6 直线和圆的位置关系(第1课时)

合集下载

直线和圆的位置关系(第1课时)课件

直线和圆的位置关系(第1课时)课件

内部
直线完全在圆的内部。
如何判断直线与圆的位置关系
要判断直线和圆的位置关系,可以使用以下几种方法: • 计算直线与圆心的距离,判断是否等于半径 • 求解直线方程与圆方程的交点 • 观察直线与圆的相对位置关系
直线与圆的常见例题
1
例题二
2
求解直线方程与圆方程的交点。
3
例题一
判断直线与圆的位置关系,并说明理 由。
直径
直径是通过圆心并且两个圆上 的点的距离。它是圆的最长宽 度。
圆心
圆的中心点,它在所有圆上的 点的中点。
直线与圆的位置关系
直线与圆可以有不同的位置关系。了解这些关系对于解决与直线和圆有关的问题非常重要。
外部
直线完全在圆的外部,不与圆相交。
切线
直线刚好与圆相切,只有一个切点。
相交
直线与圆相交于两个不同的点。
直线和圆的位置关系(第1 课时)课件
本课程将介绍直线和圆的位置关系,并探讨圆的基本概念。了解直线与圆的 位置关系的方法,以及解决这类问题的常见例题。
圆的基本概念
在数学中,圆是由一组与中心点等距离的点组成的曲线。它具有许多独特的特性,例如半径、直径和圆 心。
半径
半径是从圆心到任何圆上的点 的距离。它是圆的关键尺寸之 一。
例题三
已知圆上两点和圆心的坐标,求直线 方程。
练习题与课堂互动
让我们通过一些练习题和课堂互动,更好地理解直线和圆的位置关系。
总结与下节课预告
通过本课时的学习,我们已经了解了直线和圆的位置关系以及解决问题的方 法。请准备好下节课的内容,我们将进一步探

直线和圆的位置关系(第1课时)

直线和圆的位置关系(第1课时)

没有
d>r


例 已知:如图,∠AOB=30°,P为OB 上一点,且OP=5 cm,以P为圆心,以R为半径 的圆与直线OA有怎样的位置关系?为什么?
(1) R 2 cm
(2) R 2.5 cm
C
A
2.5
(3) R 4 cm
O
P
B


1.已知⊙O的半径为5 cm,圆心O到直 线 a 的距离为3 cm,则⊙O与直线a的 位置关系是 相交 .直线a与⊙O的 两个 公共点个数是 . 2.已知⊙O的半径是4 cm,O到直线 a 的距离是4 cm,则⊙O与直线 a 的位 相切 置关系是 .
O r d B
d>r
直线l 与⊙O相离; 直线l 与⊙O相切;
l
d=r
A
l
d<r
直线l 与⊙O相交.
归 纳
直线与圆的 位置关系 相交 相切 相离


A
O d
r B
l
O d A
O
r l
r l
d
公共点个数 公共点名称 直线名称 圆心到直线距离 d与半径r的关系
2个 交点 割线 d<r1个 切点 切线d=r
(1)直线与圆有两个公共点时,叫做直线和圆 相交, 这时直线叫圆的 割线. (2) 直线和圆有唯一公共点时,叫做直线和圆 相切, 这时直线叫圆的 切线. (3)直线与圆没有公共点时,叫做直线和圆 相离.
思 考
1.能否根据基本概念来判断直线与圆 的位置关系?
直线l与⊙O没有公共点 直线l与⊙O只有一个公共点 直线l与⊙O有两个公共点 直线l与⊙O相离. 直线l与⊙O相切. 直线l与⊙O相交.

2.5.1直线与圆的位置关系(第1课时)

2.5.1直线与圆的位置关系(第1课时)


.


所求切线的方程为 = 或 − − = .
例2 过点(, )作圆: + = 的切线,求切线的方程.
法2(代数法):设切线的斜率为,则切线的方程为 − = − .
因为直线与圆相切,所以方程组
−= −
,只有一组解.
=
×+−
+
=


< .
所以,直线与圆相交,有两个公共点.
如图,由垂径定理,得 = − = .
几何法:数形结合
判断直线与圆的位置关系
例题小结
方法二:几何法
方法一:代数法
联立直线和圆的方程
有两解

计算圆心到直线的距离
相交


有一解

相切


个数?
例1 已知直线 : + − = 和圆心为的圆 + − − =
(1)判断直线与圆的位置关系;
(2)如果相交,求直线被圆所截得的弦长.
+ − =

解:(1)联立直线与圆的方程,得
+ − − = ②
解法2,把几何条件代数化,即用距离公式直接计算出,这种解法实
质上仍是几何方法.
P93练习1.判断下列各组直线与圆的位置关系:
(1) : − + = ,圆: + = ;
(2) : + + = ,圆C: + − = ;
(3) : + + = ,圆: + + = .

d = r;
(3)直线与圆相离

直线和圆的位置关系(第一课时) ppt课件

直线和圆的位置关系(第一课时)  ppt课件

2 若圆的半r和圆心到直线的距离d满足 r2+d2=2rd,圆与直线
的位置关系是—
相切
3 已知两个同心圆,大圆的半径为6cm,小圆的半径为3cm, 作大圆的弦MN=6cm,则弦MN与小圆的位置关系是— 相离 第一,求出圆心到直线的距离;
第二,将此距离和半径比较进行判定。
PPT课件
14
拓展 4 已知⊙A的直径为6,点A的坐标为 (-3,-4),则x轴与⊙A的位置关系是 _相__离__, y轴与⊙A的位置关系是_相__切__。
(2)根据性质,由__圆__心__到__直__线__的__距__离_ d与半径r 的关系来判断。
在实际应用中,常采用第二种方法判定。
PPT课件
12
男女对赛
1、已知圆的直径为13cm,设直线和圆心的距离为d : 1)若d=4.5cm ,则直线与圆 相交 , 直线与圆有__2__个公共点. 2)若d=6.5cm ,则直线与圆_相__切___, 直线与圆有___1_个公共点. 3)若d= 8 cm ,则直线与圆_相__离___, 直线与圆有__0__个公共点.
a(海平面)
PPT课件
7
一、直线与圆的位置关系(用公 共点的个数来区分)
(1)直线和圆有两个公共点, 叫做直线和圆相交, 这条直线叫圆的割线, 这两个公共点叫交点。
(2)直线和圆有唯一个公共点, 叫做直线和圆相切, 这条直线叫圆的切线, 这个公共点叫切点。
(3)直线和圆没有公共点时,
叫做直线和圆相离。
O
l
相交
O
l
A
相切 PPT课件
O
l
相离
10
二、直线和圆的位置关系(用圆心o到直线l的 距离d与圆的半径r的关系来区分)

直线和圆的位置关系教学设计第一课时

直线和圆的位置关系教学设计第一课时

直线和圆的位置关系教学设计第一课时概述本教学设计旨在帮助学生理解直线和圆的位置关系,并能运用几何知识解决相关问题。

通过教学活动的引导和实践,学生将学会判断直线与圆相交的情况以及相关的几何定理,培养他们的分析推理能力和问题解决能力。

教学目标通过本课时的学习,学生将能够:1.理解直线和圆的基本概念和性质;2.判断直线和圆的位置关系,包括相切、相离以及相交;3.运用几何知识解决与直线和圆的位置关系相关的问题;4.发展分析推理能力和问题解决能力。

教学重点•直线和圆的位置关系判断;•利用几何知识解决与直线和圆的位置关系相关的问题。

教学难点•理解并运用切线的概念和性质。

教学准备•教师:课件、教学素材、黑板、白板笔;•学生:几何工具、作业本。

教学过程步骤一:导入与引入问题(10分钟)1.教师可用一个简单实例导入问题,例如:在平面上给出一个圆和一条直线,请问这两者的位置关系是什么?2.学生讨论并给出自己的答案,教师引导学生思考直线与圆的位置关系的规律。

步骤二:直线和圆的基本概念与性质(15分钟)1.教师引导学生回顾直线和圆的基本概念,如直线是由无限多个点组成的、圆是由平面上到一个定点距离相等的点组成的等。

2.教师讲解直线和圆的性质,例如直线可以通过两个点确定,圆可以通过圆心和半径确定等。

步骤三:直线与圆的位置关系的判断(15分钟)1.教师引入判断直线与圆的位置关系的概念,包括相切、相离以及相交。

2.教师讲解如何判断直线与圆相切、相离或相交的方法和准则,如利用切线与圆的位置关系判断是否相切等。

步骤四:解决与直线和圆的位置关系相关的问题(25分钟)1.教师提供几个与直线和圆的位置关系相关的问题,例如:给出一个圆和一条直线,请判断它们的位置关系并解释原因。

2.学生独立或分组解决问题,教师进行指导和辅助。

步骤五:总结与拓展(10分钟)1.教师与学生共同总结本节课的知识点和方法;2.教师引导学生思考更复杂的问题,如判断两个圆的位置关系等。

人教版九年级数学上册《点和圆、直线和圆的位置关系(第1课时)》示范教学设计

人教版九年级数学上册《点和圆、直线和圆的位置关系(第1课时)》示范教学设计

点和圆、直线和圆的位置关系(第1课时)教学目标1.理解并掌握点和圆的三种位置关系及点和圆的位置关系的判断方法.2.经历点和圆的位置关系的探究过程,体会数形结合、分类讨论的数学思想方法.3.能利用点和圆的位置关系的判断方法解决实际问题,感受点和圆的位置关系与生活中的活动紧密相连,发展分析问题、解决问题的能力.教学重点点和圆的位置关系.教学难点利用点和圆位置的关系的判断方法解决实际问题.教学过程知识回顾1.圆的定义:(1)一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一端点A所形成的图形叫做圆.(2)圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.2.点和直线的位置关系:如图,点A在直线l上,点B在直线l外.【师生活动】教师出示题目,学生独立思考后回答.【设计意图】带领学生复习圆的定义和点和直线的位置关系,巩固基础,为本节课探究点和圆的位置关系做好准备.新知探究一、探究学习【问题】我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同、半径不等的圆)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?【师生活动】教师提出问题,学生交流讨论.教师引导:解决这个问题,需要研究点和圆的位置关系.【设计意图】引入一个射击问题,从奥运会射击比赛出发,让学生观察射击时弹着点在靶上的不同位置,引出点和圆的位置关系.【问题】在同一张纸面上任意画一个⊙O和一些点,这些点和圆的位置关系有几种情况?【师生活动】学生先自己动手画图,教师再展示动画,最后学生小组讨论,得出答案.【答案】点和圆有3种位置关系:点在圆外、点在圆上、点在圆内.如图,点C,D,G在⊙O外;点A,E在⊙O上;点B,F在⊙O内.【设计意图】让学生结合图形,获得点和圆的位置关系.【问题】如图,设⊙O半径为r,点A,点B,点C到圆心O的距离与半径r有什么关系?【师生活动】学生先自己动手连接OA,OB,OC,再通过测量得出OA,OB,OC与r 的关系,最后教师进行展示.【答案】连接OA,OB,OC,如图,点C在⊙O外⇒OC>r;点A在⊙O上⇒OA=r;点B在⊙O内⇒OB<r.【思考】反过来,已知点到圆心的距离和圆的半径,能判断点和圆的位置关系吗?【师生活动】学生独立思考,教师展示动画,学生结合动画得出答案.【答案】点C在⊙O外⇐OC>r;点A在⊙O上⇐OA=r;点B在⊙O内⇐OB<r.【设计意图】学生通过度量获得点到圆心的距离的数量关系,初步了解点和圆的位置关系与点到圆心的距离的数量关系互相对应.【思考】结合下面的动图,总结你的发现.【师生活动】教师展示动图,学生观察动图,小组交流、总结.【新知】设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在⊙O外⇔d>r;点P在⊙O上⇔d=r;点P在⊙O内⇔d<r.【归纳】符号⇔读作“等价于”,它表示从符号“⇔”的左端可以推出右端,从符号“⇔”的右端也可以推出左端.【设计意图】借助动图,形象地展示点和圆的位置关系,帮助学生更好地理解点和圆的位置关系与点到圆心的距离的数量关系互相对应:由位置关系可以确定数量关系,同样由数量关系可以确定位置关系.【练习】已知⊙O的面积为25π.(1)若PO=5.5,则点P在_________;(2)若PO=4,则点P在_________;(3)若PO=_________,则点P在圆上;(4)若点P不在圆外,则PO_________.【师生活动】学生独立完成,让一名学生进行板书作答.【答案】圆外圆内5≤5【设计意图】通过练习,让学生初步掌握点和圆的位置关系的判断方法.【问题】一个圆把平面上的点分成三类,即圆上的点、圆内的点、圆外的点.你能用集合的语言表示圆上的点、圆内的点、圆外的点吗?【师生活动】教师引导学生类比圆的集合性定义进行总结.【答案】根据圆的定义可知,圆上的点可以看作是到定点的距离等于定长的点的集合;类比圆的定义可知,圆的内部的点可以看作是到定点的距离小于定长的点的集合;圆的外部的点可以看作是到定点的距离大于定长的点的集合.【练习】画出由所有到已知点O的距离小于或等于2 cm的点组成的图形.【师生活动】学生独立完成,一名学生板书作答.【答案】如图.【设计意图】让学生学会用集合的语言表示圆上的点、圆内的点、圆外的点,体会类比的数学思想方法.【问题】如图是射击靶的示意图,你知道击中靶上不同位置的成绩是如何计算的吗?【师生活动】学生小组讨论,得出答案.【答案】射击靶图上,有一组以靶心为圆心的大小不同的圆,它们把靶图由内到外分成几个区域,这些区域用由高到低的环数来表示,射击成绩用弹着点位置对应的环数表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击成绩越好.【设计意图】回到最开始的问题,让学生感受点和圆的位置关系与生活中的活动紧密相连,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题.二、典例精讲【例题】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,AC=3,BC=4,若以C为圆心,3为半径作⊙C,判断点A,B,D与⊙C的位置关系.【师生活动】学生独立完成解答,一名学生板书,教师给予指导.【答案】解:由题意,知⊙C的半径r=3.∵AC=3=r,∴点A在⊙C上.∵BC=4>r,∴点B在⊙C外.在Rt△ABC中,∠ACB=90°,由勾股定理,得AB=5.又∵CD⊥AB,∴S△ABC=12AB·CD=12AC·BC.∴CD=2.4<r.∴点D在⊙C内.【归纳】判断点和圆的位置关系的策略判断一个点和圆的位置关系时,首先要知道,点到圆心的距离,然后将这个距离与圆的半径进行比较:(1)若点到圆心的距离大于半径,则点在圆外;(2)若点到圆心的距离等于半径,则点在圆上;(3)若点到圆心的距离小于半径,则点在圆内.【设计意图】通过例题,应用点和圆的位置关系解决问题,巩固学生对点和圆的位置关系的判断方法的掌握.课堂小结板书设计点和圆的位置关系:点P在⊙O外⇔d>r;点P在⊙O上⇔d=r;点P在⊙O内⇔d<r.课后任务完成教材第95页练习第1~2题.。

直线与圆的位置关系(第一课时)学生版

直线与圆的位置关系(第一课时)学生版
(2)过点 A(4,-3)作圆(x-3)2+(y-1)2=1 的切线,求此切线方程.

A.4
B.2 3
1 C.
2
1 D.
3
当堂检测
1.直线 3x+4y+12=0 与圆(x-1)2+(y+1)2=9 的位置关系是( )
A.过圆心
B.相切
C.相离
D.相交但不过圆心
2.过点 P(0,1)的直线 l 与圆(x-1)2+(y-1)2=1 相交于 A,B 两点,若|AB|= 2,
()
(2)过圆外一点作圆的切线有两条.
()
(3)当直线与圆相离时,可求圆上点到直线的最大距离和最小距离.( )
(4)若直线与圆有公共点,则直线与圆相交或相切. 2.直线 3x+4y-5=0 与圆 x2+y2=1 的位置关系是( )
()
A.相交
B.相切
C.相离
D.无法判断
3.设 A,B 为直线 y=x 与圆 x2+y2=1 的两个交点,则|AB|=( )
消元得到一元二次方程的判别式Δ
思考:用“代数法”与“几何法”判断直线与圆的位置关系各有什么特点?
直线、圆,把平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数运算的结果“翻译”成几何结论.
三、小试身手 1.思考辨析(正确的打“√”,错误的打“×”)
(1)直线与圆的位置关系可以用代数法或几何法判断.
[跟进训练] 3.直线 m:x+y-1=0 被圆 M:x2+y2-2x-4y=0 截得的弦长为( )
与圆 C 的位置关系为________. 题型二:直线与圆相切问题
【例 2】 (1)已知直线 l:ax+by-3=0 与圆 M:x2+y2+4x-1=0 相切于点 P(-1,2), 则直线 l 的方程为________.

直线与圆的位置关系(第1课时)(教学课件)高二数学同步备课系列(人教A版2019选择性必修第一册)

直线与圆的位置关系(第1课时)(教学课件)高二数学同步备课系列(人教A版2019选择性必修第一册)
把 2 = 1代入方程① ,得 2 = 3.
所以,直线 l 与圆的两个交点是:
(2,0),(1,3)
因此 =
= 10.
1−2
2
+ 3−0
2
判断直线与圆位置关系的方法:
(1) 代数法:
在平面直角坐标系中, 要判断直线l: Ax+By+C=0与圆C: x2+y2+Dx+Ey+F=0
宋老
的位置关系, 可以联立它们的方程,
人教A版2019选修第一册
宋老
师数
学精
品工 宋老师
作室 数学精
宋老师数学精品工作室
第 2 章直线和圆的方程
品工作
2.5.1直线与圆的位置关系

(第1课时)


01判断直线与圆的位置关系
02求圆的切线方程
宋老
学习目标
师数
学精
品工 宋老师
1. 能根据给定直线、圆的方程,判断直线与圆的位置关系.
作室 数学精

2+3−3
2 +1
=3,解得 =
4
−3.
品工作
所求直线l的方程为4 + 3 + 21 = 0

②当直线l的斜率不存在时, 直线l的方程为x=-3,
此时,圆心到直线l的距离为3,符合题意.
综上所述,所求直线l的方程为:4 + 3 + 21 = 0或 = −3.
y
M
.O .
x
E
F
课本练习
位置关系
新知学习
直线与圆的位置关系:
位置关系
图形
d与r的关系

人教初中数学九上 《直线和圆的位置关系(第1课时)》教案 (公开课获奖)

人教初中数学九上  《直线和圆的位置关系(第1课时)》教案 (公开课获奖)

24.2.2直线和圆的位置关系教学目标(一)教学知识点1.理解直线与圆有相交、相切、相离三种位置关系.2.了解切线的概念,探索切线与过切点的直径之间的关系.(二)能力训练要求1.经历探索直线与圆位置关系的过程,培养学生的探索能力.2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.(三)情感与价值观要求通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点经历探索直线与圆位置关系的过程.理解直线与圆的三种位置关系.了解切线的概念以及切线的性质.教学难点经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.探索圆的切线的性质.教学方法教师指导学生探索法.教具准备投影片三张教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.[师]本节课我们将类比地学习直线和圆的位置关系.Ⅱ.新课讲解1.复习点到直线的距离的定义[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.2.探索直线与圆的三种位置关系[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系.[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?[生]有三种位置关系:[师]直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离.当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tan gent line).当直线与圆有两个公共点时,叫做直线和圆相交.当直线与圆没有公共点时,叫做直线和圆相离.因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?[生]当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离.[师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?[生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系.[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.投影片(§3.5.1A)(1)从公共点的个数来判断:直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.(2)从点到直线的距离d与半径r的大小关系来判断:d<r时,直线与圆相交;d=r时,直线与圆相切;d>r时,直线与圆相离.投影片(§3.5.1B)[例1]已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?分析:根据d与r间的数量关系可知:d=r时,相切;d<r时,相交;d>r时,相离.解:(1)如上图,过点C作AB的垂线段CD.∵AC=4cm,AB=8cm;∴cos A=12 ACAB,∴∠A=60°.∴CD=AC sin A=4sin60°=23(cm).因此,当半径长为23cm时,AB与⊙C相切.(2)由(1)可知,圆心C到AB的距离d=23cm,所以,当r=2cm时,d>r,⊙C与AB相离;当r=4cm时,d<r,⊙C与AB相交.3.议一议(投影片§3.5.1C)(1)你能举出生活中直线与圆相交、相切、相离的实例吗?(2)上图(1)中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?(3)如图(2),直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由.对于(3),小颖和小亮都认为直径AB垂直于CD.你同意他们的观点吗?[师]请大家发表自己的想法.[生](1)把一只筷子放在碗上,把碗看作圆,筷子看作直线,这时直线与圆相交;自行车的轮胎在地面上滚动,车轮为圆,地平线为直线,这时直线与圆相切;杂技团中骑自行车走钢丝中的自行车车轮为圆,地平线为直线,这时直线与圆相离.(2)图(1)中的三个图形是轴对称图形.因为沿着d所在的直线折叠,直线两旁的部分都能完全重合.对称轴是d所在的直线,即过圆心O且与直线l垂直的直线.(3)所谓两条直线的位置关系,即为相交或平行,相交又分垂直和斜交,直线CD与⊙O 相切于点A,直径AB与直线CD垂直,因为图(2)是轴对称图形,AB是对称轴,所以沿AB 对折图形时,AC与AD重合,因此∠BAC=∠BAD=90°.[师]因为直线CD与⊙O相切于点A,直径AB与直线CD垂直,直线CD是⊙O的切线,因此有圆的切线垂直于过切点的直径.这是圆的切线的性质,下面我们来证明这个结论.在图(2)中,AB与CD要么垂直,要么不垂直.假设AB与CD不垂直,过点O作一条直径垂直于CD、垂足为M,则OM<OA,即圆心O到直线CD的距离小于⊙O的半径,因此CD 与⊙O相交,这与已知条件“直线CD与⊙O相切”相矛盾,所以AB与CD垂直.这种证明方法叫反证法,反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾.第三步是肯定假设错误,故结论成立.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.直线与圆的三种位置关系.(1)从公共点数来判断.(2)从d与r间的数量关系来判断.2.圆的切线的性质:圆的切线垂直于过切点的半径.3.例题讲解.Ⅴ.课后作业习题3.7Ⅵ.活动与探究如下图,A 城气象台测得台风中心在A 城正西方向300千米的B 处,并以每小时107千米的速度向北偏东60°的BF 方向移动,距台风中心200千米的范围是受台风影响的区域.(1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风的影响,试计算A 城遭受这次台风影响的时间有多长?分析:因为台风影响的范围可以看成以台风中心为圆心,半径为200千米的圆,A 城能否受到影响,即比较A 到直线BF 的距离d 与半径200千米的大小.若d >200,则无影响,若d ≤200,则有影响.解:(1)过A 作AC ⊥BF 于C .在Rt △ABC 中,∵∠CBA =30°,BA =300,∴AC =AB sin30°=300×12=150(千米). ∵AC <200,∴A 城受到这次台风的影响.(2)设BF 上D 、E 两点到A 的距离为200千米,则台风中心在线段DE 上时,对A 城均有影响,而在DE 以外时,对A 城没有影响.∵AC =150,AD =AE =200,∴DC =22200150507-=.∴DE =2DC =1007. ∴t =1007107s v ==10(小时). 答:A 城受影响的时间为10小时.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩D CA BD CAB所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC A BD CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题.(二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P .EDCABPD C A B∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 (教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)b a ab - (3)3 五、1.(1)22yx xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

直线和圆的位置关系(第1课时)

直线和圆的位置关系(第1课时)

议一议
探索切线性质

驶向胜利 的彼岸
小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.



假设AB与CD不垂直,过点O作一条直径垂直于 CD,垂足为M, B 则OM<OA,即圆心到直线CD的距离 小于⊙O的半径,因此,CD与⊙O相 O 交.这与已知条件“直线与⊙O相 切”相矛盾. 所以AB与CD垂直. C A M
r

O















B

C
2.一枚直径为d的硬币沿直线滚动一圈.圆心经过的距离 是多少?. 老师提示:硬币滚动一圈,圆心经过的路经是与直线平行 的一条线段,其长度等于圆的周长.
独立作业
挑战自我

驶向胜利 的彼岸
P127 习题3.7

1、3题
祝你成功!
结束寄语

下课了!
具有丰富知识和经验的人,比 只须一种知识和经验更容易产 生新的联想和独到的见解。
相交

d ┐ 相切
d ┐ 相离
你能根据d与r的大小关系确定直线与圆的位置关系吗?
想一想
直线与圆的位置关系量化揭密
r

驶向胜利 的彼岸
O ┐d
r

O
r

O
相交


d ┐ 相切

d ┐ 相离
直线和圆相交
直线和圆相切
d < r;
d = r;


直线和圆相离

d > r;
两 判定直线与圆的位置关系的方法有____种:

直线和圆的位置关系(第1课时)

直线和圆的位置关系(第1课时)
活动5应用与练习
活动6回顾总结
活动7当堂达标检测
练习运用公共点的个数判断直线和圆的位置关系。
从数量关系角度研究直线和圆的位置关系.
利用直线和圆位置关系的判定和性质解题,及时巩固所学知识.
回顾梳理本节知识,巩固、提高、发展.
检验学生对所学知识的掌握情况。
教学过程设计
问题与情境
师生行为
设计意图
活动1
(1)“大漠孤烟直,长河落日圆”是唐朝诗人王维的诗句,它描述了黄昏日落时分塞外特有的景象.如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?
学生自己总结,教师应重点关注:
(1)学生对直线和圆的位置关系的性质和判定总结是否全面;
(2)是否有学生能从这节课的学习中,体会到分类讨论的数学思想和数形结合的数学思想在研究问题中的重要性.
学生自己解答,教师应重点关注:
(1)学生对直线和圆的位置关系的性质和判定运用是否灵活;
(2)学生在解题的过程中是否能灵活运用分类讨论的数学思想和数形结合的数学思想.
(2)学生能否利用圆心到直线的距离和半径间的数量关系判断直线和圆的位置关系.
练习题的安排是为了让学生掌握识别直线和圆的位置关系的方法.培养学生正确应用所学知识的能力,渗透分类讨论、数形结合等数学思想.
活动6
小结
这节课我们主要研究了直线和圆的三种位置关系和识别直线和圆的位置关系的方法,你有哪些收获?
活动7当堂达标检测
活动1的设计中让学生用运动的观点观察直线和圆的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆公共点个数的变化,同时让学生感受到实际生活中存在的直线和圆的三种位置关系.

直线和圆的位置关系(第一课时)

直线和圆的位置关系(第一课时)
当直线和圆相切时,我们需。
详细描述
首先,我们需要确定切线的斜率。由于切线与半径垂直,所以切线的斜率等于半径所在直线的斜率的负倒数。然 后,我们可以利用点斜式方程求出切线的方程。需要注意的是,由于直线和圆可能有两个切点,所以需要分别求 出两个切点的切线方程。
THANKS
感谢观看
学习目标
01
02
03
04
理解直线和圆的位置关系的定 义和分类。
掌握判断直线和圆位置关系的 方法。
了解直线和圆的位置关系在几 何定理中的应用。
能够解决一些与直线和圆位置 关系相关的实际问题。
02
直线和圆的基本性质
直线的性质
01
直线是两点之间最短的 路径。
02
直线具有方向性,可以 用一个方向向量来表示。
实例二:求交点坐标
总结词
当直线和圆相交时,我们需要求出交点的坐标。通过联立直线和圆的方程,可以解出交点的坐标。
详细描述
首先,我们需要将直线方程和圆方程联立起来,然后解这个联立方程,得到交点的坐标。需要注意的 是,由于直线和圆可能有两个交点,所以需要分别求出两个交点的坐标。
实例三:求切线方程
总结词
• 直线与圆心距离小于半径: 相交
• 直线与圆心距离大于半径: 相离
05
实例分析
实例一:判断位置关系
总结词
判断直线和圆的位置关系是本课时的基本要求,通过比较圆 心到直线的距离与半径的大小,可以确定直线和圆的位置关 系。
详细描述
首先,我们需要确定圆心和半径,然后计算圆心到直线的距 离。如果距离小于半径,则直线与圆相交;如果距离等于半 径,则直线与圆相切;如果距离大于半径,则直线与圆相离 。
圆上任取两点与圆心构成的角是直角, 即直径所对的圆周角为直角。

初中数学_直线与圆的位置关系(1)教学设计学情分析教材分析课后反思

初中数学_直线与圆的位置关系(1)教学设计学情分析教材分析课后反思

第三章圆《直线和圆的位置关系(第1课时)》教学设计一、学生知识状况分析学生的知识技能基础:“直线和圆的位置关系”是学生在已经掌握“点和圆的位置关系”后,学生在已获得一定的探究方法的基础上,进一步探究直线和圆的位置关系.它是圆这一章中一种重要的位置关系.学生的活动经验基础:学生在日常生活中已经有经验,对直线和圆的位置关系有一定的感性认识.学生已经了解圆的相关概念,了解了圆中的一些数量与位置关系:如点和圆的位置关系不但可以直观呈现,也可以通过数量来刻画等.二、教学任务分析本节共分2个课时.这是第1课时,主要研究直线和圆的的三种位置关系,探索圆的切线的性质.具体地说,本节课的教学目标为:知识与技能1.经历探索直线和圆位置关系的过程.2.理解直线与圆有相交、相切、相离三种位置关系.3.了解切线的概念,探索切线与过切点的直径之间的关系.过程与方法1.本节课通过“观察——猜想——合作交流——概括、归纳”的途径,运用运动变化的观点揭示了知识的发生过程及相关知识间的内在联系,2.渗透了数形结合、分类、类比、化归等数学思想,有助于培养学生思维的严谨性和深刻性.情感态度与价值观体现数学学习的快乐,在快乐中体现知识源于实践,又运用于生活.教学重点:理解直线与圆的三种位置关系的定义,并能准确的判定.教学难点:(1)利用d与r的大小关系判断直线与圆的位置关系.(2)运用切线的性质定理解决问题.三、教学过程分析本节课设计了六个教学环节:创设情景引入课题;直线与圆的位置关系量化揭密;探索切线的性质;例题讲解;练习;归纳小结,布置作业第一环节创设情境引入课题活动内容:回顾旧知;复习:我们已经学过了点与圆的位置关系,点与圆的位置关系有哪几种?(1),rd<点在圆内.d>点在圆外(2),rd=点在圆上(3),r2.观察三幅太阳落山的照片,地平线与太阳的位置关系是怎样的?这个自然现象反映出直线和圆的位置关系有哪几种?3.作一个圆,把直尺边缘看成一条直线.固定圆,平移直尺从直线与圆交点个数这一角度,如何对对直线与圆的位置关系进行分类?(1)直线和圆有两个交点(2)直线和圆有一个交点(3)直线和圆没有交点.当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离.(2)直线和圆有惟一公共点(即直线和圆相切)时,这条直线叫做圆的切线,这个惟一的公共点叫做切点.活动目的:建构主义教学论原则认为:复杂的学习领域应针对学习者先前的经验和兴趣,只有这样,才能激发学习者的学习积极性,学习才可能主动.这里用一个生活中的例子:生活中太阳西落这一自然现象引入,通过观察、动手操作、合作研究发现规律,抽象出直线与圆的三种位置关系,借助学生对日落情景的认知经验为下文的“直线与圆的位置关系”知识的认识与构建做准备.第二环节 直线与圆的位置关系量化揭密活动内容:类比探究:以上我们用量化(d 与 r 的大小关系)的方法判定了点与圆的位置关系,类似地,我们能不能用量化的方法判定了直线与圆的位置关系呢?●O ●O●O分析总结:①若d>r,则直线与圆相离②若d=r,则直线与圆相切③若d<r,则直线与圆相交总结:判定直线与圆的位置关系的方法有两种:(1)根据定义,由直线与圆的公共点的个数来判断;(2)根据性质,由圆心到直线的距离d与半径r 的关系来判断.活动目的:由于学生已经具备点与圆之间的位置关系及相应的分类方法,因此在这部分的设计中,我让学生自己观察,亲自动手实验,大胆猜想,对直线和圆的位置关系进行分类,激发了学生的学习热情,从而概括出判定直线和圆位置关系的两种判定方法.对应练习:巩固练习:1、已知圆的直径为13cm,设直线和圆心的距离为d :1)若d=4.5cm ,则直线与圆, 直线与圆有____个公共点.2)若d=6.5cm ,则直线与圆______, 直线与圆有____个公共点.3)若d= 8 cm ,则直线与圆______, 直线与圆有____个公共点.2、已知Rt△ABC的斜边AB=8cm,直角边AC=4cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?A(2)以点C 为圆心,分别以2cm,4cm 为半径作两个圆,这两个圆与AB 分别有怎样的位置关系?3、如图,已知∠AOB= 30°,M 为OB 上一点,且OM=5cm ,若以M 为圆心,r 为半径作圆,那么:1)当直线0A 与⊙M 相离时, r 的取值范围是2)当直线OA 与⊙M 相切时, r 的取值范围是3)当直线OA 与⊙M 有公共点时, r 的取值范围是第三环节 探索切线的性质活动内容:1.下面的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?你能由此悟出点什么?2.如图,直线CD 与⊙O 相切于点A,直径AB 与直线CD 有怎样的位置关系?说说你的理由.活动目的:设计1是为了在2中使用“对称性”证明作铺垫.学生可以用对称性或反证法说理.根据学生的实际情况,采取层层引导,在学生已有的知识基础和对有关图形的基本认识上,进行自主学习、展示成果,关键是通过三种语言●O ●O●O C D B●OAO认识、理解切线的性质定理,让学生感到用好定理的关键就是图形语言和符号语言的结合.切线的性质定理:圆的切线垂直于过切点的半径几何语言:∵CD是⊙O的切线,A是切点,OA是⊙O的半径,∴CD⊥OA.第四环节例题讲解活动内容:例1 直线BC与半径为r的⊙O相交,且点O到直线BC的距离为5,求r的取值范围.例2 一枚直径为d的硬币沿直线滚动一圈.圆心经过的距离是多少?活动目的:巩固所学第五环节练习活动内容:1、已知:如图,P 是⊙O 外一点,PA,PB 都是⊙O 的切线,A,B 是切点.请你观察猜想,PA,PB 有怎样的关系?并证明你的结论.2、如图,点A 是一个半径为300m 的圆形森林公园的中心,在森林公园附近有B ,C 两村庄,现要在B ,C 两村庄之间修一条长为1000m 的笔直公路将两村连通, 现测得∠ABC=45°, ∠ACB= 30°.问此公路是否会穿过该森林公园?请通过计算进行说明.第六环节 归纳小结,布置作业 直线与圆的位置关系公共点个数公共点名称直线名称数量关系A BP ●O习题3.7 1,2,3题四、教学反思可取之处1、采用多媒体进行教学,发挥其直观、形象、演示动画等效果,力求使教学内容情境化、生活化、问题化,力争深入浅出,提高教学效率.运用多种教学手段,调动学生各种感官,充分调动学生的情感因素,激发学生学习热情,努力为学生营造一个轻松愉快的学习氛围.2、九年级学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,因此我设计了一个学生动手测量和教师动画演示的两个环节,学生通过思考、验证猜想,类比点到圆心的距离与半径的大小关系,自然得出用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,即为数量法.3、注重归纳. 给出由图像、位置关系、公共点个数、圆心距与半径的大小关系的一个表格来刻画直线与圆的位置关系.通过代数的方法几何的方法结合图像,加深数形结合的思想方法.不足之处1、部分学生课堂不爱发言,只是被动听课,缺乏积极主动性,缺乏对他们的关注.2、对课堂氛围还不够活跃,教师与学生还缺乏更加有效的沟通,教师应该用自己的热情和智慧调动起学生的学习热情和积极性.学情分析学生的知识技能基础:“直线和圆的位置关系”是学生在已经掌握“点和圆的位置关系”后,学生在已获得一定的探究方法的基础上,进一步探究直线和圆的位置关系.它是圆这一章中一种重要的位置关系.学生的活动经验基础:学生在日常生活中已经有经验,对直线和圆的位置关系有一定的感性认识.学生已经了解圆的相关概念,了解了圆中的一些数量与位置关系:如点和圆的位置关系不但可以直观呈现,也可以通过数量来刻画等.效果分析1、采用多媒体进行教学,发挥其直观、形象、演示动画等效果,力求使教学内容情境化、生活化、问题化,力争深入浅出,提高教学效率.运用多种教学手段,调动学生各种感官,充分调动学生的情感因素,激发学生学习热情,努力为学生营造一个轻松愉快的学习氛围.2、部分学生课堂不爱发言,只是被动听课,缺乏积极主动性,缺乏对他们的关注.3、对课堂氛围还不够活跃,教师与学生还缺乏更加有效的沟通,教师应该用自己的热情和智慧调动起学生的学习热情和积极性.教材分析本节共分2个课时.这是第1课时,主要研究直线和圆的的三种位置关系,探索圆的切线的性质.具体地说,本节课的教学目标为:知识与技能1.经历探索直线和圆位置关系的过程.2.理解直线与圆有相交、相切、相离三种位置关系.3.了解切线的概念,探索切线与过切点的直径之间的关系.过程与方法1.本节课通过“观察——猜想——合作交流——概括、归纳”的途径,运用运动变化的观点揭示了知识的发生过程及相关知识间的内在联系,2.渗透了数形结合、分类、类比、化归等数学思想,有助于培养学生思维的严谨性和深刻性.情感态度与价值观体现数学学习的快乐,在快乐中体现知识源于实践,又运用于生活.教学重点:理解直线与圆的三种位置关系的定义,并能准确的判定.教学难点:(1)利用d与r的大小关系判断直线与圆的位置关系.(2)运用切线的性质定理解决问题.评测练习1.已知圆的半径等于5,直线l 与圆没有交点,则圆心到直线的距离d 的取值范围是 .2.直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为8,则r 的取值范围是 .3.圆心O 到直线的距离等于⊙O 的半径,则直线和⊙O 的位置关系是( ):A .相离 B.相交 C.相切 D.相切或相交4、已知⊙A 的直径为6,点A 的坐标为(-3,-4),则X 轴与⊙A 的位置关系是_____, Y 轴与⊙A 的位置关系是______。

直线与圆的位置关系(第1课时)教学设计

直线与圆的位置关系(第1课时)教学设计

拓宽视角,让数学教学更自然——苏科版“直线与圆的位置关系”(第1课时)教学设计1教材简解直线和圆的位置关系是本章的重点内容之一。

从知识体系上看,它既是点与圆位置关系的延续与提高,又是学习切线的判定定理的基础。

从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

因此,直线和圆的位置关系在圆一章中起承上启下的作用。

2目标预设2.1知识与技能目标:知道直线和圆相交、相切、相离的定义;会根据定义来判断直线和圆的位置关系;会根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆位置关系。

2.2过程与方法目标:通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力。

2.3情感态度与价值观:使学生从运动的观点来观察直线和圆相交、相切、相离的关系,培养学生辩证唯物主义观点。

3重点、难点重点:引导发现直线与圆的位置关系与圆心到直线的距离与半径的数量关系之间的联系。

难点:理解并灵活运用圆心到直线的距离与半径的数量关系判定直线与圆的位置关系。

4设计理念翻看数学史,不难发现:数学定理、数学思想、数学方法都是数学家们经历曲折、艰辛的研究结果;完美的数学符号、概念、法则是数学界长期自然、合理进化的结果。

从再创造的角度出发,学生的思维和当初创建这些数学知识的数学家们的思维本质一致。

既然数学知识的产生和发展是自然合理的,那么,数学教学只能以自然、合理的方式展开。

[1]本节课的教学中,努力挖掘内容的本质和联系,充分考虑学生的学习基础和思维发展方向,力求教学过程的自然流畅.5教学设计环节1:课题引入问题1:几何学习中,我们常常会研究图形与图形之间的位置关系,我们学习过哪些图形与图形之间的位置关系?大家还想研究哪些图形与图形之间的位置关系呢?问题2:观察太阳缓缓升起的过程,把地平线看成一条直线,而把太阳抽象成一个运动着的圆,地平线与太阳经历了哪些位置关系?环节2:实践探索一问题3:在纸上画一条直线,把它看成水平线,借助圆形纸片演示太阳升起的过程,猜想直线和圆的位置关系?师生活动:在学生尝试活动的基础上,教师再用几何画板演示。

3.6_直线和圆的位置关系(第1课时)_演示文稿

3.6_直线和圆的位置关系(第1课时)_演示文稿

想一想
(1) l
· O
看图判断直线l与⊙O的位置关系 (2)
· O
(3) l
· O
l 相离 (4)
· O
相交
相切
相交
l
利用公共点的个数判断直线和圆的位置关系具有一定
的局限,你有更好的判断方法吗?
“点和圆的位置关系”怎样判断?
做一做
图形
点和圆的三种位置关系
点与圆的位置关系 圆心到点的距离d与半径r 的关系
0
∴∠A=60°.
因此,当半径长为 2 3 cm时,AB与⊙C相切.
(2)以点C为圆心,分别以2cm,4cm为半径作两个圆,这 两个圆与AB分别有怎样的位置关系?
解:(2)由(1)可知,圆心到AB 的距离d= 2 3cm,所以
当r=2cm时,d>r,AB与⊙C相离;
A
D
C

B
当r=4cm时,d<r,AB与⊙C相交.
相离
直线和圆没有公 共点
直线和圆的位置关系
•o
l
直线和圆有两个公共点时,叫做直 线和圆相交.这时直线叫做圆的割线
直线和圆有唯一公共点时,叫做直 线和圆相切.这条直线叫做圆的切 线.唯一的公共点叫切点.
•o
M
l 直线和圆没有公共点时,叫做 直线和圆相离.
•o
l
你能举出生活中直线与圆相交、相切、相离的实例吗?
C A.相离 答案:B B.相切 C.相交
B D.相切或相交
2.(娄底·中考)在平面直角坐标系中,以点(3,2)为 圆心、3为半径的圆,一定( A.与x轴相切,与y轴相切 C.与x轴相交,与y轴相切 答案:C ) B.与x轴相切,与y轴相交 D.与x轴相交,与y轴相交

【高中数学】直线与圆的位置关系(第一课时) 高二上学期数学人教A版(2019)选择性必修第一册

【高中数学】直线与圆的位置关系(第一课时) 高二上学期数学人教A版(2019)选择性必修第一册

直线与圆的位置关系
用代数法判断直线l: Ax+By+C=0与圆C: x2+y2+Dx+Ey+F=0的位置关系
的步骤:
(1)联立它们的方程, 得到方程组
Ax By C 0
2
2
x y Dx Ey F 0
(2)消元, 得到关于x(或y)的一元二次方程.
(1)
典例分析
回顾点到直线的距离公式:
点 P ( x0 , y 0 )到直线 l: Ax By C 0的距离公式
d
Ax 0 By 0 C
A2 B 2
典例分析
直线与圆的位置关系
例1 已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆C
的位置关系;如果相交,求直线l被圆C所截得的弦长.
04 | 重 点 难 点
05 | 教 法 分 析
06 | 教 学 过 程
教材分析
《直线与圆的位置关系》是对上节课《圆的方程》的延续和拓展,又是后续研究圆
与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。
新课标中强调了要帮助学生用代数方法,认识直线与圆的位置关系,运用平面解析
几何方法解决简单的数学问题和实际问题,感悟平面解析几何中蕴含的数学思想。
难点:
● 直线与圆三种位置关系的研究。
教法分析
教学方法
为了充分调动学生学习的积极性,本节课采用“启发式”教学法,用环环相扣的问题将探
究活动层层深入,站在学生思维的最近发展区上启发诱导。
教学过程
复习回顾,引入新课
1.点与圆的位置关系的判断
2
2

直线和圆的位置关系第1课时课件初中数学北师版九年级下册

直线和圆的位置关系第1课时课件初中数学北师版九年级下册
思考:如图,如果直线l是⊙O 的切线,点A为 切点,那么OA与l垂直吗?
切线性质 圆的切线垂直于经过切点的半径.
几何符号表达: ∵直线l是⊙O 的切线,A是切点. ∴直线l ⊥OA.
O
A
l
学习目标
自主学习
合作探究
当堂检测
课堂总结
探究三:切线的性质定理的证明
问题提出:如何证明切线的性质定理呢?
问题探究: 证法1:反证法. 小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.
相交
(5) ? .O 相交
注意:直线是可 以无限延伸的.
学习目标
自主学习
合作探究
当堂检测
课堂总结
探究二:用数量关系判断直线与圆的位置关系
问题1:同学们用直尺在圆上移动的过程中,除了发现公共点的个数产生了 变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?
相关知识: 点到直线的距离是指从直线外一点(A)到直线
C
O
A
D
学习目标
自主学习
合作探究
当堂检测
课堂总结
方法总结:
利用切线的性质解题时,常需连接辅助线,一般连接圆心与 切点,构造直角三角形,再利用直角三角形的相关性质解题.
学习目标
自主学习
பைடு நூலகம்
合作探究
当堂检测
课堂总结
练一练: 4.如图, ⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?
解:连接OB,则∠OBP=90°. 设⊙O的半径为r,则OA=OB=r, OP=OA+PA=2+r.
在Rt△OBP中, OB2+PB2=PO2,即r2+42=(2+r)2. 解得 r=3, 即⊙O的半径为3.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2
3.(2014· 重庆中考)如图所示,C为☉O外一点,CA与☉O相
切,切点为A,AB为☉O的直径,连接CB.若☉O的半径为2, 8 ∠ABC=60°,则BC= . 解析:∵CA与☉O相切,切点为A,AB为☉O的 直径,∴∠BAC=90°,∵∠ABC=60°,☉O 的半径为2,∴在Rt△BAC中,∠C=30°, AB=4,∴BC=2AB=2×4=8.故填8. 4.如图所示,已知∠MAN=30°,O为边AN上一点,以O为圆 2 心,2为半径作☉O,交AN于D,E两点,当AD= 时,☉O 与AM相切. 解析:如图所示,设AM切☉O于点C,连接OC,则 AC⊥OC,∴∠ACO=90°,OC=OD=2,∵∠MAN=30°,
1 ∠OCP=90°.∵∠AOB=30°,OP=24 cm,∴PC= 2 OP=12 cm.
解:如图所示,过点P作PC⊥OB,垂足为C,则
(1)当r=12 cm时,r=PC,∴☉P与OB相切,即☉P与OB的位置关系是相切.
(2)当☉P与OB相离时,r<PC,∴r需满足的条件是0 cm<r<12 cm.
AC 1 . AB 2
(2)由(1)可知,圆心C到AB
的距离d=2
3 cm,所以当
∴∠A=60°. ∴CD=ACsin A=4sin 60°=2 因此,当半径长为2
r=2 cm时,d>r,☉C与AB相离;
3 (cm).
当r=4 cm时,d<r,☉C与AB相
3 cm时,AB与☉C相切.
交.
1.(2014· 白银中考)已知☉O的半径是6 cm,点O 到同一平面内直线l的距离为5 cm,则直线l与☉O 的位置关系是 ( A ) A.相交 B.相切 C.相离 D.无法判断
AB⊥CD.
圆的切线性质:圆的切线垂直于过切点的半径. 用几何语言描述:如图所示,∵CD是☉O的切线,A是切点, OA是☉O的半径,∴CD⊥OA.
例1 已知Rt△ABC的斜边AB=8 cm,AC=4 cm. (1)以点C为圆心作圆,当半径为多长时,AB与☉C相切? (2)以点C为圆心,分别以2 cm和4 cm的长为半径作两个圆,这两个 圆与AB分别有怎样的位置关系? 〔解析〕 根据d与r之间的数量关系可知:d<r时,直线 与圆相交;d=r时,直线与圆相切;d>r时,直线与圆相离. 解:(1)如图所示,过点C作AB的 垂线,垂足为D. ∵AC=4 cm,AB=8 cm, ∴cos A=
一、直线和圆的位置关系
观察上面三幅图,地平线(直线)与太阳(圆)的位置关系是怎样的? 活动1:利用公共点的个数判断直线和圆的位置关系.
【观察】 当太阳逐渐升起时,地平线与太阳的位置,直线(地 平线)和圆(太阳)的公共点个数是怎样变化的?
直线与圆分别有两个公共点、一个公共点、没有公共点. 【做一做】 为了验证直线与圆的位置关系,请同学在纸上 画一条直线,把硬币的边缘看做圆,在纸上移动硬币,你能发现 直线和圆有几种位置关系?
由位置关系得到了d与r的数量关系,同时反过来也成立, 我们就可以根据数量关系判断直线和圆的位置关系. 直线和圆相交⇔d<r; 直线和圆相切⇔d=r; 直线和圆相离⇔d>r. [知识拓展] 判断直线和圆的位置关系的方法:(1)利用直线和圆 的公共点个数来判断;(2)利用圆心到直线的距离d与半径r的大小 关系来判断.
切线的性质
问题1 你能举出生活中直线与圆相交、相切、相离的实例吗?
问题2 图中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?
图中的三个图形都是轴对称图形,对称轴是过圆心 O且与直线l垂直的直线.
问题3
如图所示,直线CD与☉O相切于点A,直径
AB与直线CD有怎样的位置关系?说一说你的理 由. 思考下面的问题: 1.此图是对称图形吗?是什么对称图形? 2.把图形沿AB对折后,会得到什么结论? 理由:直径AB与直线CD垂直. 因为此图形是轴对称图形,所以沿AB 所在的直线对折时,AC与AD重合,因此∠BAC=∠BAD=90°,所以
九年级数学· 下 新课标[北师]
第三章

学习新知
检测反馈
学习新知
同学们,还记得唐代诗人白居易的《忆江南》这首诗吗?
诗里面的句名是“日出江花红胜火,春来江水绿如蓝,能不忆 江南?”实际上 “日出江花红胜火”便是“旭日东升”的真
实写照,同学们能不能简单描述一下“旭日东升”的画面?
【想一想】当太阳逐渐升起时,地平线与太阳的位置发生了怎样的 变化? 【问题】 直线和圆有几种位置关系呢?
直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做 圆的切线,这个唯一的公共点叫做切点.
活动2:利用圆心O到直线l的距离d与圆的半径r的关系来 判断直线和圆的位置关系. 【想一想】 圆心O到直线l的距离d与☉O的半径r的大小有怎样 的数量关系?你能根据d与r的大小关系确定直线和圆的位置关系吗?
∴d<r,∴直线l与圆相交.故选A.
检测反馈
解析:设圆的半径为r,点O到直线l的距离为d,∵d=5 cm,r=6 cm,
2.如图所示,AB切☉O于点B,延长AO交☉O于点C,连接BC.若 ∠A=40°,则∠C等于 ( B ) A.20° B.25° C.40° D.50° 解析:如图所示,连接OB.∵AB切☉O于点B, ∴OB⊥AB,即∠ABO=90°,∴∠AOB=50°,又∵点 C在AO的延长线上,且在☉O上,∴∠C= ∠AOB=25°.故选B.
1 OA.∵OC=OD=2,∴OA=4,∴AD=OA2
∴OC=
OD=2,∴当AD=2时,☉O与AM相切°,P是OA上的一点,OP=24
cm,以r为半径作☉P. (1)若r=12 cm,试判断☉P与OB的位置关系; (2)若☉P与OB相离,试求出r需满足的条件.
相关文档
最新文档