九年级上学期第三次月考
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
湖北省武汉市黄陂区木兰乡朝阳中学2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共30分)1.在美术字中,有些汉字或字母是中心对称图形.下面的汉字或字母不是中心对称图形的是()A.A B.B C.C D.D2.有两个事件,事件M:在汽步枪比赛中,某运动员打出10环;事件N:一个不透明的袋中装有除颜色外完全相同的6个小球(4个黑球,2个白球),从中随机摸出的3个球中有黑球.下列判断正确的是()A.M,N都是随机事件B.M,N都是必然事件C.M是随机事件,N是必然事件D.M是必然事件,N是随机事件3.下列方程中,有两个不相等的实数根的是()A.x2﹣2x+1=0B.x2﹣2x=0C.x2﹣2x+2=0D.x2+2=04.在平面直角坐标系中,将抛物线C向上平移2个单位长度,再向左平移2个单位长度后,得到抛物线y=2x2,则抛物线C的解析式为()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2+2D.y=2(x﹣2)2﹣25.如图,两个同心圆的半径分别为3,5,直线l与大⊙O交于点A,B,若AB=6,则直线l与小⊙O的位置关系是()A.相交B.相切C.相离D.无法确定6.从﹣1,﹣2,3三个数中随机取两个数求和作为a,则使抛物线y=ax2的开口向下的概率是()A.B.C.D.7.如图,P A,PB分别与⊙O相切于点A,B,,∠APB=60°,则的长为()A.B.C.D.8.已知二次函数y=x2+(m﹣1)x+m﹣2,当x>1时,y随x的增大而增大,则其图象与x 轴的交点坐标不可能是()A.B.(3,0)C.D.(﹣1,0)9.如图是某圆弧形桥洞,它的跨度AB=10,点C在圆弧上,CD⊥AB于点D,AD=6,,则该圆弧所在圆的半径为()A.B.6C.D.10.已知m,n是方程x2﹣x+1=0的两个根.记S1=,S2=,…,S t=(t为正整数).若S1+S2+…S t=t2﹣56,则t的值为()A.7B.8C.9D.10二、填空题(共18分)11.在平面直角坐标系中,若点A(a,﹣1)与点B(b,1)关于原点对称,则a+b的值为.12.一个不透明的袋子里装有红球和白球共m个,它们除颜色外完全相同,每次搅匀后从中随机摸出一个球并记下颜色,再放回袋中,不断重复,统计汇总数据如下表:摸球次数3006009001500摸到白球的频数123247365606摸到白球的频率0.4100.4120.4060.404已知袋子里白球有10个,根据表格信息,可估计m的值为.13.某商城今年9月份的营业额为440万元,11月份的营业额达到了633.6万元,则该商城9月份到11月份营业额的月平均增长率是(用百分数表示).14.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转得到△ADE(点D与点B对应),连接BD.当点E落在直线AB上时,线段BD的长为.15.若抛物线y=mx2﹣2mx+1(m<0)经过点P(﹣2,t),则关于x的不等式m(x﹣1)2﹣2m(x﹣1)+1﹣t<0的解集是.16.如图1,在Rt△ABC中,∠ACB=90°,BC=2AC,定长线段EF的端点E,F分别是边AC,BC上的动点,O是EF的中点,连接OB.设AE=x,CF2=y,y与x之间的函数关系的部分图象如图2所示(最高点为(b,4)),当x=a时,∠OBC最大,则a的值为.三、解答题(共72分)17.已知3,t是方程2x2+2mx﹣3m=0的两个实数根,求m及t的值.18.如图,将△ABC绕点A顺时旋转得到△ADE,点B的对应点D在BC上,且AD=CD.若∠E=26°,求∠CDE的度数.19.在一个不透明的纸盒里装有红、白、黄三种颜色的乒乓球4个(除颜色外完全相同),其中白球2个,红球、黄球各1个.(1)从纸盒中随机摸出一个球,事件“摸到白球”的概率是;(2)若摸到红球得1分,摸到白球得2分,摸到黄球得3分.甲同学随机从纸盒中一次摸出两个球,请用画树状图法或列表法求甲同学至少得4分的概率.20.如图,在矩形ABCD中,G为AD的中点,△GBC的外接圆⊙O交CD于点F.(1)求证:AD与⊙O相切;(2)若DF=1,CF=3,求BC的长.21.如图,在平面直角坐标系网格中,A(1,6),B(5,2),C(8,5),仅用无刻度的直尺按下列步骤完成画图,并回答下列问题:(1)直接写出:AC的长为,△ABC的形状是;(2)△ABC的角平分线AD;(3)过点D作DE⊥AC,垂足为则E;(4)将线段AD绕点P顺时针旋转90°得到线段CH(点A与点C对应),直接写出点P的坐标,并画出线段CH.22.某社区决定把一块长50m,宽30m的矩形空地建成健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为活动区,且广场四周的4个出口宽度相同,其宽度不小于12m,不大于24m.设绿化区较长边为xm,活动区的面积为ym2.(1)直接写出:①每一个出口的宽度为m,绿化区较短边长为m(用含x的式子表示);②y与x的函数关系式是,x的取值范围是;(2)当出口的宽为多少时,活动区所占面积最大?最大面积是多少?(3)预计活动区造价为50元/m2.若该社区用于建造活动区的经费不超过60000元,当x 为整数时,共有几种建造方案?23.问题背景:(1)如图1,D是等边△ABC外的一点,且∠BDC=60°,过点A作AE⊥BD于点E,作AF⊥CD于点F.求证:DA平分∠BDF;尝试应用:(2)如图2,在等腰直角△ABC中,∠ACB=90°,在其内部作∠ADB=∠ADC=135°,E是AB的中点,连接ED,设△ABD的面积为S.求证:S=AD•DE;拓展创新:(3)如图3,∠POQ=45°,点B,C分别在OP,OQ上,点A在∠POQ的内部,AE⊥OQ于点E.若△ABC是边长为a的等边三角形,AE=4,OE=3+7,则a的值为(直接写出结果).24.如图,抛物线y=﹣x2﹣(2t+1)x﹣t2﹣t+2与x轴交于A,B两点(点A在B的左侧),与y轴交于点C.(1)当时,直接写出:点B的坐标为,点C的坐标为;(2)在(1)的条件下,P是x轴下方抛物线上的一点,且∠PBA=2∠OCB,求点P到y轴的距离;(3)当﹣2<t<1时,若△ABC的外心在x轴上,求代数式的值.参考答案一、选择题(共30分)1.解:选项A不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项B、C、D能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.2.解:事件M:在汽步枪比赛中,某运动员打出10环,是随机事件,事件N:一个不透明的袋中装有除颜色外完全相同的6个小球(4个黑球,2个白球),从中随机摸出的3个球中有黑球,是必然事件.故选:C.3.解:A、∵Δ=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根,不合题意;B、∵Δ=22﹣4×1×0=4>0,∴方程有两个不相等的实数根,符合题意;C、∵Δ=(﹣2)2﹣4×1×2=﹣4<0,∴方程没有实数根,不合题意;D、∵Δ=02﹣4×1×2=﹣8<0,∴方程没有实数根,不合题意.故选:B.4.解:∵将抛物线C向上平移2个单位长度,再向左平移2个单位长度后,得到抛物线y =2x2,∴抛物线C的解析式为y=2(x﹣2)2﹣2,故选:D.5.解:如图,连接OA,过O作OC⊥AB于C,∵OA=5,AC=AB=3,∴OC==4,∵小⊙O的半径为3<4,∴直线l与小⊙O的位置关系是相离,6.解:画树状图如下:共有6种等可能的结果,其中使抛物线y=ax2的开口向下(a<0)的结果有2种,∴使抛物线y=ax2的开口向下的概率为=,故选:C.7.解:如图,连接OA,OP,OB,∵P A、PB分别与相切⊙O于点A、B,∴P A=PB,OA⊥AB,OB⊥PB,∵∠APB=60°,∴∠AOB=120°,∵P A=,∴∠APO=∠APB=×60°=30°,∴OA=AP•tan30°=×=1.故⊙O的半径长为为1,则的长==π.故选:B.8.解:二次函数y=x2+(m﹣1)x+m﹣2的对称轴为直线x=﹣,∴抛物线开口向上,∴当x>﹣时,y随x的增大而增大,又∵当x>1时,y随x的增大而增大,∴﹣≤1,解得m≥﹣1,令y=0,则x2+(m﹣1)x+m﹣2=0,解得x1=﹣1,x2=﹣m+2,∵m≥﹣1,∴x2=﹣m+2≤3,∵>3,故选:A.9.解:如图,取圆心O,连接OA,OB,OC,BC,AC,∵∠ADC=90°,AB=10,AD=6,CD=2,∴BD=10﹣6=4,∴tan∠CAD===,∴∠CAD=30°,∴∠BOC=2∠CAD=60°,∴△BOC为等边三角形,在Rt△BCD中,根据勾股定理得,CD2+BD2=BC2,即(2)2+42=BC2,解得BC=2,∴该圆弧所在圆的半径为2.10.解:∵m,n是方程x2﹣x+1=0的两个根,∴m+n=,mn=1,∴S1=====1,S2=====1,…,∴S t==1,∴S1+S2+…S t=t2﹣56,1+1+…+1=t2﹣56,t=t2﹣56,t2﹣t﹣56=0,(t﹣8)(t+7)=0,解得:t=8或t=﹣7(舍去).故选:B.二、填空题(共18分)11.解:∵点A(a,﹣1)与点B(b,1)关于原点对称,∴a=﹣b,∴a+b=0.故答案为:0.12.解:根据表格信息,摸到白球的频率将会接近0.4,故摸到白球的概率为0.4,所以可估计袋子中球的个数m=10÷0.4=25;故答案为:25.13.解:设该商城9月份到11月份营业额的月平均增长率是x,根据题意得:440(1+x)2=633.6,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去),∴该商城9月份到11月份营业额的月平均增长率是20%.故答案为:20%.14.解:∵∠C=90°,AC=4,BC=3,∴AB===5,由旋转得∠AED=∠C=90°,DE=BC=3,AE=AC=4,如图1,点E在边AB上,则∠DEB=180°﹣∠=90°,∵BE=AB﹣AE=5﹣4=1,∴BD===;如图2,点E在边BA的延长线上,∵∠DEB=90°,BE=AB+AE=5+4=9,∴BD===3,综上所述,线段BD的长为或3,故答案为:或3.15.解:∵抛物线y=mx2﹣2mx+1(m<0)的对称轴为:x=1,∴y=m(x﹣1)2﹣2m(x﹣1)+1的对称轴为x=2,且过点(﹣1,t),∴y=m(x﹣1)2﹣2m(x﹣1)+1还过点(5,t),∵m<0,∴m(x﹣1)2﹣2m(x﹣1)+1﹣t<0的解集为:x<﹣1或x>5,故答案为:x<﹣1或x>5.16.解:∵CF≤EF,当点E与点C重合时等号成立,且EF为定长,∴CF的最大值即为EF的长,根据图象可知,CF2的最大值为4,即CF的最大值为2,∴EF=2,∵当x=1时,CF2=3,∠ACB=90°,∴CE==1,∴AC=AE+CE=1+1=2,∴BC=2AC=4,如图所示,连接OC,∵O是EF的中点,∠C=90°,∴OC=EF=1,∴点O是在半径为1的⊙C上,如图所示,∴当OB与⊙C相切时,∠OBC最大,此时OC⊥OB,过点O作OG⊥BC于点G,此时OB=,则sin∠OBC=,即,∴OG=,∵OG⊥BC,∴∠OGF=∠C=90°,∴OG∥AC,∴,即,∴CE=,∴AE=AC﹣CE=2﹣,即a=2﹣,故答案为:2﹣.三、解答题(共72分)17.解:∵3,t是方程2x2+2mx﹣3m=0的两个实数根,∴,∴m=﹣6,t=3.18.解:将△ABC绕点A顺时旋转得到△ADE,∴∠E=∠C,∠ADE=∠B,AD=AB,由AD=AB可得∠B=∠ADB,∴∠ADE=∠ADB,∵AD=CD,∴∠DAC=∠C,∵∠E=26°,∴∠ADB=∠DAC+∠C=52°,∴∠ADE=52°,∴∠CDE=180°﹣(∠ADE+∠ADB)=180°﹣(52°+52°)=76°.19.解:(1)球,事件“摸到白球”的概率是=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中甲同学至少得4分的结果有8种,∴甲同学至少得4分的概率为=.20.(1)证明:连接GO并延长交BC于E,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,∵G为AD的中点,∴AG=DG,∴Rt△ABD≌Rt△DCG(HL),∴BG=CG,∴GE⊥BC,∵AD∥BC,∴OG⊥AD,∵OG是⊙O的半径,∴AD与⊙O相切;(2)解:连接GF,∵∠DFG+∠CFG=∠CFG+∠CBG=180°,∵∠DFG=∠CBG,∵BG=CG,∴∠GBC=∠GCB,∵AD∥BC,∴∠DGC=∠GCB,∴∠DGC=∠DFG,∵∠D=∠D,∴△GDF∽△CDG,∴=,∴=,∴DG=2(负值舍去),∴BC=AD=2DG=4.21.解:(1)∵AC=,AB=,BC=,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,故答案为:5,直角三角形;(2)如图,AD为所作;(3)如图,DE为所作;(4)如图,CH为所作.22.解:(1)①由题意得:出口的宽度为:(50﹣2x)m,绿化区较短边长为[30﹣(50﹣2x)]÷2=(x﹣10)m,故答案为:(50﹣2x),(x﹣10);②根据题意得,y=50×30﹣4x(x﹣10),即y与x的函数关系式及x的取值范围为:y=﹣4x2+40x+1500(13≤x≤19);故答案为:y=﹣4x2+40x+1500,13≤x≤19;(2)y=﹣4x2+40x+1500=﹣4(x﹣5)2+1600,∵﹣4<0,13≤x≤19,∴x=13时,y取最大值,最大值为﹣4×(13﹣5)2+1600=1344,∴50﹣2x=50﹣2×13=24,∴当出口的宽为24m时,活动区所占面积最大,最大面积是1344m2;(3)设费用为w元,由题意得,w=50(﹣4x2+40x+1500)=﹣200x2+2000x+75000,当w=60000时,﹣200x2+2000x+75000=60000,解得x=15或x=﹣5(舍去),由二次函数性质及13≤x≤19可得,x取15,16,17,18,19时,建造活动区的经费不超过60000元,∴一共有5种建造方案.23.(1)证明:如图1,AC与BD的交点记作点G,∴∠AGB=∠CGD,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,在△ABG中,∠ABG+∠AGB=180°﹣∠BAC=120°,∴∠ABG+∠CGD=120°,在△CDG中,∠BDC=60°,∴∠ACF+∠CGD=180°﹣∠CDG=120°,∴∠ABG=∠ACF,∵AE⊥BD,AF⊥CD,∴∠AEB=∠AFC=90°,∴△ABE≌△ACF(AAS),∴AE=AF,∵AE⊥BD,AF⊥CD,∴DA是∠BDF的平分线;(2)证明:如图2,过点E作ET⊥ED交BD于点T连接CE交BD于点K.∵点E是AB的中点,在等腰直角△ABC中,∠ACB=90°,∴AC=BC,∠ACB=90°,∴CE⊥AB,AE=EC=EB,∴∠BEC=90°,∴∠EBK+∠BKE=90°,∵∠CKD=∠BKE,∴∠EBK+∠CKD=90°,在△CDK中,∠CDK=360°﹣∠ADC﹣∠ADB=90°,∴∠DCE+∠CKD=90°,∴∠DCE=∠EBK,∵∠DET=∠CEB=90°,∴∠DEC=∠TEB,∴△CED≌△BET(ASA),∴ED=ET,∴∠EDT=∠ETD=45°,∵∠ADB=135°,∴∠BDE=360°﹣135°﹣90°﹣45°=90°,延长DE至H,使EH=ED,∴∠AEH=∠BED,∵AE=BE,∴△AEH≌△BED(SAS),∴S△AEH=S△BED,∴S=S△ABD=S△ADE+S△BDE=S△ADE+S△AEH=S△ADH=AD•DH=AD•2DE=AD•DE;(3)解:在CE的延长线上取一点H,连接AH,使∠AEH=60°,∵AE⊥OQ,∴∠AEC=∠AEH=90°,在Rt△AEH中,AE=4,∴EH=4,AH=8,设CE=x,则CH=CE+EH=x+4,在CO上取一点M使CM=AH=8,则OM=OE﹣CM﹣CE=3+7﹣8﹣x=3﹣1﹣x,在△ACH中,∠ACH+∠CAH=180°﹣∠AHC=120°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠BCM+∠ACH=120°,∴∠BCM=∠CAH,∴△BCM≌△CAH(SAS),∴BM=CH=x+4,∠BMC=∠CHA=60°,∴∠OMB=120°=∠AHN,在OE的延长线上取一点N,使EN=AE=4,∴HN=EN﹣EH=4﹣4=4(﹣1),∠N=45°=∠POQ,∴△BOM∽△ANH,∴,∴,∴x=2,在Rt△ACE中,CE=2,根据勾股定理a=AC==2,故答案为:2.24.解:(1)∵,∴y=﹣x2﹣2x+,当y=0时,﹣x2﹣2x+=0,解得x=或x=﹣,∴B(,0),令x=0,则y=,∴C(0,),故答案为:(,0),(0,);(2)作O点关于BC的对称点G,连接CG交x轴于点E,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+,设G(m,n),∴n=﹣m+,∵BO=BG,∴=,解得m=,∴G(,),设直线CG的解析式为y=k'x+b',∴,解得,∴y=﹣x+,∴E(,0),∴tan∠OCE=,∵∠COE=2∠OCB,∠PBA=2∠OCB,∴∠PBA=∠COE,过点P作PH⊥x轴交于点H,设P(x,﹣x2﹣2x+),∴=,解得x=(舍)或x=﹣,∴点P到y轴的距离为;(3)∵△ABC的外心在x轴上,∴∠ACB=90°,当y=0时,﹣x2﹣(2t+1)x﹣t2﹣t+2=0,解得x=﹣t﹣2或x=﹣t+1,∵﹣2<t<1,∴A(﹣t﹣2,0),B(﹣t+1,0),当x=0时,y=﹣t2﹣t+2,∴C(0,﹣t2﹣t+2),∴OC2=OA•OB,∴(﹣t2﹣t+2)2=(t+2)•(﹣t+1),∴t2+t﹣1=0,∴=﹣1.。
人教版英语九年级上册第三次月考试卷(含答案)
人教版九年级上册第三次月考试卷英语一、阅读(共三节,满分50分)第一节阅读下列材料,从每题所给的A、B、C三个选项中,选出最佳选项。
(共15小题;每小题2分,满分30分)AStudents in Class 8, Grade 9 are asked to read a book every month and finish the book report. Cindy chooses the book Three Cups of Tea. Here is some information about the book.Three Cups of Tea◆ Who wrote itGreg Mortenson and David Oliver Relin◆ What the book is aboutIn 1993, an American man called Greg Mortenson tried to climb K2,but he got sick and lost his way in the mountains of Pakistan. Luckily,he was saved by villagers. Moved by their kindness, Greg promised toreturn and build a school for the children. In the following ten years, hehelped build more than 60 schools in Pakistan and Afghanistan.**********************************************************Three Cups of Tea is a story of promises, trust, love and peace. Cindy is deeply moved. That’s why she chooses the book.( )1. What can we know about Greg Mortenson?A. He was born in 1993.B. He climbed K2 with villagers.C. He is a writer as well as a hero of the book.( )2. Three Cups of Tea is not about _______.A. regretB. promisesC. trustBThe China Cartoon & Animation Museum, opening on June 26, covers a building area of over 30,000 square meters. It has more than 20,000 objects collected from China, the United States, France, Japan, the Netherlands, as well as Poland.AddressNo. 375 Baima Lake Road, Binjiang district, Hangzhou, Zhejiang ProvinceOpening hours9:30 a.m. ~ 4:30 p.m., Wednesday to Sunday (No entry after 4:00 p.m.)Open on public holidaysTransportation* Take No.137, 177M, or 522M bus to Tangjiaqiao East. Then walk about 200 meters.* Take No.114, 1503M, or 1507M bus to Changhe. Then walk about 500 meters.* Drive to the P8 parking lot of Baima Lake Scenic Area for free parking. Then walk about 500 meters.NoteThe entry is free, but you need to follow the museum’s WeChat account (CCA Museum) to make a reservation(预约) before visiting. For more information, please call xxxx-xxxxxx( )3. What do we know about the museum?A. It is kind of small.B. It has a long history.C. It is in Hangzhou, Zhejiang.( )4. How can people get to the museum?A. Take the subway to Changhe and then walk there.B. Drive to Baima Lake Scenic Area and then walk there.C. Take Bus 177M to Changhe and then walk there.( )5. In which part of the website can we find the reading?A. History.B. Business.C. Travel.CXu Yuanchong was a Chinese translator(翻译家). He is best known forhis translations of ancient Chinese poems into English and French.Xu’s translation career(生涯) began during his college years when hestudied at the National Southwest Associated University in Kunming. In1939, he translated a poem written by Chinese poet Lin Huiyin titled Don’tCast Away, which is known as his earliest work. In the late 1940s, Xu wentto France to study French literature(文学). Later he returned to China andbegan to work at Peking University.While teaching at Peking University, Xu kept on his translation work. He was the first Chinese to translate Chinese poetry into English and French. For him, translated literature is a beautiful art. He once said, “The greatest joy on the earth is to introduce the beauty created by a people to the whole world.”Xu paid much attention to the beauty of language. He would leave something out and add something to make the translated works more beautiful. But other translators thought that made his translation a bit different from the meaning of the source text(原作). Xu had many debates(辩论) with them. He said, “I’m not afraid, because the truth becomes clearer with each debate.”Over the years, Xu’s beautiful translation works have acted as a cultural bridge connecting the East with the West, English- and French-speaking readers are able to better understand Chinese literature through Xu’s tran slations. At the same time, Chinese readers can enjoy foreign works in the same way as they read works written in Chinese.( )6. Xu’s translation career started _______.A. when he studied in KunmingB. when he was studying in FranceC. after he came back from France( )7. The underlined sentence tells us that _______.A. Xu wanted to let others enjoy beautyB. Xu had a lot of fun translating worksC. Xu showed great interest in literature( )8. Xu often debated with other translators because _______.A. he wanted them to pay attention to beautyB. they didn’t think he was the best translatorC. they didn’t agree with Xu about his translation ideas( )9. The last paragraph mainly talks about _______.A. the opinions of English readers on Xu’s worksB. the influence of Xu’s works on Chinese readersC. the meaning of Xu’s works in connecting different cultures( )10. Which is the best title for the passage?A. The beauty of languageB. Xu Yuanchong, a great translatorC. Translated literature, a beautiful artDMany of us have this experience: a piece of music keeps playing inour heads when we are awake. It turns out this can happen during sleep aswell. And it can cause problems in getting to sleep and staying asleep.“Our brains continue to process music even when none is playing,including while we are asleep,” said the neuroscientist(神经科学家)Michael Scullin. His research team surveyed(调查) 199 people and madea sleep test on 50 volunteers. They wanted to find out how listening to music, especially listening to earworms(洗脑音乐), before bedtime influenced our sleep.In the survey, people who listened to music during the day were more likely to report nighttime earworms. That then had a bad influence on their sleep quality(质量) through the night.For the lab test, volunteers were played several earworms and then their sleep quality was tested. Earworms were reported throughout the night. They needed longer time to fall asleep and woke up more times during the night.We thought that people would have earworms at bedtime when they were trying to fall asleep, but we certainly didn’t know people would regularly(经常地) wake up from sleep with an earworm,” says Micha el, “But we saw that in both the survey and the test.”People used to believe that listening to music could help them have a better sleep, because it can relax the body. But Michael and his team suggested that it might be worse for our sleep — that even after the music stops, our brains continue to process it for several hours.Michael suggested avoiding listening to music right before bed to limit the chance of a song taking hold in our minds. “Doing some other activities, like making a list of jobs for th e next day, might help clear the mind,” Michael said.( )11. Michael and his team did the research to find out _______.A. the influence of earworms on our sleepB. why nighttime earworms happenC. the influence of bad sleep on our health( )12. What was the new discovery about listening to earworms in the research?A. It would make people stay up late.B. It would make people have earworms at bedtime.C. It would make people wake up more often at night.( )13. The underlined word “limit” has the closest meaning to “_______”.A. controlB. increaseC. share( )14. What can we infer from the last two paragraphs?A. Listening to music before going to bed is good for health.B. People can do some sports to relax the body before sleeping.C. The more we listen to music, the worse sleep we may have.( )15. What’s the purpose of the passage?A. To help readers improve sleep quality.B. To tell readers about the recent research.C. To ask readers to stop listening to music.第二节阅读下面短文内容,从短文后的选项中选出能填入空白处的最佳选项。
辽宁省本溪市实验中学2023-2024学年九年级上学期第三次月考语文试题(含答案)
2023-2024年度(上)实验中学九年级阶段验收语文试卷考试时间:150分钟满分:120分注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
一、积累与应用(17 分)1.下列词语中加点字的字音、字形完全正确的一项是()(2分)A.恣睢(suī)天娇(jiāo)瞥见(piě)间不容发(fà)B.冒然(mào)旁骛(wù)逞办(chéng)自吹自擂(léi)C.吹嘘(xū)杜绝(jué)筵席(yán)言不及义(yì)D.糟踏(tà)端详(xiáng)炊烟(cuī)鸠占鹊巢(què)2. 依次填入下面句子横线处的词语最恰当的一项是()(2分)你若盛开,那是______在春日枝头上的一种情怀。
盛开,是花朵潜伏已久的梦,也是它不得不______的一种职责。
盛开,总是令人欣喜的。
花朵的盛开是______,是热闹;生命的盛开是激情,是______。
A.悄然绽放履行绚丽奋进B.含苞待放施行妖艳前进C.悄然绽放施行绚丽前进D.含苞待放履行妖艳奋进3.下列各项中分析正确的一项是()(2分)①被誉为楚国“丝绸宝库”的江陵马山一号楚墓,出土了大批精美的丝绸织物。
②这些织物轻薄细密、流光溢彩、柔软如梦。
③那锦上添花的刺绣,构图既生动流畅又艳丽繁复,有龙飞凤舞的灵动造型,也有花草枝蔓的自然延伸,其作品之精美、绣工之细腻,令人赞不绝口。
④历经两千余年的沧桑,颜色仍然鲜艳如新,令人叹为观止。
A.第②句中的“轻薄细密”“流光溢彩”“柔软如梦”都是并列短语。
B.第③句是病句,“龙飞凤舞”用词不当。
C.第④句中的“历经两千余年的沧桑”是状语。
D.第③句中的“赞不绝口”和第④句中的“叹为观止”可以调换位置。
4. 文学、文化常识与名著阅读(5分)(1)下列各项中表述不正确的一项是()(2分)A.运用典故是古诗词常见的表现方法,分为事典和语典两类,《水调歌头》开头、结尾是对语典的改造运用。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共40分)1.下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是()A.B.C.D.2.点P(2,﹣5)关于原点的对称点的坐标是()A.(﹣2,﹣5)B.(2,5)C.(﹣2,5)D.(﹣5,2)3.已知⊙O的半径为3,点M在⊙O上,则OM的长可能是()A.2B.3C.4D.54.如图所示,在⊙O中=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°5.平面上一点P与⊙O的点的距离的最小值是2,最大值是8,则⊙O的直径是()A.6或10B.3或5C.6D.56.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.90°B.60°C.45°D.30°7.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB 上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°8.下列说法:①弧长相等的弧是等弧;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的外心到三角形三个顶点的距离相等.其中不正确的有()个.A.1B.2C.3D.49.某数学兴趣小组研究二次函数y=x2+bx+c的图象时,得出如下四个结论:甲:图象与x轴的一个交点为(1,0);乙:图象与x轴的一个交点为(3,0);丙:图象与x轴的交点在原点两侧;丁:图象的对称轴为过点(1,0),且平行于y轴的直线;若这四个结论中只有一个是不正确的,则该结论是()A.甲B.乙C.丙D.丁10.如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.二、填空题(共24分)11.已知关于x的方程x2﹣3x﹣m=0的一个根是1,则m=.12.如图,若∠BOD=140°,则∠BCD=.13.在半径为10cm的⊙O中,圆心O到弦AB的距离为6cm,则弦AB的长是cm.14.如图,⊙O上三点A,B,C,半径OC=1,∠ABC=30°,⊙O的切线P A交OC延长线于点P,则PC的长为.15.在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.16.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P,若AB=6,BC=3,则下列结论:①F是CD的中点:②⊙O的半径是2;③AE=CE,其中正确的是.(写序号)三、解答题(共86分)17.解方程:x2﹣2x﹣5=0.18.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是;(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.19.已知关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,且n+2m=4,求n 的取值范围.20.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得点O在边AB 上,且⊙O经过B、D两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)21.如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;22.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?23.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠CAB,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形;(2)判断直线DE与⊙O的位置关系并证明;(3)若AB=10,BC=8,求CE的长.24.如图,△ABC内接于⊙O,弦BD⊥AC,垂足为E,点D、点F关于AC对称,连结AF 并延长交⊙O于点G.(1)连结OB,求证:∠ABD=∠OBC;(2)求证:点F、点G关于BC对称.25.已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)若点P的横坐标为1,点B的坐标为(3,6).①求抛物线的解析式;②若当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,求m的取值范围;(2)若点P在第一象限,且P A=PO,过点P作PD⊥x轴于D,将抛物线y=x2+bx+c 平移,平移后的抛物线经过点A、D,与x轴的另一个交点为C,试探究四边形OABC的形状,并说明理由.参考答案一、选择题(共40分)1.解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2.解:因为点P(2,﹣5)关于原点的对称点的坐标特点:横纵坐标互为相反数,所以对称点的坐标是(﹣2,5),故选:C.3.解:∵点M在⊙O上,⊙O的半径为3,∴OM=3,故选:B.4.解:∵=,∴AB=AC,∴∠B=∠C,∵∠A=30°,∴∠B=∠C=×(180°﹣30°)=75°.故选:B.5.解:当点P在圆内时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为10,当点P在圆外时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为6.故选:A.6.解:当AP与⊙O相切时,∠OAP有最大值,连接OP,如图,则OP⊥AP,∵OB=AB,∴OA=2OP,∴∠P AO=30°.故选:D.7.解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.8.解:①弧长相等的弧是等弧,故该说法不正确;②不在同一直线的三点可以确定一个圆,故该说法不正确;③在同圆和等圆中,相等的圆心角所对的弧相等,故该说法不正确;④经过半径外端且垂直于这条半径的直线是圆的切线,故该说法不正确;⑤三角形的外心是三角形三边垂直平分线的交点,到三角形三个顶点的距离相等,故该说法正确.故选:D.9.解:若甲、乙成立,(1+3)÷2=1,∴图象的对称轴为过点(1,0),且平行于y轴的直线,图象与x轴的交点在原点右侧,故丁结论正确;图象与x轴的交点在原点右侧,故丙结论不正确,符合题意.故选:C.10.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.二、填空题(共24分)11.解:把x=1代入方程可得:1﹣3﹣m=0,解得m=﹣2.故答案为:﹣2.12.解:由圆周角定理得,∠A=∠BOD=70°,∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=110°,故答案为:110°.13.解:连接OB.在Rt△ODB中,OD=6cm,OB=10cm.由勾股定理得BD===8.∴AB=2BD=2×8=16cm.14.解:连接OA,∵AP是⊙O的切线,∴OA⊥AP,∵∠ABC=30°,∴∠AOP=2∠ABC=60°,∴∠APO=30°,∵OA=OC=1,∴OP=2OA=2,∴PC=OP﹣OC=1.故答案为:1.15.解:如图,连接PP',过点D作DE⊥BC,∵DP绕点D逆时针旋转60°,∴DP=DP',∠PDP'=60°,∴△DP'P是等边三角形,∴DP=PP',∠DPP'=60°,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,∴△BDP≌△CPP'(AAS)∴BD=CP=2,∴BP=3,∵∠B=60°,BD=2,DE⊥BC,∴BE=1,DE=BE=,∴PE=2,∴DP===,故答案为.16.解:①∵AF是AB翻折而来,∴AF=AB=6,∵矩形ABCD,则,∴,∴DF=CF,∴F是CD中点;故①正确;②如图,连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴△APO∽△ADF,∴,设OP=OF=x,则,解得:x=2,故②正确;③∵Rt△ADF中,AF=6,DF=3,∴,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=∠B=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,故③错误;故答案为:①②.三、解答题(共86分)17.解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.解:(1)∵小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小晗任意按下一个开关,正好楼梯灯亮的概率是:;(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:=.19.解:根据题意得Δ=(﹣2)2﹣4×(﹣m)>0,解得m>﹣1.∵n+2m=4,∴m=>﹣1,解得n<6,即n的取值范围为n<6.20.解:如图,⊙O为所作.证明:连接OD,如图,∵BD平分∠ABC,∴∠CBD=∠ABD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∴∠ODA=∠ACB,又∠ACB=90°,∴∠ODA=90°,即OD⊥AC,∵点D是半径OD的外端点,∴AC与⊙O相切.21.解:(1)旋转后的三角形ACP'如图所示:(2)由旋转可得,∠P AP'=∠BAC=50°,AP=AP',△ABP≌△ACP',∴∠APP'=∠AP'P=65°,∠AP'C=∠APB,∵∠BAC=50°,AB=AC,∴∠B=65°,又∵∠BAP=20°,∴∠APB=95°=∠AP'C,∴∠PP'C=∠AP'C﹣∠AP'P=95°﹣65°=30°.22.解:(1)设y与x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数关系式得:,解得:,故函数的关系式为:y=10x+100(0<x<20);(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.23.解:(1)如图1即为补全的图形.(2)直线DE是⊙O的切线.理由如下:证明:如图2,连接OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直线DE是⊙O的切线.(3)∵AB是⊙O的直径,∴∠ACB=90°.∵AB=10,BC=8,∴AC=6.∵∠BFO=∠ACB=90°,∴OD∥AC.∵O是AB中点,∴OF==3.∵OD==5,∴DF=2.∵DE∥BC,OD∥AC,∴四边形CFDE是平行四边形.∵∠ODE=90°,∴平行四边形CFDE是矩形.∴CE=DF=2.答:CE的长为2.24.证明:(1)连接OC,∵BD⊥AC,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵,∴∠BOC=2∠BAC,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2∠BAC=180°,∴∠OBC+∠BAC=90°,∴∠OBC=∠ABE,即∠OBC=∠ABD,(2)连接BG,AD,GC,AG交BC于点H,∵点D,F关于AC对称,∴EF=ED,∵BD⊥AC,∴∠AEF=∠AED=90°,又∵AE=AE,∴△AEF≌△AED(SAS),∴∠EAF=∠EAD,∠AFE=∠ADE,即∠GAC=∠DAC,∵,∴∠DAC=∠DBC,∵,∴∠GAC=∠GBC,∴∠DBC=∠GBC,∵∴∠ADB=∠BGA,∵∠AFD=∠BFG,∴∠BFG=∠AGB,∴△BHF≌△BHG(AAS),∴FH=GH,∠BHF=∠BHG=90°,∴点F,点G关于BC对称.25.解:(1)①∵抛物线y=x2+bx+c的顶点P的横坐标为1,∴﹣=1,解得:b=﹣2.∴y=x2﹣2x+c,∵抛物线y=x2﹣2x+c经过点B(3,6),∴6=32﹣2×3+c,解得:c=3.∴抛物线的解析式为y=x2﹣2x+3;②由y=x2﹣2x+3=(x﹣1)2+2知,P(1,2).∴点(3,6)关于对称轴x=1的对称点B′的坐标为(﹣1,6),如图1,∵当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,∴﹣1≤m≤1;(2)如图2,由P A=PO,OA=c,可得PD=.∵抛物线y=x2+bx+c的顶点坐标为P(﹣,),∴=.∴b2=2c.∴抛物线y=x2+bx+b2,A(0,b2),P(﹣b,b2),D(﹣b,0).可得直线OP的解析式为y=﹣bx.∵点B是抛物线y=x2+bx+b2与直线y=﹣bx的图象的交点,令﹣bx=x2+bx+b2.解得x1=﹣b,x2=﹣.可得点B的坐标为(﹣b,b2).由平移后的抛物线经过点A,可设平移后的抛物线解析式为y=x2+mx+b2.将点D(﹣b,0)的坐标代入y=x2+mx+b2,得m=b.则平移后的抛物线解析式为y=x2+bx+b2.令y=0,即x2+bx+b2=0.解得x1=﹣b,x2=﹣b.依题意,点C的坐标为(﹣b,0).则BC=b2.则BC=OA.又∵BC∥OA,∴四边形OABC是平行四边形.∵∠AOC=90°,∴四边形OABC是矩形.。
人教版九年级英语上册第三次月考(含答案)
九年级上册第三次月考英语Ⅰ . 听力技能(两部分,共20小题,计20分)第一节听下面5段对话。
每段对话后有一小题,从题中所给的A、B、C三个选项中选出最佳选项回答问题。
(共5小题,计5分)1.Who did Sally spend last weekend with?A. Her parents.B. Her friends.C. Her cousins.2.Where will they meet tomorrow?A. At the supermarket.B.At the parkC. At the school gate.3. What kind of music does the boy prefer?A. Pop music.B. Jazz.C. Smooth music4.What will the woman probably do this evening?A. Take a physic examB. Work on her project.C. Go to the school dance.5.How much will the man pay for the tickets?A.120 yuanB. 60 yuanC. 90 yuan.第二节听下面6段对话或独白。
每段对话或独白后有2-3个小题,从题中所给的A、B、C三个选项中选出最佳选项回答问题。
(共15小题,计15分)听第六段对话,回答第6、7小题。
6.Whose is the dress?A.Lily’B. Lucy’s.C. Mary’s.7.What color is the dress?A.Red.B.Green.C. Orange.听第七段对话,回答第8、9小题。
8.What are they talking about?A.Tom’s class.B.Tom’s EnglishC. Tom’s mother.9.What’s the relationship between these two speakers?A. Neighbors.B.Husband and wife.C. A parent and a teacher.听第八段对话,回答第10、11小题。
2023-2024学年湖南省长沙市师大附中教育集团九年级上学期第三次月考语文试题
2023-2024学年湖南省长沙市师大附中教育集团九年级上学期第三次月考语文试题阅读下面的文字,完成下面小题。
11月22下午,初2021级语文备课组举办了主题为“成长路上,选择和努力哪个更重要”的年级辩论赛决赛。
在最精彩的自由辩论环节中,双方辩手前仆后继....,互不相让,立足已方观点,针对对方的漏洞将辩论赛推向高潮。
辨手们在言语中碰撞思维的火花,灌溉..成长的种子,①赛后,陈婧校长对整场比赛进行了点评,可谓是抛砖引玉。
经过激烈角理,最终正方摘得本次比赛的桂冠..,②反方三辨获得最佳辨手的称号。
③辩论()一门语言的艺术。
()一门思维的艺术,④通过这次辩论比赛,使同学们对“选择”和“努力”有了更加全面的认识。
如果人生是一次远航,那么正确的选择就是duòshǒu 必经途径。
1. 下面是小语对这段文字做的字音字形及词义的梳理记录,其中有错误的一项是()A.注意词语的误用,文段中加点成语“前仆后继”使用错误。
B.注意因音近造成的误写,文段中加点词语“灌溉”不要写成“灌概”C.注意多音字的误读,文段中加点词语“桂冠”和“既加冠”的读音不一样。
D.注意积累常见的字音字形,文段中“duòshǒu”一词字形为“舵手”。
2.下面是小语对这段话的理解,其中最恰当的一项是()A.在语言表述中,要注意语言表达得体,文段中画线句子①表达得体。
B.在语言表达中,也要注意标点符号的使用,文段中画线句子②“最佳辩手”属于特定称谓,应加上双引号。
C.在语言表述中,要注意语言的连贯,文段中划线句子③括号里的关联词应该填“不是”“而是”。
D.在语言表述中,要注意语病,文段中画线句子④表述恰当,句意明确。
3. 古诗文默写人生无处不在面对着选择,有的人面对生与义的选择时义无反顾:(1)“______________,____________。
(孟子《鱼我所欲也》):有的人在面对回家和建功立业的选择时,生发出(2)“_____________,____________”的矛盾心理(范仲淹《渔家傲·秋思》)。
九年级(上)第三次月考数学试卷(带答案)
九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。
人教版九年级上册数学第三次月考试题含答案
人教版九年级上册数学第三次月考试卷一、单选题1.下列标志中,可以看作是中心对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,P 的圆心坐标为(4,8),半径为5,那么x 轴与P 的位置关系是( )A .相离B .相切C .相交D .不能确定 3.对于二次函数y =(x -1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点 4.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧BC 的长是( )A .2πB .3πC .4πD .6π 5.如图,已知ADE ACB ,若AB=10,AC=8,AD=4,则AE 的长是( )A .4B .3.2C .20D .56.把抛物线y =2x 2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A .y =2(x+3)2+4B .y =2(x+3)2﹣4C .y =2(x ﹣3)2﹣4D .y =2(x ﹣3)2+47.用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 8.二次函数2y ax b =+(b >0)与反比例函数a y x=在同一坐标系中的图象可能是( ) A . B . C . D . 9.如图是抛物线21y ax bx c =++ (0a ≠)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线2y mx n =+ (0m ≠)与抛物线交于A 、B 两点,下列结论:①20a b +=;②0abc >;③方程23ax bx c ++=有两个相等的实数根;④当14x <<时,有21y y <;⑤抛物线与x 轴的另一个交点是(-1,0),其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤ 10.如图,在O 中,AB 是直径,点D 是O 上一点,点C 是弧AD 的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P 、Q ,连接AC ,关于下列结论:①BAD ABC ∠∠=;②GP=GD ;③点P 是△ACQ 的外心,其中正确结论是( )A .①③B .②C .③D .②③二、填空题 11.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径5cm r =,该圆锥的母线长12cm l =,则扇形的圆心角θ度数为_______.12.如图,点A 在双曲线k y x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.13.如图,△COD 是△AOB 绕点O 顺时针旋转38︒所得到的图形,点C 恰好在AB 上,AOD 90∠=︒,则B ∠的度数是_____.14.若点A (1x ,1)、B (2x ,2)、C (33,x -)在双曲线1y x=-上,则1x 、2x 、3x 的大小关系为______. 15.二次函数223y x x =--,当03x ≤≤时,y 的最大值和最小值的和是_______.16.如图,由一个半圆与抛物线的一部分围成一个封闭图形,点A ,B ,C ,D 分别是该封闭图形与坐标轴的交点,抛物线的解析式为21382y x x =--,AB 为半圆的直径,点M 为半圆的圆心,点P 为x 轴正半轴上的一点,若COP CPD ~,则点P 的坐标是________.三、解答题17.解方程(1)2620x x +-=(2)()330x x x -+-=18.如图,已知AB 是⊙O 的弦,点C 在线段AB 上,OC=AC=4,CB=8.求⊙O 的半径.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-2,1),B (-1,4),C (-3,3).若△ABC 绕点B 逆时针旋转90︒后,得到△11A BC (A 和1A 是对应点)(1)写出点1A ,1C 的坐标;(2)求旋转过程中边AB 扫过的面积(结果保留π);(3)以原点O 为位似中心,位似比为1:2,在y 轴的左侧,画出△ABC 放大后的图形△222A B C ,并直接写出点2C 的坐标.20.如图,已知平行四边形ABCD ,点E 是边AB 的延长线上一点,DE 与BC 交于点F ,12BE AB =.(1)求证:ADE CFD ∆∆;(2)若BEF ∆的面积为1,求四边形ABFD 的面积.21.如图,△ABC 外切于⊙O ,切点分别为D 、E 、F ,BC =7,⊙O (1)∠A =60°,求△ABC 的周长.(2)若∠A =70°,点M 为⊙O 上异于F 、E 的动点,则∠FME 的度数为 °.22.在平面直角坐标系中,点A (6,0),点B (0,8),把△AOB 绕原点O 逆时针旋转,得△COD ,其中点C ,D 分别为点A ,B 旋转后的对应点,记旋转角为α(0α360︒<<︒) (1)如图,当α45=︒时,求点C 的坐标;(2)当CD//x轴时,求点C的坐标.23.我市某超市销售一种文具,进价为5元/件,售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x x ,且x是按0.5元的倍数上涨),当天销售利润为y元.元/件(6(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.24.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.25.如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.抛物线的对称轴与x轴交于点E,点P在对称(1)求抛物线的解析式;(2)直线CM 与x 轴交于点D ,若DME APE ∠∠=,求点P 的坐标;(3)请探索:是否存在这样的点P ,使ANB 2APE ∠∠=?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案1.B2.A3.C4.B5.D6.A7.B8.B9.B10.D11.150°13.57°14.123x x x <<15.4-16.()17.(1)13x =-+23x =-(2)13x =,21x =-18.OA =19.(1)A 1(2,3),C 1(0,2);(2)52π;(3)作图见解析,C 2(-6,6) 20.(1)见解析;(2)821.(1)20;(2)55或125.22.(1);(2)(185,245))或(185-,245-). 23.(1)210210800=-+-y x x ;(2)每件文具售价为9元,最大利润为280元. 24.(1)点B (3,4),点C (﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.25.(1)y=-x 2+2x+3;(2)P (1,2)或(1,-2);(3)P (1)或(1,).。
白山市第五中学、白山市第七中学2023-2024学年度九年级上学期第三次月考语文试卷(含答案)
2023-2024学年度九年级上学期第三次月考测试语文试卷一、积累与运用(15分)下面是小聪同学整理的以“古诗文同享”为题目的古诗文学习心得,请你在阅读时完成下面题目。
请在田字格中、括号里或横线上端正地书写正确答案或填写相应选项。
(第1~4题每句1分,第5题每小题2分)1.品读“,,三而竭”使我们明白了做事情要趁着情绪高涨时,一下子做完的道理。
2.吟诵文天祥的“人生自古谁无死?”两句让我们感受到这位南宋爱国诗人大义凛然、视死如归的精神。
3.《十五从军征》诗中,“,”两句以强烈的时间差,侧面表现了战争的长久残酷,让我们感慨万千。
4.岑参《白雪歌送武判官归京》诗中,“,”两句重现了热烈喧闹的宴饮送别场景。
5.阅读语段,按要求完成下面题目。
①有人说,每临大事须要有静气。
②大事当前的“静心功夫”,往往得益于艰难困苦的历练。
③_______________多经历几番乐风骤雨的洗礼,_______________能在大事来临之时沉着冷静,抵达“不以物喜,不以己悲”的境界。
④“静心功夫”还可以从读书中练出来。
⑤走进书中的世界,浮躁之气便能荡涤一空。
⑥身处低谷之时,从书中汲取前行的力量、得意之时,时常读书以自省。
⑦涵养几分静气,绝非暮气沉沉,而是多一些从容不迫、少一些进退失据。
(1)给下列加点的字注音。
①暴风骤雨()②荡涤()(2)第②句中的“艰难困苦”按照短语结构类型划分是_________________短语。
(3)请在第③句中的横线上填写一组恰当的关联词语。
_______________________________________________________________________________________________(4)第⑥句有一处标点符号使用有误,请将修改意见写下来。
_______________________________________________________________________________________________二、阅读(45分)(一)文言文阅读(15分)(甲)阅读下文,回答问题。
陕西省咸阳市实验中学 2022-2023学年九年级上学期第三次月考语文试题(含答案)
试卷类型:A 咸阳市实验中学2022~2023学年度第一学期阶段性检测(三)九年级语文注意事项:1.本试卷共6页。
全卷总分120分。
考试时间150分钟。
2.答题前,考生在试卷和答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、班级和准考证号填写清楚,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B)。
3.请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
4.考试结束,将本试卷和答题卡一并交回。
一、积累和运用(17分)1.下列各组词语中,加点字的读音全都正确的一组是()(2分)A.恪守(gè)丰润(rùn)调和(hé)自惭形秽(huì)B.作揖(yī)诓骗(kuāng)腼腆(tiǎn)间不容发(jiàn)C.骈进(pián)佝偻(jù)掺杂(chān)断壁残垣(yuán)D.拜谒(yè)亵渎(xiè)星宿(xiù)不由分说(fēn)2.下列各组词语中,汉字书写全都正确的一组是()(2分)A.褴褛阔绰鸠占雀巢不足为据B.箴言恭惟金戈铁马前仆后继C.栈桥抠门根深蒂固强聒不舍D.愧郝鄙夷持之以恒思贤若渴3.经典诗文默写。
【在第(1)~(7)题中,任选五题;在第(8)~(10)题中,任选一题】(6分)(1)____________,肯将衰朽惜残年!(韩愈《左迁至蓝关示侄孙湘》)(2)____________,夜吟应觉月光寒。
(李商隐《无题》)(3)寄书长不达,____________。
(杜甫《月夜忆舍弟》)(4)____________,蝉鸣黄叶汉宫秋。
(许浑《咸阳城东楼》)(5)怀旧空吟闻笛赋,____________。
(刘禹锡《酬乐天扬州初逢席上见赠》)(6)____________,欲说还休。
(辛弃疾《丑奴儿·书博山道中壁》)(7)山水之乐,____________。
人教版2022-2023学年九年级数学上册第三次月考测试题(附答案)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共16分)1.在下列四个图案中,是中心对称图形的是()A.B.C.D.2.若方程x2+kx﹣6=0的一个根是﹣3,则k的值是()A.﹣1B.1C.2D.﹣23.抛物线y=(x+3)2﹣1的顶点坐标是()A.(3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣3,﹣1)4.如图,将含有30°角的三角尺ABC(∠BAC=30°),以点A为中心,顺时针方向旋转,使得点C,A,B′在同一直线上,则旋转角的大小是()A.30°B.60°C.120°D.150°5.如图,在一块长30m,宽20m的矩形苗圃基地上修建两横一纵三条等宽的道路,剩余空地种植花苗,设道路的宽为xm,若种植花苗的面积为522m2,依题意列方程()A.20x+30×2x=600﹣522B.20x+30×2x﹣x2=600﹣522C.(20﹣2x)(30﹣x)=522D.(20﹣x)(30﹣2x)=5226.如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=()A.54°B.56°C.64°D.66°7.投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是()A.的值一定是B.的值一定不是C.m越大,的值越接近D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性8.已知二次函数y=ax2+bx+c中y与x的部分对应值如表:x…﹣2﹣1012…y…﹣1232﹣1…关于此函数的图象和性质有如下判断:①抛物线开口向下.②当x>0时,函数图象从左到右上升.③方程ax2+bx+c=0的一个根在﹣2与﹣1之间.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(共16分)9.一元二次方程x2﹣9=0的根为.10.点A(﹣5,3)关于原点的对称点A'的坐标为.11.把抛物线y=先向右平移6个单位长度,再向上平移3个单位长度,所得抛物线的函数表达式为.12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为直线x=1,则当y<0时,x的取值范围是.13.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为.14.如图,P A、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则P A=cm.15.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则∠CAD的度数是,弦AC,AD和围成的图形(图中阴影部分)的面积S是.16.新年联欢,某公司为员工准备了A、B两种礼物,A礼物单价a元、重m千克,B礼物单价(a+1)元,重(m﹣1)千克,为了增加趣味性,公司把礼物随机组合装在盲盒里,每个盲盒里均放两样,随机发放,小林的盲盒比小李的盲盒重1千克,则两个盲盒的总价钱相差元,通过称重其他盲盒,大家发现:称重情况重量大于小林的盲盒的与小林的盲盒一样重重量介于小林和小李之间的与小李的盲盒一样重重量小于小李的盲盒的盲盒个数05094若这些礼物共花费2018元,则a=元.三、解答题(满分68分)17.解方程.(1)x2﹣8x﹣2=0;(2)2x2﹣x﹣3=0.18.2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是事件(填“随机”、“不可能”或“必然”);(2)用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率.19.下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接等腰直角三角形ABC.作法:如图,①作直径AB;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于M点;③作直线MO交⊙O于点C,D;④连接AC,BC.所以△ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规、补全图形:(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.∴AC=∵AB是直径,∴∠ACB=()(填写推理依据).∴△ABC是等腰直角三角形.20.已知关于x的方程x2﹣2x+2k﹣1=0有两个实数根.(1)求k的取值范围;(2)若k为正整数,求此时方程的解.21.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请在图中作出△ABC绕点A逆时针方向旋转90°后得到的图形△A1B1C1:(2)求点C运动到点C1所经过的路径的长(结果保留π).22.如图,已知抛物线y=x2+bx+c经过A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式和顶点坐标.(2)直接写出当0<x<2时,求y的取值范围.23.如图,一条公路的转弯处是一段圆弧,点O是的圆心,E为上一点,OE⊥CD,垂足为F.已知CD=300m,EF=50m,求这段弯路的半径.24.如图在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,点O在AB上,以点O为圆心,OB长为半径的圆经过点D,交BC于点E,交AB于点F.(1)求证:AC是⊙O的切线;(2)若CE=2,CD=4,求半径的长.25.某公园在垂直于湖面的立柱上安装了一个多孔喷头,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉.安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d米的地点,水柱距离湖面的高度为h米.d(米)0 1.0 3.0 5.07.0h(米) 3.2 4.2 5.0 4.2 1.8请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这个喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请通过计算说明公园至少需要准备多少米的护栏(不考虑接头等其他因素)26.已知抛物线y=ax2+2ax+3a2﹣4(a≠0).(1)该抛物线的对称轴为;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,y1),N(2,y2)在该抛物线上,若y1>y2,求m的取值范围.27.如图,在等边△ABC中点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.28.如图,在平面直角坐标系xOy中,C(0,2),⊙C的半径为1.如果将线段AB绕原点O逆时针旋转α(0°<α<180°)后的对应线段A'B'所在的直线与⊙C相切,且切点在线段A′B′上,那么线段AB就是⊙C的“关联线段”,其中满足题意的最小α就是线段AB与⊙C的“关联角”.(1)如图1,如果A(2,0),线段OA是⊙C的“关联线段”,那么它的“关联角”为°.(2)如图2,如果A1(﹣3,3)、B1(﹣2,3),A2(1,1)、B2(3,2),A3(3,0)、B3(3,﹣2).那么⊙C的“关联线段”有(填序号,可多选).①线段A1B1②线段A2B2③线段A3B3(3)如图3,如果B(1,0)、D(t,0),线段BD是⊙C的“关联线段”,那么t的取值范围是.(4)如图4,如果点M的横坐标为m,且存在以M为端点,长度为的线段是⊙C的“关联线段”,那么m的取值范围是.参考答案一、选择题(共16分)1.解:A、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不合题意;B、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不符合题意;C、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不合题意;D、绕圆心旋转180°,能与自身重合,是中心对称图形,符合题意.故选:D.2.解:把x=﹣3代入方程x2+kx﹣6=0得:9﹣3k﹣6=0,解得:k=1,故选:B.3.解:∵抛物线y=(x+3)2﹣1,∴该抛物线的顶点坐标为(﹣3,﹣1),故选:D.4.解:旋转角是∠BAB′,∠BAB′=180°﹣30°=150°.故选:D.5.解:设道路的宽为xm,则种植花苗的部分可合成长(30﹣x)m,宽(20﹣2x)m的矩形,依题意得:(30﹣x)(20﹣2x)=522,故选:C.6.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠A=∠BCD=24°,∴∠ABD=90°﹣∠A=90°﹣24°=66°.故选:D.7.解:投掷一枚质地均匀的硬币m次,正面向上n次,随着m的增加,的值会在附近摆动,呈现出一定的稳定性,故选:D.8.解:∵x=﹣1和x=1时的函数值相同,都是2,∴抛物线的对称轴为直线x==0,∴抛物线的顶点为(0,3),∴y=3是函数的最大值,∴抛物线的开口向下,当x<0时,y随x的增大而增大,即当x<0时,函数图象从左到右上升,所以①正确,②错误;∵x=﹣2时,y=﹣1;x=﹣1时,y=2,∴方程ax2+bx+c=0的一个根在﹣2与﹣1之间,所以③正确.综上所述:其中正确的结论有①③.故选:B.二、填空题(共16分)9.解:x2﹣9=0,x2=9,∴x1=3,x2=﹣3,故答案为:x1=3,x2=﹣3.10.解:点A(﹣5,3)关于原点对称的点的坐标是A'(5,﹣3),故答案为:(5,﹣3).11.解:将抛物线先向右平移6个单位长度,得:;再向上平移3个单位长度,得:.故答案为:.12.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(3,0),对称轴为直线x =1,∴抛物线与x轴的另一个交点为(﹣1,0),由图象可知,当y<0时,x的取值范围是﹣1<x<3.故答案为:﹣1<x<3.13.解:第一次打开锁的概率为.14.解:如图,设DC与⊙O的切点为E;∵P A、PB分别是⊙O的切线,且切点为A、B;∴P A=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=P A+PB=10(cm);∴P A=PB=5cm,故答案为:5.15.解:连接CO、OD,CD,∵C、D是这个半圆的三等分点,∴CD∥AB,∠COD=60°,∴∠CAD的度数为:30°,∵OC=OD,∴△OCD是等边三角形,CD=OC=AB=6cm,∴△OCD与△CDA是等底等高的三角形,∴S阴影=S扇形OCD=π×62=6πcm2.故答案为:30°,6πcm2.16.解:∵A礼物重m千克,B礼物重(m﹣1)千克,∴A礼物比B礼物重1千克,∵每个盲盒里均放两样,小林的盲盒比小李的盲盒重1千克,∴小李的盲盒中为1件A礼物和1件B礼物,小林的盲盒中为2件A礼物;或小李的盲盒中为2件B礼物,小林的盲盒中为1件A礼物和1件B礼物;∴不管以上哪种情况,两个盲盒的礼物总价格都相差a+1﹣a=1(元),由表格中数据可知,重量小于小李的盲盒的有4盒可知小李的盲盒中为1件A礼物和1件B礼物,不可能为2件B礼物,∴小李的盲盒中为1件A礼物和1件B礼物,小林的盲盒中为2件A礼物,∴重量小于小李的盲盒为2件B礼物,∵与小林的盲盒一样重盲盒有5盒,与小李的盲盒一样重的盲盒有9盒,重量小于小李的盲盒有4盒,∴2件B礼物的有4盒,1件A礼物和1件B礼物有10盒,2件A礼物有6盒,∴2×4(a+1)+10×a+10(a+1)+2×6a=2018,解得a=50,故答案为:1,50.三、解答题(满分68分)17.解:(1)x2﹣8x﹣2=0,x2﹣8x=2,x2﹣8x+16=2+16,即(x﹣4)2=18,∴x﹣4=,∴x1=4+3,x2=4﹣3;(2)2x2﹣x﹣3=0,(2x﹣3)(x+1)=0,∴2x﹣3=0或x+1=0,∴x1=,x2=﹣1.18.解:(1)“A志愿者被选中”是随机事件,故答案为:随机;(2)画树状图如下:共有12种等可能的结果,其中A,B两名志愿者同时被选中的结果有2种,∴A,B两名志愿者同时被选中的概率为=.19.解:(1)如图所示:(2)证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.又∵直线MO交⊙O于点C,∴AC=BC.∵AB是直径,∴∠ACB=90°(直径所对的圆周角是直角),∴△ABC是等腰直角三角形.故答案为:BC、90°,直径所对的圆周角是直角.20.解:(1)∵x2﹣2x+2k﹣1=0有两个实数根,∴Δ≥0,∴(﹣2)2﹣4×1•(2k﹣1)≥0,解得k≤1;(2)由(1)知k≤1,∵k为正整数,∴k=1,∴原方程为:x2﹣2x+1=0,∴(x﹣1)2=0,∴x1=x2=1.21.解:(1)△A1B1C1如图所示;(2)∵,∴点C运动到点C1所经过的路径的长为:.22.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(2,0)两点,∴,解得:,∴抛物线的解析式为y=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的顶点坐标为(,﹣).(2)∵抛物线的顶点坐标为(,﹣).∴函数有最小值y=﹣,∵x=2时,y=0,∴当0<x<2时,y的取值范围﹣≤y<0.23.解:连接OC.设这段弯路的半径为Rm,则OF=OE﹣EF=(R﹣50)m,∵OE⊥CD,∴CF=CD=×300=150(m).根据勾股定理,得OC2=CF2+OF2,即R2=1502+(R﹣50)2,解得R=250,所以这段弯路的半径为250m.24.(1)证明:如图,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD是△ABC的角平分线,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∴∠ODA=∠C=90°,∵AC经过⊙为的半径OD的端点D,且AC⊥OD,∴AC是⊙O的切线.(2)如图,设⊙O的半径为r,则OB=OD=r,作OG⊥BE于点G,则BG=EG,∠OGB=90°,∵∠ODC=∠C=∠OGC=90°,∴四边形ODCG是矩形,∵CE=2,CD=4,∴OG=CD=4,CG=OD=r,∴BG=EG=r﹣2,∵OB2=OG2+BG2,∴r2=42+(r﹣2)2,解得r=5,∴⊙O的半径长为5.25.解:(1)如图,(2)由(1,4.2)和(5,4.2)可知,抛物线的对称轴为d=3,当d=3时,h=5,∴水柱最高点距离湖面的高度是5米;(3)由图象可得,顶点(3,5),设二次函数的关系式为h=a(d﹣3)2+5,把(0,3.2)代入可得a=﹣0.2,∴h=﹣0.2(d﹣3)2+5;(4)当h=0时,即﹣0.2(d﹣3)2+5=0,解得d=﹣2(舍去)或d=8,∴正方形的边长为2×(8+1)=18(米),∴至少需要准备栏杆4×18=72(米),∴公园至少需要准备72米的护栏.26.解:(1)∵抛物线y=ax2+2ax+3a2﹣4.∴对称轴为直线x==﹣1,故答案为:直线x=﹣1;(2)y=ax2+2ax+3a2﹣4=a(x+1)2+3a2﹣a﹣4,∵抛物线顶点在x轴上,即当x=﹣1时,y=0,∴3a2﹣a﹣4=0,解得.∴抛物线解析式为y=﹣x2﹣2x﹣1或.(3)∵抛物线的对称轴为直线x=﹣1,∴N(2,y2)关于直线x=﹣1的对称点为N’(﹣4,y2).(ⅰ)当a>0时,若y1>y2,则m<﹣4或m>2;(ⅱ)当a<0时,若y1>y2,则﹣4<m<2.27.解:(1)如图所示:(2)∠BDE=∠BPE,理由如下:∵将线段PD绕点P逆时针旋转60°得到线段PE,∴PD=PE,∠DPE=60°,∴△PDE是等边三角形,∴∠DPE=∠PDE=60°,∴∠BPE+∠DPC=120°,∴∠BPE=120°﹣∠DPC,∵∠BDP=∠DPC﹣60°,∴∠BDE=60°﹣∠BDP=60°﹣(∠DPC﹣60°)=120°﹣∠DPC,∴∠BDE=∠BPE;(3)BD=BE+BP,理由如下:如图,在BD上截取DF=BP,连接EF,由(2)可知:∠BDE=∠BPE,在△DEF和△PEB中,,∴△DEF≌△PEB(SAS),∴EF=BF,∠EBP=∠EFD,∴∠EBF=∠EFB,∵∠EFB+∠EFD=2∠EBF+∠DBC=180°,∴∠EBF=60°,∴△BEF是等边三角形,∴BE=BF,∵BD=BF+DF,∴BD=BE+BP.28.解:(1)如图1,作OD与⊙C相切于点D,∴CD⊥OD,∵sin∠COD==,∴∠COD=30°,∴∠AOD=60°,OD=<2,∴OA的“关联角”为60°,故答案为:60;(2)如图2,连接OB1,OA2,OB2,OB3,∵OB1=3>3,∴A1B1绕O旋转无法与⊙C相切,故A1B1不是⊙C的“关联线段”,∵OA2=,OB2=,<3<,∴A2B2是⊙C的“关联线段”,∵OA3=3,∴A3B3是⊙C的“关联线段”,故答案为:②③;(3)如图3,∴B点旋转路线在半径为1的⊙O上,当OD与⊙C相切时,由(1)知,OD=,∴当t≥时,线段BD是⊙C的“关联线段”,故答案为:t≥;(4)如图4,当m取最大值时,M点运动最小半径是O到过(m,0)的直线l的距离是m,∵CD=1,M'D=,∴M'C=2,∴OM'=4,∴m的最大值为4,如图5,当m取最小值时,开始时存在ME与⊙C相切,∵CE=1,ME=,∴MC=2,∵0°<α<180°,∴m>﹣2,综上,m的取值为﹣2<m≤4,故答案为:﹣2<m≤4.。
云南省曲靖市麒麟区第七中学2023-2024学年上学期九年级第三次月考数学试题
C.130
D. 50 或130
10.若函数 y m 4 x m 5 是反比例函数,则4
D.0
11.如图,平行于 BC 的直线 DE 把 VABC 分成面积相等的两部分,则 DE 的值为( ) BC
试卷第 2 页,共 6 页
A.1
B. 2 2
C. 2 1
C.
D.
5.平面直角坐标系中,M 点坐标为( 2,3),以 2 为半径画 e M ,则以下结论正确的是
()
A. e M 与 x 轴相交,与 y 轴相切
B. e M 与 x 轴相切,与 y 轴相离
C. e M 与 x 轴相离,与 y 轴相交
D. e M 与 x 轴相
离,与 y 轴相切
6.某商品的进价为每件 40 元,当售价为每件 60 元时,每星期可卖出 200 件,现需降
试卷第 5 页,共 6 页
(1)判断直线 EA 与 e O 的位置关系,并证明你的结论; (2)若 BC BE , S2 mS1 ,求常数 m 的值. 24.如图,在平面直角坐标系中,直线 y 1 x 2 交 x 轴于点 P,交 y 轴于点 A.抛物
3
线 y 1 x2 bx c 的图象过点 E 1,0 ,并与直线相交于 A、B 两点.
值为()
A.33
B.-33
C.-7
D.7
3.下列方程中,是一元二次方程的是( )
A. (x 3)x x2 2
B. ax2 bx c 0
C. 3x2 1 2 0 x
D. 2x2 1
4.下列图象中,函数 y ax2 a(a 0) 与 y ax a 的图象大致是( )
A.
B.
D. 2 1
12.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
22=-+y x x 3
2132=-x x 03)13(22=--x x
x 3852=-九年级数学第三次月考试卷
(检测时间:120分钟 满分:120分)
一、精心选一选(3分×10=30分)
1 2、若
x
x -=-7)7(2 ,则X 的取值范围是( )
A X<7
B X>7
C X ≤7
D X ≥7
3、已知点A的(2,2),如果点A关于X轴的对称点是B,B点关于原点的对称点为C,那么C点的坐标是( )
A (2,2)
B (-2 ,2)
C (2 , -2)
D (-2 ,-2)
4、在直角坐标系中,⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为
半径为1,那么⊙O与⊙A的位置关系是( )
A 外离
B 外切
C 内切
D 相交
5、一个口袋里有1个红球,9个白球,从中任意摸出1个球后,不放回去,再从口袋里摸出1个球,那么这次摸到红球的概率是( )
A 0
B 101
C 91
D 0或91
6、已知⊙O中,劣弧AB=2CD,则下列结论正确的是( ) A AB<2CD B AB=CD C AB>2CD D AB≤2CD
7、把抛物线 的图像向右平移3个单位,再向下平移2个单
位,所得图像的解析式是 则有( ) A b=3c=7 B b=-9c=-15 C b=3c=3 D b=9c=21 8、某学习小组全体同学在元旦晚会上都为本组其他人员送了一张新年贺卡,若
c
bx x y ++=2532+-=x x y )1,3(-
全体共送156张,则这个小组的同学共有( ) A 15人 B 14人 C 13人 D 12人
9、已知二次函数c bx ax y ++=2
)(0≠a 的图像如图所示,则下
列结论:
①0>ac ②0<+-c b a ③042
<-ac b ④
03<+c a ⑤方程)0(02
≠=++a c bx ax 有两个大于1-的实数根,其
中正确的结论是( )
A ①②③
B ②③④
C ③④⑤
D ②④⑤
10.如图,AB 是半圆直径,半径OC ⊥AB 于O,AD 平分∠CAB 交弧BC 于点D,连接CD,OD.下列结论:① AC ∥OD; ② CE=OE ; ③∠OED=∠AOD ;④ CD=DE.
其中正确结论的个数有( )
A. 1个
B.2个
C. 3个
D. 4 个
二、耐心填一填(3分×8=24分)
11、若x x x +∙
-=
-3392
12、方程
13半径为4中心角等于 度,面积为 14、如图所示,把△ABC绕点C顺时针旋转30°, 得到△A’B’C’,其中A’B’与AC交于点D, 若∠A’DC=90°,则∠A= 。
15圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的圆心角是( ) 16、已知△ABC是⊙O的内切三角形,OD⊥BC于D,且∠BOD=42°, 则∠BAC= 。
17、若y关于x的函数 的图像与坐标轴有两
个交点,则a的范围为 。
18在Rt△ABC中,∠A=90°, AB=AC=4,⊙O以AB为直径,
1(21)1(312-=-x x a x a x a y +---=)12()2(2B C
’
交BC于点D,如图所示,则图中 阴影部分的面积为
三、细心答一答(共66 分)
19、先化简,再求值:
423252+-÷+-
-x x x x )( ,其中32-=x (5分)
20.(本题满分6分)
某村计划建造如图所示的矩形蔬菜温室,要求温室的长宽之比为2:l ,在温室内,距前侧内墙保留3m 宽的空地,其它三个侧墙内各保留lm 宽的通道,当矩形温室的长为多少时,蔬菜种植区域的面积是288m 2?
21.(本小题满分6分)
有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数
字记作一次函数y kx b =+中的k ,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)试求k 为负数的概率;
(2)求一次函数y kx b =+的图象经过二、三、四象限的概率(用树状图或列表法求解).
C
22.(本题满分6分)
23、如图,AB是⊙O的直径,P在AB的延长线上,PD与⊙O相切于点D,C在⊙O 上,PC=PD。
(1)求证:PC是⊙O的切线。
(4分) (2)连接AC,若AC=PC,PB=1,
求⊙O的半径。
(4分)
D
图10 1- 2- 3 正面
背面
24.(本小题满分10分)
某工厂生产的瓷砖按色号及质量分为10个产品档次.第1档次(最低档次)的产品一天能生产760箱,每箱利润100元.每提高一个档次,每件利润增加20元,但每天产量会减少40箱.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且
110
≤≤),求出y关于x的函数关系式;
x
(2)若生产第x档次的产品一天的总利润为108000元,求该产品的质量档次.
25.(本题满分12分)
在等腰△ABC中,AB=AC,边AB绕点A逆时针旋转角度m得到线段AD·(1)如图I,∠BAC=30°,30°<m<180°,连接BD,请用含m的式子表示
∠DB C的度数;
(2)如图2,若∠BAC=60°,0°<m<360°,连接BD、DC,直接写出△BDC为等腰三角形时m所有可能的取值;
(3)如图3,若∠BAC=90°,射线AD与直线BC相交于点E,是否存在旋转角度m,使若存在.求出所有符合条件的m的值,若不存在,请说明理由.
26(12分)。