital Loop Carrier Equipment (SDH-Based)C01-106 同步数位阶层数位交换连接系统设备Digital Cross Connect System Equipment (SDH-Based)C01-107 光纤网路单体ONU(Optical Network Unit)C01-108 非同步光通讯设备Asynchronous Optical Communication EquipmentC01-199 其他公众用光通讯设备Other Optical Communication Equipment (Telecommunication)C01-200 数据通讯光纤网路设备OPTICAL DATA COMMUNICATION NETWORK EQUIPMENT (PREMISES) C01-201 光纤分散式资料介面网路设备FDDI Network EquipmentC01-202 非同步传输模式网路设备ATM Network EquipmentC01-203 高速乙太网路设备Fast Ethernet Network EquipmentC01-204 光纤通道Fiber ChannelC01-299 其他用户光数据通讯设备Other Optical Data Communication Network Equipment (Premises)C01-300 特殊用途光传输设备OPTICAL TRANSMISSION EQUIPMENT(SPECIAL PURPOSE)C01-301 有线电视光传输设备Optical Transmission Equipment, CATVC01-302 视讯/闭路监视光传输设备Optical Transmission Equipment, Video/CCTVC01-303 量测/控制信号光传输设备Optical Transmission Equipment, Measure/ControlC01-304 空间(无线)光传输设备Optical Transmission Equipment, Spatial (Wireless)C01-305 光放大器Optical AmplifierC01-399 其他特殊用途光传输设备Other Optical Transmission Equipment (Special Purpose)C02 光测仪器设备:C02 光测仪器设备OPTICAL MEASURING EQUIPMENTC02-001 量测用标准光源Standard/Stabilized Light SourcesC02-002 光功率计(热转换型) Thermal Conversion Type Optical Power MetersC02-003 光功率计(光电转换型) Photoelectric Conversion Type Optical Power MetersC02-004 光谱分析仪Optical Spectrum AnalyzersC02-005 光波长计Optical Wavelength MetersC02-006 光谱幅宽量测器Spectral Width Measuring EquipmentC02-007 光时域反射计(OTDR) Optical Time-Domain Reflectometers(OTDR)C02-008 基频传输特性检测器Baseband Frequency Characteristics Evaluation EquipmentC02-009 波长色散量测器Wavelength Dispersion Measuring EquipmentC02-010 光纤测试设备Optical Fiber Test EquipmentC02-011 激光光束波形量测器Laser Beam Profile Measuring EquipmentC02-012 光纤尺寸量测器Optical Fiber Sizes Measuring EquipmentC02-013 光纤模态参数测试器Optical Fiber Mode Field Parameters Test EquipmentC02-014 光纤强度测试器Optical Fiber Strength Test EquipmentC02-015 其他光纤相关量测设备Other Optical Fiber Measurement EquipmentC02-016 光连接器尺寸量测器Optical Connector Sizes Measuring EquipmentC02-017 光碟测定检查设备(装置用) Optical Disk Drive Inspection EquipmentC02-018 光碟测定检查设备(碟片用) Optical Disk Inspection EquipmentC02-019 光度计PhotometersC02-020 复光束光度计,复光束量测器Double Beam PhotometersC02-021 测微光度计MicrophotometersC02-022 感光密度计DensitometersC02-023 光泽度计GrossmetersC02-024 照度计Illuminance MetersC02-025 测距仪RangefindersC02-026 曝光计Exposure MetersC02-027 辉度计Luminance MetersC02-028 比色计Comparison ColorimetersC02-029 色彩计(分光型) Spectral ColorimetersC02-030 色彩计(光电型) Photoelectric ColorimetersC02-031 积分球Integrating SpheresC02-032 折射计RefractometersC02-033 椭圆计EllipsometersC02-034 偏振光镜PolariscopesC02-035 偏振计PolarimetersC02-036 比较量测器ComparatorsC02-037 焦距仪FocometersC02-038 球径计SpheremetersC02-039 OTF(光学转换函数)设备Optical Transfer Function InstrumentationC02-040 MTF分析/量测装置Modulation Transfer Function(MTF) Analysis/Measurement EquipmentC02-041 投影检查器Profile ProjectorsC02-042 自动准直仪AutocollimatorsC02-043 光弹性机器Photoelastic InstrumentsC02-099 其他光(学)量测器Other Optical Measurement EquipmentC03 分光镜、干涉仪:C03 分光镜、干涉仪SPECTROSCOPES, INTERFEROMETERSC03-001 分光计SpectrometersC03-002 单色器MonochromatorsC03-003 分光镜,干涉分光镜,摄谱仪Spectroscopes, Interference Spectroscopes,SpectrographsC03-004 分光光度计,分光测光器SpectrophotometerC03-005 Michelson干涉仪Michelson InterferometersC03-006 Tywman Green干涉仪Tywman Green InterferometersC03-007 Mach-Zehnder干涉仪Mach-Zehnder InterferometersC03-008 Fizeau干涉仪Fizeau InterferometersC03-009 Fabry-Perot干涉仪Fabry-Perot InterferometersC04 显微镜,望远镜,照像机:C04 显微镜,望远镜,照像机MICROSCOPES, TELESCOPES, CAMERASC04-001 放大镜MagnifiersC04-002 单接物镜双眼显微镜Binocular MicroscopesC04-003 双眼实体显微镜,立体显微镜Stereo MicroscopesC04-004 金属显微镜Metallurgical MicroscopesC04-005 偏光显微镜Polarizing MicroscopesC04-006 相位差显微镜Phase-Contrast MicroscpoesC04-007 干涉显微镜,微分干涉对比显微镜Interferences/Differential Interference Contrast Microscopes C04-008 萤光显微镜Fluorescence MicroscopesC04-009 激光显微镜Laser MicroscopesC04-010 量测用显微镜,工具显微镜Measurement MicroscopesC04-011 显微镜光度计Microscope PhotometersC04-012 折射望远镜,Galilean望远镜Galilean Refracting TelescopesC04-013 反射望远镜Reflecting TelescopesC04-014 反射折射望远镜Catadioptric TelescopesC04-015 35mm焦平面自动对焦相机35mm AF Focal Plane CamerasC04-016 35mm焦平面手动对焦相机35mm NON-AF Focal Plane CamerasC04-017 35mm镜头快门多焦点相机35mm Multi Focal Points Lens Shutter CamerasC04-018 35mm镜头快门单焦点相机35mm Single Focal Point Lens Shutter CamerasC04-019 中,大型照相机Medium and Large Size CamerasC04-020 VTR摄影机VTR CamerasC04-021 电视摄影机TV CamerasC04-022 高画质电视摄影机High Definition(HDTV) CamerasC04-023 CCTV摄影机CCTV CamerasC04-024 全像照像机Holographic CamerasC04-025 眼镜EyeglassesC04-026 夜视设备Night Vision EquipmentC04-027 照像机用之日期显示模组Date moduleC04-028 照像机用之底片计数器Film counterC04-029 APS相机APS CamerasC05 光感测器:C05 光感测器OPTICAL SENSORSC05-001 光电开关,光电感测器Photo Switches, Photo SensorsC05-002 标记感测器Mark Photo SensorsC05-003 色彩标记感测器Color Mark Photo SensorsC05-004 色彩感测器Color Photo SensorsC05-005 光学式编码器,角度感测器Optical Encoders, Angle SensorsC05-006 光遥控器Optical Remote Control EquipmentC05-007 影像感测器式量测设备Image Sensor Type Measurement InstrumentsC05-008 显微镜式量测设备Microscope Type Measurement InstrumentsC05-009 精密长度干涉仪Precise Length InterferometersC05-010 光波测距装置Electronic Distance MetersC05-011 三角测量法距离感测器Triangulation Distance MetersC05-012 激光调变测距方式距离感测器Laser Modulation Distance MetersC05-013 脉冲测距方式距离感测器Pulse Distance MetersC05-014 激光外径测定器Laser Outer Diameter Measuring SensorsC05-015 激光厚度计Laser Thickness GaugesC05-016 激光拉伸计Laser Extension MeterC05-017 红外线厚度计Infrared Thickness GaugesC05-018 水平仪LevelsC05-019 激光水平仪Laser LevelsC05-020 经纬仪Theodlites/TransitsC05-021 激光经纬仪Laser Theodlites/TransitsC05-022 激光标线设备Laser Marking-off EquipmentC05-023 位置光电感测器Position Sensors, Pattern Edge SensorsC05-024 半导体位置感测器Position Sensitive Devices(PSDs)C05-025 激光指示器Laser PointersC05-026 激光都卜勒测速计Laser Doppler VelocimetersC05-027 环形激光流速计,光纤陀螺仪Ring Laser Velocimeters, Optical Fiber Laser GyrosC05-028 转速仪Rotational Speed MetersC05-029 激光都卜勒转速仪Laser Doppler Rotational Speed MetersC05-030 全像方式图样量测设备Holographic Method Pattern Measurement EquipmentsC05-031 激光移位计Laser Displacement MetersC05-032 激光指纹检测器Laser Fingerprint DetectorsC05-033 光学水质污染检测设备Optical Water Pollution Measurement and Detection Equipment C05-034 光学大气污染检测设备Optical Air Pollution Measurement and Detection EquipmentC05-035 红外线气体浓度感测器Infrared Gas Density MetersC05-036 光电式烟检知器Photo Smoke DetectorsC05-037 激光粉尘监视器,粒径量测器Laser Dust MonitorsC05-038 距离测定用激光雷达Rang-finding Lidar SystemsC05-039 环境监测用激光雷达Environment Monitoring Lidar SystemsC05-040 激光表面检查设备Laser Surface Inspection EquipmentC05-041 平面度测定系统Flatness TestersC05-042 斑点图形量测设备Speckle Method Pattern Measurement EquipmentC05-043 云纹图形量测设备Moire Method Pattern Measurement EquipmentC05-044 影像分析仪Image AnalyzersC05-045 激光缺陷检查设备Laser Defect Inspection EquipmentC05-046 红外线辐射温度感测器Infrared ThermometersC05-047 人体检知感测器,激光保全设备Laser Security/Surveillance EquipmentsC05-048 光计数器Photo CountersC05-049 激光公害检测设备Laser Pollution Detective DevicesC05-050 激光热常数量测设备Laser Thermal Constants Measurement EquipmentC05-051 全像非破坏检查设备Holographic Nondestructive Testing EquipmentC06 光纤感测器:C06 光纤感测器FIBER OPTIC SENSORSC06-001 光纤光电开关/感测器Fiber Optic Photo Switches/ SensorsC06-002 光纤式标记感测器Fiber Optic Mark Photo SensorsC06-003 光纤式色彩标记感测器Fiber Optic Color Mark Photo SensorsC06-004 光纤温度感测器Fiber Optic Temperature SensorsC06-005 光纤压力感测器Fiber Optic Pressure SensorsC06-006 光纤声波感测器Fiber Optic Acoustic SensorsC06-007 光纤变形感测器Fiber Optic Strain SensorsC06-008 光纤振动感测器Fiber Optic Vibration SensorsC06-009 光纤移位感测器Fiber Optic Displacement SensorsC06-010 光纤陀螺仪感测器Fiber Optic Gyro SensorsC06-011 光纤速度感测器Fiber Optic Velocity SensorsC06-012 光纤磁通量感测器Fiber Optic Magnetic Flux SensorsC06-013 光纤磁场感测器Fiber Optic Magnetic Field SensorsC06-014 光纤电流感测器Fiber Optic Current SensorsC06-015 光纤电场感测器Fiber Optic Electric Field SensorsC06-016 光纤浓度、成份感测器Fiber Optic Density,Constituent SensorsC06-017 光纤油膜感测器Fiber Optic Oil Film SensorsC06-018 光纤液位感测器Fiber Optic Liquid Surface Level SensorsC06-019 光纤光分布/放射线感测器Fiber Optic Light Distribution/Radiation SensorsC06-020 光纤显微镜Fiber Optic FiberscopesC06-021 光纤光栅应变感测器Fiber Grating Strain SensorC07 光储存装置:C07 光储存装置OPTICAL STORAGE PRODUCTC07-100 消费性光碟机CONSUMER OPTICAL DISC PLAYERSC07-101 激光唱盘Compact Disc (CD) PlayersC07-102 激光音响组合Products Incorporated CD(CD-Radio-Cassette Tape Recorders)C07-103 LD 影碟机Laser Disc (LD) PlayersC07-104 影音光碟机Video CD PlayersC07-105 DVD DVD 影碟机Digital Versatile Disc (DVD) PlayersC07-106 迷你音碟机Mini Disc (MD) PlayersC07-200 资讯用仅读型光碟机READ-ONLY OPTICAL DISC DRI597VESC07-201 CD-ROMCD-ROM光碟机CD-ROM DrivesC07-202 DVD-ROM DVD-ROM 光碟机DVD-ROM DrivesC07-300 资讯用仅写一次型光碟机RECORDABLE OPTICAL DISC DRIVESC07-301 CD-R CD-R 光碟机CD-R DrivesC07-399 其他仅写一次型光碟机Other Recordable Optical Disc DrivesC07-400 资讯用可覆写型光碟机REWRITABLE OPTICAL DISC DRIVESC07-401 3.5" MO 光碟机3.5" MO Disc DrivesC07-402 5.25" MO 光碟机5.25" MO Disc DrivesC07-403 PD 光碟机PD DrivesC07-404 CD-RW光碟机CD-RW DrivesC07-499 其他可覆写型光碟机Other Rewritable Optical Disc DrivesC07-500 光碟机零组件DEVICES OF OPTICAL DISC DRIVESC07-501 光学头,光学读取头Optical Heads , Pick-up HeadsC07-502 光学头伺服装置,伺服用IC模组Optical Head Controllers, Control ICs/Modules C07-503 光学头驱动装置Optical Head ServomotorsC07-504 光碟匣Optical Disc CartridgesC07-505 主轴马达Spindle MotorC07-600 光碟片OPTICAL DISCSC07-601 CD 音碟片Compact DiscsC07-602 LD 影碟片Laser DiscsC07-603 影音光碟片Video CDsC07-604 DVD光碟片Digital Versatile Discs : DVDsC07-605 迷你音碟片Mini Discs : MDsC07-606 CD-ROM 光碟片CD-ROMsC07-607 DVD-ROM光碟片DVD-ROMsC07-608 CD-R 光碟片CD-RsC07-609 其他可写仅读型光碟片Other Recordable Optical DiscsC07-610 3.5" MO 光碟片3.5" MO DiscsC07-011 5.25" MO 光碟片5.25" MO DiscsC07-612 PD 光碟片PD DiscsC07-613 CD-RW 光碟片CD-RW DiscsC07-699 其他可复写型光碟片Other Rewritable Optical DiscsC08 光输出入装置:C08 光输出入装置OPTICAL INPUT &OUTPUT DEVICESC08-100 数位相机Digital Still CameraC08-200 光学印表机OPTICAL PRINTERSC08-201 彩色激光印表机Laser Color PrintersC08-202 单色激光印表机Laser Monochrome PrintersC08-203 彩色LED印表机LED Color PrintersC08-204 单色LED印表机LED Monochrome PrintersC08-299 其他光学式印表机Other Optical PrintersC08-300 影印机COPY MACHINESC08-301 彩色激光数位影印机Laser Digital Color Copy MachinesC08-302 单色激光数位影印机Laser Digital Monochrome Copy MachinesC08-400 传真机FACSIMILESC08-401 热感纸传真机Termal Paper Facsimiles。

infrared physics and technology模板

infrared physics and technology模板

infrared physics and technology模板"Infrared Physics and Technology"Introduction:Infrared radiation, commonly known as infrared (IR), is an important part of the electromagnetic spectrum. With wavelengths ranging from 700 nanometers (nm) to 1 millimeter (mm), infrared radiation occupies a region between visible light and radio waves. Infrared physics and technology have found extensive applications in various fields, including communication, medicine, and thermal imaging. This article aims to provide an in-depth understanding of infrared physics, its technologies, and their practical applications.1. Fundamentals of Infrared Physics:1.1 Electromagnetic Spectrum:Infrared radiation lies beyond the red end of the visible spectrum. It encompasses three regions: near-infrared (NIR, 700-1400 nm), mid-infrared (MIR, 1400-3000 nm), and far-infrared (FIR, 3000 nm to 1 mm). Each region has unique properties and applications, including spectroscopy, material characterization, and thermal imaging.1.2 Quantum Mechanics Basis:Infrared radiation arises due to the vibrational and rotational energy levels of molecules. According to quantum mechanics, molecules possess discrete energy levels, and transitions between these levels result in the emission or absorption of infrared radiation. This phenomenon facilitates the study of molecular structures and chemical bonding.2. Infrared Technology:2.1 Infrared Sensors:Infrared sensors are fundamental components in various applications. These sensors detect and measure infrared radiation. Different types of sensors, such as photodiodes, phototransistors, and thermal detectors, utilize different mechanisms to convert infrared radiation into electrical signals. These signals can be further processed to obtain valuable information.2.2 Infrared Imaging:Infrared imaging or thermography uses special cameras capable of detecting and capturing infrared radiation. By assigning different colors or shades to infrared intensities, thermographic images provide a visual representation of temperature distributions. Thistechnology offers non-invasive diagnostics in medicine, building inspections, and manufacturing processes.2.3 Spectroscopy:Infrared spectroscopy involves the analysis of the interaction between infrared radiation and matter. By measuring the absorption, reflection, or emission of infrared radiation, spectroscopy provides valuable information about molecular structures, chemical composition, and physical properties. Fourier Transform Infrared (FTIR) spectroscopy is a prominent technique in this domain.3. Applications of Infrared Physics and Technology:3.1 Communications:Infrared communication technology, commonly found in remote controls, utilizes infrared radiation to transmit signals wirelessly. Infrared data transmission is secure, immune to radio frequency interference, and can be easily controlled directionally. However, limitations like short-range and line-of-sight requirements restrict its extensive use.3.2 Medicine:Infrared radiation is extensively applied in medical diagnostics and therapies. Infrared cameras can detect temperature variations that aid in identifying abnormalities, such as tumors or inflammation. Thermography has also found applications in wound healing, pain management, and physiotherapy. Moreover, infrared lasers are utilized in surgical procedures and dermatology.3.3 Security and Surveillance:Infrared technology is widely used in security systems for intrusion detection, perimeter surveillance, and night vision. Infrared cameras can detect body heat signatures, enabling the identification of humans or animals in low visibility conditions. Such systems find applications in law enforcement, military operations, and public safety.3.4 Industrial Applications:Infrared technology plays a vital role in industrial processes. Thermal imaging cameras are used for preventive maintenance, equipment inspection, and energy efficiency assessments. Infrared temperature sensors facilitate non-contact temperature measurements, ensuring worker safety and optimizing manufacturing processes.Conclusion:Infrared physics and technology have revolutionized numerous industries, including communication, medicine, security, and industrial applications. The fundamental understanding of the electromagnetic spectrum, quantum mechanics, and the development of specialized devices have opened new possibilities for utilizing infrared radiation. As technology advances, infrared applications are expected to grow further, contributing to advancements in various fields.。

光电专业名词

光电专业名词

A色吸收滤光镜Absorption Filters声光光学晶体Acousto-Optic Crystals声光玻璃Acousto-Optic Glass声光调变器Acousto-Optic Modulators声光偏折 / 扫瞄器Acousto-Optic OpticalDeflectors/Scanners光衰减器(可变)Adjustable Optical Attenuators亚历山大激光 Alexanderite Lasers激光晶体 ( 亚历山大 )Alexandrite Laser Crystals配向膜涂布装置Alignment Coating Equipment配向膜Alignment Film文数字表示用发光二极体Alpha-Numeric LEDs B类比/强度调变器Analog/Intensity Modulators背光源Backlight球透镜Ball Lenses条码扫描器镜头Bar Code Scanner Lenses基频传输特性检测器Baseband Frequency Characteristics EvaluationEquipment单接物镜双眼显微镜Binocular Microscopes双折射 / 偏光晶体 Birefringent and Polarizing Crystals宽频放大器Broadband AmplifiersTA B 实装装置TAB EquipmentC光碟片 5.25" MO Discs C07-011 5.25" MO医疗用设备MEDICAL EQUIPMENT C09汽车导引系统Car Navigation Systems反射折射透镜Catadioptric Lenses 反射折射望远镜Catadioptric Telescopes有线电视光传输系统CATV Optical Transmission System光碟片 CD-Rs CD-R光碟机 CD-R Drives CD-R CD-R光碟片 CD-ROMsCD-ROM光碟片 CD-RW Discs CD-RW陶瓷箍 (套管 )Ceramic Ferrules无尘室用机具Clean Room SuppliesD多模态D4 光纤连接器Fiber Optic Connectors, Multimode, D4照像机用之日期显示模组Date module感光密度计Densitometers电子白板Detector Array Type ElectronicWhite Boards检光元件及光纤混成元件DETECTORS&FIBEROPTIC HYBRID DEVICES内藏电路之光感测器Detectors with Circuit光碟机零组件DEVICES OF OPTICAL DISCDRIVES双色向滤光镜Dichroic Filters绕射极限透镜Diffraction-Limited Lenses同步数位阶层数位交换连接系统设备Digital Cross Connect SystemEquipment (SDH-Based)同步光纤网路数位交换连接系统设备Digital Cross Connect SystemEquipment (SONET-based)数位调变器Digital ModulatorsE制造及加工设备 / 机具 MANUFACTURING AND PROCESSING EQUIPMENT E03电铬显示器Electrochromic Display (ECD)电激发光显示器ElectroluminescenceDisplay (ELD)光波测距装置Electronic DistanceMeters电光光学晶体Electro-Optic Crystals电光调变器Electro-Optic Modulators电光偏折 / 扫瞄器Electro-Optic OpticalDeflectors/Scanners环境试验机Environment Chambers环境监测用激光雷达EnvironmentMonitoring Lidar Systems铒固体激光Erbium Lasers蚀刻服务Etching Services准分子激光医疗系统Excimer Laser Medical Systems干涉仪Fabry-Perot Interferometers Fabry-PerotF传真机镜头Facsimile Lenses远红外线激光Far-Infrared Lasers高速乙太网路设备Fast Ethernet Network Equipment铁离子中心激光F-Center Lasers光纤分散式资料介面网路设备FDDI Network Equipment光纤光栅Fiber Bragg Grating光纤通道Fiber Channel光纤光栅应变感测器Fiber GratingStrain Sensor光纤声波感测器Fiber Optic Acoustic Sensors石英系影像光纤Fiber Optic Bundles, Silica, Imaging光缆制造设备Fiber Optic Cable Manufacturing EquipmentG折射望远镜,Galilean 望远镜Galilean Refracting Telescopes气体再生设备,气体填充设备Gas Recyclers and Gas HandlingEquipment激光用气体Gases for Lasers 光学用气体Gases for Optical Application 通信用 (长波长 ) Ge 和 III-V 族检光模组 Long-wavelength DecectorModules for Communication棱镜Glan-Thomson PrismsGlan-Thomson玻璃,玻璃/陶瓷面镜Glass and Glass-Ceramic Mirrors玻璃产生机Glass Generators玻璃激光Glass Lasers光泽度计 GrossmetersNd:YA G 激光 (半导体激光激发 ) Nd:YAG (LD Pumped) LasersYA G 激光加工机 (半导体图案处理曝光用 ) YAG Laser ProcessingEquipment for Semiconductor LithorgraphyH半涂银面镜Half-Silvered Mirrors卤素灯Halogen Light Sources手持式影像扫描器Hand-Held Color Image Scanners手持式激光条码扫描器Hand-Held Laser Bar Code Scanners头戴式显示器Head Mounted Displays(HMD)抬头显示器Head-Up Displays(HUD)氦镉激光He-Cd Lasers氦氖激光He-Ne Lasers高画质电视摄影机High Definition(HDTV) Cameras全像照像机Holographic Cameras全像显示器Holographic Displays全像底片及感光板Holographic Films and PlatesI显示面板用驱动IC Driver IC光学头伺服装置 ,伺服用IC 模组 Optical Head Controllers, ControlIcs/Modules影像分析仪Image Analyzers影像扫描器镜头Image Scanner Lenses 影像扫描器IMAGE SCANNERS影像感测器式量测设备Image SensorType Measurement Instruments红外线二极体(非通信用 )Infrared (notfor Communication) LEDs红外吸收/反射滤光镜Infrared Absorbing/Reflecting Filters红外线晶体Infrared Crystals其他红外线检测器Infrared Detectors红外线底片及感光板Infrared Films and Plates红外线气体浓度感测器Infrared Gas Density MetersJ筛选机,机具Jigs,Tools,and Machinesk氪离子激光Krypton Lasers氪灯Krypton Light SourcesL激光退火装置Laser Annealing Equipment激光光束波形量测器Laser Beam ProfileMeasuring Equipment激光用盒Laser Cells彩色激光印表机Laser Color Printers激光用元件LASER COMPONENTS激光控制设备Laser Control Equipment激光缺陷检查设备Laser Defect Inspection Equipment彩色激光数位影印机Laser Digital Color Copy Machines单色激光数位影印机Laser DigitalMonochrome Copy Machines激光移位计Laser Displacement Meters激光都卜勒血流计Laser Doppler Blood Current Velocity Meters 激光都卜勒转速仪Laser Doppler Rotational Speed MetersM干涉仪Mach-Zehnder Interferometers Mach-Zehnder磁光调变器Maganeto-Optic Modulators光罩制造设备Mask Making Equipment显示器用材料MATERIALS FOR DISPLAY 影像用材料Materials for Imaging加工用其他材料MATERIALS FOR PROCESSING量测用显微镜,工具显微镜Measurement Microscopes机械式扫瞄器 (全像方式 ) Mechanical Optical Scanners(Holographic)机械式扫瞄器(回转多面镜方式)Mechanical Optical Scanners(PolygonalMirrors)光开关 ( 机械式 )Mechanical Optical Switches中 , 大型照相机Medium and Large Size Cameras金属箍 (套管 )Metal FerrulesN光二极体(近红外光)Near-infrafed Photodiodes中性密度滤光镜Neutral Density Filters夜视设备Night Vision Equipment氮分子激光Nitrogen Lasers非线性光学晶体Nonlinear Crystals光开关(非机械式)Non-mechanical Optical SwitchesGRIN透镜 GRIN Lenses (Graduated Refractive Index Rod)O抛物面镜,椭圆面镜Off-Axis Paraboloidsand Ellipsoids Mirrors线型检光元件One Dimension Detector Arrays光纤网路单体ONU(Optical NetworkUnit)光学大气污染检测设备Optical Air Pollution Measurement andDetection Equipment光学用胶合剂 / 接著剂Optical Cementsand Adhesives光截波器,机械式光调变器Optical Choppers, Mechanical Modulators光环流器Optical Circulators电信用光通讯设备OPTICAL COMMUNICATION EQUIPEMNT(TELECOMMUNICATION)光通讯设备OPTICAL COMMUNICATION EQUIPMENT用户回路光通讯系统OpticalCommunication System, Subscriber Loop长途干线 / 局间中继光通讯系统Optical Communication System,Long-haulTerrestrial & Local Interoffice光通讯系统OPTICAL COMMUNICATION SYSTEMSP参数振汤器Parametric Oscillators电浆电视PDP TVs五面棱镜Pentagonal Prisms光化学治疗设备Photo Chemical Curing Systems光计数器Photo Counters光断续器Photo Interrupter光反射器Photo Reflector光电式烟检知器Photo Smoke Detectors 光电开关 , 光电感测器Photo Switches,Photo Sensors光色材料Photochromic Materials光导电池Photoconductive Cells光闸流晶体管PhotocyristorsQ我没有找到里面没有对不起距离测定用激光雷达Rang-finding LidarSystems稀土族材料Rare Earth Materials资讯用仅读型光碟机READ-ONLYOPTICAL DISC DRI597VES资讯用仅写一次型光碟机RECORDABLE OPTICAL DISC DRIVES力服务Recruitment Services andExecutive Search星状光纤耦合器(反射形)ReflectionType Star Optical Couplers折射率液Refractive Index Liquids排除频带滤光镜Rejection Band Filters替续透镜Relay Lenses激光用共振腔Resonators for Lasers资讯用可覆写型光碟机REWRITABLE OPTICAL DISC DRIVES环形激光流速计,光纤陀螺仪Ring LaserVelocimeters, Optical FiberLaser GyrosS激光护眼镜Safty Equipment; Goggles Glasses and Films激光光吸收体Safty Equipment; Laser Absorbers激光用安全设备Safty Equipment; ProtectiveHousings半导体激光模组(长波长 )Semiconductor (Long Wavelength) LaserModules半导体激光模组(短波长 )Semiconductor(Short Wavelength) LaserModules半导体激光模组(可见光 )Semiconductor (Visible) Laser Modules半导体激光SEMICONDUCTOR LASERS 半导体研磨加工设备Semiconductor Polishing Machines半导体真空蒸镀设备SemiconductorVacuum Evaporation Equipment感光剂Sensitizers尖锐滤光镜Sharp Cut (off) Filters馈纸式影像扫描器Sheet-Fed Color Image ScannersT望远镜头Telephoto Lenses望远镜对物镜Telescope Objectives Lenses热感纸传真机Termal Paper Facsimiles光功率计 (热转换型 ) Thermal Conversion Type Optical Power Meters热转写传真机 Thermal Transfer Fax 热色材料 Thermochromic Materials热电偶检测器Thermocouple Detectors热堆检测器Thermopile Detectors星状光纤耦合器(穿透形 )Transmission Type Star Optical Couplers三角测量法距离感测器Triangulation Distance Meters可调式滤光镜Turnable Filter电视摄影机TV CamerasU超窄频滤光镜Ultra Narrowband Filters 紫外吸收滤光镜Ultraviolet Absorbing Filters紫外线硬化设备Ultraviolet CuringEquipment紫外线透镜Ultraviolet Lenses紫外线光源Ultraviolet Light Sources紫外线材料Ultraviolet Materials光二极体(紫外光)Ultraviolet Photodiodes紫外透过滤光镜Ultraviolet Transmitting FiltersV真空蒸镀化学药品Vaccum EvaporationChemicals真空萤光显示器Vacuum Fluorescent Display (VFD)真空紫外线激光Vacuum Ultraviolet Lasers可变焦伸缩镜头Variable Focal Length Zoom Lenses除震台 /防震台Vibration Isolators影音光碟机Video CD Players影音光碟片Video CDs光视讯传输系统Video Optical Transmission System可见光发光二极体(蓝色 )Visible (Blue)LEDs可见光发光二极体(绿色 ,多色 )Visible (Green,Multi-Color) LEDs可见光发光二极体(红色 )Visible (Red) LEDs可见光发光二极体(黄色)Visible (Yellow,Orange) LEDsW光笔式条码扫描器Wand Bar Code Scanners洗净设备Washing/Cleaning Equipment波长色散量测器Wavelength Dispersion Measuring Equipment棱镜Wollaston Prisms WollastonCD-R W 光碟机CD-RW DrivesX氙分子激光Xenon LasersY 和 Z 里面也没有就这么多了!感觉挺多的,你自己稍微看一下!看看最基本的,我问了一下也不会太难的。

光电英语词汇(F1)

光电英语词汇(F1)

光电英语词汇(F1)f ratio f数f-band f带f-center lasers 铁离子中心雷射f-factor f因数f-number f数,光圈数f-sum rule f和数定则fabry lens 法布里透镜fabry-parot etalon 法布里-珀罗标准量具fabry-parot fringes 法布里-珀罗干涉条纹fabry-perot amplifier 法布里-珀罗放大器fabry-perot cavity 法布里-珀罗共振器fabry-perot etalon 法布立,拍若标准具fabry-perot fringes 法布立,拍若条纹fabry-perot injection laser 法布里-珀罗注入式激光器fabry-perot interferometer 法布里-珀罗干涉仪fabry-perot interferometers fabry-perot干涉仪fabry-perot laser 法布立,拍若雷射fabry-perot method 法布立,拍若法fabry-perot plates (etalons) fabry-perot标准具fabry-perot recycling spectromether 法布里-珀罗重复分光计fabry-perot resonator 法布里-珀罗共振腔fabry-perot type laser 法布里-珀罗型激光器face (1)正面(2)平面face angle 面角face cam 平面凸轮,端面凸轮face gear 平面齿轮face plate 面板face-centered 面心face-pumped laser 面抽运雷射face-pumped liquid laser device 面抽运液体激光器face-pumping 面抽逸faceplate 面板faceplates 面板facet (1)网格(2)小面facet mirror 网板反射镜,分段镜facetted eye 复眼facetted mirrors 多面体反射facial angle 面角facility (1)设备,装置(2)工具facsimile (1)传真(2)影印本facsimile camera 传真照相机facsimile chart 传真图facsimile lenses 传真机镜头facsimile radio 传真收音机facsimile receiver 传真接受器facsimile signal 传真信号facsimile synchronizing 同光传真facsimile telegraphy 传真电报factor (1)因数,系数(2)因子,因素factor of cooperation 合作系数factor of quality 品质因数factor of safety 安全因素,安全系factorial jump function 阶乘跳跃函数factorization 因子分解factted lens 多面体透镜facula 光斑fade (1)褪色(2)衷减fade-down 渐隐fade-in 渐显fade-out 渐隐fade-up 增亮fader (1)声量控制器(2)光亮调节器fading (1)褪色(2)衷落,衷退fahrenheit 华氏度fahrenheit scale 华氏温标fahrenheit thermometer 华氏温度计fail-safe performance 故障-安全特性failure (1)故障(2)损坏(3)失效failure of oscillation 停振faint haze 薄雾fall time 下降时间falling (1)下降(2)落像falling body 落体false alarm 假警报false color process 错色过程false image 误像false light 杂光false radiation 伪辐射false reflection 伪反射false-color 伪色false-color film 遮色多层彩色片family of curves 曲线族family of ellipses 椭圆族family of half-curves 半曲线族fan (1)扇,扇状物(2)鼓风机fan antenna 扇形天线fan beam 扇形光束fan dial 扇形刻度盘fan filter 扇形滤光器fan geometry mixing laser 扇形结构混合激光器fan in 扇入fan out 扇出fan test object 幻视器fan-shaped laser beam 扇形光栅fanning beam 扇徵射束fanning strip 扇形片fantascope 扇形激光束far field 远场近似far field approximation 远场结构far field construction 远场衍射far field diffraction 远场图far field pattern 远红外的far infrared 远红外far point 远点far sight (1)远视(2)远景far-infrared 远红外电子跃迁far-infrared elelctronic transition 远红外成像far-infrared grating 远红外光栅far-infrared laser pumping 远红外激光抽运far-infrared lasers 远红外线雷射far-infrared masser 远红外美射far-infrared molecular laser 远红外分子激光器far-infrared radiation 远红外辐射far-infrared region 远红外区far-infrared spectrophotomether 远红外分光光度计far-ir interferoemeter 远红外干涉仪far-off-axis anisotropic bragg diffraction 远轴外各向异性布喇格衍射far-ranging 远程的far-red light 远红光far-sightedness 远视眼far-ultraviolet 远紫外的far-ultraviolet radiation 远紫外辐射far-ultraviolet region 远紫外区farad 法拉第扇形测式物faraday cage 法拉第盒faraday cell faraday configuration 远紫外辐射faraday constant 法拉第常数faraday dark space 法拉第配置faraday driver 法拉第驱动faraday effect 法拉第效应faraday isolator 法拉第形绝缘体faraday rotation 法拉第旋体faraday shutter 法拉第快门faraday's law 法拉第定律farady, pockel cells 法拉第电池farsighted (1)远视的(2)远景的fast ethernet network equipment 高速乙太网路设备fast fourier transform (fft)快速傅里叶变换fast image intensifier 快速像增强器fast lens (1)快镜(2)强光透镜fast pulley 固定轮fast response 快速响应fast retardation axis 快速延迟轴fast-fired coatying 快速氧化膜fast-transverse-flow co2 laser 快速横流二氧化碳激光器fastening (1)连接(2)连接物(3)压固fastening screw 紧固螺钉fastie-ebert monochromator 法斯梯-艾伯特单色仪fastie-ebert spectrometer 法斯梯-艾伯特分光计fatigue 疲乏,疲劳fatigue effect 疲乏效应fatigue failure 疲乏失效fatigue fracture 疲乏断裂fatigue limit 疲乏极裂fatty oil 油脂fatty-acid layer 脂肪酸层fature 特徵,特点faucet (1)旋塞(2)龙头fault (1)故障,失效(2)失真faunhofer diffractin 夫琅和费衍射faunhofer holography 夫琅和费息全术faunhofer intensity distribution 夫琅和费光强度分布favorable interference 有利相干fbt fly back transformer 返驰变压器fddi network equipment 光纤分散式资料介面网路设备feather 滑键feathers 羽状裂缝feature extracton 特徵萃取,特徵提取featureexraction 羽饰febetron 冷阴极脉冲,β射线管fechnerratio 特徵挑选feed (1)馈电(2)进料(3)供片feed arrangement 供给装置feed spool 供片轴feedback 反馈feedback amlifier 反馈放大器feedback circuit 反馈电路feedback compensation 反馈补偿feedback control system 反馈控制系统feedback ratio 回授率,反馈比feedback-controlled optics 反馈控制光学feeder (1)馈电线(2)进料器feedthrough 馈入装置feedway 输送装置feeler 测隙规feeler lever 触杆feeler microscope 接触式测微显微镜feeler plug 测孔塞规feet 英尺feldspar 长石felt polisher 毡抛光器felt ring 毡环,毡圈felt seal 毡密封felt washer 毡垫圈felt-ring seal 毡环密封,毡圈密封female thread 阴螺纹,内螺纹femto 飞fermat principle 费马原理fermat's principle 费马原理fermi energy 费密能fermi gas 费密气体fermi level 费密能级fermi level diagram 费密能级图fermi resonance 费密共振fermi temperature 费密温度fermi-dirac distribution law 费密-狄拉克分布律fermi-dirac function 费米-狄拉克函数fermion 费密子fermion field 费密子场fermitron 场射管fermium (fm)镄ferpic (ferroelectric picture)铁电图ferric chloride 氯化铁ferric oxxide 氯化铁ferricyanide 氯铁酸盐,铁氯化物ferrimag 铁磁合金ferrite 铁氧体ferrite garnet 镱铁石榴石ferroalloy 铁合金ferroelastic effect 铁弹性效应ferroelectric 铁电的ferroelectric ceramic 铁电陶瓷ferroelectric crystal 铁电晶体ferroelectric domain 铁电畴ferroelectric film 铁电膜ferroelectric image intensifier 铁电像增强器ferroelectric ir detectro 铁电红外探测器ferroelectric phase transition 铁电相跃迁ferroelectric photoconductor 铁电光导管ferroelectricity 铁电现象ferroelectrics 铁电体,铁电材料ferromagnet 铁矶体ferromagnetic 铁磁的ferromagnetic curie point 铁磁居里点ferromagnetic curie temperature 铁磁居里温度ferromagnetic material 铁磁材料ferromagnetism 铁磁性ferrommagnetic resonance 铁磁共振ferrormagnetic substance 铁磁物质ferrosilicon 硅铁ferrous (1)亚铁的,二价铁的(2)含铁的(3)类铁的ferrous metal 黑色金属ferroxcube 立方结构铁气体ferroxphlana 六角晶格铁氧体ferrule 套管ferry-porter low 费瑞-波特原则fery glass prism 费瑞玻璃棱镜fery prism 费瑞棱镜fery spectrograph 费瑞光谱仪fetron 高压结型场效应管feussner prism 费斯纳尔棱镜fexitron 冷阴极脉冲x射线管fiber bragg grating 光纤光栅fiber channel 光纤通道fiber grating strain sensor 光纤光栅应变感测器fiber optic acoustic sensors 光纤声波感测器fiber optic bundles, non-silica, imaging 多成分影像光纤fiber optic bundles, silica, imaging 石英系影像光纤fiber optic cable 光纤fiber optic cable manufacturing equipment 光缆制造设备fiber optic cable, dispersion-shifted 色散位移光缆fiber optic cable, multimode, silica, 100/140 多模态石英系(100/140)光缆fiber optic cable, multimode, silica, 50/125 多模态石英系(50/125)光缆fiber optic cable, multimode, silica, 62.5/125 多模态石英系(62.5/125)光缆fiber optic cable, plastic 塑胶光缆fiber optic cable, plastic-clad silica 石英系塑胶包覆光缆fiber optic cable, polarization - maintaining 偏振恒持光缆fiber optic cable, single mode, standard, loosely buffered, aerial 单模态标准型松包fiber optic cable, single mode, standard, loosely buffered, direct buried 单模态标准fiber optic cable, single mode, standard, loosely buffered, duct 单模态标准型松包管fiber optic cable, single mode, standard, tightly buffered, multifiber 单模态标准型紧fiber optic cable, single mode, standard, tightly buffered, single fiber 单模态标准型fiber optic closure 光纤接续盒fiber optic color mark photo sensors 光纤式色彩标记感测器fiber optic connectors, multimode, adapter (st,sma,fc/pc)多模态光纤连接器插fiber optic connectors, multimode, d4 多模态d4光纤连接器fiber optic connectors, multimode, fc/pc 多模态fc/pc相容光纤连接器fiber optic connectors, multimode, fddi 多模态fddi光纤连接器fiber optic connectors, multimode, multi-channel 多模态多心光纤连接器fiber optic connectors, multimode, sc 多模态sc光纤连接器fiber optic connectors, multimode, sma 多模态sma光纤连接器fiber optic connectors, multimode, st 多模态st光纤连接器fiber optic connectors, multimode,adapter (st,sma,fc/pc)多模态光纤连接器插座(st,sma,fc/pc)fiber optic connectors, single mode, adapter (st,fc/pc, sc, biconic)单模态光纤连接器fiber optic connectors, single mode, adapter (st,fc/pc,sc,biconic)单模态光纤连接器插座(st,fc/pc,sc,biconic) fiber optic connectors, single mode, apc 单模态apc光纤连接器fiber optic connectors, single mode, biconic 单模态biconic光纤连接器fiber optic connectors, single mode, d4 单模态d4光纤连接器fiber optic connectors, single mode, fc/pc 单模态fc/pc光纤连接器fiber optic connectors, single mode, fddi 单模态fddi光纤连接器fiber optic connectors, single mode, multi-channel/mt 单模态多心光纤连接器fiber optic connectors, single mode, sc 单模态sc光纤连接器fiber optic connectors, single mode, st 单模态st光纤连接器fiber optic connectors, single mode,multi-channel/mt 单模态多心光纤连接器(mt)fiber optic current sensors 光纤电流感测器fiber optic density, constituent sensors 光纤浓度、成份感测器fiber optic density,constituent sensors 光纤浓度、成份感测器fiber optic displacement sensors 光纤移位感测器fiber optic distribution box 光纤终端箱fiber optic distribution panels 光纤分配板fiber optic electric field sensors 光纤电场感测器fiber optic faceplate 光纤面板fiber optic fibers, dispersion - shifted 色散位移光纤fiber optic fibers, plastic 塑胶光纤fiber optic fibers, plastic - clad silica 石英系塑胶包覆光纤fiber optic fibers, polarization - maintaining 偏振恒持光纤fiber optic fibers, silica, multimode, graded index,50/125 石英系多模态渐近式折射fiber optic fibers, silica, multimode, step index 石英系多模态步阶式折射率型光fiber optic fibers, silica, multimode,graded index ,100/140 石英系多模态渐近式折fiber optic fibers, silica, multimode,graded index ,62.5/125 石英系多模态渐近式折fiber optic fibers, silica, single mode,standard 石英系单模态标准型光纤fiber optic fiberscopes 光纤显微镜fiber optic field flattener 光纤场平板fiber optic furnaces, spinning equipment 光纤引线炉,纺丝设备fiber optic fusion splice equipment 光纤融接设备fiber optic gyro sensors 光纤陀螺仪感测器fiber optic gyroscope 光纤回转仪fiber optic illuminators 光纤光源fiber optic light distribution/radiation sensors 光纤光分布/放射线感测器fiber optic light guide 光纤光导fiber optic lightguides 光导管fiber optic liquid surface level sensors 光纤液位感测器fiber optic magnetic field sensors 光纤磁场感测器fiber optic magnetic flux sensors 光纤磁通量感测器fiber optic mark photo sensors 光纤式标记感测器fiber optic materials 光纤材料fiber optic oil film sensors 光纤油膜感测器fiber optic patchcord pigtail 光纤跳接线fiber optic photo sensors, fiber optic photo switches 光纤光电开关,光纤光电感测fiber optic polishing machines 光纤端面研磨设备fiber optic preforms 光纤预型体fiber optic pressure sensors 光纤压力感测器fiber optic probe 光纤探头fiber optic scanner 光纤扫瞄器fiber optic strain sensors 光纤变形感测器fiber optic strippers 光纤剥线夹fiber optic temperature sensors 光纤温度感测器fiber optic velocity sensors 光纤速度感测器fiber optic vibration sensors 光纤振动感测器fiber optic window 光纤窗fiber sensor 光纤感应器fiberscope 光纤视镜fibre (fiber)(1)纤维(2)刚纸,纤维板fibre -optic roamn laser 纤维光学喇激光器fibre abundle 纤维束fibre amplifier 纤维放大器fibre beakage 纤维破损fibre commhnication 纤维通信fibre core 纤维耻fibre coupler 纤维耦合器fibre eigenvalue equation 纤维本徵值方程fibre gastroscope 纤维胃镜fibre laser 纤维激光器fibre lens couple 纤维透镜耦合器fibre light guide 纤维光导fibre optic communication information society 纤维光学通信信息协会fibre optics 纤维光学fibre pipe 纤维光管fibre profile 纤维剖面fibre ring interferometer 纤维环干涉仪fibre splicing technique 纤维连接技术fibre waveguide 纤维波导fibre-optic bundle 纤维光束fibre-optic cable 纤维光缆fibre-optic colorimeter 纤维光学色计fibre-optic communication 纤维光学通信fibre-optic coupling 纤维光学耦合fibre-optic endoscope 纤维光学内窥镜fibre-optic field flatterner 纤维光学平场器fibre-optic flying-spot scanner 纤维光学飞点扫描装置fibre-optic image scramber 纤维光学图保密器fibre-optic interferometer 纤维光学干涉仪fibre-optic light carrier 纤维光学光导管fibre-optic light guide 纤维光导fibre-optic light-transmission system 纤维光学光传输系统fibre-optic link 纤维光连接fibre-optic memory 纤维光学存储器fibre-optic plate 纤维光学板fibre-optic repeater 纤维光中继器fibre-optic scanner 纤维光学扫描装置fibre-optic shape converter 纤维光学形状变换器fibre-optic sheath 纤维光学包皮fibre-optic transmitter 纤维光学发送机fibre-optic-faced vidicon 纤维光学面光导摄像管fibre-optics image dissection camera 纤维光学析像摄象机fibre-optics scan system 纤维光学扫描系统fibre-otpic-faced tube 纤维光学面板显像fibrefrac 铝硅陶瓷鑯维fibreglass 玻璃纤维,玻璃丝fibreglass optics 玻璃纤维光学fibrescope 光学纤维观察镜fibrograph 光学纤维照相fick's law 菲克定律fictitious primary color 虚拟原色fidelity (1)保真度(2)保真性fidelity criterion 保真度判据fidelity defect 保真度不足fiducial line 基准线fiducial mark 基准符号fiducial point 基准点field (1)场(2)视场field angle (1)视场角(2)张角field annealing 场置退火field camera 外景照相机,轻便摄影机field coil 磁场激发线圈field corrector 像场校正镜field curvature 场曲率field deformation 场形变field depth 景深field diaphragm 视场光阑field distortion 场畸变field effect controlled switch 场效应控制开关field effect transistor 场效应晶体管field emission 电场放射field emission microcope 场致发射显微镜field emission microscope 场致发射显微镜field emssion 场致发射field emssion electron microscope 场致发射电子显微镜field flattener 视场致平器,平像场校正器field flattening lens 平场镜头field glass 野外镜,望远镜field glasses 轻便双筒望远镜field induced photomission 场致光发射field intensity 场强field lens 向场镜field lenses 向场透镜field mesh electrode 场网电极field number 视场直径field observation 野外观察field of view 视场field of vision 视场field pattern 场图,场分布field pick-up (1)室外照相(2)实况转播field piece 场镜field quantization 场量子化field range 视场范围field ray 轴外物点光线field repectition rate 场重复频率field repetition rate 场重覆率field scannign sensor 场扫描传感器field stop 视场光阑field sweep 场扫描field theory 场论field tile 场倾斜field view stop 视场光阑field wave 激发波,激磁波field yoke 磁轭field's discontinuity 场不连续性field-biased 场偏置的field-flattended schmidt camera 平像场斯密特照相机field-ion microscope 场离子显微镜field-ion microscopy 场离子显微术fieldistor 场控晶体管fieldtron 场效应器件figure (1)图,图形(2)数字(3)数值(4)位数figure of merit 灵敏值,优值figure tolerance 形状公差figured glass 花纹玻璃figuring 修磨figuring of surface 表面修磨filament (1)丝(2)灯丝filament activity 灯丝激活filament burn-out 灯丝烧断filament emissions 丝极发射,灯丝发射filament lamp 白炽灯filament lief 灯丝寿命filament temperature 灯丝温度filament transformer 灯丝变压器filamentation 灯丝形成filamentray structure (1)灯丝结构(2)丝状结构filametntary (1)细丝的(2)灯丝的(3)纤维丝的filar eyepiece 有刻度目镜filbtercharacteristic (1)滤波器特性(2)滤光片特性file (1)文件(2)文件存储器(3)锉刀file computer 文件计算机file drum 文件磁鼓file memory 文件存储器file processor 文件处理器filer (1)填料,衬垫(2)填充数filer axis 丝缕轴fill factor 填充因素fill optisal sensing device 软片感光装置filled band 满带filled level 满充能级,占满能级filled shell 满充壳层filleted corner 圆角filling 填料,装填filling factor 填充系数fillister (1)凹刨(2)凹槽film adhesion 膜层附着力film advance lever 输片杆film advancing whell 输片轮film badge 胶片式线计量器film base 片基film camera 电影摄影机film cartride chamber 胶片暗盒film cartridge 胶片暗盒film cassette 胶卷暗盒film clip (1)胶片夹子(2)影片剪辑film coating 镀膜film coefficient of heat transfer 薄膜导热系数film compostition 薄膜组成film contiuity 薄膜连续性film cooling 薄膜冷却film counter 照像机用之底片计数器film dosimeter 胶片剂量计film drum 输鼓轮film feed mechanism 输片机构film fogging 胶片灰雾film glass 薄膜玻璃film grain nosie 胶片颗粒噪声film granularity 胶片颗粒度film graph 胶片录声设备film holder 胶片夹film indenticication 胶片鉴定film intensity measureing device 薄膜强度测定仪film load window 装胶片窗film memory 薄膜存储器film of oxide 氧化膜film plane 软片平面film plane indicator 胶片面指示器film pressing plate 胶片压板film projector 电影放映机film radiography 射线照相法film reader 显微胶片阅读器,胶带读出器film recorder 录片机film recording (1)影片录声(2)屏幕录像film reproduceer 影片复制机film response 胶片响应性film rewind button 胶卷倒卷钮film rewind crank 胶卷倒卷手柄film rewind shaft key 胶卷倒卷轴键film ring 胶片环film scanning 软片扫描film setting 照相排字film speed 胶片感光度film speed scale 胶片感光度等级film speed set ring 胶片感光度定环film stack 薄膜叠存储器film storage 薄膜存储器film storage unit 胶片存储单元film strip (1)教育幻灯片(2)片带,片条film supply 供片盒film tansporting system 输片系统film thickness 膜厚film thickness gauge 模厚度量计film thickness measuring 膜厚测量film thickness measuring device 膜厚测定仪film thickness meter 膜计film thickness monitor 膜厚监测仪film velocity 输片速度film weld 软片接头film-metering device 薄膜测定装置film-stress interferometer 薄膜应力千涉仪filmatic bearing 油膜轴承filmentary conpling 丝状耦合filminess 薄膜状态filming (1)生膜,薄膜形成,镀膜(2)摄影filter (1)过滤(2)滤光器,滤光片,滤光镜(3)滤波器(4)过滤器filter action (1)滤光作用(2)滤波作用filter by means of vacuum 真空过滤器filter by suction 吸入过滤器filter capacity 过滤能力filter cartride 过滤盒filter circuit 滤波电路filter deffect (1)滤色效应(2)滤波效应filter discrimination (1)滤波能力(2)滤波器分辨力filter element (1)滤光元件(2)滤波元件filter factor 过滤因素filter fator 滤光系数filter gauze 滤网filter glass 滤色玻璃filter grating 滤色光栅filter ir interference-absorption type 红外干涉-吸收型滤光片filter knob 滤光镜铵钮filter lens 滤光镜,滤色镜filter liquide 过滤液体filter method (1)滤波法(2)滤光法filter mount 滤光套filter paper 过滤纸filter pass band 滤波器通带filter plate 滤光片filter spectrophotometer 滤过分光分度计filter stop band 滤波器阻带filter transformer 滤波变压器filter transmission band 滤波器通带filter wheel 滤光轮filtered air 过滤空气filtered beam 过滤光束filtered image 过滤象filtering (1)滤光(2)滤波filterscan tube 滤光扫描管filtration (1)滤波(2)滤光(3)过滤filtrator 过滤器fin 叶片final amplifier 终端放大器final assembly 总装final control elemnt 最後控制元件final coutoff 最後截止final etching 最後腐史final evaporation 最後蒸发final gettering 最後吸气final mass 最终质量final payload 净有负载final presure 最後压力,极限压强final pump-down 最後抽气final reading 最终读数final stage 末级final vacuum 最後真空度final value theorem 终值定理finder (1)取景器,录像器(2)瞄准器(3)测距仪finder aperture (1)寻像器孔径(2)瞄准器孔径finder circle 导像圈finder frame 取景框finder screen 取景器屏finder telescope (1)寻镜望远镜(2)瞄准望远镜fine 精密的,精细的fine adjustment 微调,精密校正fine balance 精密平衡,精调fine data channel 精确数据通道fine definition 高清晰度fine detail 细节fine dotted line 细虚线fine etching 精密蚀刻fine grain (1)微粒(2)细粒fine grain developer 微粒显影剂fine grating 细光栅fine grinding wheel 细砂轮fine line 细线fine measuring instrument 精密测量仪器fine oil stone 细油石fine particle 细小颗粒fine pitch 小螺距fine pumping 高真空抽气fine structure 精细细构fine thread 细牙螺纹fine thread screw 细牙螺钉fine tuning 精细调谐fine vacuum 高真空fine wheel 细砂轮fine-collimation apparatus 精细准直仪器fine-focusing knob 精调焦旋钮fine-grained 微粒的fine-range scope 精密测距镜finely-honed 精密搪磨的fineness (1)细度(2)钝度(3)光洁度(4)锐度finger (1)测厚规(2)指针(3)手指finger-impu system 键盘输入装置fingerprint 指纹fingerprint cameras 指纹照相机fingerprint indentification 指纹识别fingertip control 按钮控制,键盘控制fining 精细化finish (1)抛光(2)精加工(3)终饰(4)表面光洁度finish surface (1)精加工面(2)抛光面finished prodcut (1)成品(2)光制品finishing allowance 精加工裕量finishing polish 精饰抛光finishing size (1)精加工尺寸(2)完工尺寸finite aperture 有限孔径finite beam source 有限射束源finite linewidth 有限线宽度finite object point 有限远物点finite ray 有限远光线finsen unit 芬生单位fipping frequency 触发频率fir-laser 远红外激光器fire cracks 爆裂纹fire-control optics 射击指挥光学系统,火炮控制光学fire-proof 防火的,耐火的fireproof coating 耐火涂层,耐火敷层first angle projection 第一角投射法first approximation 初步近似,一级近似first electron lens 第一电子透镜,阴极透镜first eye lens 首侧复曲面first harmonic 基波first order aberration 初级像差first order reflection 一级反射first order spectrum 第一级光谱first principal point 第一主点first radiation constant 第一辐射常数first side toric 首侧弯月面first surface mirror 表面镀膜镜first-order 一级,初级first-scattering angle 第一散射角,最初散射角fish tail 鱼尾fish-eye camera 鱼眼照相机,水中照相机fish-eye lens 鱼眼透镜fish-eye of maxwell 麦克斯韦鱼眼fish-eye type objective lens 鱼眼型物镜fish-lens 鱼眼透镜fission 裂变,分裂fissionable fuel 可裂变燃料fissure 裂缆,道子fit 非特fit joint 套筒接合fit key 配合键fit keyway 配合键槽fit quality 配合等级fit tolerance 配合公差fit-up 配合fitting (1)装配(2)配合(3)配件fitting control 装配控制fitting joint 装配连接fitting surface 配合面fitting tight 装配紧密fitting-up 装配fix stopper 固定销,定位销fix-focus lens 定焦透镜fixation (1)固定,安装(2)定影,定像fixation device 固定装置fixed array multielment lidar 固定阵列多元激光雷达fixed axis of rotation 鱼眼透镜fixed base 固定底座fixed beam 固定光束fixed bias circuit 固定转动轴fixed block 固定件fixed condenser 固定偏压电路fixed coupling 固定联轴节fixed encoded theodolite 固定编码经纬仪fixed focus 定焦点fixed focus camera 定焦照相机fixed gauge 固定规fixed guide bar 固定导杆fixed laser bar code scanners 固定式雷射条码扫描器fixed light 固定灯光fixed mirror 固定镜fixed mounting base 固定支承座fixed optical attenuators 光衰减器(固定)fixed pattern noise 固定图形噪声fixed piovt point 固定支承点fixed prism 固定棱镜fixed resister 固定焦点fixed reticle 固定十字标线,固定调制盘fixed slit 固定狭缝fixed view shifter projector 固家影像转换放映机fixed-frequency source 固定率源fixer (1)固定器(2)定影剂fixing bath (1)定影液(2)定影槽fixing salt 定像剂fixing solution 定影液fixning (1)固定(2)定景fixture (1)夹具(2)装置fizeau fringe 斐索干涉条纹fizeau fringes 固定电阻器fizeau interferomenter 斐索干涉仪fizeau interferometer 菲佐条纹fizeau interferometersfizeau 干涉仪fizeau toothed whool 菲佐干涉计flag 菲佐齿轮flake 薄片flame 火焰flame acrc lamp 焰弧灯flame arc 焰弧flame deflector 火焰导向器flame emission deterctor 火焰发射检测器flame emission spectroscopy 旗标flame excitation 火焰激发flame holder 火焰稳定器flame laser 火焰激光器flame photmetry 火焰光度测量计flame photometer 火焰光度计flame photometric analysis 火焰光度分析flame pyrometer 火焰高温计flame shield 火焰屏蔽flame spectrometer 火焰分光计flame spectrometry 火焰光谱光度测量flame spectrophotometry 火焰分光光度学flame spectrum 火焰光谱flame spetrum 火焰光谱flame welding 熔焊,气焊flange (1)凸缘(2)镶边flange focal distance 基面载距flange focal distance (ffd)凸缘焦距flank (1)侧面(2)齿侧flannel 法兰绒flannel disk 法兰绒抛划盘flapping 摇摆运动flare (1)闪光(2)闪烁(3)照明弹flare light 闪光flare spot 耀斑flare-free telescope sight 无闪光望远镜瞄准具flash arc 闪光弧flash barrier 闪光挡板flash cooler 快速冷却器flash desorption spectroscopy 闪光解吸收光谱术flash dryer 快速乾燥器flash duration 闪光持续时间flash evaporation 快速蒸发flash evaporation technique 快速蒸发技术flash exposure 闪光曝光flash gun 闪光枪flash head 闪光灯头flash intensity 闪光强度flash lamp 闪光灯flash lamp pumped dye laser 闪光灯抽运染料激光器flash lamp pumping 闪光灯抽运flash light 闪光灯flash meter 闪光昦曝光表flash photographic density filter 闪光照相密度滤器flash photolysis 闪光光解作用flash point 闪光点flash pumped 闪光抽flash radiography 闪光射线照相术flash ranging 闪光测距flash screen 闪光灯屏flash socket 闪光灯座flash spectroscopy 闪光光谱学flash synchronzed shutter 闪光同步快门flash tube 闪光管flash unit 闪光灯部件flash-photometry 闪光光度学flash-powder 闪光粉flashback voltage 反闪电压flashbulb 闪光灯泡flashcube 闪光灯块flashed glass 闪光玻璃flasher 闪光灯flashlamp 闪光灯flashtabe 闪光管flashtube lamp 闪光灯flask 烧瓶flat (1)平的(2)平面(3)平镜flat angle 平角flat blank 平面胚件flat crts 平面阴极射线管flat inclined mirror 斜面镜flat interferometer 平面干涉仪flat key 平键flat lapping block 精研平台flat machine 平面抛光机flat mirrors 平面镜flat pack 偏平装flat plate 平板flat polisher 平面抛光机flat reflector 平反射器,平反射镜flat saddle key 平鞍形键flat spring 扁簧,片簧flat spring hinge 扁簧铰键flat surface 平面flat tool 平面磨光磨具flat topped pulse 平顶脉冲flat-bed color image scanners 平台式影像扫描器flat-field lens 平场透镜,平扫描场透镜flat-field objective 平场物镜,平扫描场物镜flat-layer powder camera 平层粉末照相机flat-roof mirror 平屋脊镜flatncess of field 像场平度,扫描场平度flatness of image plane 像面平度flatness testers 平面度测定系统flattened field (1)平像场(2)扁平场flattener (1)平像场器(2)矫平机flattening lens 平像场透镜flatter surface 高精平面flatuess 平度,平面度,平直度flatuess and straighness measuring instrument 平直度测量仪flaw 裂纹,瑕疪fleck 斑点,斑影flexibility (1)挠性(2)弹性(3)适应性(4)柔顺性flexibility factor 挠度系数flexible 挠性的flexible cord 软线flexible diagnostic fresnel lens 诊断用弹性fresnel 镜片flexible drive 挠性传动flexible fiber-optic gastroscope 挠性纤光学胃镜flexible imagescope 可弯曲视镜flexible joint 挠性连轴节。

使用远红外的注意事项

使用远红外的注意事项

使用远红外的注意事项远红外辐射(Far Infrared Radiation, FIR)是一种波长在5.6-1000微米范围内的辐射,对人体和生物具有良好的保健作用。

FIR被广泛应用于保健、物理疗法、美容和医疗领域。

然而,使用远红外的时候需要注意以下几点。

首先,远红外辐射的强度应该适当。

过高的辐射强度可能会对人体产生不良影响。

一般来说,人体对远红外辐射的最佳接受范围是红外A波段(5.6-15微米)和红外B波段(15-1000微米),其中最佳效果的波长是8-12微米。

如果辐射强度过大,可能导致皮肤灼伤或其他不适反应。

因此,在使用远红外产品时,需要根据个人体质和实际情况选择合适的辐射强度。

其次,远红外辐射的时间也需要控制。

虽然远红外辐射对人体有益,但过长时间的暴露也有可能对皮肤产生不利的影响。

因此,在使用远红外产品时,需要注意使用时间,不能过度依赖远红外辐射的功效。

另外,对于某些特殊人群,如婴儿、孕妇、心脏病患者等,使用远红外产品前最好咨询医生的意见。

这些人群的身体状况可能与一般人有所不同,可能对远红外辐射更为敏感,因此在使用远红外产品时需要谨慎,遵循医生的指导。

此外,使用远红外产品时还需要注意以下几点:1. 温度控制:使用远红外设备时需要控制好设备的温度,避免过高温度对皮肤产生灼伤。

同时,使用过热的远红外设备可能会对环境造成安全隐患,因此需要遵守设备使用说明书中的温度限制。

2. 保湿:远红外辐射可能会造成皮肤的水分蒸发,因此在使用远红外产品时需要注意补水保湿,保持皮肤的湿润。

3. 阳光暴晒:在使用远红外产品时,应注意避免在阳光暴晒的环境中使用,因为过度的紫外线辐射与远红外辐射相互作用可能导致皮肤问题。

4. 食物、药物的影响:某些食物和药物可能与远红外辐射的效果相互影响,因此在使用远红外产品时需要遵循制造商的建议,并咨询医生或专业人士的意见。

总而言之,远红外辐射具有一定的保健作用,但在使用远红外产品时需要注意辐射强度、使用时间、特殊人群的适应性以及其他相关因素。

红外吸收峰的频率

红外吸收峰的频率

吸收谱带的强度
红外吸收强度取决于跃迁的几率: 跃迁几率 ab
2
Eo
2
ab 跃迁偶极矩, E 2 红外电磁波的电场矢量 o 红外吸收谱带的强度取决于分子振动时偶极矩的变化, 而偶极矩与分子结构的对称性有关。振动的对称性越高,振 动中分子偶极矩变化越小,谱带强度也就越弱。一般地,极 性较强的基团(如C=0,C-X等)振动,吸收强度较大;极 性较弱的基团(如C=C、C-C、N=N等)振动,吸收较弱。 >100 20< <100 10< <20 1< <10 非常强峰(vs) 强峰(s) 中强峰(m) 弱峰(w)
甲基环己烷的红外光谱图 C-H伸缩振动 <3000cm-1 C-H弯曲振动
物质的红外光谱是其分子结构的反映,谱图 中的吸收峰与分子中各基团的振动形式相对应。 通过比较大量已知化合物的红外光谱,发现: 组成分子的各种基团,如O-H、N-H、C-H、 C=C、C=O和CC等,都有自己的特定的红外吸 收区域,分子的其它部分对其吸收位置影响较小。 通常把这种能代表基团存在、并有较高强度的吸 收谱带称为基团频率,其所在的位置一般又称为 特征吸收峰。
200-10
4000-670
6.01012-3.01011
1.21014-2.01013
当样品受到频率连续变化的红外光照射 时,分子吸收某些频率的辐射,产生分子振 动能级和转动能级从基态到激发态的跃迁, 使相应于这些吸收区域的透射光强度减弱。 记录红外光的百分透射比与波数或波长关系 曲线,就得到红外光谱。
H C H H H C
symmetric stretch
asymmetric stretch
(2)变形振动(弯曲振动或变角振动)(Bending Vibrations) 基团键角发生周期变化而键长不变的振动称为变形振动。 变形振动又分为面内变形和面外变形振动。 面内变形振动又分为剪式()和平面摇摆振动()。

红光和红外线辅助伤口治疗的照射时间与效果观察

红光和红外线辅助伤口治疗的照射时间与效果观察

红光和红外线辅助伤口治疗的照射时间与效果观察医学研究生20114月第24卷第胡J—M—edP0!:::迦!:垫!?381-论着(临床研究)红光和红外线辅助伤口治疗的照射时间与效果观察蒋琪霞,周昕,彭青,李晓华【摘要】目的近年柬已有关于物理干预辅助治疗伤口以减轻疼痛与促进愈合的研究,但尚缺乏不同光源物理干预治疗的时问与效果研究文巾旨在比较红光(ret{light,RL)照射与远红外线(farinfraredray,FIR)照射2种物理干预辅助伤口治疗的效果及有效作川时间.方法将9O例伤口患者按照随机数字表法分为3组(,一30),3组伤口的处理方法除物理f预方法与时问外均相同,分别为RL治疗20min(RI20组),FIR治疗10min(FIR 组)和RL治疗10min(RLIO组).治疗前后7,l4,21和28d分}JIJ7,~lJ量伤I3温度,疼痛计分,伤VI面积并计算每组伤口的缩小率和治愈牢,记录愈合时间.结果3组伤口治愈率差异无统计学意义()(=0.71,P&gt;0.05),平均愈合时问差异无统计学意义(F=0.3l,P&gt;0.05).治疗28d后伤VI缩小率均&gt;50%,提升伤口温度1~2oC.3组伤口患者治疗前后第7—28天疼痛汁分减少均≥6分,组内比较差异有显着性统计学意义(P&lt;0.O1),但组间比较差异无统计学意义(P&gt;0.05)RL20纽治疗第28天伤口面积明显缩小(P&lt;0.01),FIR组第14,28天伤口缩小明(P&lt;0.05).RLIO组第21,28天缩小明显(P&lt;0.05).结论RL与FIR辅助伤口治疗效果卡H.但RL治疗具有照射均匀,穿透深度深,操作方便,安全性强等优点;照射10rain和20rain的效果相近.建议RL辅助治疗伤口每次10rain,连续14d为宜FIR治疗以热辐射效应为主,照射时间10rain/次,疗程根据伤口_1『延长14d以上【关键词】远红外线;红光;伤口护理;伤El愈合[中图分类号】R454.2[文献标志码】A【文章编号】l008—8199(2011)04-0381—05 Redlightandfarinfraredrayasadjuvantmethodsforwoundcare:Timeandeffects JIANGQi—xia,ZHOUXin,PENGQing,LIXiao—hua(1.WoundCareCenter;2.DepartmentofOutpatient,NamingGeneralHospitalofNanjingMi litaryComrmmd,PLA,Nanjing210002,Jiangsu,China)[Abstract]objectivePhysiotherapeuticinterventionasanadjuvantmethodinwoundcarecall diminishwoundpainandenhancewoundhealing.However,reportsarehardlyseenonthestudiesofthetimeandeffects ofphysiotherapywithdifferentlightsources.Ourstudyaimstocomparethetimeandeffectsbetweenredlight(RL)andfarinfraredr ay(FIR)asadjuvantwoundcaremethods.MethodsNinetycaseswereequallyrandomizedinto3groups:20rainRL,10minFI Rand10minRLAt7,14,21and28daysoftreatment,werecordedthewoundtemperature,painscores,woundsize,wound contractionrate,woundhealingrate,andwoundhealingtime,andcomparedtheseindexesamongdifferentgroupsaswellasw iththoseobtainedbeforethetreat—men1.ResultsNostatisticallysignificantdifferenceswerefoundamong3groupseitherinthe woundhealingrate(x:0.71,P&gt;0.05)orinthemeanwoundhealingtime(F:0.31,P&gt;0.05).At28daysoftreatment,th ewoundcontractionratewas&gt;50%,andthewoundtemperaturewasraisedby1—2℃.At7—28days,themeanpainscorewasreducedbyI&gt;6points,withs唔一nificantdifferencesamongdifferenttimepointswithineachgroup(P&lt;0.01),butnotamon gthethreegroups(P&gt;0.05).The基金项目:南京军区南京总医院科研基金(M2008001)作者单位:210002.南京,南京军区南京总医院门诊部伤口护理中心[蒋琪霞(医学硕士),周昕,彭青j,门诊部(李晓华)通讯作者:李晓华,E—mail:*****************.Cl'1 woundareawasremarkablydiminishedinthe20minRLgroupat28days0.050.O5P&lt;0.01),inthe10minFIRgroupat14and28days(P&lt;,aswellasinthe10minRLgroupat21and28days(P&lt;.ConclusionRLandFIRshowedsimilareffectsasadju? vantwoundcaremethods,eitherfor10or20minutes,butRLisad—vantageousfordeeperpenetration,better—distributedradiation,more382?医学生2011年4月第24卷第4期JMedPost~ra,V o1.24,No.4,April,2011 convenientoperation,andhighersafety.WesuggestthatthebestadministrationofRLshouht be10minutesoncefor14successivedays,andthatofFIRalso10minutesonceandfor2weeksormoreaccordingtothenatureofthe wound.[Keywords]Farinfraredray;Redlight;Woundcare;Woundhealing0引言随着物理医学与康复医学的发展,应用物理治疗辅助患者康复和获得最佳功能状态为目标的联合治疗手段日趋成为人们关注的热点¨.但由于物理治疗本身的综合性,及缺乏系统深入的理论研究和临床验证,因此迄今存在很多不确定性和个体差异性J.近年来物理治疗用于辅助伤口治疗备受关注一71,关注点在于研究光动力学治疗对伤口感染,温度,疼痛和血流的影响及其愈合效果.为比较光动力学治疗中常用的RL和FIR辅助伤口治疗的照射时间和效果,我们于2009年1月至2010年5月对90例伤口患者进行了对比研究,现报道如下.1材料与方法1.1一般资料入选标准:急性皮肤损伤(擦伤,烫伤,机械伤);术后脂肪液化伤口,慢性伤口(压疮,糖尿病足溃疡,静脉溃疡等);年龄≥16岁;性别不限.剔除标准:肿瘤伤口,出血伤口,安装起搏器的伤口患者.本组入选9O例(男性44例,女性46例),年龄16~89岁,平均年龄(48.21.4-19.13)岁,中位数45岁.伤口持续时间2~1065d,平均(85.47-4-182.60)d,中位数21d.伤口初诊时测量的面积为2~120 em,平均(16.08±27.61)cm,中位数6am.采用视觉模拟评分法l8测量伤口疼痛计分为1~10分,平均(7.83±1.79)分,中位数8分.采用红外线测温仪测量伤口为19~33cc,平均(30.59±1.67)oC.急性伤口(伤口持续时间&lt;14d者)24例,慢性伤口66例. 伤口类型:外伤伤口30例,压疮Ⅱ一Ⅳ期1O例,术后愈合不良或线头排异30例,糖尿病足溃疡WagnerI—Ili级(浅表溃疡一深部溃疡伴感染)5例,静脉性溃疡3例,脓肿引流后伤口12例.1.2方法1.2.1分组方法按照随机数字表法将90例患者分为RI20组,RL10组和FIR组(n=30),患者性别标化为男=1,女=2后进行比较;伤口类型标化为外伤伤口=1,压疮=2,术后愈合不良=3,糖尿病足溃疡=4,静脉性溃疡=5,脓肿引流后伤口=6.3组患者入组时基线资料见表1.1.2.2分组处理RE20组和RL10组采用光子治疗仪(GZ-630型,无锡4L~J,t,l光学电子有限公司生产). 本研究的照射距离为10cm,光斑面积为100em2l,照射时机为伤口每次清创或清洗后,单次照射时间分别为RL20组20min,RL10组10min.疗程按照物理干预治疗伤口指南¨"和本组伤口情况设定为14d.照射后根据伤口颜色,渗液量,气味和组织类型选择适合的敷料以保持伤口适度湿润,控制炎症反应及感染,~71.FIR组采用红外线治疗仪19](LQ.2008A,贵阳龙泉医疗器械有限公司生产)每次照射10rain,照射距离30~40cm,其他方法均同RL20和RL10组.1.2.3观察指标每组伤口分别于治疗前后7,l4,2l和28d测量伤口面积并计算伤口缩小率¨'.,同期使用红外线温度测量仪测量照射前后的伤口温度并计算升温效果,应用视觉模拟评分法评价伤口疼痛计分,治疗结果评价为愈合,有效,无变化,恶化,].1.3统计学分析建立数据库,所有观察数据输人数据库,经过双人核对.数据经过SPSS11.0统计软件分析,3组均数(x-4-s)采用单因素方差分析(ANOV A),如方差齐同采用Student—Newman—Keuls 进行比较,如方差不齐采用DunnettT3方法进行多重比较.以P≤0.05为差异具有显着性统计学意义.2结果本组90例患者采用RL和FIR辅助治疗疗程为14d,总治疗观察期为90d.研究期间愈合87例,总愈合率96.67%,平均愈合时间(46.46-4-26.73)d.其中RL20组治愈率96.67%平均愈合时问(47.21-4-25.67)d;FIR组治愈率93.33%,平均愈合时间(47.21-4-29.26)d;RL10组治愈率100%,平均愈合时间(42.77±22.57)d.3组治愈率经卡方检:0.71,P=0.50.3组平均愈合时间比较,差异无统计学意义(F=0.31,P=0.74).各组伤口类型组间比较,F=0.14,P=0.87(3组尸值分别为3.31±1.73,3.52±1.66和3.37-4-2.16).现将28d为比较期限,分别比较3组的伤口缩小率,升温效果,疼痛计分结果,见表2一表4.医学研究生2011年4月笪24鲞兰塑』监:丝:堡:2表13组患者基线资料比较Table1Comparisonofthepatientsbaselinedataamongthe3groups383?表23组治疗28d内每周伤口平均缩小率比较(%)Table2Comparisonofthemeanwoundcontractionrateat4weeksamongthe3groups《%) 表33组治疗后28d内伤口升温效果比较(℃)Table3Comparisonofthemeanwoundtemperatureriseat4weeksamongthe3gro ups(℃) 表43组治疗后28d内伤口疼痛计分结果比较Table4Comparisonofthemeanwoundpainscoresat4weeksamongthe3groups7—28d每组疼痛汁分组内比较,P&lt;0.0组间两两比较,RI20组与FIR组7—28d每周缩小率比较,z值分别为一0.62,一1.03,一1.16和一0.32,P值分别为0.53,0.30,0.24和0.75;FIR组和RLIO组7—28d每周缩小率比较,z值分别为一0.34,一2.10,一0,55和一0.65,P值分别为0.73,0.04,0.58和0.52;RL20组与RL10组7—28d每周缩小率比较,z值分别为一0.96,一1.31,一0.48和一0.54,P值分别为0.34,0.19,0.64和0.59,表明差异无统计学意义.3组7—28d每周缩小率组内比较(WilcoxonSigned秩和检验),7d与14d比较,Z=一4.53,P=0.000;14d和21d比较,Z=一1.99,P=0.04,21d和28d比较,Z=一9.49,P=0.000.3讨论3.1物理干预治疗提升伤口温度现代研究认为,伤口温度在伤口愈合中起重要作用.当伤口温度低于理想愈合温度(33℃)时,伤口将难以愈合,j.本研究通过对比2种光源,3种照射时问对伤口升温效果的影响,以获得有利于伤口保持理想愈合温度的辅助治疗方法和时间.RL分别照射20min,10min及FIR照射10min均有提升伤口温度作用.本研究使用的光子治疗仪发射出波长为635nm的RL,不产生热效应,其作用机制为RL照射被人体细胞线粒体吸收,使线粒体过氧化氢酶活性,蛋白合成,三磷酸腺苷384?医学研究生2011年4月第24卷第4期JMedPostgra.V o1.24.No.4.ADril.2011 分解增加,过氧化氢酶,超氧化物歧化酶等多种酶活性得到激发,促进细胞新陈代谢,糖原含量增加,蛋白质合成加强,促进细胞增生和合成代谢,改善微循环,促进肉芽组织生长从而促进伤口愈合-5,21].有研究报道,RL为波长600~700nm的可见光,具有光斑大,照射均匀,穿透深等优点.2il.2组RL治疗过程中,患者无温热感主诉,但测量伤口温度在10min 内可上升1~3cC,之后随时间增加温度不再上升.移去光源30rain后温度维持不降,升温效果较为持久,分析可能与其作用机制有关.RL20组30例伤口温度由治疗前(30.884-1.08)℃提升为治疗14d时(32.91±1.09)℃;RLIO组30例伤口温度由治疗前(30.63±1.13)℃提升为治疗14d时(32.17±1.23)℃;停止RL治疗仅采用伤口治疗14d时,RL20 与RL10伤口温度分别维持在(32.80.4-0.96)℃和(32.67-t-O.99)o【=,故认为RL治疗20rain和10rain 照射后的伤口温度升高和维持效果相近,均可达到理想愈合温度,建议采用10minRL治疗.FIR作用机制是通过不可见红外光作用于局部,产生热辐射效应.治疗过程中所有患者均主诉局部有明显的温热感,红外线测温仪测量局部温度在照射5min 内迅速上升1~4qC,之后随时间延长温度维持不再上升,移去光源30rain后温度降低1—2℃,30例伤口温度由治疗前(30.31±2.67)℃提升为治疗14d时(32.17±1.51);停止FIR治疗仅采用伤口治疗14d时伤口温度维持在(32.244-1.36)℃,推测可能与伤口微循环改善有关.治疗28d组内伤口温度比较差异无统计学意义.此结果与Toyokawa等制作大鼠的全层伤口模型,采用FIR治疗观察伤口温度变化结果一致.我们认为尽管2种光源作用机制不同,但照射10min均能达到理想的伤口愈合温度.3.2物理干预治疗改善伤口血液循环与止痛研究表明,RL治疗能增进白细胞吞噬作用,有助于伤口消肿消炎,止痛,特别是可控制耐甲氧西林金黄色葡萄球菌引起的伤口感染,预防和治疗器官移植患者的伤口感染'.我们观察到RL治疗中伤口床渗出不明显,但在治疗后的24~48h可见敷料吸收的渗液增加,组织肿胀和疼痛明显减轻,特别是对于深部组织水肿的伤口使用RL治疗在14d内水肿完全消退,分析此结果可能与RL治疗可达皮下2.5cm深度,组织细胞线粒体吸收RL后发挥一系列的生物化学效应促进了细胞增生和合成代谢及改善微循环等有关'加一11].FIR治疗通过热辐射效应快速升温, 加快局部血液循环而达到消炎消肿,减轻疼痛的作用,观察局部组织间隙的渗液从伤口床渗出,疼痛随之减轻,推测与血管扩张,炎性反应物质(如组织胺) 和代谢产物被快速清除有关'.治疗14,21,28d后疼痛计分较7d时明显下降.此结果与研究报道采用FIR减轻截肢部位伤口疼痛的结果一致.但RL和FIR治疗3组每周组间比较,差异无统计学意义. 故认为2种光源在照射10min后均有相似的改善伤口血液循环和止痛作用,深部伤口采用RL治疗效果更好.3.3物理干预治疗促进伤口愈合基础和临床研究报道,RL治疗通过控制伤口感染,消肿消炎,止痛,促进细胞增生和合成代谢,改善微循环,促进肉芽组织生长从而促进伤口愈合-63.Toyokawa等研究报告FIR通过促进胶原合成和成纤维细胞增殖而使愈合速度加快.我们发现RL治疗21d(RLIO组)与28 d(RLIO和RL20组)后愈合加速;FIR10组治疗14d 和28d伤口缩小明显,但其原因和机制有待于进一步探讨.3组伤口的治愈率和平均愈合时间均相近,说明2种光源,3种照射时间的物理干预治疗均能促进伤口愈合.3.4物理干预治疗的安佥『生和不良反应观察本研究使用的光子治疗仪带有定时装置,到达预设时间时,仪器能自动停止工作并发出报警声,无需专人看护.采用RL治疗的60例患者在治疗过程中均无不适主诉,也未见发红水肿现象.本研究使用的FIR治疗仪已在伤口护理中心安全使用5年,既往使用中发现照射距离&lt;30cm时患者有灼热疼痛的主诉;&gt;50 am时患者主诉无温热感,故担心影响治疗效果.为保证治疗效果,避免烫伤,可将照射距离设定为30~40am.30例伤口患者在治疗过程中,有3例患者主诉局部灼热不适而调整照射距离至40~50cm,1例需要调整至50cm以上才感到舒适.据此认为在伤口辅助治疗中,RL和FIR均为操作方便,安全可靠的物理干预方法,RL治疗的生物化学效应持续作用时间长,以距离10cm,10n/次,疗程连续14d为宜;而FIR治疗的热效应持续作用时间短,以10min/次,疗程可持续≥14d或根据伤口评估结果和伤口愈合计分结果及干预结果适当延长为宜.【参考文献】[1]吴宗耀,励建安.物理医学与康复医学发展的挑战,机遇和陕学研究生2Ol14月第24卷第4235l67:8j9:l0ji2][13危机JJ.rt华物理医学与康复杂志,2009,31(11):721—724.To,a,kawaH.MatsuiY.UharaJ.eta/Promoti~eefb'etsotfar—infra,?edrayonfull—f}1tssskinwoundhealinginratsJ.Exp BMMed,2003,228(6):724—729.ennbergAM.St,nqtfist}{.St∽ktlethE,eta1.PhotM)nOll[1llliC therapywithmeth31aI1linolexulinaleforpreventiono1ne,~skinle siOIlSintransplantrecipients:arandomizedstudyTransplantation,2008,86(3):423429.,,eisenseelIKtlzlletso~A V.MnlinS.eta1.Phot,~t?ⅢlI1a|Jltherap&gt;fbrgralltlhmla,qnllula~e:IIIOFPthanashotintheIla,kJ Dematotog9',2008,217(4):329?3321)ai_r.Tegos(1P.Zhiyentayevr.ela1.Photodynonarrdctherap?fo, methMllin—resisitantStaphyltx??(HSatlFelISinfectioninanlOtlseskin abrasio,1m,~lelJ:.1~asensSurgMed,2010,42(1):38LiO,GaoT.JiaoB,etn/.mg—termfollow—upofinsiluextra—illamlnaryPagetsdiseaseinAsia~1skintypesIV/Vtreatedwith Photodynonamiethe,'ap):J.ArtaDermVenereol,2010,90(2):159一l64.朱霖_}!i.,右希晨红外线疗法,理疗学M.上海:I二海科学技术/t:l版社,l983:33—34.BellC.MeCmlhyGFheasst~ssnlen[andtreatmentotwoumt painatdressingchangeLj1BrjNurs,2010,19(:4.WooKY.CourtsPM.Price1.ela/Arandomizedcrossotlerin—vestigationofpainatdressingchangeeompm'ing2foamdressings lJjAdvSkin~'oundCare,2009,22(7):303-310.陈菌,董琼章.负压低周波,光子治疗仪与按摩综合治疗肩周炎60例[Jj.按摩与导l,2004,20(2):12-13.张美玲,罗亚萍,钱小芳,)匕治疗仪在i床外科中的应用[J].中国医药导报,2007,4(30):164ArmsrongDG,AttingerCE,BoultonAJ,ela1.Guidelinesregard—ingnegativepressurewotmdf}】erapy(NI'WT)inthediabetlt'foot J.OstomyWou,1dMamNe..200450(Suppl413):3-27. Mendez—EastmatlS.GuMelinesforusingnegativepressure~sound therapyinnpenfimtwoundswithsignificantsofttissuedefectsn.V o】.24No.4.Aoril2011[J1.AdvSkinWoundCa,l4蒋琪霞,胡素琴,彭青,等病患者溃疡伤口的分析jj851.853.15]lI6]I7l8j:19j[2Oj[21][22]23[24]385?2004.17(7):35436,1.治愈蚊虫咬伤诱发坏疽性脓皮医学研究,扛,2009,22(8):蒋琪霞,李晓华,胡索琴,等.负¨i封闭辅助闭合技术在l2例慢性伤¨中的应用及效果分析J医学研究生,2009,22(12):1303—1306.蒋琪霞.李晓华.胡索琴,等.』疮愈合汁t分埘评价压疮清创效果的可行性及有效性分折JI.医学研究生,2010,23 (5):518—521.胡索琴,蒋琪霞,删昕.等.湿性疗法结整体:预治愈全身41处f,j【]的护理J医学研究生.2010,23(6):658~J0.蒋琪霞,胤澜,刘锦霞,等.物理疗法结合湿性疗法治疗子宫癌术后蜜道伤口的疗效分折.J中华物理医学与康复杂志,2008,30(8):556-558.周昕.蒋琪霞,彭青,等.湿性愈合敷料结合红外线照射治疗烫伤的效果:J_.r}1华现代护理杂志.2009,15(16):l5l0—15l2蒋琪霞,申萍,刘云,筲改良式湿性疗法治疗老年压疮的临床研究J].医学研究q:.2007,20(11):1182—1185.赵葆菊.红光照射治疗顽吲性皮肤溃疡的怖床观察fJ.中华物理医学与康复杂志.2009,31I9):643-644.蒋珙霞,李晓华,胡素琴,等伤㈠评估流程及内容和记录方式的设计与应用评价j.实用临床医药杂志.2008,4 (2):1—4.蒋琪霞,胡素琴,周昕,等.弥漫性血管内凝血继发4l处全层伤口患』LII9分阶段干预lI1r『匕护理杂志,2010,45(8): 690_692蒋琪霞,胡索琴,彭青,等.坏疽性脓皮痫患者溃疡伤口的整体干预J1.中华护理杂志,2009,44(9):823—825.(收稿日期:2011411—16;(责任编辑:闻浩;修回Et期:2011-02—10)英文编辑:罗永合)。

远红外发热膜 英文

远红外发热膜 英文

远红外发热膜英文Far Infrared Heating FilmThe advancement of technology has brought about numerous innovations that have transformed the way we live and interact with our surroundings. One such innovation is the development of far infrared heating film, a revolutionary product that has gained widespread attention in the realm of heating solutions. This technology has the potential to revolutionize the way we heat our homes, offices, and other indoor spaces, offering a more efficient and eco-friendly alternative to traditional heating methods.Far infrared heating film is a thin and flexible material that emits far infrared radiation, a type of electromagnetic radiation that is invisible to the human eye but can be felt as warmth. Unlike conventional heating systems that rely on convection or conduction to transfer heat, far infrared heating film utilizes the power of radiant heat to warm objects and surfaces directly, rather than heating the air in the surrounding environment.One of the key advantages of far infrared heating film is its energy efficiency. Traditional heating systems often waste a significantamount of energy by heating the air, which can then be lost through drafts, poor insulation, or other factors. In contrast, far infrared heating film directly warms the objects and surfaces in a room, minimizing energy loss and providing a more targeted and efficient heating solution. This can lead to significant cost savings on energy bills, making it an attractive option for homeowners and businesses alike.Another benefit of far infrared heating film is its versatility. The thin and flexible nature of the material allows it to be easily installed in a variety of settings, from walls and ceilings to floors and even furniture. This makes it an ideal choice for both new construction and retrofit applications, as it can be seamlessly integrated into existing spaces without the need for major renovations or disruptions.Furthermore, far infrared heating film offers a number of health and wellness benefits. The far infrared radiation emitted by the film has been shown to have positive effects on the human body, including improved blood circulation, reduced muscle tension, and enhanced immune function. This makes it a popular choice for individuals seeking a more natural and holistic approach to heating their living or working spaces.One of the key factors that sets far infrared heating film apart from traditional heating systems is its ability to create a more comfortableand even heating environment. Unlike forced-air heating systems that can produce hot and cold spots, far infrared heating film distributes warmth evenly throughout a room, ensuring a consistent and comfortable temperature. This can be particularly beneficial for individuals with respiratory conditions or those who are sensitive to drafts or uneven heating.In addition to its practical and health-related benefits, far infrared heating film also offers a number of environmental advantages. By reducing the energy consumption required for heating, this technology can contribute to a lower carbon footprint and a more sustainable future. Additionally, the lack of combustion or the use of harmful chemicals in the manufacturing process makes far infrared heating film a more eco-friendly option compared to traditional heating systems.As the demand for energy-efficient and environmentally-friendly heating solutions continues to grow, the popularity of far infrared heating film is likely to increase. This technology has the potential to transform the way we heat our homes and workplaces, offering a more efficient, comfortable, and sustainable alternative to traditional heating methods.In conclusion, far infrared heating film is a remarkable innovation that has the power to revolutionize the way we heat our indoorspaces. With its energy efficiency, versatility, health benefits, and environmental advantages, this technology holds great promise for the future of heating solutions. As we continue to explore and embrace innovative technologies, the widespread adoption of far infrared heating film could play a crucial role in creating a more sustainable and comfortable living and working environment for all.。

贝尔冰箱-冰箱大师 冰箱说明书

贝尔冰箱-冰箱大师 冰箱说明书
2. Install accessories such as ice cube box, etc., in their proper places.They are packed together to prevent possible damage during shipment.
3. Connect the power supply cord (or plug) to the outlet. Don't double up with other appliances on the same outlet.
3
3828JD8219N(OM) ¿ ‡»` 00.3.1311:10AM ˘ ` 4
FEATURE CHART
FREEZER COMPARTMENT
Freezer Temperature Control Dial Ice Trays
Freezer Shelf (Plastic or Steel) Twisting Ice Serve(Option)
INSTALLATION
1. Select a good location. Place your refrigerator where it is easy to use.
2ቤተ መጻሕፍቲ ባይዱ Avoid placing the unit near heat sources, direct sunlight or moisture.
êìäOÇOÑëíÇO èOãúáOÇÄíÖãü
èOÜÄãìâëíÄ, íôÄíÖãúHO èêOóíàíÖ ÑÄHHOÖ êìäOÇOÑëíÇO èOãúáOÇÄíÖãü èÖêÖÑ HÄóÄãOM ùäëèãìÄíÄñàà ïOãOÑàãúHàäÄ à ÑÖêÜàíÖ ÖÉO èOÑ êìäOâ, óíOÅõ Çõ ÇëÖÉÑÄ MOÉãà ä HÖMì OÅêÄíàíúëü Ç ëãìóÄÖ HÖOÅïOÑàMOëíà.

基于菲涅尔衍射的圆孔直径测量

基于菲涅尔衍射的圆孔直径测量

基于菲涅尔衍射的圆孔直径测量罗晓贺;惠梅【摘要】本文提出一种新的圆孔直径测量的方法.平行光照射下,圆孔直径和菲涅尔衍射光强分布中峰值轮廓直径存在一定的关系,根据该关系可以实现圆孔直径的测量.仿真和实验数据证明,该方法对于直径5 ~10 mm的圆孔可以达到亚微米级的测量精度.%A new diameter measurering method of circular aperture based on Fresnel diffraction is proposed.Under the irradiation of parallellight,there is a special relationship between the diameter of peak contour in Fresnel diffraction light intensity distribution and the diameter of circular aperture to be measured,and then the diameter of the circular aperture can be measured according to the relationship.Simulations and experiments show that the accuracy of this method can reach up to submicro order for the measurement of the circular apertures with diameter of 5 ~10 mm.【期刊名称】《激光与红外》【年(卷),期】2018(048)003【总页数】5页(P379-383)【关键词】直径测量;菲涅尔衍射;峰值轮廓;边缘轮廓【作者】罗晓贺;惠梅【作者单位】北京理工大学光电学院,北京100081;北京理工大学光电学院,北京100081【正文语种】中文【中图分类】TH741 引言现有圆孔直径的高精度测量方法有很多,比较成熟的有采用工具显微镜和孔径干涉测量仪进行测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:as tr o-ph/993112v18Mar1999Far–infrared Point Sources B.Guiderdoni Institut d’Astrophysique de Paris,CNRS,98bis Bld Arago,F–75014Paris Abstract.The analysis of the submm anisotropies that will be mapped by the forthcoming map and planck satellites requires careful fore-ground subtraction before measuring CMB fluctuations.Among these,the foreground due to IR/submm thermal radiation from dusty sources was poorly known until recent observational breakthroughs began un-veiling the properties of these objects.We hereafter briefly review the observational evidence for a strong evolution of IR/submm sources with respect to the local universe explored by iras .We present the basic principles of a new modeling effort where consistent spectral energy dis-tributions of galaxies are implemented into the paradigm of hierarchical clustering with the fashionable semi–analytic approach.This model pro-vides us with specific predictions in IR/submm wavebands,that seem to reproduce the current status of the observations and help assessing the capabilities of forthcoming instruments to pursue the exploration of the deep universe at IR/submm wavelengths.Finally,the ability of the planck High Frequency Instrument all–sky survey to produce a catalogue of dusty sources at submm wavelengths is briefly described.1.Introduction The accurate measurement of the fluctuations of the Cosmic Microwave Back-ground down to scales of a few arcmins by the forthcoming satellite missions mapand planck will require a thorough analysis of all the astrophysical sources of submm/mm anisotropies,and a careful separation of the various foreground components (Bouchet et al.1996,Gispert &Bouchet 1997,Tegmark &Efs-tathiou,1996,Tegmark,1998,Hobson et al.1998a,Bouchet &Gispert 1999).Among them,the foreground due to resolved/unresolved IR/submm galaxies that are present at all redshifts on the line of sight was poorly known,until observations and analyses in the last three years began unveiling the “optically dark”(and infrared–bright)side of galaxy evolution at cosmological distances.In parallel to this observational breakthrough,a strong theoretical effort has opened up the way to a modelling of these galaxies that was able to implement the basic astrophysical processes ruling IR/submm emission in a consistent way.As a consequence of this,it is now possible to have a more general view on the problems of foreground separation,and on the capabilities of CMB missions to put new constraints on the number and properties of these sources.Figure1.A typical luminosity sequence for nearby spirals,LIRGs andULIRGs,in the spirit offig.2in Sanders&Mirabel(1996).Thefigure is takenfrom Devriendt et al.(1999).The IR luminosities range from2.1×107L⊙forthe faintest spiral of the sample,to6×1010L⊙for M82(fifth curve from thebottom),and4×1012L⊙for the brightest ULIRG of the sample.In the local universe,we know from iras observations that about30%of the bolometric luminosity of galaxies is radiated in the IR(Soifer&Neugebauer 1991).Local galaxies can be classified in a luminosity sequence from spirals(e.g the Milky Way–the brightest spirals in the IR have a bar),and mild starbursts (e.g.M82),to the“Luminous Infrared Galaxies”(say,with1011L⊙<L IR< 1012L⊙),and“Ultra–Luminous Infrared Galaxies”(say,with1012L⊙<L IR) that radiate more than95%of their bolometric luminosity in the IR/submm.The IR/submm emission of these sources is due to dust that absorbs UV and optical light,and thermally reradiates with a broad spectral energy distribution ranging from a fewµm to a few mm.Most of the heating is due to young stellar populations but,in the faintest objects,the average radiationfield due to old stellar populations can be the main contributor,and,in the brightest objects (especially the ULIRGs),the question of the fraction of the heating that is due to a possible Active Galactic Nucleus is still difficult to assess.However,recent work based on iso observations shows that starbursting still dominates in80% of ULIRGs,whereas the AGNs power only the brightest objects(Genzel et al. 1998,Lutz et al.1998).Now,IR/submm observations are beginning to unveil what actually hap-pened at higher redshift.The detection of the“Cosmic Infrared Background”(hereafter CIRB)at a level twice as high as the“Cosmic Optical Background”(hereafter COB)has shown that about2/3of the luminosity budget of galaxies is emitted in the IR/submm range(Puget et al.1996).In the same time,the first deep surveys at submm wavelengths have discovered the sources that are responsible for the CIRB,with a number density much larger than the usual predictions based on our knowledge of the local universe(Smail et al.1997). The optical follow–up of these sources is still in progress,but it appears that some(most?)of them should be the moderate–and high–redshift counterparts of the local LIRGs and ULIRGs discovered by the iras satellite and thoroughly studied by the iso satellite.We shall hereafter focus on these dusty sources with thermal radiation,and we refer the reader to the paper by Toffolatti and coworkers(this volume),for the description of the foreground due to radiosources that emit free–free and synchrotron radiations at larger wavelengths.Figure2.Observer–frame model spectra of a L IR=1012L⊙galaxy atincreasing redshifts(from top to bottom),for a cosmology with H0=50kms−1Mpc−1andΩ0=1.The reader is invited to note that the apparentfluxin the submm range is almost insensitive to redshift,because the shift of the100µm bump counterbalances distance dimming.A consistent approach to the early evolution of galaxies is particularly im-portant for any attempt at predicting their submm properties.Three basic problems have to be kept in mind,that explain why it is so difficult,starting from general ideas about galaxy evolution,to get a correct assessment of the number density of faint submm sources and of the level of submmfluctuations they generate.First,it is difficult to extrapolate the IR/submm properties of galaxies from our knowledge of their optical properties.It is well known that there is no cor-relation between the optical and IRfluxes–see e.g.Soifer et al.(1987)for an analysis of the statistical properties of the“Bright Galaxy Sample”.In-terestingly,the galaxies with the highest luminosities also emit most of their bolometric luminosity in the IR.If young stars are the dominant source of heat-ing,it turns out that the strongest starbursts mainly emit in the IR/submm. Fig.1shows a sequence of spectral energy distributions for local galaxies with various IR luminosities,very much in the spirit offig.2of Sanders&Mirabel (1996).The sources have been modelled by Devriendt et al.(1999,see section 5)under the assumption that starbursts are the dominant source of heating. Now,it is known that local LIRGs and ULIRGs are interacting systems and mergers(e.g.Sanders&Mirabel1996).It is consequently plausible that their number density should increase with redshift,when more fuel was available for star formation and more interactions could trigger it.As a matter of fact,the Hubble Deep Field(HDF,Williams et al.1996)has unveiled a large number of irregular/peculiar objects undergoing gravitational interactions(Abraham et al.1996).Such a large number of interacting systems is of course predicted by the paradigm of hierarchical clustering,but the quantitative modelling of the merging rates of galaxies,and of the influence of merging on star formation is highly uncertain.Second,we might have kept so far the prejudice that high–redshift galaxies have little extinction,simply because their heavy–element abundances are low (typically1/100to1/10of solar at z>2).However,low abundances do not necessarily mean low extinction.For instance,if we assume that dust grains have a size distribution similar to the one of our Galaxy(n(a)da∝a−3.5with a min≤a≤a max),and are homogeneously distributed in a region with radiusR,the optical depth varies asτ∝a−0.5min R,whereas the total dust mass variesas M dust∝a0.5max R3.For a given dust mass and size distribution,there is more extinction where grains are small,and close to the heating sources.This is probably the reason why Thuan et al.(1998)observed a significant dust emission in the extremely metal–poor galaxy SBS0335-052.In this context,modelling chemical evolution and transfer is not an easy task.Third,distant galaxies are readily observable at submm wavelengths.Fig. 2shows model spectra of an ULIRG as it would be observed if placed at different redshifts.There is a wavelength range,between∼600µm and∼4mm,in which the distance effect is counterbalanced by the“negative k–correction”due to the rest–frame emission maximum at∼100µm.In this range,the apparentflux of galaxies depends weakly on redshift to the point that,evolution aside,a galaxy might be easier to detect at z=5than at z=0.5.The observer–frame submm fluxes,faint galaxy counts,and diffuse background of unresolved galaxies are consequently very sensitive to the early stages of galaxy evolution.Note that this particular wavelength range brackets the maximum of emission of the CMB. As a consequence,any uncertainty in the modelling of galaxy evolution at high z will strongly reflect on the results of the faint counts of resolved sources,and on thefluctuations of the foreground of unresolved sources.In sections2and3,we report respectively on the recent observation of the CIRB,and the faint submm counts with the iso satellite and the SCUBAFigure 3.The Cosmic Optical and Infrared Backgrounds.Open triangle,solid dots,and open dot :COB obtained from faint counts and compiled by Pozzetti et al.(1998).Solid triangle at 0.0912µm :upper limit by Vogel et al.(1995).Solid triangle at 15µm :Oliver et al.(1997).Thick solid line:CIRB extracted by Fixsen et al.(1998).Thin dotted lines :error bars.Broken solid line :CIRB in the cleanest regions of the sky (Puget et al.1996,Guiderdoni et al.1997).Open squares :upper limits and detections (at 140and 240µm)from Hauser et al.(1998).Solid squares :reanalysis at 100and 240µm (Lagache et al.1999)and 3.5µm (Dwek &Arendt 1998).The no–evolution curve (dotted line)is computed from the local iras luminosity function extrapolated to z =8,for H 0=50km s −1Mpc −1and Ω0=1.The thin solid line shows the best model (the so–called “model E”)in Guiderdoni et al.(1998).Dashes and dots give “model A”.instrument on the James Clerk Maxwell Telescope (see the review by Mann and coworkers in this volume).In section 4,we briefly mention the efforts to correct the optical surveys for the effect of extinction,that give a lower limit of the number of submm sources from the number of sources detected at optical wavelengths.In section 5,we resume various attempts developped so far to compute consistent optical/IR spectra,and to model IR/submm counts.In section 6,we summarize recent developments of the semi–analytic modelling of galaxy formation and evolution where the computation of dust extinction and emission is explicitly implemented.Finally,in section 7,we sketch an overview of the sensitivities of forthcoming instruments that should greatly improve our knowledge of IR/submm sources,and we emphasize the capability of the planck High Frequency Instrument to get an all–sky survey of bright,dusty sources at submm wavelengths.Figure4.One of the Southernfields observed by ISOPHOT at175µm forthe FIRBACK program(from Puget et al.1999).The pixel size is1.5arcmin.The large–scalefluctuations are due to the presence of Galactic cirrus,and24sources have been identified at S175>100mJy.2.The Cosmic Infrared BackgroundThe epoch of galaxy formation can be observed by its imprint on the background radiation that is produced by the accumulation of the light of extragalactic sources along the line of sight.The direct search for the COB currently gives only upper limits.However,estimates of lower limits can be obtained by summing up the contributions of faint galaxies.The shallowing of the faint counts obtained in the HDF(Williams et al.1996)suggests that these lower limits are close to convergence.In the submm range,Puget et al.(1996)have discovered an isotropic com-ponent in the FIRAS residuals between200µm and2mm.This measure was confirmed by subsequent work in the cleanest regions of the sky(Guiderdoni et al.1997),and by an independent determination(Fixsen et al.1998),giving a mean value of the backgroundνIν=1.3×10−5(λ100)−0.64νBν(T d=18.5K) whereλ100is the wavelength in units of100µm.The analysis of the DIRBE dark sky has also led to the detection of the isotropic background at240and 140µm,and to upper limits at shorter wavelengths down to2µm(Schlegel et al.1998,Hauser et al.1998).Recently,a measure at3.5µm was proposed byDwek&Arendt(1998).The results of these analyses seem in good agreement,though the exact level of the background around 140and 240µm is still a matter of debate.The controversy concerns the correction for the amount of Galactic dust in the ionized gas uncorrelated with the HI gas.A new assessment of the issue by Lagache et al.(1999)leads to values of the CIRB that are in good agreement with the fit of FIRAS data by Fixsen et al.(1998),and to values at 140and 240µm that are lower than in Hauser et al.(1998).Figure 3displays the various determinations.0246-3-2-1Figure 5.The evolution of the cosmic Star Formation Rate comoving den-sity ρSF R with redshift z .Solid pentagon :local value (Gallego et al.1995).Solid dots and error bars (dotted lines):CFRS uncorrected for extinction (Lilly et al.1996).Solid dots and error bars (solid lines):multi–wavelength analysis including IR,submm,and radio data (Flores et al.1999).Open squares and error bars (dotted lines):HDF uncorrected for extinction (Madau et al.1996,1998).Open squares and error bars (solid lines):values correctedaccording to Pettini et al.(1998).The corrections derived by Meurer et al.(1997)would shift the corrected points upwards by ∼0.5dex.Open triangles :(Connolly et al.1997).The rest–frame UV fluxes are converted into SFRs according to Guiderdoni et al.(1998),and a Salpeter IMF.Solid line :best model in the latter paper (the so–called “model E”).It appears very likely that this isotropic background is the long–sought CIRB (Puget et al.1996,Dwek et al.1998).As shown in fig.3,its level is about 5–10times the no–evolution prediction based on the local IR luminosity function determined by iras .There is about twice as much flux in the CIRB than in the COB.If the dust that emits at IR/submm wavelengths is mainly heated by young stellar populations,the sum of the fluxes of the CIRB and COB gives the level of the Cosmic Background associated with stellar nucleosynthesis(Partridge&Peebles1967).The bolometric intensity(in W m−2sr−1)is:I bol= ǫbol(1+z)4=cη(1+z eff)(1)whereǫbol(t)=η(1+z)3˙ρZ(t)is the physical emissivity due to young stars at cosmic time t,and z eff is the effective redshift for stellar He and metal nucleosynthesis.An approximate census of the local density of heavy elements ρZ(z=0)∼1×107M⊙Mpc−3,taking into account the metals in the hot gas of rich galaxy clusters(Mushotzky&Loewenstein1997)gives an expected bolometric intensity of the background I bol≃50(1+z eff)−1nW m−2sr−1.This value is roughly consistent with the observations for z eff∼1–2.Figure6.Model spectra in the IR and submm,for IR luminosities106,108,1010,1012,and1014L⊙.Emissivity index of big grains:m=2(dashes),m=1.5(solid lines),m=1(dotted lines).The sequence is drawn fromGuiderdoni et al.(1998).Of course,it is not clear yet whether star formation is responsible for the bulk of dust heating,or there is a significant contribution of AGNs.In order to address this issue,one hasfirst to identify the sources that are responsible for the CIRB.The question of the origin of dust heating in heavily–extinguished objects is a difficult one,because both starburst and AGN rejuvenation can be fueled by gas inflows triggered by interaction,and IR/submm spectra can be very similar if extinction is large.However,according to Genzel et al.(1998), the starburst generally contributes to50–90%of the heating in local ULIRGs. About80%of the ULIRGs in the larger local sample of Lutz et al.(1998)are dominated by the starburst,but the trend decreases with increasing luminosity, and the brightest objects are AGN–dominated.Now,it is very likely that the high–redshift counterparts of the local LIRGs and ULIRGs are responsible forthe CIRB.However the redshift evolution of the fraction and power of AGNs that are harbored in these distant objects is still unknown.3.Far–infrared galaxies at high redshiftVarious submm surveys have been achieved or are in progress.The FIRBACK program is a deep survey of4deg2at175µm with the ISOPHOT instrument aboard iso.The analysis of about1/4of the Southernfields(that is,of0.25deg2, seefig.4)unveils24sources(with a5σflux limit Sν>100mJy),corresponding to a surface densityfive times larger than the no–evolution predictions based on the local IR luminosity function(Puget et al.1999).It is likely that we are actualy seeing the maximum emission bump at50–100µm redshifted at cosmological distances,rather than a local population of sources with a very cold dust component,which seems to be absent from the shallow ISOPHOT survey at175µm(Stickel et al.1998).The total catalogue of the4deg2will include about275sources(Dole et al.1999).The radio and optical follow–up for identification is still in progress.This strong evolution is confirmed by the other175µm deep survey by Kawara et al.(1998).The ISOCAM deep surveys at15µm also conclude to a significant evolu-tion of the sources(Oliver et al.1997,Aussel et al.1998,Elbaz et al.1998, 1999).Most of the sources identified so far by the optical follow–up have typical redshifts z∼0.7,and optical colours similar to those offield galaxies,with mor-phologies that frequently have signs of interaction.The surveys seem to show a population of bright peculiar galaxies,starbursts,LIRGs,and AGNs.The observer–frame15µm waveband corresponds to rest–frame wavelengths that probe the properties of PAH and very small grains,at the depth of the survey. The extent to which the15µmflux is related to the bulk of IR/submm emission produced by star formation is under study.Various deep surveys at850µm have been achieved with the SCUBA in-strument at the JCMT(Smail et al.1997,Hughes et al.1998,Barger et al. 1998,Eales et al.1998).They also unveil a surface density of sources(with Sν>2mJy)much larger than the no–evolution predictions(by two or three orders of magnitude!).The total number of sources discovered in SCUBA deep surveys now reaches about35(see e.g.Blain et al.1998)and should rapidly increase.The tentative optical identifications seem to show that these objects look like distant LIRGs and ULIRGs(Smail et al.1998,Lilly et al.1999).In the HDF,4of the brightest5sources seem to lie between redshifts2and4 (Hughes et al.1998),but the optical identifications are still a matter of debate (Richards,1998).The source SMM02399-0136at z=2.803,which is gravita-tionally amplified by the foreground cluster A370,is clearly an AGN/starburst galaxy(Ivison et al.1998,Frayer et al.1998).4.The optical view and the issue of extinctionRecent observational breakthroughs have made possible the measurement of the Star Formation Rate(SFR)history of the universe from rest–frame UVfluxes of moderate–and high–redshift galaxies(Lilly et al.1996,Madau et al.1996,1998, Steidel&Hamilton1993,Steidel et al.1996,1999).Since the early versionsof the reconstruction of the cosmic SFR density,much work has been done to address dust issues.However,a complete assessment of the effect of extinction on UVfluxes emitted by young stellar populations,and of the luminosity budget of star–forming galaxies is still to come.Dust seems to be present even at large redshifts,since the optical spectrum of a gravitationally–lensed galaxy at z=4.92(Franx et al.1997)already shows a reddening factor amounting to 0.1<E(B−V)<0.3(Soifer et al.1998).Figure7.Spectral energy distribution of an ULIRG,computed by De-vriendt et al.(1999).The thin solid line shows the typical spectrum of astarburst at age0.10Gyr with the same bolometric luminosity.The thicksolid line and dashes give the spectrum with two different geometries for thedust and star distribution:an oblate spheroid(preferred geomety),and ascreen model.Whereas there is almost no difference in the IR/submm part,the predicted optical properties are very sensitive to the dust distribution.The cosmic SFR density determined only from the UVfluxes of the Canada–France Redshift Survey has been recently revisited with optical,IR,and radio observations.The result is an upward correction of the previous values by an average factor2.9(Flores et al.1999).At higher redshift,various authors have attempted to estimate the extinction correction and to recover the fraction of UV starlight absorbed by dust(e.g.Meurer et al.1997,Pettini et al.1998).It turns out that the observed slopeαof the UV spectral energy distribution Fλ(λ)∝λα(say,around2200˚A)isflatter than the standard valueα0≃−2.5computed from models of spectrophotometric evolution.The derived extinction corrections are large and differ according to the method.For instance,Pettini et al.(1998)and coworkersfit a typical extinction curve(the Small Magellanic Cloud one)to the observed colors,whereas Meurer et al.(1997)and coworkers use an empirical relation betweenαand the FIR to2200˚A luminosity ratio in local starbursts. The former authors derive<E(B−V)>≃0.09resulting in a factor2.7ab-sorption at1600˚A,whereas the latter derive<E(B−V)>≃0.30resulting in a factor10absorption.This discrepancy suggests sort of a bimodal distribution of the young stellar populations:thefirst method would take into account the stars detected in the UV with relatively moderate reddening/extinction,while the second one would phenomenologically add the contributions of these“ap-parent”stars and of heavily–extinguished stars.Fig.5shows the cosmic SFR comoving density in the early version(no extinction),and after the work by Flores et al.(1999)at z<1and the extinction correction derived by Pettini et al.(1998)at higher redshift.The broad maximum observed at z∼1.5to3(seefig.5)seems to be cor-related with the decrease of the cold–gas comoving density in damped Lyman–αsystems between z=2and z=0(Lanzetta et al.1995,Storrie–Lombardi et al. 1996).These results nicelyfit in a view where star formation in bursts triggered by interaction/merging consumes and enriches the gas content of galaxies as time goes on.It is common wisdom that such a qualitative scenario is expected within the paradigm of hierarchical growth of structures.The implementation of hierarchical galaxy formation in semi–analytic models confirms this expecta-tion(e.g.Baugh et al.1998,and references therein).The question is to know whether the observations of the optically dark side of galaxies could modify this view significantly.Figure8.Spectral energy distribution of a spiral galaxy.The solid lineshows thefit of the data with a theoretical spectrum computed by Devriendtet al.(1999).5.Modelling dust spectra and IR/submm countsVarious models have been proposed to account for the IR/submm emission of galaxies and to predict forthcoming observations.The level of sophistication (and complexity)increases from pure luminosity and/or density evolution ex-trapolated from the iras local luminosity function with(1+z)n laws,and mod-ified black–body spectra,to physically–motivated spectral evolution.Figure9.Spectral energy distribution of an ULIRG.The solid line showsthefit of the data with a theoretical spectrum computed by Devriendt et al.(1999).The evolution of the IR/submm luminosities can be computed from the usual modelling of spectrophotometric evolution,by implementing the involved physical processes(stellar evolutionary tracks and stellar spectra,chemical evo-lution,dust formation,dust heating and transfer,dust thermal emission).Dwek (1998)tried to explicitly model the processes of dust formation and destruction (see references therein for a review of this complicated issue).Most models pre-fer to assume simple relations between the dust content and the heavy–element abundance of the gas.The simplest assumption is a dust–to–gas ratio that is proportional to the heavy–element abundances.Guiderdoni et al.(1996,1997,1998)proposed a consistent modelling of IR/submm spectra that was designed to be subsequently implemented in semi–analytic models of galaxy formation and evolution(see section6).The values of the free parameters that appear in this modelling(gas mass and metallicity,ra-dius of the gaseous disk)are readily computable in semi–analytic models for the overall population of galaxies.The IR/submm spectra of galaxies are computed according to Guiderdoni&Rocca–Volmerange(1987),as follows:1.follow chemical evolution of the gas;Figure10.Predicted counts at15µm,60µm,175µm,and850µm for models A(dashes and dots)and E(solid line).Model E is normalized to reproduce the CIRB.Dotted line:no evolution.Dashes:FIR/submm ther-mal sources in Toffolatti et al.(1998).Solid squares:iso–HDF at15µm (Oliver et al.1997);solid hexagon:Rush et al.(1993).Open stars:Faint Source Survey(Lonsdale et al.1990).Open hexagon:ISOPHOT at175µm (Kawara et al.1998);triangles:ISOPHOT at175µm(Puget et al.1999, Dole et al.1999).Open squares:deep SCUBA survey(Smail et al.1997); solid dot:SCUBA–HDF(Hughes et al.1998).2.implement extinction curves which depend on metallicity according to ob-servations in the Milky Way,the LMC and SMC;puteτλ∝Z s gas N gas(Aλ/A V)where Z gas and N gas are the gas metal-licity and column density,s=1.6forλ>2000˚A(and1.35below),and Aλ/A V is the Milky Way extinction curve;4.assume the so–called“slab”or oblate spheroid geometries where the starand dust components are homogeneously mixed with equal height scales.The choice of these simple geometries for transfer is motivated by studies of nearby samples(Andreani&Franceschini1996);pute a spectral energy distribution by assuming a mix of various dustcomponents(PAH,very small grains,big grains)according to D´e sert et al.(1990).The contributions arefixed in order to reproduce the observational correlation of iras colours with total IR luminosity(Soifer&Neugebauer 1991).Fig.6gives the luminosity sequence from Guiderdoni et al.(1998).Frances-chini et al.(1991,1994,and other papers of this series)follow the same scheme for items1,2,3,4,and use slightly different IR/submm templates,whereas Fall et al.(1996)basically use constant dust–to–metal ratios and black–body spectra.Recently,Silva et al.(1998)proposed a more sophisticated treatment in which transfer is computed in molecular clouds.The method of Guiderdoni et al.(1998)has been extended to obtain far–UV to radio spectra,and to study local templates by Devriendt et al.(1999).Fig.7shows the predicted opti-cal/IR/submm spectrum of an ULIRG,andfig.8and9display examples offits for observed objects(a spiral galaxy and an ULIRG)from this latter paper.These spectra can subsequently be used to model IR/submm counts.The simplest idea is to implement luminosity and/or number evolution which are parameterized as power laws of(1+z)(e.g.Blain and Longair1993a,Pearson &Rowan–Robinson1996;see also references in Lonsdale,1996).These power laws are generally derived fromfits of the slope of iras faint counts(which do not probe deeper than z≃0.2).Then they are extrapolated up to redshifts of a few units.Unfortunately,various analyses of iras deep counts yield discrepant results at S60<300mJy,and the amount of evolution is a matter of debate (see e.g.Bertin et al.1997,for a new analysis and discussion).This uncertainty increases in the extrapolation at higher z.6.Semi–analytic modellingThese classes of models assume that all galaxies form at the same redshift z for. But the paradigm of the hierarchical growth of structures implies that there is no clear–cut redshift z for.In this paradigm,the modelling of dissipative and non–dissipative processes ruling galaxy formation(halo collapse,cooling,star formation,stellar evolution and stellar feedback to the interstellar medium)has been achieved at various levels of complexity,in the so–called semi–analytic approach which has been successfully applied to the prediction of the statistical properties of galaxies(White&Frenk1991;Lacey&Silk1991,Kauffmann et al.1993,1994;Cole et al.1994;Somerville&Primack1999;see other papers of these series).In spite of differences in the details,the conclusions of these models in the UV,visible and(stellar)NIR are remarkably similar.Afirst attempt to compute the IR evolution of galaxies with the Press–Schechter formalism has been proposed by Blain&Longair(1993a,b),but with a crude treatment of dissipative processes.In Guiderdoni et al.(1996,1997, 1998),we extend this approach by implementing spectral energy distributions in the IR/submm range.As a reference,we take the standard CDM case with H0=50kms−1Mpc−1,Ω0=1,Λ=0andσ8=0.67.We assume a Star Formation Rate SF R(t)=M gas/t∗,with t∗≡βt dyn.The efficiency parameter 1/β=0.01gives a nicefit of local spirals.The robust result of this type of modelling is a cosmic SFR history that is tooflat with respect to the data.As a phenomenological way of reproducing the steep rise of the cosmic SFR history from z=0to z=1,we introduce a“burst”mode of star formation。

相关文档
最新文档